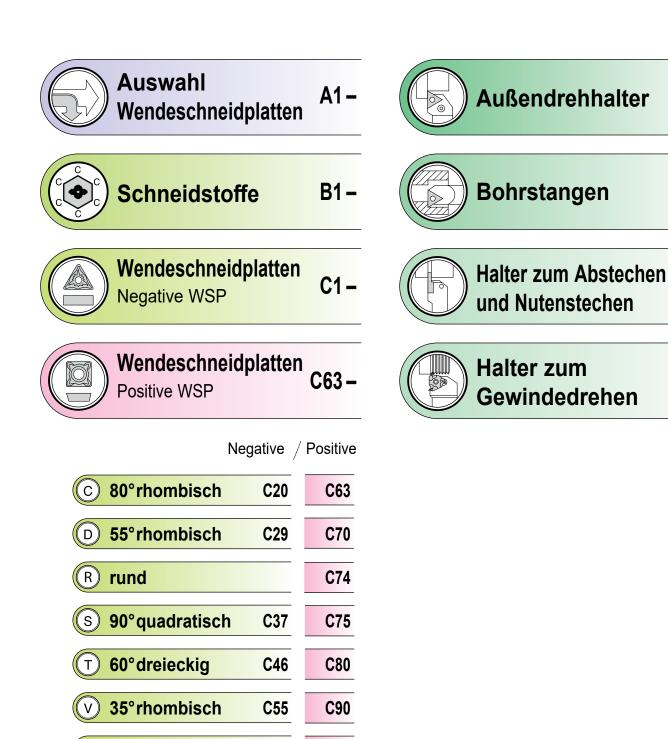

2022 ► 2023
GESAMTKATALOG


CARBIDE - CBN - DIAMOND

HOCHLEISTUNGS-ZERSPANUNGSWERKZEUGE

Inhalt

D1 -

E1 -

F1 -

F62-

80°Trigon-Typ

C58

CBN-Schneidplatten

PKD - Schneidplatten M1 -

C94

M1 -

Fräsköpfe

G1-

Multi-Drills

K1-

Spez. Fräsköpfe G53 -

"HSC"-Fräsköpfe mit hohen Vorschüben

SumiBoron CBN-Schneidstoffe

PKD-Schneidstoffe

L1-

mit WSP

H1 -

SumiDia

L24-

M1 -

VHM-Schaftfräser Beschichtet

J1 -

CBN / PKD - Platten und Werkzeuge

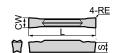
VHM - Schaftfräser Unbeschichtet

J36-

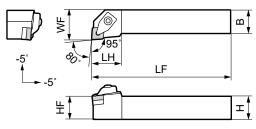
Bemaßungssymbole entsprechend der Norm ISO13399

Die folgenden Tabellen zeigen die nach ISO13399 geforderten standardisierten Bemaßungssymbole mit den dazugehörigen Erläuterungen. Zeichnungen, Tabellen und andere Werkzeugdarstellungen im Katalog verwenden diese Kurzsymbole nach ISO 13399.

(1) Schneidplatten zum Drehen und Fräsen

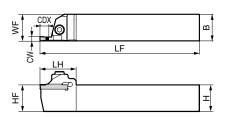

Symbol	Bezeichnung				
AN	Normalfreiwinkel, Hauptschneide				
APMX	Einstechtiefe, max.				
BS	Planschneidenbreite				
CDX	Einstechtiefe, max.				
CHW	Eckenfasenbreite				
CW	Stechbreite, Nennmaß				
D1	Befestigungslochdurchmesser				
DMIN	Bohrungsdurchmesser, min.				
IC	Einbeschriebener Kreis				
INSL	Schneidplattenlänge				
L	Schneidkantenlänge				
PDX	Profilabstand ex				
PDY	Profilabstand ey				
PNA	Profilwinkel				
RE	Eckenradius				
RER	Eckenradius rechte Seite				
REL	Eckenradius linke Seite				
S	Schneidplattendicke				
W1	Schneidplattenbreite				
WF	Funktionsbreite				

(2) Werkzeughalter zum Drehen


Symbol	Bezeichnung
APMX	Einstechtiefe, max.
В	Schaftbreite
BD	Körperdurchmesser
CDX	Einstechtiefe, max.
CRKS	Anzugsbolzen, Gewindegröße
DC	Werkzeugdurchmesser
DCB	Spanndurchmesser, nominal, werkstückseitig
DCON	Aufnahmedurchmesser, werkstückseitig
DCSFMS	Durchmesser maschinenseitige Kontaktfläche
DMIN	Bohrungsdurchmesser, min.
DMM	Aufnahmedurchmesser, maschinenseitig
DN	Durchmesser des Freistichs
GAMF	Anstellwinkel, radial
GAMP	Anstellwinkel, axial
Н	Schafthöhe
HBH	Versatzhöhe der Kopfunterseite
HBKL	Versatzlänge der Kopfrückseite
HBKW	Versatzbreite der Kopfrückseite
HBL	Versatzlänge der Kopfunterseite
HF	Funktionshöhe
KDP	Nuttiefe
KWW	Nutbreite
LF	Funktionslänge
LH	Kopflänge
LHD	Kopflänge
LS	Schaftlänge
LSCX	Einspannlänge, max.
LU	Nutzlänge
LUX	Nutzbare Länge, max.
WF	Funktionsbreite

(Beispiel Schneidplatte) RE 1C 80°

(Beispiel Stechplatte)



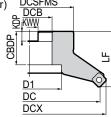
(Beispiel Werkzeughalter)

Die Zeichnungen zeigen Rechtsausführung.

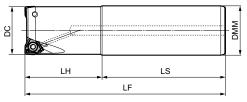
(Beispiel Stechwerkzeug)

(3) Fräser / Wendeplattenfräser

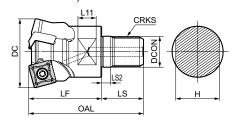
Symbol	Bezeichnung
APMX	Einstechtiefe, max.
BD	Körperdurchmesser
BDX	Körperdurchmesser, max.
CBDP	Anschlusstiefe
CRKS	Anzugsbolzen, Gewindegröße
CW	Stechbreite, Nennmaß
DBC	Schneidendurchmesser
DC	Werkzeugdurchmesser
DCB	Spanndurchmesser, nominal, werkstückseitig
DCON	Aufnahmedurchmesser, werkstückseitig
DCSFMS	Durchmesser maschinenseitige Kontaktfläche
DCX	Schneidendurchmesser, max.
DMM	Aufnahmedurchmesser, maschinenseitig
DN	Durchmesser des Freistichs
Н	Schafthöhe
KDP	Nuttiefe
KWW	Nutbreite
LBX	Köperlänge, max.
LF	Funktionslänge
LH	Kopflänge
LS	Schaftlänge
LU	Nutzlänge
OAL	Gesamtlänge
RMPX	Eintauchwinkel, max.
THUB	Nabendicke

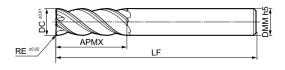

(4) Schaftfräser

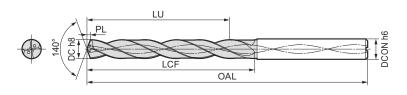
Symbol	Bezeichnung			
APMX	Einstechtiefe, max.			
CHW	Eckenfasenbreite			
DC	Werkzeugdurchmesser			
DMM	Aufnahmedurchmesser, maschinenseitig			
DN	Durchmesser des Freistichs			
LF	Funktionslänge			
LFS	Funktionslänge, untergeordnet			
LU	Nutzlänge			
RE	Eckenradius			


(5) Bohrer / Reibahlen

Symbol	Bezeichnung
BD	Körperdurchmesser
BDX	Körperdurchmesser, max.
CW	Stechbreite, Nennmaß
DC	Werkzeugdurchmesser
DCB	Spanndurchmesser, nominal, werkstückseitig
DCON	Aufnahmedurchmesser, werkstückseitig
DCSFMS	Durchmesser, maschinenseitige Kontaktfläche
DF	Flanschdurchmesser
DMM	Aufnahmedurchmesser, maschinenseitig
LBX	Körperlänge, max.
LCF	Spankanallänge
LF	Funktionslänge
LFA	Ein Maß auf Lf
LFS	Funktionslänge, untergeordnet
LH	Kopflänge
LPR	Kraglänge
LS	Schaftlänge
LU	Nutzlänge
LUX	Nutzbare Länge, max.
OAL	Gesamtlänge
PL	Abstand Schneidenlänge zu Schneidenspitze
WBTHK	Stegbreite


(Beispiel Aufsteckfräser)


(Beispiel Schaftfräser)


(Beispiel Modularfräser)

(Beispiel Vollhartmetallschaftfräser)

(Beispiel Bohrer)

Hinweis

Vielen Dank, dass Sie den allgemeinen Katalog von Sumitomo Electric Hartmetall verwenden. (Sumitomo/SUMIBORON/SUMIDIA Werkzeugkatalog).

Dieser Katalog stellt die wichtigsten Artikel aus der Sumitomo-Produktlinie an Schneidwerkzeugen

Dieser Katalog ist unterteilt in:

- (1) Schneidstoffsorten für Zerspanungswerkzeuge
- (2) Sumitomo-Werkzeughalter
- (3) Produkte der Reihen SUMIBORON und SUMIDIA Fragen Sie auch nach unseren Broschüren und Produktinformationsblättern.

Dieser Katalog gilt ab Januar 2022.

Da wir unsere Produkte beständig weiterentwickeln, können sich Verbesserungen in Qualität, Leistung und Spezifikationen ergeben, die in diesem Katalog noch nicht aufgeführt sind.

Um Produkte der Reihen Sumitomo, SUMIBORON oder SUMIDIA zu bestellen, wenden Sie sich an Ihren nächstgelegenen Sumitomo Electric Hartmetall-Fachhändler oder Lieferanten.

Wenden Sie sich bei weiteren Fragen oder Anliegen gerne an das nächstgelegene Vertriebsbüro.

Lagersymbole

Eurolager

Japanlager

□ : Auf Anfrage

Artikel wird durch neue Produkte ersetzt

: Herstellbar auf Anfrage

: Nicht herstellbar

Hinweis:

Bitte beachten Sie, dass unsere Produkte ständig weiterentwickelt werden. Es kann daher vorkommen, dass unsere Produktpalette sich ändert. Wir bitten Sie, sich bei unseren Verkaufsrepräsentanten über aktuelle Produkte zu informieren.

Bedeutung der Symbole

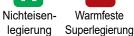
Allgemeines

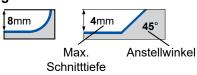
Neu in diesem Katalog

Zur Erweiterung unserer Produktpalette neu aufgenommen

Schneidstoff

ISO-Werkstoffklassifizierung:





Gehärteter Stahl

Fräswerkzeug

Schaftfräser

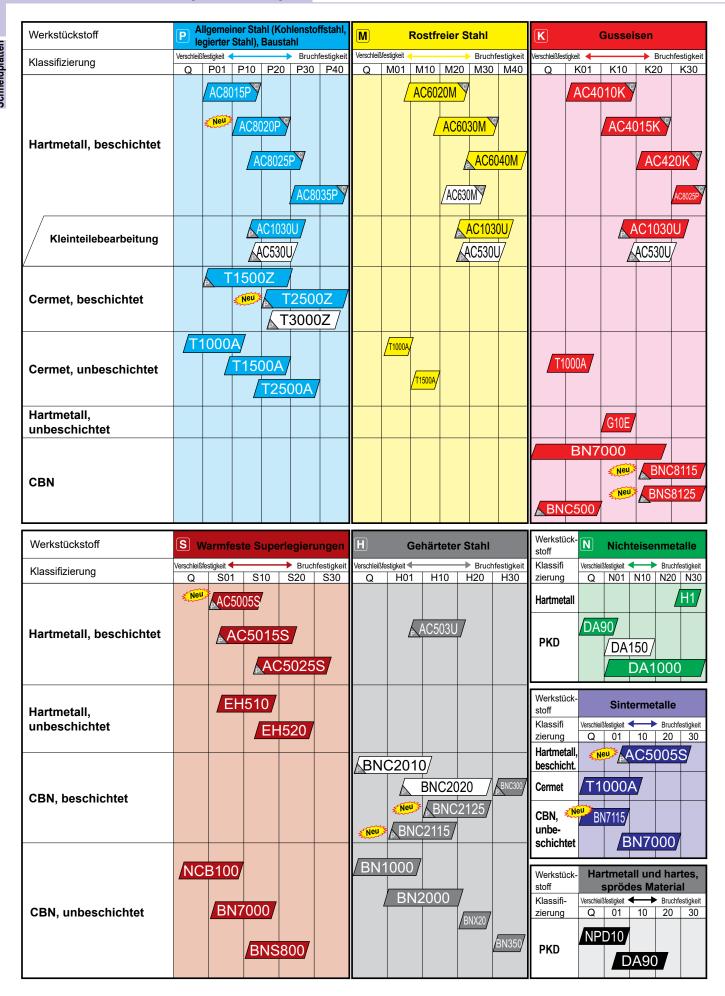
Anz. der Zähne

Form

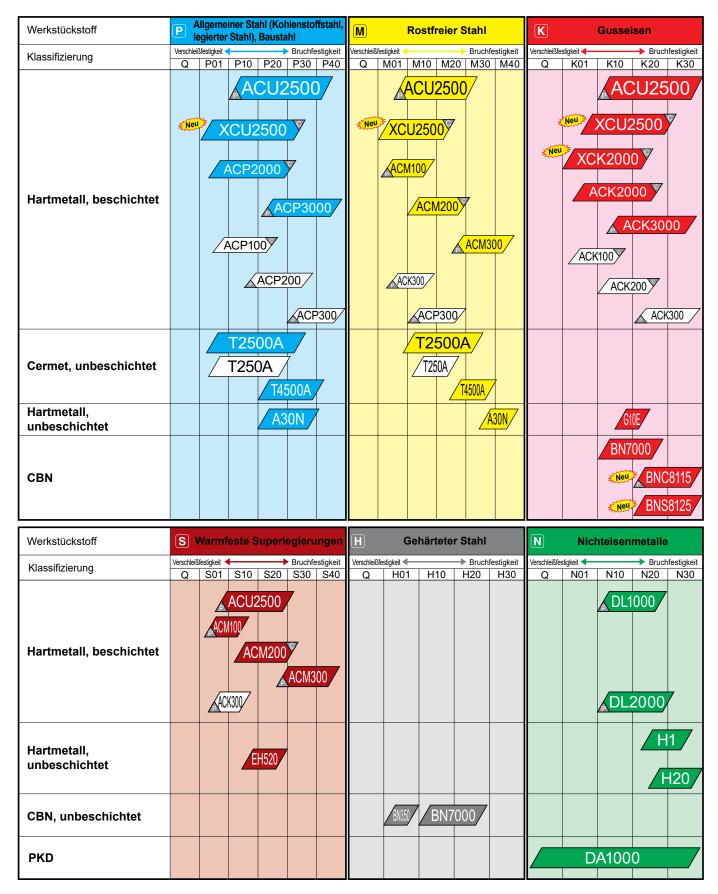
verrundung

Auswahl Schneidplatter

Auswahl Wendeschneidplatten

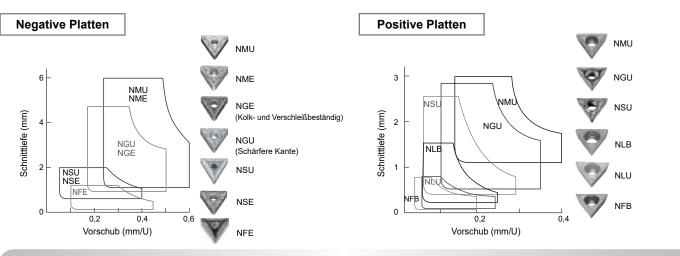

Auswahl der Wendeschneidplatten

Nach Werkstückstoff

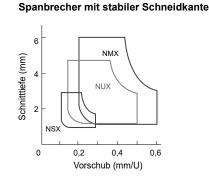

Sumitomo Schneidstoffe (Fräsen)	A3
Stahl	A 4-7
Rostfreier Stahl	A 8-9
Gusseisen	A10-11
Varmfeste Superlegierungen	A12-13
Gehärteter Stahl	A14-15
lichteisenmetall	A16-17
Präzisionsbearbeitung	A18-19

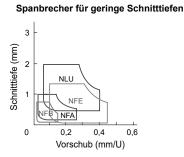
Sumitomo Schneidstoffe (Drehen) A2

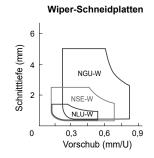
Auswahl Sumitomo Schneidstoffe (Drehen)

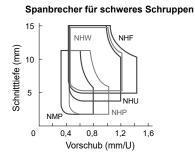


Auswahl Sumitomo Schneidstoffe (Fräsen)

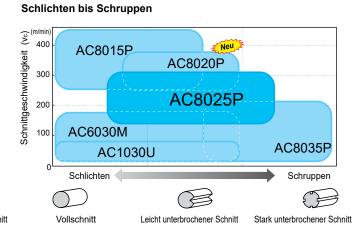

Hauptspanbrecher




Nebenspanbrecher



Vorschub (mm/U)



Schneidstoffe

Feinstschlichten bis Schlichten T1000A T1500Z Neu T2500Z T1500A T2500Z T1500A T2500Z T1500A T2500Z T1500A T2500Z T1500A

Unbeschichtetes Cermet

Beschichtetes Cermet

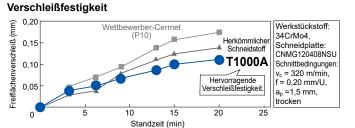
Sorten

T1000A / T1500A / T1500Z / T2500Z

T1000A Hochhartes Cermet mit hervorragender Verschleißfestigkeit und Zähigkeit. Ermöglicht hohe Maßhaltigkeit bei der kontinuierlichen Stahlbearbeitung oder

beim Schlichten von Sinterlegierungen oder Gusseisen.

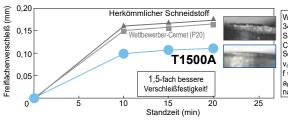
Allzweck-Cermet aus hartem Substrat mit unterschiedlichen Korngrößen, das eine Funktionalität bietet, die ein ausgezeichnetes Gleichgewicht zwischen

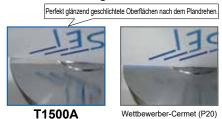

Verschleißfestigkeit und Zähigkeit ermöglicht und darüber hinaus auch eine gute Oberflächengüte erzeugt.


T1500Z Brilliant Coat PVD-Beschichtung mit hervorragender Schmierfähigkeit für eine bessere Verschleißfestigkeit und gleichmäßige Oberflächengüte bei Anwendungen mit niedrigen Schnittgeschwindigkeiten, z. B. bei der Bearbeitung kleiner Bauteile oder von Stahl mit niedrigem Kohlenstoffgehalt.

T2500Z Ein neues Cermet-Substrat mit hervorragender Wärmeleitfähigkeit und einer hervorragenden thermischen Rissbeständigkeit. Durch die zusätzliche verwendung einer Brilliant Coat Beschichtung, wird außerdem eine hervorragende Schmierfähigkeit gewährleistet.

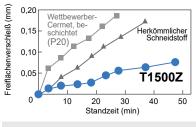
Leistungsmerkmale


T1000A

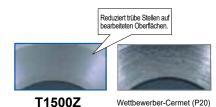

T1500A

Verschleißfestigkeit

Werkstückstoff 34CrMo4, Schneidplatte CNMG120408NSU Schnittbedingunger = 230 m/min, f = 0.20 mm/U $a_p = 1,0 \text{ mm},$

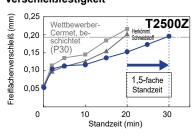

Bearbeitete Oberflächengüte

Werkstückstoff C45 Schneidplatte: CNMG120408NLU Schnittbedingungen $v_c = 150 \text{ m/min}$ = 0,12 mm/U, a_p = 1,0 mm,

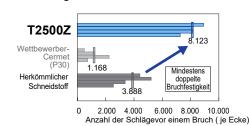

T1500Z

Verschleißfestigkeit

Werkstückstoff: 34CrMo Schneidplatte: CNMG120408NSU Schnittbedingungen $v_c = 230 \text{ m/min}$ $a_n = 1.0 \text{ mm}$


Bearbeitete Oberflächengüte

21NiCrMo2 Schneidplatte: DNMG150408NSU Schnittbedingungen v_c = 150 m/min = 0,20 mm/U, $a_p = 1,0 \text{ mm},$ nass


T2500Z

Verschleißfestigkeit

Werkstückstoff 34CrMo Schneidplatte CNMG120408NSU Schnittbedingungen v_c = 260 m/min, f = 0.23 mm/Ua_p = 1,5 mm, nass

Bruchfestigkeit

Werkstückstoff 34CrMo Schneidplatte CNMG120408NSU Schnittbedingungen v_c = 260 m/min, f = 0,23 mm/U, a_p = 1,5 mm, nass

Empfohlene Schnittbedingungen

(Min. - Optimum - Max.)

Werkstückstoff	Anwendung	Spanbrecher	Schneidstoffe	Schnitttiefe (mm)	Vorschub (mm/U)	Schnittgeschwindigkeit (m/min)
Baustahl	Feinstschlichten	NFA / NFL	T1500Z	0,2 -0,5 -1,0	0,05 -0,15 -0,25	150 –280 –400
Daustaili	Schlichten	NLU	T3000Z	0,3 –1,0 –1,8	0,08 –0,20 –0,35	150 –280 –400
Legierter Stahl	Feinstschlichten	NFA / NFL	T1500A	0,2 -0,5 -1,0	0,05 -0,15 -0,25	100 –200 –300
•	Schlichten	NSU / NSE	T1500A	0,5 –1,0 –2,0	0,08 –0,20 –0,35	100 –200 –300
Kohlenstoffstahl	Mittl. Zersp.	NGU	T1500Z	0,8 –2,2– 4,0	0,15 -0,25 -0,50	100 –200 –300
Stahl mit hohem Kohlenstoffgehalt	Feinstschlichten	NFA / NFL	T1000A	0,2 -0,5 -1,0	0,05 -0,15 -0,25	50 –150 –250
	Schlichten	NSU / NSE	T1500Z	0,5 –1,0 –2,0	0,08 –0,20 –0,35	50 –150 –250
	Mittl. Zersp.	NGU	T1500Z	0,8 –2,2– 4,0	0,15 –0,25 –0,50	50 –150 –250

Empfohlene Hartmetall-Schneidstoffe

ABSO TECH

ABSO TECH

ABSO TECH

Schneidstoffe

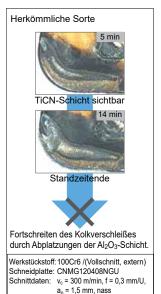
AC8015P / AC8020P / AC8025P / AC8035P / AC1030U

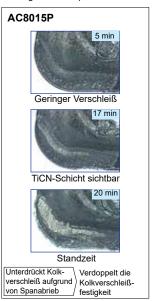
Deckt ein breites Anwendungsfeld ab, von der Hochgeschwindigkeitsbearbeitung bis zu Bearbeitungen mit Schnittunterbrechung, sowie die Bearbeitung kleinerer Bauteile.

AC8015P Die Entstehung von Kolkverschleiß wird durch die Ausrichtung der Aluminiumoxid-Kristalle unterdrückt. Erzielt lange, stabile Standzeiten bei der Hochgeschwindigkeits- und Hochvorschubbearbeitung.

AC8020P Die Aluminiumoxid-Beschichtung mit noch höherer Festigkeit sorgt für ein Gleichgewicht zwischen hervorragender Stabilität und Verschleißfestigkeit bei der Bearbeitung von geschmiedetem Material im Fräsmaßstab. Eine goldfarbene Beschichtung macht die verwendeten Ecken leicht erkennbar.

AC8025P Unsere erste Empfehlung bei der Bearbeitung von Stahlwerkstoffen. Die glättende Oberflächenbehandlung führt zu einer deutlichen Reduzierung von Anhaftungen durch Werkstückstoffe. Erreicht lange, stabile Standzeiten bei unterschiedlichen Schnittgeschwindigkeiten und Werkstückstoffen.

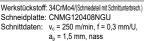

AC8035P Durch die Reduzierung von Zugspannungen, innerhalb der Beschichtung, konnte die Bruchzähigkeit deutlich verbessert werden. Erreicht lange, stabile Standzeiten bei stark unterbrochenen Anwendungen.

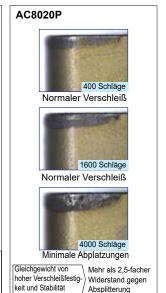

AC1030U Verwendet eine neue PVD-Beschichtung und ein außerordentliches Hartmetallsubstrat. Diese Sorte bietet mit dem Widerstand gegen Adhäsion und Mikroabplatzungen eine hochqualitative Schneidkante für sehr gute Oberflächengüten.

Leistungsmerkmale

AC8015P

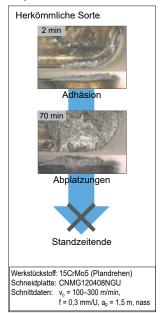
Die Technologie zur Kontrolle der Kornorientierung von Aluminiumoxidkristallen unterdrückt den Kolkverschleiß aufgrund von Spanabrieb.

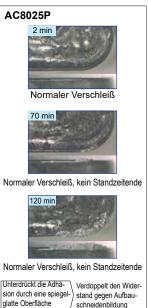




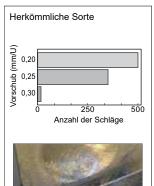
AC8020P

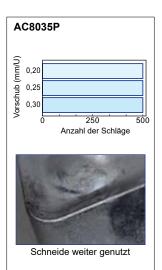
Die Aluminiumoxid-Beschichtung mit noch höherer Festigkeit verhindert Absplitterungen.





AC8025P


Eine Oberflächenglättung unterdrückt deutlich das Anhaften und Absplittern.


AC8035P

Eine spezielle Oberflächenbehandlung reduziert die Zugspannung in der Beschichtungsschicht, wodurch Brüche deutlich reduziert werden.

 $\label{eq:weakstoff} Werkstückstoff: 34CrMo4 (unterbrochen, extern Schneidplatte: CNMG120408NGU Schnittdaten: $v_c = 160 \text{ m/min, f} = 0,2-0,3 \\ \text{mm/U, } a_p = 2,0 \text{ mm, trocken} \end{cases}$

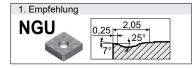
Doppelte Bruch-

festigkeit

Unterdrückt die Rissbildung

und Brüche durch Reduzie

rung der Zugspannung


Sorten- und Spanbrecherauswahlhilfe

Allgemeine Anwendung

AC8025P

	Spanbrecher für die hocheffiziente Bearbeitung	Hauptspanbrecher	Spanbrecher mit stabiler Schneidkante	
Schlichten- geringe Schnitttiefe	NFE 1,4 0,7 NSE 0,1 1,5 1,5 1,7° 1,7° 1,7° 1,7° 1,7° 1,7° 1,7° 1,7°	NSU 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	NSX 0.2 + 1.35 (1.35) (
Allgemeine Bearbeitung	NGE 2.0 0.25 3° 723°	NGU 0,25 2,05 7° 7° 7° 7°	NUX 0.25 2.0 1.15°	
Schruppen- größere Schnitttiefe	NME 0.3 2.4 1	NMU 0.3 2.5 120°	NMX 2,3 0,4 20°	

Für die Hochgeschwindigkeitsbearbeitung von niedrig legiertem Stahl im Vollschnitt

Hochgeschwindigkeitsbearbeitung

AC8015P

Verlängerung der Standzeit bei kleinen Schnitttiefen	NFE 1,40 ,0,70 ,205
Verbesserung der Schlichteffizienz	NSE 0,1 1,5 1,5 1,7° 1,7° 1,7° 1,7° 1,7° 1,7° 1,7° 1,7°

Für schweres unterbrochenes Schneiden mit dem Schwerpunkt auf Stabilität

Unterbrochener Schnitt AC8035P

Für Standzeiterhöhung	NGU 0,25 2,05 7° 7° 7° 7°
Für höhere Stabilität	NUX 0,25, 2,0 15°

Für die hocheffiziente Bearbeitung von hochlegiertem Stahl und Schmiedestahl

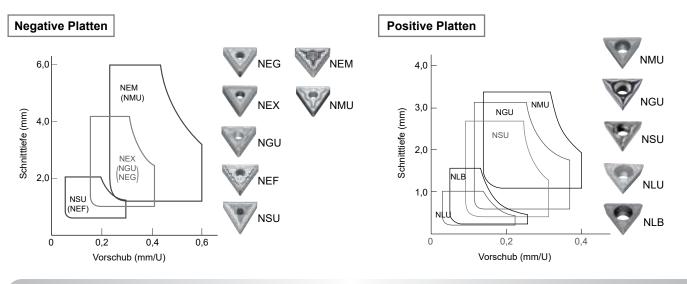
Höchste Effizienz

AC8020P

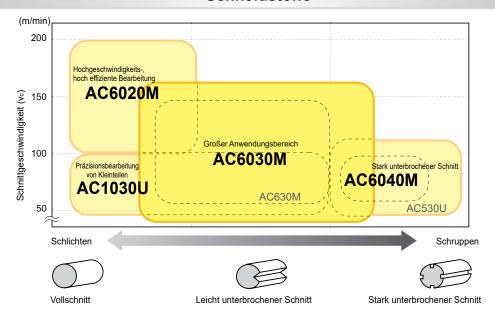
Zur Erhöhung der Vorschubgeschwindigkeit

Zur Erhöhung der Schnittgeschwindigkeit

P


Empfohlene Schnittbedingungen

(Min. - Optimum - Max.)


Werkstückstoff	Anwendung	Spanbrecher	Schneidstoff	Schnitttiefe (mm)	Vorschub (mm/U)	Schnittgeschwindigkeit (mm/min)
Baustahl	Feinstschlichten	NFB, NFE	T1500Z	0,2 -0,6 -1,0	0,05 –0,15 –0,25	100 –250 –400
Stahl mit niedrigem	Vollschnitt	NGU, NGE	AC8015P	1,0 –2,5 –4,0	0,1 –0,25 –0,4	260 –350 –440
Kohlenstoffgehalt (SS400, C15, etc.)	Allgemein-Unterbrochen	NGU, NGE	AC8025P	1,0 –2,5 –4,0	0,2 -0,35 -0,5	200 –260 –320
	Stark unterbrochen	NMU, NME	AC8035P	1,5 –4,0 –6,0	0,3 –0,45 –0,6	140 –150 –220
Stahl mit mittlerem bis hohem Kohlen- stoffgehalt, Legierter Stahl, Hartstahl (C45, 34CrMo4, etc.)	Feinstschlichten	NFB, NFE	T1500Z	0,2 -0,6 -1,0	0,05 –0,15 –0,25	50 –200 –300
	Vollschnitt-Allgemein	NGU, NGE	AC8020P	1,0 –2,5 –4,0	0,2 –0,35 –0,5	150– 235 –290
	Unterbrochen	NGU, NGE	AC8025P	1,0 –2,5 –4,0	0,2 –0,35 –0,5	130 –165 –230
	Stark unterbrochen	NMU, NME	AC8035P	1,5 –4,0 –6,0	0,3 –0,45 –0,6	90 –135 –160

M Rostfreier Stahl

Spanbrecher

Schneidstoffe

M Empfohlene Schnittbedingungen

(Min. - Optimum - Max.)

				Schneid-	Schnittbedingungen			
	Werkstückstoff		Anwendung Spanbrecher	stoff	Schnitttiefe a _p (mm)	Vorschub f (mm/U)	Schnittgesch. v _c (m/min)	
		X6CrAl 13, X8CrNiS 18 9,	Schlichten	NEF (NSU)	AC6020M	0,5 –1,5 –2,0	0,05 -0,15 -0,25	170 –230 –300
	Ferritisch	X29CrS 13, X6CrMoS 17,	Mittel	NEG · NGU · NEX	AC6030M	1,0 –2,5 –4,0	0,10 -0,25 -0,40	140 –170 –250
Cr-		X12CrS 13	Schruppen	NEM	AC6040M	1,5 –3,5 –6,0	0,20 -0,35 -0,60	140 –170 –200
Basis		X12Cr 13, X20Cr 13,	Schlichten	NEF (NSU)	AC6020M	0,5 -1,5 -2,0	0,05 -0,15 -0,25	120 –180 –240
	Martensitisch	X30Cr 13, X6Cr 17, X19CrNi 17 2, X6CrNi 18 9	Mittel	NEG · NGU · NEX	AC6030M	1,0 –2,5 –4,0	0,10 -0,25 -0,40	100 –150 –200
			Schruppen	NEM	AC6040M	1,5 –3,5 –6,0	0,20 -0,35- 0,60	80 –130 –180
	Austenitisch	X5CrNi 18 10, X2CrNi 19 11, X2CrNiMo 18 10, X4CrNiMo 17 12 2, X2CrNiMo 17 12 2, X5CrNiMo 17 13, X6CrNiTi 18 10, X70CrMo 15	Schlichten	NEF (NSU)	AC6020M	0,5 -1,5 -2,0	0,05 -0,15 -0,25	120 –180 –240
			Mittel	NEG · NGU · NEX	AC6030M	1,0 –2,5 –4,0	0,10 -0,25 -0,40	100 –150 –200
			Schruppen	NEM	AC6040M	1,5 –3,5 –6,0	0,20 -0,35 -0,60	80 –130 –180
C=/NI:	Martanaitiaah	x5CrNi 17 7, X2CrNi 18 9, x6CrNi 25 20, x6CrNiMoN 17 12 2, X6CrNiNb 18 10	Schlichten	NEF (NSU)	AC6030M	0,5 -1,5 -2,0	0,05 -0,15 -0,25	100 –145 –180
	Ferritisch		Mittel	NEG · NGU · NEX	AC6030M	1,0 –2,5 –4,0	0,10 -0,25 -0,40	80 –120 –160
Buoio			Schruppen	NEM	AC6040M	1,5 –3,5 –6,0	0,20 -0,35 -0,60	70 –100 –140
	Ausgehärtet	rtet X4CrNuMo 27 5 2, X2CrNiMoN 22 5 3,	Schlichten	NEF (NSU)	AC6030M	0,5 -1,5 -2,0	0,05 -0,15 -0,25	90 –115 –140
			Mittel	NEG · NGU · NEX	AC6030M	1,0 –2,5 –4,0	0,10 -0,25 -0,40	70 –90 –110
			Schruppen	NEM	AC6040M	1,5 –3,5 –6,0	0,20 –0,35– 0,60	50 –80 –120

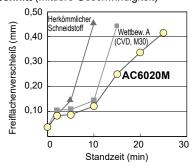
Schneidstoffe

AESOTECH AESOTECH AESOTECH AESOTECH AC6020M / AC6030M / AC6040M / AC1030U

AC6020M Verwendet "Absotech Platinum", eine neue CVD-Technologie. Meistempfohlener Schneidstoff für die spanabhebende Bearbeitung von rostfreiem Stahl, der durch die Kombination eines härteren Substrates mit gleichzeitig hoher Zähigkeit eine sehr ausgewogene Verschleiß- und Bruchfestigkeit besitzt.

AC6030M Die neue HM-Sorte mit CVD-"Absotech Platinum" Beschichtung wird für die Bearbeitung von rostfreiem Stahl, bei Verwendung im Voll- bis zum leicht unterbrochenen Schnitt, eingesetzt.

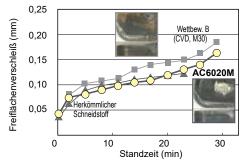
AC6030M weist eine ausgezeichnete Verschleißfestigkeit auf und besitzt eine exzellente Beschichtungsstabilität.


AC6040M Die neue HM-Sorte für rostfreien Stahl mit PVD-"Absotech Bronze" Beschichtung verfügt über eine sehr gute Verschleiß- und Bruchfestigkeit sowie über eine sehr hohe Adhäsionsbeständigkeit.

Einsetzbar vom leicht bis stark unterbrochenen Schnitt und bei instabilen Bedingungen.

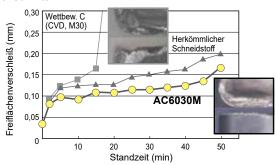
AC1030U Verwendet "Absotech Bronze", eine neue PVD-Technologie mit einem besonders zähen Hartmetallsubstrat. Es wird eine sehr gut bearbeitete Oberflächenqualität mit der hochqualitativen Schneidkante erzielt, wobei die Adhäsionsneigung und Mikroabplatzungen verringert werden.

Leistungsmerkmale

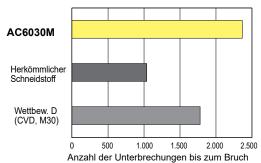

Vollschnitt (mittlere Geschwindigkeit)

Werkstückstoff: X2CrNiMo17 13 2 Schneidplatte: CNMG 120408 NGU Schnittbedingungen: v_c = 150 m/min, f = 0,3 mm/U, a_p = 2,0 mm, nass

AC6020M


Vollschnitt (Hochgeschwindigkeitsbearbeitung)

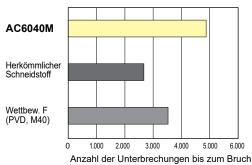
Werkstückstoff: X2CrNiMo17 13 2 Schneidplatte: CNMG 120408 NGU Schnittbedingungen: v_c = 200 m/min, f = 0,3 mm/U, a_p = 2,0 mm, nass


AC6030M

Vollschnitt

Werkstückstoff: X6CrMo17 12 2 Schneidplatte: CNMG 120408 NEX Schnittbedingungen: v_c = 200 m/min, f = 0,2 mm/U, a_p = 2,0 mm, nass

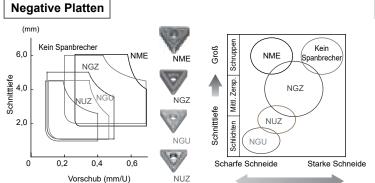
Unterbrochener Schnitt

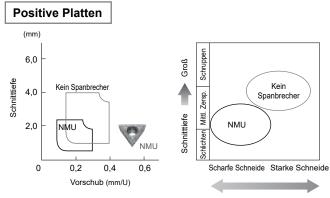

Werkstückstoff: X6CrMo17 12 2 Schneidplatte: CNMG 120408 NGU Schnittbedingungen: v_c = 100 m/min, f = 0,1 mm/U, a_p = 1,0 mm, nass

AC6040M

Werkstückstoff: X6CrMo17-12-2 Schneidplatte: CNMG 120408 NGU Schnittbedingungen: v_c = 150 m/min, f = 0,2 mm/U, a_p = 2,0 mm, nass

Unterbrochener Schnitt

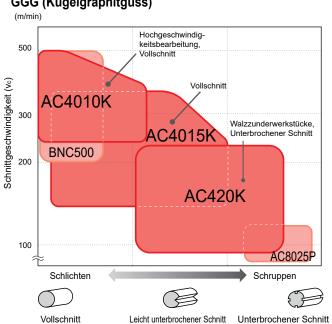

Werkstückstoff: X6CrMo17-12-2 Schneidplatte: CNMG 120408 NGU Schnittbedingungen: v_c = 230 m/min, f = 0,23 mm/U, a_p = 0,80 mm, trocken



Auswahl Wendeschneidplatten

BNC500 / BN7000 / BNC8115 / BNS8125 - L18-L23

Spanbrecher



Schneidstoffe

GG (Grauguss) (m/min) 2.500 Hochgeschwindig-2.000 Vollschnitt Schnittgeschwindigkeit (vc) BN7000 Neu BNC8115 Neu > Vollschnitt BNS8125 Walzzunderwerkstücke, AC4010K Unterbrochener Schnitt 200 AC4015K AC420K 100 AC8025P Schlichten Schruppen Vollschnitt Leicht unterbrochener Schnitt Unterbrochener Schnitt

GGG (Kugelgraphitguss)

K Empfohlene Schnittbedingungen

(Min. - Optimum - Max.)

			Schnittbedingungen				
Werkstückstoff	Schnittart	Schneidstoffe	Schnitttiefe a _P (mm)	Vorschub f (mm/U)	Schnittgeschwindigkeit vc (m/min)		
	Hochgeschwindigkeitsbearb.	BN7000	0,1 –0,3 –1,0	0,10 –0,20 –0,50	500 –1.500 –2.000		
Grauguss	Vollschnitt-Leicht Unterbrochen	AC4010K	0,5 –2,0 –6,0	0,10 –0,25 –0,40	200 –400 –700		
(z. B. GG-25)	Unterbrochen	AC4015K	0,5 –2,0 –6,0	0,10 –0,30 –0,50	180 –300 –450		
	Schwer Unterbrochen	AC420K	0,5 –2,0 –6,0	0,10 –0,30 –0,60	150 –200 –300		
	Hochgeschwindigkeitsbearb.	BNC500	0,1 -0,2 -0,5	0,10 –0,20 –0,40	150 –350 –500		
Kugelgraphitguss	Vollschnitt-Leicht Unterbrochen	AC4010K	0,5 –2,0 –6,0	0,10 –0,25 –0,40	180 –300 –450		
(z. B. GGG-40.3)	Unterbrochen	AC4015K	0,5 –2,0 –6,0	0,10 –0,30 –0,50	160 –250 –400		
	Schwer Unterbrochen	AC420K	0,5 –2,0 –6,0	0,10 –0,30 –0,60	120 –170 –250		
	Hochgeschwindigkeitsbearb.	BNC500	0,1 -0,2 -0,5	0,10 –0,20 –0,40	200 –350 –500		
Hochfester	Vollschnitt-Leicht Unterbrochen	AC4010K	0,5 –2,0 –6,0	0,10 –0,25 –0,40	160 –250 –400		
(z. B. GGG-70)	Unterbrochen	AC4015K	0,5 –2,0 –6,0	0,10 –0,30 –0,50	140 –200 –350		
	Schwer Unterbrochen	AC420K	0,5 –2,0 –6,0	0,10 –0,30 –0,60	80 –150 –220		

Empfohlene Schneidstoffe und Spanbrecher

Schneidstoffe

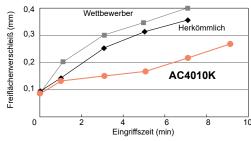
ABSO TECH **ABSOTECH**

AC4010K / AC4015K / AC420K

AC4010K Unsere erste Empfehlung für die Bearbeitung von Grauguss. Mit einer neuen ultradicken CVD-Beschichtung für die Realisierung von Schnittgeschwindigkeiten bis zu vc=700m/min.

Unsere erste Empfehlung für die Bearbeitung von Kugelgraphitguss. Eine neuartige CVD-AC4015K Beschichtung mit verbesserter Schichthaftung erzielt eine hervorragende Verschleißbeständigkeit

gegenüber Abplatzungen und abrasivem Verschleiß.

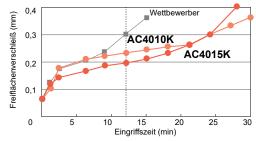

AC420K Die hervorragende Bruchzähigkeit verspricht eine exzellente Stabilität bei der Bearbeitung im

unterbrochenen Schnitt, sowie bei der Bearbeitung von vorgefrästen Flächen.

Leistungsmerkmale

AC4010K / AC4015K

Verschleißfestigkeit (GG)



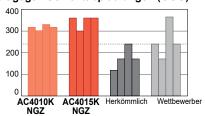
Werkstückstoff: GG-25, Vollschnitt, Schneidplatte: CNMG120408 Schnittbedingungen: v_c = 600 m/min, f = 0,4 mm/U, a_p = 2,0 mm, trocken

Verschleißfestigkeit (GGG)

Werkstückstoff: GGG-70, Vollschnitt, Schneidplatte: CNMG120408 Schnittbedingungen: v_c = 140 m/min, f = 0,3 mm/U, a_p = 1,5 mm, nass

AC4010K / AC4015K

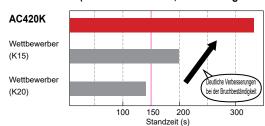
Beständigkeit gegen Schichtabplatzungen (GG)



Wettbewerber

Beständigkeit gegen Schichtabplatzungen (GGG)

Wettbewerber


Werkstückstoff: GGG-40.3, Unterbrochener Schnitt, Schneidplatte: CNMG120408 Schnittbedingungen: $v_c = 450 \text{ m/min}$, f = 0.3 mm/U, $a_p = 1.5 \text{ mm}$, nass

AC420K-Bruchfestigkeit

GGG-40.3 Genutet (stark unterbrochen, beschleunigter Test)

Werkstückstoff: GG-25, Unterbrochener Schnitt, Schneidplatte: CNMG120408

Schnittbedingungen: v_c = 400 m/min, f = 0,3 mm/U, a_p = 2,0 mm, nass

Schneidkanten im Vergleich (nach 150 Sekunden)

(K15)

(K20)

Werkstückstoff: GGG-40.3, Werkzeughalter: PCLNR2525-43, Schneidplatte: CNMG120408 Schnittbedingungen: $v_c = 350 \text{ m/min}$, f = 0,25 mm/U, $a_p = 1,5 \text{ mm}$, nass

Spanbrecher Positive Platten Negative Platten 4,0 NEM NEG 4,0 Schnittiefe (mm) Schnittiefe (mm) NSI UMN, NEX NGU (NUP) NSU 2,0 NEX NEF (NSU) R/LFX NSU R/LFY 0,1 0,2 0,4 0,1 0,2 0,3 0,4 Vorschub (mm/U) Vorschub (mm/U) **Schneidstoffe**

300 CBN Schnittgeschwindigkeit vc (m/min) BN7000 150 Beschichtetes Hartmetall AC50055 Neu 100 AC5015S/ Beschichtetes Hartmetall Sinterkarbid AC5025S/ **EH510** 50 Sinterkarbid EH520 Schlichten Schruppen Vollschnitt Leicht unterbrochener Schnitt Unterbrochener Schnitt

S Empfohlene Schnittbedingungen

(Min. - Optimum - Max.)

Werkstückstoff	Anwendung	Spanbrecher	Schneidstoffe	Schnitttiefe (mm)	Vorschub (mm/U)	Schnittgeschwindigkeit (m/min)
	Schlichten	NEF (NSU)	AC5005S AC5015S AC5025S	0,2 –0,5 –1,5	0,10 -0,12 -0,20	50 –70 –110
Hitzebeständige	Leicht	NEX	AC5005S AC5015S AC5025S	0,5 –1,0 –3,0	0,10 -0,20 -0,30	40 –60 –90
Legierung	Mittel Schruppen	NEG	AC5005S AC5015S AC5025S	0,5 –2,0 –4,0	0,15 –0,25 –0,30	40 –60 –90
	Осттаррет	NMU/NEM	AC5015S AC5025S	1,0 –2,0 –4,0	0,20 -0,25 -0,40	30 –55– 80
	Schlichten	NEF (NSU)	EH510 (AC5005S, AC5015S)	0,2 –0,5 –1,5	0,10 –0,15 –0,20	50- 65 -80
Tita and a min and an	Leicht	NEX	AC5005S AC5015S	0,5 –1,0 –2,5	0,10 –0,20 –0,25	40 –55 –70
Titanlegierung	Mittel	NEG	EH510 (AC5005S, AC5015S)	0,5 –2,0 –3,5	0,15 –0,25 –0,30	40 –55– 70
	Schruppen	NMU/NEM	AC5025S	1,0 –2,0 –3,5	0,20 –0,25 –0,30	30 –40 –50

Empfohlene Schneidstoffe und Spanbrecher

ABSO TECH

Schneidstoffe

AC5005S / AC5015S / AC5025S / EH510 / EH520

PVD-Beschichtung mit exzellenter Verschleiß- und Temperaturbeständigkeit.

AC5005S Hochgeschwindigkeits- und Hochleistungssorte mit hoher Temperaturbeständigkeit, die eine ausgezeichnete Verschleißfestigkeit bei der Hochleistungszerspanung gewährleistet.

AC5015S Unsere erste Empfehlung für die Bearbeitung von exotischen Materialien, wenn die Realisierung von stabilen Standzeiten, hohen Schnittgeschwindigkeiten und einer hocheffizienten Bearbeitung gefordert wird.

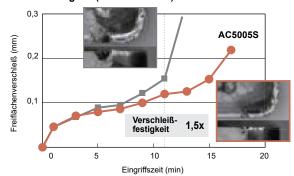
AC5025S Sorte mit hoher Zähigkeit für den Einsatz in Anwendungen mit Schnittunterbrechung oder bei vorgefrästen Flächen.

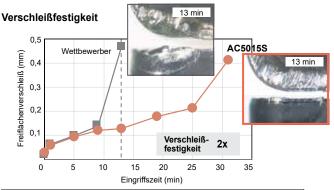
Hartmetalle mit exzellenter Temperatur-, Verschleißund Bruchbeständigkeit zur Bearbeitung von exotischen Legierungen. Neues Spanbrecherdesign verfügbar.

EH510 Allzweckschneidstoff für die Titanbearbeitung mit exzellenter Verschleiß- und Temperaturbeständigkeit. Einsetzbar vom Schruppen bis zum Schlichten.

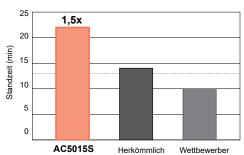
EH520 Zäher Schneidstoff für die Titanbearbeitung mit exzellenter Verschleiß- und Temperaturbeständigkeit. Perfekt für den unterbrochenen Schnitt und zum Bearbeiten von Walzzunderwerkstücken

Leistungsmerkmale

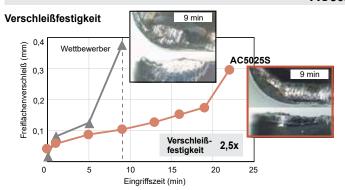

AC5005S


Werkstückstoff: Inconel 718 (44 HRC) Schneidplatte: DNMG150408 NEF Schnittbedingungen: v_c = 100 m/min, f = 0,15 mm/U, a₀ = 0,5 mm, nass

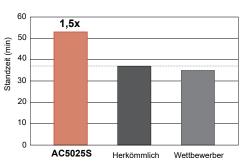
Verschleißfestigkeit (Hochvorschub)


Werkstückstoff: Inconel 718 (44 HRC) Schneidplatte: CNMG120408 NEG Schnittbedingungen: $v_c = 50 \text{ m/min}$, f = 0,25 mm/U, $a_0 = 1,2 \text{ mm}$, nass

AC5015S


Werkstückstoff: Inconel 718 (44 HRC) Schneidplatte: CNMG120408 NEX Schnittbedingungen: v_c = 40 m/min, f = 0,1 mm/U, a_p = 1,5 mm, nass

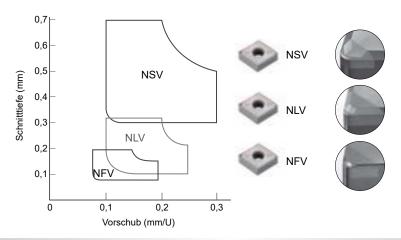
Bruchfestigkeit


Werkstückstoff: Hastelloy (22 HRC), Schneidplatte: CNMG120408 NEX Schnittbedingungen: v_c = 50 m/min, f = 0,1 mm/U, a_p = 1,5 mm, nass

AC5025S

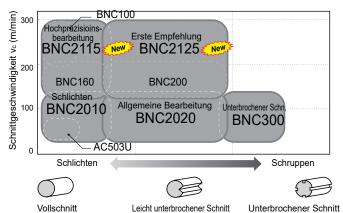
Werkstückstoff: Inconel 718 (44 HRC) Schneidplatte: CNMG120408 NEX Schnittbedingungen: v_c = 40 m/min, f = 0,1 mm/U, a_p = 1,5 mm, nass

Bruchfestigkeit

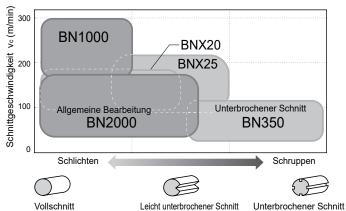


Werkstückstoff: Hastelloy (22 HRC), Schneidplatte: CNMG120408 NEX Schnittbedingungen: v_c = 50 m/min, f = 0,1 mm/U, a_p = 1,5 mm, nass

H Gehärteter Stahl


Spanbrecher

NSV-Typ-Spanbrecher: Für die Spankontrolle beim Entfernen von einsatzgehärteten Schichten NLV-Typ / NFV-Typ-Spanbrecher: Für die Spankontrolle beim Schlichten von gehärtetem Stahl



Schneidstoffe

Beschichtetes SUMIBORON

Unbeschichtetes SUMIBORON

Empfohlene Schnittbedingungen

(Min. - Optimum - Max.)

Anwendung	Schneidstoff	Schnitttiefe (mm)	Vorschub (mm/U)	Schnittgeschwindigkeit (m/min)
	BNC2115	0,03 –0,20 –0,35	0,03 –0,10 –0,20	110 –180 –300
	BNC2010	0,03 –0,20 –0,35	0,03 –0,10 –0,20	50 –140 –180
Vollschnitt	BNC100	0,03 –0,15 –0,20	0,03 –0,10 –0,20	80 –200 –300
	BN1000	0,03 –0,15 –0,20	0,03 –0,10 –0,15	120 –180 –300
	AC503U	0,03 –0,50 –1,00	0,02 –0,05 –0,10	40 –70 –100
	BNC2125	0,05 –0,30 –0,50	0,05 –0,20 –0,40	110– 160 –300
	BNC2020	0,05 –0,30 –0,50	0,03 –0,20 –0,40	50– 120 –180
Leicht	BNC160	0,03 –0,20 –0,35	0,03 –0,10 –0,20	80 –160 –270
unterbrochener Schnitt	BNC200	0,03 –0,30 –0,50	0,05 –0,10 –0,35	80 –140 –270
Commit	BN2000	0,03 –0,20 –0,30	0,03 –0,10 –0,20	30 –100 –200
	BNX20	0,03 –0,30 –0,50	0,03 –0,15 –0,30	70 –130 –170
Stark	BNC300	0,03 –0,20 –0,30	0,03 –0,10 –0,20	50 –100 –150
unterbrochener	BN350	0,03 –0,20 –0,30	0,03 –0,10 –0,20	50 –100 –150
Schnitt	BNX25	0,03 –0,20 –0,50	0,03 –0,15 –0,30	120 –160 –220

Sorten

BNC2115 / BNC2125 / BN1000 / BN2000

Ein hochpräzise Schneidstoff, der eine hohe Standzeit bei hervorragender Oberflächengüte und stabiler Bearbeitung BNC2115

Dank einer besonders kerbverschleißfesten Beschichtung und einem zähen CBN-Substrat wird eine ausgezeichnete

Oberflächengüte erzielt.

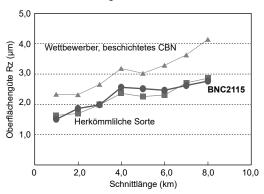
Empfohlener Schneidstoff, der eine ausgezeichnete Verschleißfestigkeit und Bruchsicherheit bei der Bearbeitung von BNC2125

gehärtetem Stahl bietet.

Die Beschichtung mit ihrem zähen CBN-Substrat ist die ideale Kombination aus Verschleißfestigkeit und Zähigkeit, um selbst

bei hocheffizienter und unterbrochener Bearbeitung hohe und stabile Werkzeugstandzeiten zu erzielen.

BN1000 Überragende Qualität mit höchster Verschleißfestigkeit der unbeschichteten CBN-Sorte für die Hochgeschwindigkeitsbearbeitung. Verbesserte Bruchfestigkeit bei erhöhter Verschleißfestigkeit.

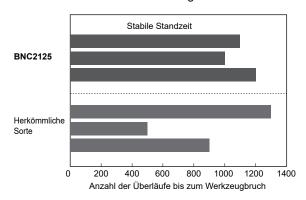

BN2000 Mehrbereichs-CBN zur Bearbeitung von gehärtetem Stahl.

Bietet ein hohes Maß an Bruch- und Verschleißfestigkeit.

Leistungsmerkmale

BNC2115

Schneiden von gehärtetem Stahl im Vollschnitt

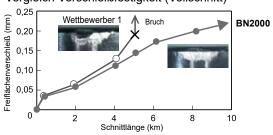

Werkstückstoff: Schneidplatte:

SCM415H, 58-62HRC DNGA 150408 NC4

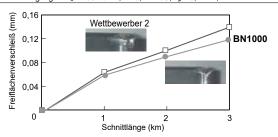
Schnittdaten: $v_c = 200 \text{ m/min, } f = 0.1 \text{ mm/U, } a_p = 0.15 \text{ mm, nass}$

BNC2125

Unterbrochenes Schneiden von gehärtetem Stahl


Werkstückstoff: Schneidplatte: Schnittdaten:

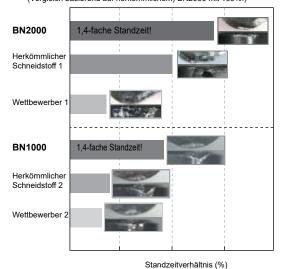
SUJ2, 58-62HRC DNGA 150408 NC4


 $v_c = 150 \text{ m/min}, f = 0.15 \text{ mm/U}, a_p = 0.5 \text{ mm},$ 63 m/times, nass

BN1000 / BN2000

Vergleich Verschleißfestigkeit (Vollschnitt)

Werkstückstoff: 15CrMo5 Rundstab (58-62HRC) Schnittbedingungen: $v_c = 100$ m/min, f = 0.1 mm/U, $a_p = 0.2$ mm, trocken

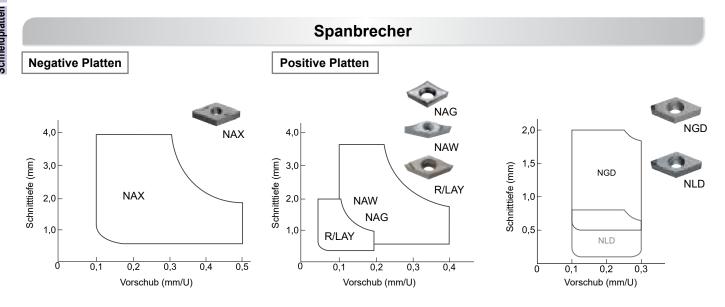


Werkstückstoff: 100Cr6 Rundstab (58-62HRC)

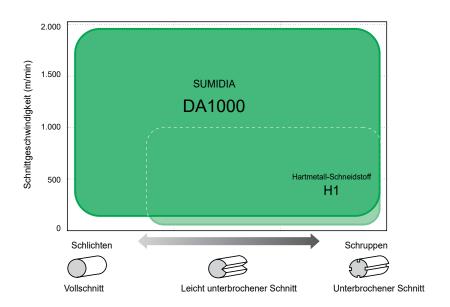
Schnittbedingungen: $v_c = 150$ m/min, f = 0.1 mm/U, $a_p = 0.2$ mm, trocken

Beständigkeit gegen Mikroausbrüche (Unterbrochener Schnitt)

(Vergleich basierend auf herkömmlichem) BN2000 mit 100%.)



Werkstückstoff: 15CrMo5 8V Genutetes Material (58-62HRC)


Schneidplatte: CNGA120408 NU-2

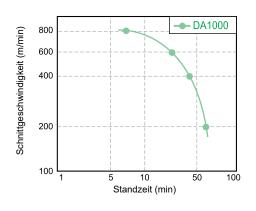
Schnittbedingungen: $v_c = 150$ m/min, f = 0.1 mm/U, $a_p = 0.2$ mm, trocken,

Schneidstoffe

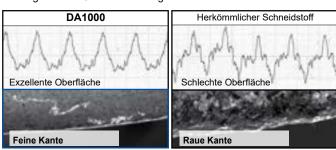
N Empfohlene Schnittbedingungen

(Min. - Optimum - Max.)

Anwondung	Kategorie	Schneidstoffe	Schnittbedingungen				
Anwendung	Nategorie	Scrineidstolle	Schnitttiefe (mm)	Vorschub (mm/U)	Schnittgeschwindigkeit (m/min)		
Vollschnitt Leicht unterbrochener Schnitt Unterbrochener Schnitt	SUMIDIA	DA1000	0,1 -0,5 -3,0	0,05 -0,10 -0,20	-2000		
	Hartmetall	H1	0,3 –1,0 –5,0	0,1 -0,20 -0,5	-1000		

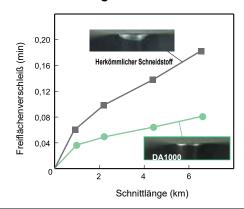


Schneidstoffe

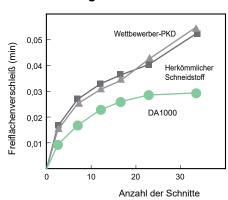

DA1000

- Gesinterte ultrafeine Diamantpartikel mit ultrahoher Dichte
- Deutlich verbesserte Oberflächenrauigkeit auf bearbeiten Oberflächen
- Weltweit beste Verschleißfestigkeit und Festigkeit
- Geeignet für alle Aluminium- und Nichteisenlegierungen

DA1000-Verschleißfestigkeit



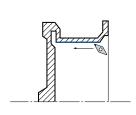
Vergleich der Oberflächenrauigkeit

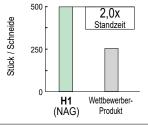

Schneidplatte: TPGW 160308 Schnittbedingungen: v_c = 1.000 m/min $\,$ f = 0,15 mm/U $\,$ a $_p$ = 0,2 mm $\,$ nass

Verschleißfestigkeit bei Drehanwendungen

Schneidplatte: TPGN160304 Schnittbedingungen: v_c = 800 m/min, f = 0,12 mm/U, a_p = 0,5 mm, nass

Verschleißfestigkeit bei Fräsanwendungen

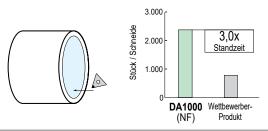

Schneidplatte: SNEW1204 ADFR-NF Schnittbedingungen: v_c = 2.000 m/min, f = 0,15 mm/U, a_p = 3,0 mm, nass


Anwendungsbeispiele

H1 + NAG-Typ-Brecher

ADC12 Aluminiumrad

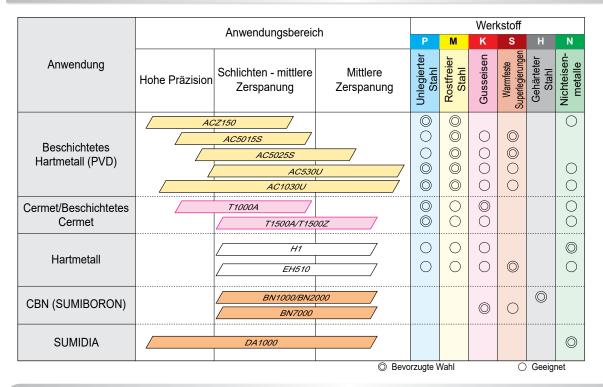
Exzellente Haftbeständigkeit. Längere Standzeit.



Schneidplatte: VCGT160408 NAG (H1) Schnittbedingungen: v_c = 2000 m/min, f = 0,25 mm/U, a_p = 2,0 mm, nass

DA1000

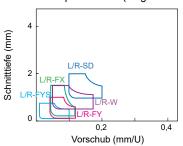
Kupferlegierungsbuchse


3-fache Standzeit gegenüber der PKD-Sorte vom Wettbewerb. Keine Brüche.

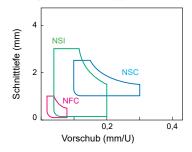
Schneidplatte: TPGN160308 NF (DA1000) Schnittbedingungen: v_c = 300 m/min, f = 0,07 mm/U, a_p = 0,08 mm, nass


Präzisionsbearbeitung

Schneidstoffe

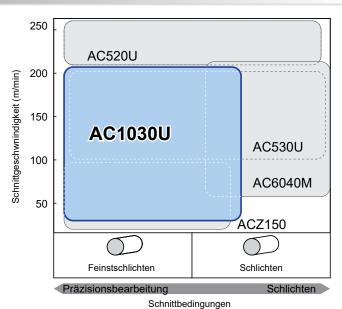


Spanbrecher


Schlichten – mittlere Bearb. (M-Toleranz)

G-Toleranz Spanbrecher (eingeschliffen)

G-Toleranz (3D-Spanbrecher)

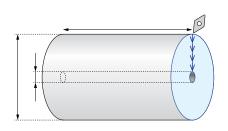


Empfohlene Schnittbedingungen

Werkstoff	P Auto	matenstahl	P Kohl	enstoffstahl	M Ros	tfreier Stahl		Warmfeste erlegierungen	H Geh	ärteter Stahl	N A	uminium	N I	Messing
Schneidstoff	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)	v _c (m/min)	f(mm/U)	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)
ACZ150	50–200	0,02-0,10	50–150	0,01-0,08	50–150	0,01–0,05					70–300	0,05-0,20	70–300	0,05-0,20
AC5015S	50–200	0,02-0,15	50–200	0,02-0,10	50–200	0,02-0,10	30–100	0,02-0,10					70–300	0,05-0,20
AC5 25S	50–200	0,02-0,15	50–200	0,02-0,10	50–200	0,02-0,10	30–100	0,02-0,10					70–300	0,05-0,20
AC530U	50-200	0,02-0,15	50-200	0,02-0,10	50-200	0,02-0,10							70–300	0,05-0,20
AC1030U	50-200	0,02-0,15	50-200	0,02-0,10	50–150	0,02-0,10							70–300	0,05-0,20
T1000A	50-200	0,02-0,15	50-200	0,02-0,10	50–150	0,02-0,10					70–300	0,05-0,20	70–300	0,05-0,20
T1500A	50-200	0,02-0,15	50-200	0,02-0,10	50–150	0,02-0,10					70–300	0,05-0,20	70–300	0,05-0,20
T1500Z	50-200	0,02-0,15	50-200	0,02-0,10	50–150	0,02-0,10					70–300	0,05-0,20	70–300	0,05-0,20
BN1000									120-300	0,03-0,15				
BN2000									50-200	0,03-0,20				
BN7000							50-200	0,05-0,20						
DA1000											70–300	0,02-0,10	70–300	0,02-0,10

Präzisionsbearbeitung

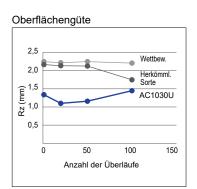
Anwendungsbereich


ABSO TECH

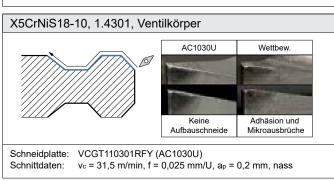
AC1030U

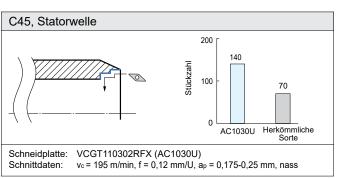
Verwendet eine neue PVD-Technologie mit einem besonders zähen Hartmetallsubstrat.

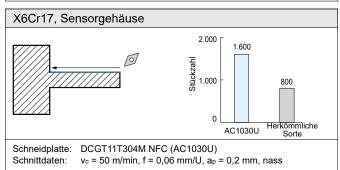
Es wird eine sehr gute Oberflächenqualität mit der hochqualitativen Schneidkante erzielt, wobei die Adhäsionsneigung und Mikroabplatzungen verringert werden.


AC1030U Leistungsmerkmale

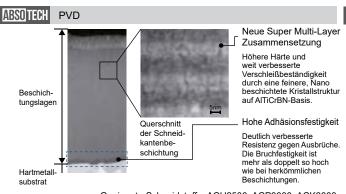

Werkstückstoff: X5CrNiS18-10, 1.4301 Schneidplatte: DCGT11T302RFY (AC1030U)


Schnittdaten: $v_c = 100 \text{ m/min}, f = 0,05 \text{ mm/U}, a_p = 0,1 \text{ mm}, \text{nass (OI)}$

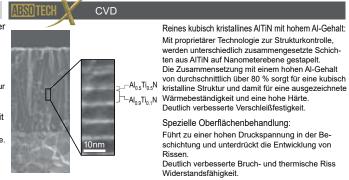

Verschleißfestigkeit 0.045 Wettbew. 0,040 Verschleißmarkenbreite Herkömml. 0.035 AC1030U 0.030 0.025 0.020 0,015 50 100 150 Anzahl der Überläufe



Anwendungsbeispiele

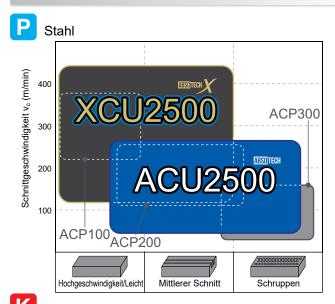

Merkmale von ACU2500

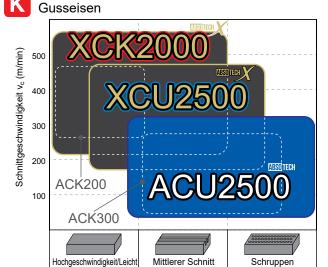
- Mit ABSOTECH, einer neuen Beschichtung mit hervorragender Verschleiß- und Widerstandsfähigkeit gegen Absplitterung.
- Verwendung eines Hartmetallsubstrats mit ausgezeichneter Bruch- und Verschleißfestigkeit, wodurch eine stabile, lange Standzeit bei verschiedenen Werkstoffen erzielt wird. Unsere 1. empfohlene Sorte zum Fräsen.

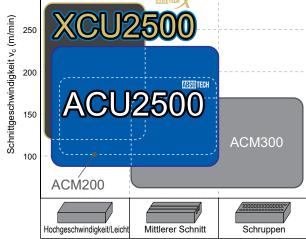

Merkmale von XCU2500 / XCK2000

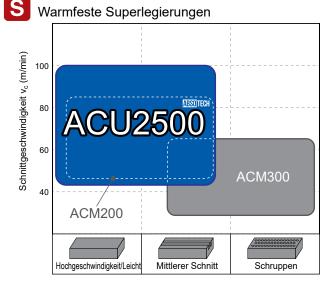
ACU2500 / XCU2500 / XCK2000

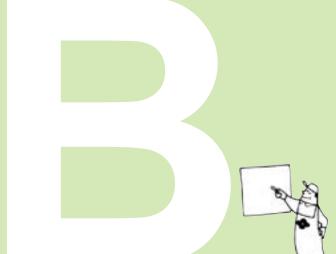
- Verwendet die revolutionäre ABSOTECH X-Beschichtung, die die Verschleißfestigkeit herkömmlicher CVD-Beschichtungen mit einer Bruchfestigkeit kombiniert, die der von PVD-Beschichtungen entspricht.
- Hervorragende lange Werkzeugstandzeit bei der Bearbeitung von Stahl, Gusseisen und rostfreiem Stahl.




Geeignete Schneidstoffe: ACU2500, ACP3000, ACK3000


Geeignete Schneidstoffe: XCU2500, XCK2000


Anwendungsbereich


Rostfreier Stahl

Schneidstoffe

Schneidstoffe

_					. .	
Reg	schich	itete F	ıarımı	etall-:	scnne	idstoffe

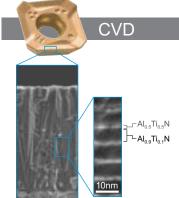
Cermet Unbeschichtetes Hartmetall

CBN-Schneidstoffe PKD-Schneidstoffe

Tabellen

Beschichtungsreihen	B2
CVD / PVD - Serie	B3-4

"Igetalloy"	B6
"SUMIBORON"	B7–8
"SUMIDIA"	B9
CHMIDIA" Pinderice	B10


beschichtet und unbeschichtet B5

Schneidstoff-Vergleichstabelle B11–14

Beschichtete Hartmetalle

: Revolutionäre Beschichtungstechnologie, die eine hervorragende Standzeit garantiert.

Reines kubisch kristallines AITiN mit hohem Al-Gehalt:

Mit proprietärer Technologie zur Strukturkontrolle, werden unterschiedlich zusammengesetzte Schichten aus AlTiN auf Nanometerebene gestabelt

Nanometerebene gestapelt.

Die Zusammensetzung mit einem hohen Al-Gehalt von durchschnittlich über 80 % sorgt für eine kubisch kristalline Struktur und damit für eine ausgezeichnete Wärmebeständigkeit und eine hohe Härte.

Deutlich verbesserte Verschleißfestigkeit.

Spezielle Oberflächenbehandlung:

Führt zu einer hohen Druckspannung in der Beschichtung und unterdrückt die Entwicklung von Rissen.

Deutlich verbesserte Bruch- und thermische Riss Widerstandsfähigkeit.

Dank einer revolutionären Technologie, die Verschleißfestigkeit und Bruchfestigkeit kombiniert, werden bei der allgemeinen Bearbeitung sehr lange Werkzeugstandzeiten durch eine hocheffiziente Zerspannung erreicht.

[ABSOTECH X] Für das CVD-Fräsen

Geeignete Schneidstoffe:

Zum Fräsen: XCU2500, XCK2000

TECH Die neue Beschichtungstechnologie erzielt absolute Stabilität.

- Bei unterschiedlichen Anwendungen konnten stabile Ergebnisse erzielt werden durch Reduzierung der Schichtabplatzungen und Materialanhaftungen.
- Ein neues Level hochfester und widerstandsfähiger Beschichtungen wurde erreicht. Erzielt eine lange, stabile Werkzeugstandzeit auch bei der Hochleistungsbearbeitung.

Geeignete Schneidstoffe ABSOTECH

Zum Drehen: Stahl AC8015P, AC8020P, AC8025P, AC8035P

Edelstahl AC6020M, AC6030M Grauguss AC4010K, AC4015K ACP2000, ACK2000 Ouerschnitt im
Bereich der
Schneidkante

Die Struktur der firmeneigenen Mehrlagenbeschichtung:

Fortschrittliche Nanotechnologie ermöglicht Schichtdicken auf Nanometerebene (1 Nanometer ist ein Milliardstel Meter) Die Härte, Warmfestigkeit und Zähigkeit wurden durch die neue Mehrlagenbeschichtung signifikant verbessert.

Verbesserte Schichthaftung: Signifikante Verbesserung der Schichthaftung, durch verbesserte Oberflächenstrukturen zwischen der Beschichtung und dem Hartmetallsubstrat.

- Anhand der Anwendung wurde die Zusammensetzung der Beschichtung optimiert. Erzielt stabile Bearbeitungsergebnisse unabhängig vom Werkstückstoff.
- Signifikante Verbesserung gegen Schichtabplatzungen durch eine verbesserte Schichthaftung. Stabile Ergebnisse auch bei starker Beanspruchung.

Geeignete Schneidstoffe ABSOTECH

Zum Fräsen:

Zum Drehen: Edelstahl AC6040M

Warmfeste Legierungen AC5005S, AC5015S, AC5025S

Präzisionsbearbeitung AC1030U

ACU2500, ACP3000, ACK3000

Brilliant Coat

Zum Fräsen:

PVD

Die Beschichtung "Brilliant Coat" hat durch einen exzellenten Reibkoeffizienten eine ausgezeichnete Bearbeitungsqualität.

- PVD-Beschichtung mit ausgezeichneter Verschleißfestigkeit und geringem Reibkoeffizienten.

 Unterdrückt Paulitieren mit dem Wederfühlerbeffund erset für ausgelagt heerbeitete. Oberfläche
- Unterdrückt Reaktionen mit dem Werkstückstoff und sorgt für exzellent bearbeitete Oberflächen.

Werkstückstoff: Schneidplatte: Schnittbedingungen: STKM13A CNMG120408NLU v_c: 100 m/min f: 0,15 mm/U a_p: 1,0 mm, nass

Brilliant Coat

Herkömmliche Beschichtung

Geeignete Schneidstoffe

Für die Bearbeitung von Stahl

T1500Z, T2500Z

AURORA Beschichtung (DLC: Diamond Like Carbon)

Unter Einsatz unserer eigenen PVD-Prozesstechnologie konnten wir eine wasserstofffreie DLC-Beschichtung entwickeln, die extrem hart und glatt ist.

Al Legierung ADC12 - Vergleich der Aufbauschneidenbildung

Werkstückstoff: STKM13A Schnittbedingungen: v_c: 100 m/min f: 0,15 mm/U a_p: 1,0 mm, nas:

AURORA-Beschichtung

Unbeschichtet

- Die glatte Beschichtung wird in ihrer H\u00e4rte nur durch Diamant \u00fcbertroffen. Ihr geringer Reibungskoeffizient sch\u00fctzt sehr gut gegen Aufbauschneidenbildung und bietet qualitativ hochwertig bearbeitete Oberfl\u00e4chen.
- Kann zur Hochgeschwindigkeits- und Hocheffizienz-Zerspanung von Aluminiumund Kupferlegierungen sowie bei Kunstharzen und anderen nicht Fe-haltigen Werkstoffen eingesetzt werden.

Geeignete Schneidstoffe

Zum Fräsen Zum Schaftfräsen Zum Bohren DL1000, DL2000 DL1000, DL1200 DL1300, DL1500

CVD-Beschichtete Hartmetalle

Charakteristische Werte

Zum Drehen (CVD)

Anwendung	Schneidstoff	Härte (HRA)	TRS (GPa)	Beschichtungstyp	Schichtstärke (µm)	Eigenschaften	Alte Sorte
	AC8015P	91,0	2,3	Absotech	14	Für die Hochgeschwindigkeits- und Hochleistungsbearbeitung von Stahl. Durch die Ausrichtung der Kristalle kann die Entstehung von Kolkverschleiß drastisch reduziert werden. Das führt dazu, dass bei hohen Schnittgeschwindigkeiten und hohen Vorschüben eine stabile, lange Standzeit erreicht werden kann.	AC810P
	AC8020P	90,5	2,2	Super FF Coat	18	Unsere erste Empfehlung für die Bearbeitung von Schmiedewerkstoffen. Die Aluminiumoxid- Beschichtung mit einer sehr hohen Festigkeit gewährleistet eine hervorragende Stabilität und Verschleißfestigkeit bei der Bearbeitung von Schmiedewerkstoffen.	AC820P
P	AC8025P	90,1	2,3	Absotech	12	Eine P20-Schneidstoffsorte, die durch die Verwendung eines speziellen Hartmetallsubstrates und der neuen Absotech Platinum-Technologie das Auftreten ungewöhnlicher Schäden drastisch reduziert und lange, stabile Standzeiten erreicht.	AC820P
	AC8035P	89,4	2,6	Absotech	9	Für die Bearbeitung von Stahl im unterbrochenen Schnitt. Durch die Reduzierung der Zugspannungen konnte die Bruchfestigkeit deutlich verbessert und bei Schnittunterbrechungen eine stabile, lange Standzeit erreicht werden.	AC830P
	AC6020M	90,1	2,3	Absotech	5	Eine M20-Schneidstoffsorte, die seine Verschleißbeständigkeit bei der Bearbeitung von rostfreiem Stahl behält, während sie durch die Verwendung eines speziellen Hartmetallsubstrates und der neuen Absotech-Platinum-Technologie das Auftreten ungewöhnlicher Schäden drastisch reduziert.	AC610M
M	AC6030M	89,5	2,7	Absotech	5	Die neue HM-Sorte mit CVD-"Absotech Platinum" Beschichtung wird für die Bearbeitung von rostfreiem Stahl, bei Verwendung im Voll- bis zum leicht unterbrochenen Schnitt, eingesetzt. AC6030M weist eine ausgezeichnete Verschleißfestigkeit auf und besitzt eine exzellente Beschichtungsstabilität.	AC630M
	AC630M	89,5	2,7	Super FF Coat	5	Ein Allzweckschneidstoff mit verbesserter Verschleißbeständigkeit beim Drehen von rostfreiem Stahl. Mit zähem Hartmetall-Spezialsubstrat und einer dünnen Super FF Beschichtung.	AC304
	AC4010K	91,1	2,5	Absotech	20	Unsere erste Empfehlung für die Drehbearbeitung von Grauguss. Für das Hochgeschwindigkeitsfräsen von Grauguss. Die verbesserte Beschichtung sorgt für stabile, lange Standzeiten bei der Ultrahochges chwindigkeitsbearbeitung von Grauguss mit v. = 700 m/min.	AC405K
K	AC4015K	91,1	2,5	Absotech	16	Unsere erste Empfehlung für die Drehbearbeitung von Kugelgraphitguss. Verbesserte Schichthaftung, Festigkeit, hohe Verschleißfestigkeit und weniger Schichtabplatzungen für stabile Standzeiten in einem breiten Anwendungsfeld.	AC415K
	AC420K	91,1	2,5	Super FF Coat	12	Ein neuer, extrem vielseitiger Schneidstoff, der zum groben Drehen mit unterbrochenem Schnitt von Kugelgraphit- und Grauguss verwendet werden kann. Mit ultrahartem Hartmetall-Spezialsubstrat und Super FF Beschichtung für Stabilität und lange Standzeit.	AC700G

Zum Fräsen (CVD)

Anwendung	Schneidstoff	Härte (HRA)	TRS (GPa)	Beschichtungs- Typ	Beschichtungs- Dicke (μm)	Eigenschaften	Alte Schneidstoffe
	ACP100	89,3	3,1	Super FF-Beschichtung	6	Ein Schneidstoff, der über ein zähes Hartmetallsubstrat und eine dünne Super FF-Beschichtung verfügt und so für eine hohe Widerstandsfähigkeit gegen thermische Risse und Verschleißfestigkeit beim Hochgeschwindigkeitsfräsen von Stahl sorgt.	AC230
P	ACP2000	89,5	3,2	Absotech	10	Für die Hochgeschwindigkeitsbearbeitung von Stahl. Stabile, lange Standzeit bei der Hochgeschwindigkeitsbearbeitung durch Verwendung eines zähen Hartmetall- substrates und einer neuen Beschichtung mit ausgezeichneter Beständigkeit gegen Thermorisse.	ACP100
	Neu	*				Allgemeine Schneidstoffsorte für eine Vielzahl von Werkstoffen wie Stahl, Gusseisen	
	XCU2500	89,5	3,2	AbsotechX	6	und rostfreien Stahl. Eine neue Beschichtung, die Verschleiß- und Bruchfestigkeit kombiniert, sorgt für lange Standzeiten bei der Bearbeitung bei mittleren und hohen Drehzahlen.	
M	ACM200	89,8	3,4	Super FF-Beschichtung	6	Ein Schneidstoff, der sich ideal für die Bearbeitung von gehärtetem Stahl eignet und durch die Verwendung eines neu entwickelten, ultra-harten Hartmetalls und der Super FF-Beschichtung über exzellente Verschleißfestigkeit und Hitzebeständigkeit verfügt.	AC230
	ACK100	92,0	2,4	Super FF-Beschichtung	6	Eine Schneidstoff mit hochfestem Hartmetallsubstrat und einer Super- FF-Beschichtung, was zu einer hohen Verschleißbeständigkeit beim Hochgeschwindigkeitsfräsen führt.	_
K	ACK200	91,7	2,5	Super FF-Beschichtung	6	Ein Schneidstoff, der ein zähes Hartmetallsubstrat und eine dünne Super FF-Beschichtung besitzt und so für eine hohe Widerstandsfähigkeit gegen thermische Risse und Verschleißfestigkeit beim Hochgeschwindigkeitsfräsen sorgt.	AC211
	ACK2000	91,7	3,1	Absotech	10	Für das Hochgeschwindigkeitsfräsen von Grauguss. Stabile, lange Standzeit bei der Hochgeschwindigkeitsberbeitung, durch Verwendung eines zähen Hartmetallsubstrates und einer neuen Beschichtung mit ausgezeichneter Beständigkeit gegen Thermorisse.	ACK100 ACK200
	XCK2000	91,7	2,5	AbsotechX	6	Für das Hochgeschwindigkeitsfräsen von Gusseisen. In Verbindung mit einem hochharten Hartmetallsubstrat sorgt die neue Beschichtung, die eine hohe Verschleiß- und Bruchfestigkeit ausweist, für hervorragende Standzeiten bei der Bearbeitung bei mittleren und hohen Drehzahlen.	_

PVD-Beschichtete Hartmetalle

PVD Beschichtungs-Ausführungen

Charakteristische Werte

Zum Drehen (PVD)

Anwendung	Schneidstoff	Härte (HRA)	TRS (GPa)	Beschichtungstyp	Schichtstärke (µm)	Eigenschaften	Alte Sorte
	T1500Z (Cermet)	92,0	2,2	Brilliant Coat*	3	Für die Schlichtbearbeitung von Stahl. Verwendung von "Brilliant Coat" für eine sehr gute Gleitfähigkeit und eine verbesserte Qualität der bearbeiteten Oberfläche.	T2000Z
P	T2500Z (Cermet)	91,8	2,4	Brilliant Coat*	3	Für die Schlichtbearbeitung von Stahl. Die Verwendung von "Brilliant Coat" mit sehr guter Gleitfähigkeit und einem zähen Cermet-Substrat führt zu einer ausgezeichneten Qualität der bearbeiteten Oberfläche und einer hohen Stabilität.	T3000Z
	AC530U	91,4	3,3	Super ZX Coat	3	Für unterbrochenes und allgemeines Drehen von Stahl. Mit der neuen mehrlagigen PVD-Beschichtung aus TiAIN- und AlCrN-Schichten im Nanobereich in Verbindung mit einem feinkörnigen und superzähen Substrat für exzellente Bruchbeständigkeit.	ACZ310
N/I	AC6040M	91,6	3,8	Absotech	3	Die neue HM-Sorte für rostfreien Stahl mit PVD-"Absotech Bronze" Beschichtung verfügt über eine sehr gute Verschleiß- und Bruchfestigkeit sowie über eine sehr hohe Adhäsionsbeständigkeit. Erste Empfehlung im unterbrochenen Schnitt und bei instabilen Bedingungen.	AC530U
IVI	AC530U	91,4	3,3	Super ZX Coat	3	Stark unterbrochene Bearbeitung von Stahl und rostfreiem Stahl. Mit der neuen mehrlagigen PVD-Beschichtung aus TiAIN- und AlCrN-Schichten im Nanobereich in Verbindung mit einem feinkörnigen und superzähen Substrat für exzellente Bruchbeständigkeit.	ACZ310
	AC5005S	93,1	2,8	Absotech	5	Für die Hochgeschwindigkeits- und Hochleistungsbearbeitung von warmfesten Legierungen. Durch die Verwendung eines speziellen Hartmetallsubstrats mit einer großen Temperaturbeständigkeit wird eine hervorragende Verschleißfestigkeit ermöglicht.	_
S	AC5015S	92,7	3,2	Absotech	5	Unsere erste Empfehlung für die Bearbeitung von warmfesten Legierungen. Ein Hartmetallsubstrat mit ausgezeichneter Warmfestigkeit und eine neue Beschichtung mit exzellenter Verschleißfestigkeit und Schichthaftung, wodurch eine lange Werkzeugstandzeit bei einer großen Bandbreite von Schnittbedingungen erzielt wird.	AC510U
	AC5025S	91,8	3,6	Absotech	5	Für die Bearbeitung von leichten bis mittleren Schnittunterbrechungen. Ein Hartmetallsubstrat mit ausgezeichneter Bruchfestigkeit und einer neue Beschichtung mit ausgezeichneter Verschleißfestigkeit und Schichthaftung, wodurch eine lange Werkzeugstandzeit bei instabilen Schnittbedingungen erzielt wird.	AC520U
H	AC503U	93,2	1,7	Super ZX Coat	3	Für gehärteten Stahl. Verwendet eine mehrlagige PVD-Beschichtung aus nanometer-dicken TiAIN -und AICrN-Schichten in Verbindung mit einem ultraharten Substrat, was zu einer hohen Verschleißbeständigkeit führt.	_
Präzisions- bearbeitung	ACZ150	91,4	3,3	ZX Coat	1	Besonders geeignet für hochpräzise und allgemeine Schlichtanwendungen für kleine Werkzeuge der Mini-Serien. Feinkörniges, extrem zähes Substrat mit einer ultra-dünnen TIN-Beschichtung. Die scharfe Schneide ermöglicht eine hervorragende Oberflächengüte und Spankontrolle.	_
kleiner Drehteile	AC1030U	91,6	3,8	Absotech	2	Für Präzisionsbearbeitung, geeignet für eine Vielzahl an Werkstoffen. Verwendet die neue "Absotech Bronze"-Technologie mit hohem Widerstand gegen Adhäsion sowie hoher Verschleißbeständigkeit und bietet durch verbesserte Schneidkantenqualität beste Bauteiloberflächen bei sehr guter Stabilität.	_

Zum Fräsen (PVD)

Anwendung	Schneidstoff	Härte (HRA)	TRS (GPa)	Beschichtungstyp	Schichtstärke (µm)	Eigenschaften	Alte Sorte
	ACU2500	91,6	3,8	Absotech	3	Allroundsorte für die Bearbeitung von Stahl, Edelstahl und Gusseisen. Ein Hartmetallsubstrat mit ausgezeichneter Bruchfestigkeit und einer neue Beschichtung mit ausgezeichneter Verschleißestigkeit und Schichthaftung, wodurch eine lange Standzeit bei unterschiedlichen Werkstückstoffen erzielt wird.	_
	ACP200	89,5	3,2	Super ZX Coat	3	Empfohlener Schneidstoff für die allgemeine Bearbeitung von Stahl. Neue "Super ZX Coat" Beschichtung kombiniert mit einem besonders zähen Substrat, für eine ausgewogene Balance zwischen Verschleiß- und Bruchfestigkeit.	ACZ330
	ACP300	89,3	3,1	Super ZX Coat	3	Für die Bearbeitung von rostfreiem Stahl im unterbrochenen Schnitt und unter schwierigen Bedingungen. Die verwendete PVD-Beschichtung und das extrem zähe Substrat erreichen eine ausgezeichnete Bruchfestigkeit.	ACZ350
	ACP3000	89,5	3,2	Absotech	3	Erste Empfehlung für die Fräsbearbeitung von Stahl. Hartmetallsubstrat mit ausgezeichneter Beständigkeit gegen thermische Risse und einer neuen Beschichtung mit verbesserter Verschleißfestigkeit und Schichthaftung, wodurch eine lange Standzeit bei unterschiedlichen Schnittbedingungen erreicht wird.	ACP200 ACP300
	ACM100	91,4	3,3	Super ZX Coat	3	Ein Schneidstoff, der durch den Einsatz eines ultra-harten, feinkörnigen Hartmetalls und der neuen Super ZX-Beschichtung für exzellente Verschleißfestigkeit sorgt.	ACZ310
M	ACM300	89,8	3,4	Super ZX Coat	3	An erster Stelle empfohlener Schneidstoff für die spanabhebende Bearbeitung von rostfreiem Stahl, der durch die Verwendung eines neu entwickelten, ultra-harten Hartmetalls und der neuen Super ZX-Beschichtung eine gut ausgewogene Verschleißund Bruchfestigkeit besitzt.	_
	ACK300	91,4	3,3	Super ZX Coat	3	Allround Sorte mit hervorragendem Verhältnis von Verschleiß- und Bruchfestigkeit.	ACZ310
K	ACK3000	91,7	3,1	Absotech	3	Erste Empfehlung für die Fräsbearbeitung von Gusseisen. Hartmetallsubstrat mit hoher Wärmeleitfähigkeit und einer neuen Beschichtung mit exzellenter Verschleißfestigkeit und Schichthaftung. Erzielt stabile, lange Standzeiten bei der Bearbeitung von Gusseisen, bei unterschiedlichsten Anwendungen.	ACK300
	DL1000	92,9	2,1	AURORA Coat (DLC Coat)	0,5	Für das Fräsen von Nichteisenmetallen, wird eine DLC-Beschichtung mit niedrigem Reibungskoeffizienten und ausgezeichnetem Widerstand gegen Aufbauschneidenbildung eingesetzt.	_
	DL2000	91,6	3,8	AURORA Coat (DLC Coat)	0,5	Für das Fräsen von Nichteisenmetallen, wird eine DLC-Beschichtung mit niedrigem Reibungskoeffizienten und ausgezeichnetem Widerstand gegen Aufbauschneidenbildung eingesetzt.	_

TiC / TaC (Ti-Basis-Hartmetalle) Cermet

Die neuen Cermet Sorten und eine erheblich erweiterte Palette der Katalogartikel werden den vielfältigsten Nachfragen im Schlichtbereich gerecht.

Die Produktpalette beinhaltet verschleißfestes T1000A, T1500A und beschichtetes Cermet T1500Z für die allgemeine Verwendung sowie zähes T2500A.

Eine erheblich erweiterte Palette der Katalogposten wird den vielfältigsten Anwendungen im Schlichtbereich gerecht.

Eigenschaften

Unbeschichtetes Cermet

T1000A Schneidstoff für Hochgeschwindigkeits-Schlichten Schneidstoff mit exzellenter Verschleißbeständigkeit für Hochgeschwindigkeits-Schlichten. Verbesserte Verschleiß- und Bruchfestigkeit. Mischkristallverfestigungen reduzieren die Reaktion mit Stahl. Perfekt für kontinuierliches Hochgeschwindigkeits-Schlichten von Stahl, Grauguss und Pulvermetall.

Beschichtetes Cermet

T1500Z Neuer, allgemein verwendbarer Schneidstoff Allgemein verwendbarer, beschichteter Cermet-Schneidstoff mit der neuen Brillant Coat* PVD-Beschichtung für eine ausgezeichnete Bearbeitungsqualität. Exzellente Verschleißfestigkeit sorgt für eine lange Standzeit. Reduziert die Haftung des Werkstückstoffes für hervorragend geschlichtete Oberflächen.

Unbeschichtetes Cermet

Eine Allzwecksorte, die sowohl Verschleiß- als auch Bruchsicherheit bei höherwertiger Oberflächengüte bietet.

Die Verbundstruktur von harten Bindephasen unterschiedlicher Korngrößen und Zusammensetzung trägt zu einer aus gewogenen Verschleiß- und Bruchbeständigkeit bei.

Durch eine verbesserte Technologie der Schneidkantenbehandlung wird eine gute Oberflächengüte erzielt.

Beschichtetes Cermet

T2500Z

Zäher Schneidstoff mit ausgezeichneter Bruchfestigkeit und Beständigkeit gegen thermische Risse.

Feines, gleichmäßiges Korngefüge sorgt für deutlich höhere Zähigkeit. Verbessert die Wärmerissfestigkeit aufgrund der hohen Wärmeleitfähigkeit und erzielt eine lange, stabile Standzeit.

"Brilliant Coat"- Beschichtung für eine hervorragende Bearbeitungsqualität.

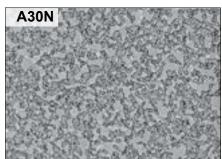
Charakteristische Werte

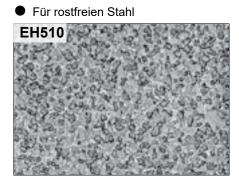
Zum Drehen

Anwendung	Schneidstoff	Härte (HRA)	TRS (GPa)	Beschichtungs- Typ	Beschichtung Dicke (µm)	Eigenschaften	Alte Schneidstoffe
	T1000A	93,3	1,8	-	—	Unbeschichteter Cermet-Schneidstoff mit exzellenter Verschleißfestigkeit bei kontinuierlichen Schlichtanwendungen sowie ein stabiles Schlichten von Grauguss, Sinterlegierungen und Stahl.	T110A
	T1500A	92,0	2,2	_	_	Ein allgemein verwendbarer Schneidstoff, bei dem Bruchfestigkeit und Verschleißfestigkeit ausgezeichnet ausbalanciert sind, mit dem Ergebnis hervorragend bearbeiteter Oberflächen unter den verschiedensten Schnittbedingungen.	T1200A
P	T2500A	91,8	2,4	_	_	Für die Bearbeitung von Stahl im unterbrochenen Schnitt. Feines, gleichmäßiges Korngefüge sorgt für deutlich höhere Zähigkeit, eine lange Standzeit sowie ausgezeichnete Oberflächenbeschaffenheit auch bei unterbrochenem Schnitt.	-
	T1500Z	92,0	2,2	PVD Brilliant Coat*	3	Neue PVD-Beschichtung "Brilliant Coat" garantiert exzellente Gleitfähigkeit für die Bearbeitung in höchster Qualität. Allgemein verwendbarer, beschichteter Cermet- schneidstoff, der eine stabil hochwertige, Verarbeitung von Oberflächen ermöglicht und darüber hinaus eine ausgezeichnete Verschleißfestigkeit besitzt.	T2000Z
	T2500Z	91,8	2,4	PVD Brilliant Coat*	3	Für die Schlichtbearbeitung von Stahl. Der Einsatz von Brilliant Coat Beschichtung mit hervorragender Gleitfähigkeit und einem zähen Cermet-Substrat führt zu einer ausgezeichneten Oberflächengüte und einer stabilen Bearbeitung.	T3000Z
K	T1000A	93,3	1,8	_	_	Unbeschichteter Cermet-Schneidstoff mit exzellenter Kosteneffizienz, anwendbar für die Grauguss-Bearbeitung, die allerhöchste Werkzeug-Härte erfordert.	T110A

Zum Fräsen

Anwendung	Schneidstoff	Härte (HRA)	TRS (GPa)	Beschichtungs- Typ	Beschichtung Dicke (µm)	Eigenschaften	Alte Schneidstoffe
	T1500A	92,0	2,2	_	_	Ein allgemein verwendbarer Schneidstoff mit verbesserter Balance zwischen Bruchfestigkeit und Verschleißfestigkeit, mit dem Ergebnis hervorragend bearbeiteter Oberflächen unter den verschiedensten Schnittbedingungen.	T1200A
P	T250A	91,4	2,1	_		Zäher Cermet-Schneidstoff mit verbessertem Widerstand gegen Mikroausbrüche.	_
M	T2500A	91,8	2,2	_		Für die Schlichtbearbeitung von Stahl und Edelstahl. Feines, gleichmäßiges Korngefüge sorgt für deutlich höhere Zähigkeit, eine lange Standzeit sowie ausgezeichnete Oberflächenbeschaffenheit.	T250A
	T4500A	91,0	2,3	_	_	Für die Schlichtbearbeitung von Stahl und Edelstahl. Zäher Schneidstoff mit ausgezeichneter Bruchfestigkeit und erhöhtem Widerstand geden thermische Risse.	_


^{*}Durch Lichteinwirkung kann es zu leichten Abweichungen im Farbton/Glanz der Brilliant Coat-Schneidstoffe kommen. Solche Abweichungen haben keinerlei Auswirkung auf die Leistung.


Wolframcarbid - Hartmetalle ,, Igetalloy"


Igetalloy-Hartmetall-Schneidstoffe sind bereits bestens bewährt und umfassen die unterschiedlichsten Ausführungen für viele verschiedene Anwendungen. Sie werden bereits häufig genutzt und werden wegen ihrer herausragenden Leistungseigenschaften geschätzt.

Die Igetalloy-Palette besteht aus Hartmetall-Drehwerkzeugen, die in den unterschiedlichsten Strukturen und Zusammensetzungen erhältlich sind. Sie unterscheiden sich hinsichtlich der WC-Korngröße und unterschiedlicher Anteile an CO-Bindemittel und TiC, TaC sowie andere Hartmetallkomponenten. Die umfangreiche Auswahl zeichnet sich durch exzellente Verschleißbeständigkeit und Zähigkeit bei den vielfältigsten Werkstoffen und Schnittbedingungen aus.

Für Stahl

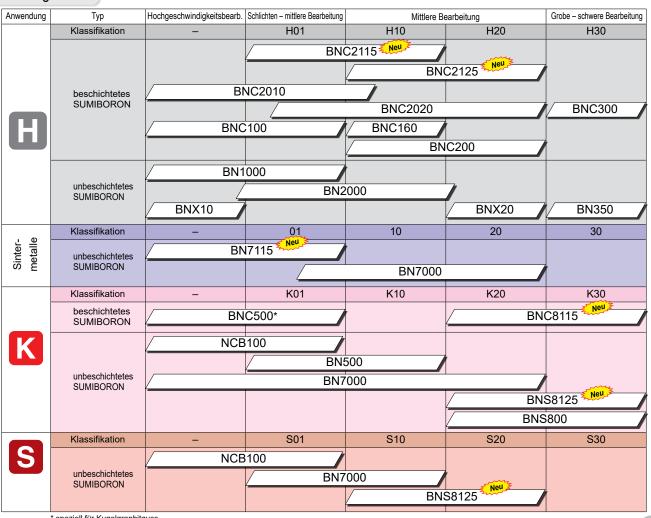
Charakteristische Werte

Anwendung	Schneidstoff	Härte (HRA)	TRS (GPa)	Elastizitätsmodul (GPa)	Wärmeleitfähigkeit (W/m·°C)	Druckfestigkeit (GPa)	Thermischer Längenausdehnungskoeffizient (X 10-6/°C)
	ST10P	92,1	1,9	470	25	4,9	6,2
	ST20E	91,8	1,9	550	42	4,8	5,2
P	A30	91,3	2,1	520	_	_	5,2
	A30N	91,2	2,2	520	_	_	_
	ST40E	90,4	2,6	_	75	_	_
	EH510	92,6	2,6	_	_	_	_
NA	EH520	91,7	3,0	_	_	_	_
M	A30	91,3	2,1	520	_	_	5,2
	A30N	91,0	2,4	_	_	_	_
	BL130	94,3	2,9	_	_	_	_
	H2	93,2	1,8	600	105	6,1	4,4
	H1	92,9	2,1	650	109	6,1	4,7
K	EH510	92,6	2,6	_	_	_	_
	H10E	92,3	2,0	_	67	_	_
	EH520	91,7	3,0	_	_	_	_
	G10E	91,1	2,2	620	105	5,7	_
N	H1	92,9	2,1	650	109	6,1	4,7
u	H20	91,6	3,8	_	_	_	_
S	EH510	92,6	2,6	_	_	_	_
	EH520	91,7	3,0	_	_	_	_

PcBN (Polykristallines kubisches Bornitrid)

SUMIBORON

Hohe Härte und Temperaturfestigkeit zum Zerspanen von gehärtetem Stahl und hartem Gusseisen. Lange Standzeit beim Hochgeschwindigkeitsschlichten von Gusseisen


Bereits 1977 hat Sumitomo Electric Hartmetall erfolgreich ein revolutionäres CBN-Sinterwerkzeug entwickelt: SUMIBORON. Der Hauptbestandteil von SUMIBORON ist kubisches Bornitrid, das mit einem speziellen Bindemittel bei extrem hohem Druck und Temperatur gesintert wird. Im Vergleich zu anderen herkömmlichen Werkzeugmaterialien weist CBN eine höhere Härte und eine exzellente Temperaturfestigkeit auf.

Dank dieser herausragenden Eigenschaften eignet sich SUMIBORON zur Bearbeitung von gehärtetem Stahl, Gusseisen mit hoher Härte und hitzebeständigen Materialien, bei denen zuvor nur Schleifen möglich war. Außerdem können durch die Hochgeschwindigkeitsbearbeitung von Gusseisen eine exzellente Effizienz und höhere Standzeiten erzielt werden.

Eigenschaften

Klassifikationen	Struktur	CBN-Gehalt	Härte (GPa)	Schneidstoffe	Anwendung	Eigenschaften
Reine CBN-Partikel, fest gebunden	10	Hoch 54		NCB100	Gusseisen, Titanlegie- rungen, reines Titan, Co-Cr-Legierungen, Hartmetall, Cermet	Ohne Bindemittel: Die Nano- bis Sub-µm-CBN-Partikel verfügen über eine direkt gebundene Struktur. Die hohe Festigkeit und Wärmeleitfahigkeit sorgen für eine hohe Effizienz mit einer langen Standzeit bei der Bearbeitung von warmfesten Legierungen wie Titanlegierungen und Co-Cr-Legierungen.
Hauptsächlich miteinander verbundene CBN-Körner				BN7000 BN7500 BN7115 BNC8125 BNS8125 BNS800	Hartmetall, Kokillen- hartguss, Ni-Hart-Guss- eisen, Hitzebeständige Legierung, Gusseisen, Gesinterte Eisenlegierung	Hoher Kohlenstoffgehalt. Struktur besteht aus eng miteinander verbundenen CBN-Körnern. Geeignet zum Drehen von Gusseisen, hitzebeständigen Legierungen, ultraharten Legierungen und anderen harten Materialien.
Hauptsächlich CBN- Körner, die durch ein Bindemittel zusammengehalten werden		▼ Niedrig	27	BN1000, BN2000, BN350 BNX10, BNX20, BNX25 BN500, Reu Neu BNC2115, BNC2125, BN2010, BN2020 BNC300, BNC100, BNC160 BNC200, BNC500	Legierter Stahl, Einsatzstahl, Kohlenstoffwerkzeugstahl, Lagerstahl, Matrizenstahl, Kugelgraphitguss	CBN-Körner werden durch ein spezielles keramisches Bindemittel fest zusammengehalten. Die starke CBN-Bindekraft sorgt für hervorragende Verschleißbeständigkeit und Zähigkeit beim Drehen von gehärtetem Stahl und Gusseisen.

Anwendungsbereiche

PcBN (Polykristallines kubisches Bornitrid) **SUMIBORON**

Charakteristische Werte

Anwendung	Schneidstoff	Bindemittel	CBN Gehalt (%)	Korngröße (µm)	Härte HV (GPa)	TRS (GPa)	Beschichtungs- hauptkomponenten	Beschichtung Dicke (µm)	Eigenschaften
	BNC2115	TiN	60–65	3	31–33	1,3–1,4	TiAlSiN super Mehrlagen- schicht	3	Hervorragende Oberflächengüte durch eine Beschichtung mit hoher Kerbverschleißfestigkeit und zähem CBN-Substrat.
	BNC2125	TiN	65–70	4	33–35	1,5–1,6	TiAlSiN super Mehrlagen- schicht	3	Zusammen mit einem zähen CBN-Substrat bietet die Beschichtung eine Kombination aus Verschleißfestigkeit und Zähigkeit, die eine noch stabilere Bearbeitung ermöglicht.
	BNC2010	TiCN	50–55	2	30–32	1,1–1,2	TiCN mehrschichtig	2	Erste Wahl für die Hochpräzisionsbearbeitung für sehr gute Oberflächengüten und Maßgenauigkeit. Bietet eine verbesserte Verschleißfestigkeit und reduziert den Kerbverschleiß.
	BNC2020	TiN	70–75	5	34–36	1,4–1,5	TiCN mehrschichtig	2	Für hocheffiziente und unterbrochene Bearbeitung von gehärtetem Stahl. Zähes CBN-Substrat mit verschleißfester Beschichtung für hohe Prozesssicherheit und längere Standzeiten.
	BNC100	TiN	40–45	1	29–32	1,0–1,1	TiAIN	3	Dank extrem verschleißbeständiger Beschichtung eignet sich dieser Schneidstoff zum Hochgeschwindigkeits-Schlichten.
	BNC160	TiN	60–65	3	31–33	1,2–1,3	TiAIN/TiCN	3	Stabiles, hochpräzises Schlichten von gehärtetem Stahl.
Ш	BNC200	TiN	65–70	4	33–35	1,4–1,5	TiAIN/TiCN	3	Zähes Substrat mit extrem verschleißbeständiger Beschichtung für längere Standzeit.
	BNC300	TiN	60–65	1	33–35	1,5–1,6	TiAIN	1	Geeignet zum Schlichten, wenn eine Kombination aus voll- und unterbrochenem Schnitt vorliegt.
	BNX10	TiCN	40–45	3	27–31	0,9–1,0	-	-	Optimale Verschleißbeständigkeit. Geeignet zum Hartdrehen bei höchsten Schnitt-geschwindigkeiten im Vollschnitt.
	BN1000	TiCN	40–45	1	27–31	0,9–1,0	-	-	Ultimative Verschleiß- und Bruchbeständigkeit. Geeignet zum Hochgeschwindigkeits-Drehen.
	BNX20	TiN	55–60	3	31–33	1,0–1,1	-	-	Kolkverschleißbeständiger Schneidstoff zum Hocheffizienz-Schneiden unter hohen Einsatztemperaturen.
	BNX25	TiN	65–70	4	29–31	1,0–1,1	-	-	Exzellente Bruchbeständigkeit beim Hochgeschwindig- keitsdrehen. Geeignet zum unterbrochenen Hoch- geschwindigkeits-Drehen von gehärtetem Stahl.
	BN2000	TiN	50–55	2	31–34	1,1–1,2	-	-	Allzweckschneidstoff für gehärteten Stahl, der eine hohe Verschleiß- und Bruchbeständigkeit bietet.
	BN350	TiN	60–65	1	33–35	1,5–1,6	-	-	Hohe Schneidkantenfestigkeit, geeignet für stark unterbrochene Schnitte.
alle	BN7115	Co-Basis	90–95	1	41–44	2,2–2,3	_	-	Diese Schneidstoffsorte gewährleistet eine ausgewogene Balance zwischen maximaler Schneidkantenschärfe und hoher Bruchsicherheit und ist für die Schlichtbearbeitung von Sinterlegierungen besonders geeignet.
intermetalle	BN7500	Co-Basis	90–95	1	41–44	2,0–2,1	_	_	Behält die optimale Schärfe der Schneidkante bei. Geeignet zum Schlichten von Sinterlegierungen.
Sin	BN7000	Co-Basis	90–95	2	41–44	1,8–1,9	-	-	Verbesserte Verschleiß- und Bruchbeständigkeit beim Vordrehen von gesinterten Komponenten.
	BNC8115	Al-Legierung	85–90	8	39–42	0,95–1,15	TiAIN	2	Durch den Einsatz der PVD-Beschichtung mit ihrer hervorragenden Verschleißfestigkeit und in Kombination mit einem hochfesten Voll-CBN-Substrat wird eine hohe Bruch- und Verschleißfestigkeit auch bei der Bearbeitung von gehärtetem Stahl erzielt.
K	BNS8125	Al-Legierung	85–90	8	39–42	0,95–1,15	-	-	Die Verwendung von hochfestem Voll-CBN-Substrat verbessert die Bruchfestigkeit und verhindert Absplitterungen.
	BN7000	Co-Basis	90–95	2	41–44	1,8–1,9	-	-	Verbesserte Verschleiß- und Bruchbeständigkeit beim Vordrehen von Gusseisen und hitzebeständigen Legierungen.
	BNS800	Al-Legierung	85–90	8	39–42	0,9–1,1	-	-	100 % Voll-CBN-Struktur mit guter Temperaturbeständigkeit.
	BNC500	TiC	60–65	4	32–34	1,1–1,2	TiAIN	3	Dank einem Substrat mit exzellenter Verschleißbeständig- keit und der Beschichtung eignet sich dieser Schneidstoff für schwer zu zerspanende Gusswerkstoffe.
S	NCB100	-	100	-0,5	51–54	1,8–1,9	-	-	Erzielt hocheffiziente, verbesserte Bearbeitungsgenauigkeit und lange Standzeit bei der Bearbeitung von warmfesten Legierungen wie Titanlegierung und Co-Cr-Legierungen.

PKD (Polykristalliner Diamant) **SUMIDIA**

Exzellente Verschleißbeständigkeit, längere Standzeit beim Hochgeschwindigkeitsund Hochpräzisionsdrehen von Nichteisenmetallen und Kunststoffen.

SUMIDIA ist ein PKD-Material (polykristalliner Diamant), der aus gesintertem Diamantpulver besteht. Es wurde in einem von uns entwickelten Verfahren erstmals 1978 hergestellt. Die hervorragende Verschleißbeständigkeit von SUMIDIA führt zu längerer Standzeit beim Hochgeschwindigkeits- und Hochpräzisionsdrehen von Nichteisenmetallen und Nichtmetallen, darunter Aluminium, Kupfer, Magnesium und Zinklegierungen.

SUMIDIA Binderless verwendet binderlos gesinterte nano-polykristalline Diamanten, die eine ausgezeichnete Verschleißfestigkeit und Bruchfestigkeit aufweisen.

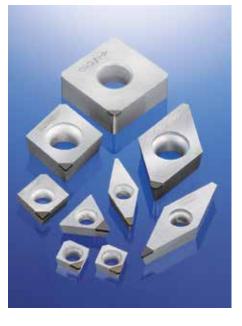
Speziell gegenüber anderen polykristallinen Diamantwerkzeugen, besticht dieser Schneidstoff durch hervorragende Standzeiten und Bearbeitungsgenauigkeiten, bei der Bearbeitung von spröden Materialien, wie z. B. Hartmetall.

Eigenschaften

Diamantpartikel in unterschiedlichen Körngrößen werden zu Materialien mit sehr hohen Dichten gesintert.

Struktur

SUMIDIA Binderlos	SUMIDIA						
NPD10	DA1000	DA150	DA90				
0,1µm Diamantpartikel	<u>5μm</u> Schwarze Bere	5 <u>µm</u> siche in der Abbildung sind I	<u>5μm</u> ′ Diamantpartikel.				


Anwendungsbereiche

Anwendung	Serie	Schlichten – leic	hte Zerspanung	Mittlere Zerspanung	Schwere Zerspanung, Schruppen
	Klassifikation	01	10	20	30
Brittle Materials	SUMIDIA Binderlos	NPI	010		
	SUMIDIA			DA90	J
	Klassifikation	N01	N02	N20	N30
			D/	A1000	
N	SUMIDIA		DA150		
		DA90	/		

Charakteristische Werte

Anwendung	Schneidstoff	Bindemittel	Kohlenstoff- Gehalt (%)	Korngröße (µm)	Härte HV (GPa)	TRS (GPa)	Eigenschaften
Brittle Materials	NPD10	Со	100	<=0,05	120–130	≈ 3,15	100% Diamant, die direkt Diamantpartikel in einer Nanogröße mit hoher Kraft binden. Weist ausgezeichnete Verschleiß- und Bruchfestigkeit sowie beste Schnittkantenschärfe auf.
	DA1000	Со	90–95	-0,5	110–120	≈ 2,60	Hochdicht gesintertes Material aus ultrafeinen Diamantpartikeln – mit optimaler Verschleiß- und Bruchbeständigkeit und hervorragender Kantenschärfe.
N	DA150	Со	85–90	5	100–120	≈ 1,95	Gesintertes Material aus feinen Diamantpartikeln – mit gutem Gleichgewicht aus Bearbeitbarkeit und Verschleißbeständigkeit.
	DA90	Со	90–95	50	50–65	≈ 1,10	Grobe gesinterte Diamantpartikel mit hohem Diamantanteil für ausgezeichnete Verschleißfestigkeit.

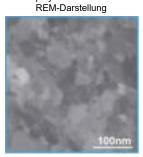
PKD (Polykristalliner Diamant) SUMIDIA Binderlos

Die SUMIDIA Binderless-Serie verwendet für die Schneidkante nano-polykristallinen Diamant und weist eine erhöhte Verschleiß- und Bruchfestigkeit auf im Vergleich zu herkömmlichen gesinterten Diamantwerkzeugen. Insbesondere sorgt die SUMIDIA Binderless-Serie für verbesserte Standzeit und Präzision, die im Hinblick auf die Bearbeitung von hart-spröden Materialien wie Hartmetall, weit über die herkömmlichen Diamantwerkzeuge hinausgeht.

Sehr gut geeignet für hochpräzise Hartmetallbearbeitung

Ein nano-polykristalliner Diamant mit hoher Widerstandsfähigkeit, der für hochpräzise Hartmetallbearbeitung sehr gut geeignet ist.

Behält über mehrere Stunden überragende Maßhaltigkeit

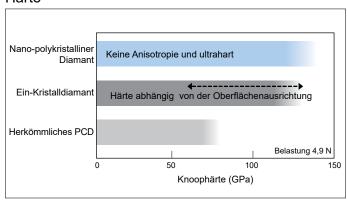

Verringert die Wechselhäufigkeit im Vergleich zu konventionellen Diamantwerkzeugen. So werden die Gesamtkosten verringert und die Arbeitseffizienz verbessert.

Geeignet für die Bearbeitung von hart-spröden Materialien

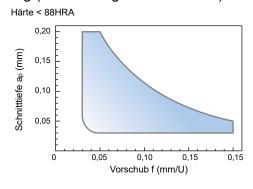
Hart-spröde Materialien, wie Keramik, die vorher nur geschliffen werden konnten, können nun zerspant werden.

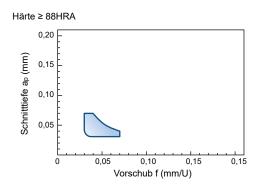
Eigenschaften

Strukturvergleich Nano-polykristalliner Diamant



Diamantpartikel (30-50 nm)




Diamantpartikel (1–10 µm)

Härte

Anwendung (Bearbeitung von Hartmetall)

Empfohlene Schnittbedingungen (Bearbeitung von Hartmetall)

Emploni	ene Schi	nilibeaingunge	en (Bearbeilur	ig von Hartmetali)	Kühlung: Trocken	Min Optimal - Max.			
		Werkstückstoff		Schnittbedingung					
Klassifi	zierung	Härte (HRA)	HM-Sorte	Schnittgeschwindigkeit vc (m/min)	Vorschub f (mm/U)	Schnitttiefe a _P (mm)			
VM VC	70 60 50	83–87	G7 G6	5 –20 –30	0,03 –0,10 –0,20	0,03 –0,10 –0,20			
VM VC	40	≥ 88	G5 G2	5 –15 –30	0,03 –0,05 –0,07	0,03- 0,10 -0,20			

■ Beschichtetes Hartmetall (CVD)

Δην	/endung	Sorte	Sumitomo Electric	Miteuhishi	Tungaloy	Kyocera	MOLDINO	Sandvik	Kennametal	SECO Tools	WALTER	ISCAR	Taegu Tec	NTK
Allw	Cilduing			UE6105	T9105	CA510	WOLDING	GC4305	KCP05		WPP05S	IC8005	racga rec	14110
		P05	AC8015P	MC6115	T9205	CA510 CA5505	HG8010	GC4205	KCP05B	TP0501 TP0500	WPP05 WPP01	IC8150 IC9015	TT8105	
		P10	AC8020P Neu AC8015P	UE6110	T9105 T9115 T9205 T9215 T9115	CA510 CA515 CA5515	HG8010	GC4415 GC4305 GC4215 GC4315	KCP10 KCP10B	TP1501 TP1500	WPP10S WPP10	IC8150 IC8080 IC9015 IC9150	TT8115	CP7
	P	P20	AC8020P AC8025P	MC6025 UE6020	T9115 T9125 T9215 T9225	CA025P CA525	GM25 HG8025 GM8020	GC4425 GC4325 GC4225	KCP25 KCP25B	TP2501 TP2500	WPP20S WPP20	IC8150 IC8250 IC9015 IC9150	TT5100 TT8125	CP7
		P30	AC8035P AC6030M AC630M	MC6035 UE6035	T9125 T9135 T6130	CA025P CA525 CA530	GM25	GC4325 GC4335 GC4235	KCP30 KCP30B	TP3500	WPP30S WPP30	IC8080 IC9350	TT7100 TT8135	
		P40	AC8035P AC6030M AC630M	MC6035	T9135 T9235 T6130	CA530 CA5535	GX30 GM8035	GC4335 GC4235 GC30	KCP40 KCP40B	TP3501 TP3500		IC9350	TT7100	
L.		M10 S10	AC6020M	MC7015 US905 US7020	T9115 T9215	CA6515	HS9105	GC2015 GC1515 S05F	KCM15	TM1501		IC9250 IC520M	TT9215 TT3005	
Drehen	M	M20 S20	AC6020M AC6030M AC630M	MC7025 US7020	T6120 T9125 T9215	CA6525	HG8025	GC2025 GC1515	KCM25	TP2501 TM2000 TM2501		IC9025 IC9325 IC4050	TT5100 TT9225	
	S	M30	AC6030M AC630M AC8035P	MC7025 US735	T6130	CA6535	GM8035 GX30 GM25	GC2035 GC235	KCM35	TP3500 TM3501 TM4000		IC9350 IC4050 IC635	TT9235	
		M40	AC6040M AC630M	US735				GC235 GC2035		TM4000			TT7800	
		K05	AC4010K	MC5005 UC5105 UC5115	T5105	CA310 CA4505 CA4010	HX3505	GC3205 GC3210	KCK05	TK0501 TK1001	WAK10 WKK10S	IC5005	TT7005 TT7505	CP1
	K	K10	AC4010K AC4015K	MC5005 MC5015 MC5020 UC5105 UC5115	T515 T5105 T5115	CA315 CA4505 CA4515 CA4115	HX3305 HX3515 HG8010	GC3210	KCK15	TK1000 TK1001	WAK10 WAK20 WKK10S WKK20S	IC5100 IC9150 IC4100	TT7015	CP1
		K20	AC4015K AC420K AC425K AC8025P	MC5015 UC5115 UE6110	T515 T5125 T9125	CA320 CA4515 CA4120 CA4115	HX3315 GM8020	GC3225	KCK15 KCK20	K2001	WAK20 WAK30 WKK20S	IC9150 IC5100 IC4100	TT7015	
	P	P10	XCU2500 ACP2000 ACP100	FH7020 F7030 MV1020	T3130 T3030			GC4220 GC4330	KCPM20	MP1501 MP1500 MP2501 MP2500	WKP25 WKP25S WPP35G WKP35S	IC4100 IC5400 IC9015 IC8080 IC9080	TT7080 TT7515 TT9300	
		P20	XCU2500 ACP2000, ACP100	F7030				GC4330 GC4340	KCPM20 KCPK30	MP2501 MP2500	WKP25 WKP25S	IC8080 IC9080	TT7400	
		P30	XCU2500 ACP2000, ACP100	F7030				GC4340	KCPK30 KCMP30			IC9250 IC4050	TT7800 TT8525	
L.	M	M10	XCU2500 Net	J. A.										
Fräsen		M20	XCU2500 ACM200	F7030	T3130	CA6535	GX2160 AX2040	GC2040		MS2500	WKP35S		TT7800	
	S	M30	XCU2500 ACM200	F7030					KC994M			IC5820	TT7800	
		K10	XCK2000 Net ACK2000 ACK2000						KCK15			IC5100	TT7515	
	K	K20	XCK2000 XCU2500 ACK2000 ACK200	MV1020 MC5020 F5010 F5020	T1115	CA420M	GX2120	GC3330 GC3220 GC3225 GC3020 GC3040	KC915M KC930M KC935M	MK1500	WAK15 WKP25S	IC5100 DT7150 IC4010 IC4050 IC4100	TT6800 TT7080	

■ Beschichtetes Hartmetall (PVD)

Anv	vendung	Sorte	Sumitomo Electric	Mitsubishi	Tungaloy	Kyocera	MOLDINO	Sandvik	Kennametal	SECO Tools	WALTER	ISCAR	Taegu Tec	NTK
		P10	ACZ150 AC1030U Ne AC5005S AC5015S AC5025S	√P15TF MS6015	AH710 AH110 AH120 AH725	PR915 PR1005 PR930 PR1215 PR1225 PR1705		GC1525	KCU10 KC5510	TS2000	WSM10	IC507 IC807 IC907		TM1 VM1 DT4 DM4
Drehen	P	P20	AC1030U AC5025S AC530U	VP15TF VP20RT	AH120 AH725 AH3135	PR1225 PR1425	IP2000	GC15 GC1125	KCU25			IC807 IC808 IC810	TT9080	TM1 TM4 VM1 QM3 DM4
		P30	AC1030U AC530U	VP15TF VP20RT	AH120 AH725 SH730 AH730	PR1425 PR1525 PR1535	IP3000 CY250	GC1125				IC328 IC928	TT8020 TT9030	QM3
		P40	AC1030U			PR660	IP3000	GC4335 GC4235				IC830	TT8020	

■ Beschichtetes Hartmetall (PVD)

Anv	vendung	Sorte	Sumitomo Electric	Mitsubishi	Tungaloy	Kyocera	Mitsubishi- Hitachi	Sandvik	Kennametal	SECO Tools	WALTER	ISCAR	Taegu Tec	NTK
		M10 S10	AC5005S AC5015S AC5015S AC5025S ACZ150	MP9005 MP9015 VP15TF VP05RT VP10RT	AH110 AH710 AH725 AH905 AH8005	PR005S PR015S PR915 PR1025 PR1215 PR1225 PR1305 PR1310	IP050S IP100S JP9105 JP9115	H5D6 GC1105 GC1115	KCS10 KCS10B KC5510 KCU10	TH1000 TS2000	WSM01 WSM10 WSM10S	IC804 IC807 IC808 IC907 IC908	TT5080 TT3010 TT8010	TM1 VM1 DT4 DM4 ZM3 ST4
	M S	M20 S20	AC1030U AC5015S AC5025S	MP9015 MP9025 VP15TF VP20RT VP20MF UP20M MS9025	AH630 AH120 AH725 AH8015	PR015S PR915 PR930 PR1025 PR1125 PR1215 PR1225 PR1325	IP100S HS9115	GC15 GC1115 GC1125	KC5525 KCU25 KC5025	TS2500	WSM20 WSM20S	IC330 IC806 IC808 IC830 IC908 IC928	TT9080 TT9020 TT3020	DT4 DM4 ZM3 QM3 TM4 ST4
Drehen		M30	AC5025S AC6040M AC530U AC1030U	MP7035 VP15TF VP20MF MS9025	AH630 AH645 AH725	PR1125 PR1525 PR1535		GC1125			WSM30 WSM30S	IC328 IC330 IC830 IC840 IC882	TT8020 TT8080 TT9080	QM3 TM4 DT4 DM4
		M40	AC6040M AC530U AC1030U	MP7035 VP15TF MS6015	AH645	PR1125 PR1535	GX30					IC830 IC928	TT8020 TT8080	
		K10	ACZ150 AC1030U AC5015S	VP10RT	AH110 AH120	PR905	HX3305 HG3305 HG3315 HX3515 HG8010 TH315	GC15				IC810	TT6080	
	K	K20	ACZ150 AC1030U AC5015S AC5025S	VP10RT VP20RT VP15TF	AH120	PR905							TT6080	DM4 QM3
		K30	AC1030U AC530U	VP15TF VP20RT	AH110 AH120 AH725							IC830 IC908 IC910 IC928		
		P10	ACU2500 ACP200	VP15TF MP6120	AH110 AH120 AH710 AH725	PR1225	PN215 PN15M JP4105 JP4115 JP4120 CY9020	GC1010	KC505M KC510M KC515M	F25M		IC807 IC903	TT2510 TT7080	DT4 DM4
	P	P20	ACP3000 ACU2500 ACP200 ACP300	VP15TF VP20RT MP6120 MP6130 UP20M	AH9030 AH120 AH725 AH3035 AH3225	PR1525 PR1225 PR1230 PR830	JP4120 CY150 CY1230 JS4045	GC1010 GC1025	KC522M KC525M KCSM30 SP6519	F30M F32M F40M	WSM20 WSM20S	IC808 IC810 IC908 IC910	TT7080 TT9030 TT9080	TM4 DT4 DM4
		P30	ACP3000 ACU2500 ACP200 ACP300	VP15TF VP30RT MP6130 UP20M	AH3035 AH3135 AH3225 AH120 AH130 AH140 AH725	PR1525 PR1230 PR830	JS4045 JS4060 CY25 CY150 CY250 CY250V PTH30E	GC1030 GC1130 GC2030	KC725M KC735M KC525M KC530M KCPM40 KCSM30 SP6519	F40M T60M MP3000	WSM35 WSM35S WSP45 WSP45S	IC328 IC330 IC830 IC928	TT8080 TT8020	DM4 TM4 ZM3
		P40	ACP3000 ACU2500 ACP300	VP30RT	AH140		JS4060 JM4160 PTH40H		KC725M KC735M KCPM40		WSP45 WSP45S	IC830 IC845 IC928	TT8020 TT8080 TT8525B	
		M10 S10	ACM100 ACU2500 ACK300 ACP300	MP9120 VP15TF	AH110 AH120 AH330 AH725 AH8005 AH8015	PR1025 PR1225	CY9020 JP4120 PN08M PN15M PN208 PN215	GC1010 GC1025 GC1030 GC1130	KC515M SP4019 SP6519			IC808 IC908		DT4 DM4 ZM3
Fräsen	M	M20	ACM300 ACU2500 ACP300	MP7030 MP7130 MP9120 MP9130 UP20M VP15TF VP20RT	AH120 AH130 AH330 AH725 AH3225 AH8015	PR1210 PR1225 PR1525 PR830	JP4120 CY150 JS1025	S30T	KC522M KC525M SP4019 SP6519 X700	F25M F30M T32M MP3000 MS2050 MM4500	WSM35 WSM35S	IC328 IC330 IC808 IC830 IC840 IC908 IC928	TT9080 TT9030	DT4 DM4 ZM3
		M30	ACM300	MP7030 MP7130 MP7140 MP9130 VP15TF	AH130 AH140 AH330 AH725 AH3135	PR1525 PR1535 PR830	JM4160 PTH30E JS1025	GC2030 GC1040 S40T	KCSM30	F30M F32M F40M MP2050 MS2050	WSM35 WSM35S WSP45 WSP45S	IC328 IC330 IC830 IC840 IC882	TT8020 TT8080 TT9080	DT4 DM4 ZM3
		M40	ACM300	MP7140 MP9140 VP30RT	AH140	PR1535	JM4160 PTH40H		KC725M KCPM40 KCSM40		WSP45 WSP45S	IC328 IC330 IC882	TT8020 TT8080	
		K05	ACK3000	MP8010	AH110 AH710		TH303 TH308 ATH80D	GC1010	SP4019	MH1000				
		K10	ACK3000 ACU2500	MP8010	AH110 AH120	PR1210	ATH10E TH315	GC1010 GC1020	KC514M SP4019	MH1000		IC810 IC910 IC808	TT7080 TT7515	
	K	K20	ACK3000 ACU2500 ACK300	MP8010 VP15TF	AH110 AH120 AH330 GH330	PR1210 PR1510	JP4120 PTH13S CY100H CY9020	GC1020 GC1025	KC514M KC524M KCK20 SP6519	MK2050 MK3000	WKK25S	IC810 IC830 IC908	TT6080 TT7515	DM4
		K30	ACK3000 ACU2500 ACK300	VP15TF VP20RT	AH725 AH120 AH330 GH110 GH130 GH330	PR1510 PR1210	JS4045 CY150 CY250	GC1025 GC1030 GC1130	KC520M KC522M KC524M	MK2050		IC830 IC810 IC910 IC928	TT6080	

■ Cermet

Anw	vendung	Sorte	Sumitomo Electric	Mitsubishi	Tungaloy	Kyocera	MOLDINO	Sandvik	Kennametal	SECO Tools	WALTER	ISCAR	Taegu Tec
		P10	T1500Z* T1000A T1500A	AP25N* NX2525 VP25N*	GT720* GT9530* GT9535* J9530* NS520	TN30 TN6020 TN610 TN620 PV710* PV720* CCX*	CZ25* CH550	CT5015	KT125 HTX KT1120			IC20N IC30N IC520N	PV3030 PV3010 CT3000
Drehen	P	P20	T1500Z* Neu T2500Z* T3000Z* T1500A T2500A	AP25N* NX2525 NX3035 MP3025*	AT9530* NS9530 GT9530* J9530*	TN90 TN620 TN6020 PV720* CCX*	CZ25* CH550	GC1525*	KT6215 KT315* KT175 KT5020*	CM CMP C15M TP1020		IC20N IC30N IC520N IC530N	CT7000
		P30	T2500Z* Neu T3000Z* T2500A	MX2525 MP3025* VP45N	NS9530 GT9530* AT9530*	TN620 PV720* PV730*							
	K	K10	T1000A	AP25N* VP25N* NX2525	GT720* GT9530* NS9530 J9530* NS520	TN610 PV7005* PV7010* CCX*	CH550	CT5015	KT125 HTX				PV3030 CT3000
Fräsen	P	P30	T2500A T250A T4500A	NX2525 MX3030 NX4545 VP45N*	NS540 NS740	TN60 TN90 TN100M TN620M	MZ1000* MZ2000* MZ3000* CH7030 CH7035	CT530	KT530M* KTPK20*	C15M		IC30N	

^{*} Beschichtetes Cermet

■ Unbeschichtetes Hartmetall

Anwendung	Sorte	Sumitomo Electric	Mitsubishi	Tungaloy	Kyocera	MOLDINO	NTK	Sandvik	Kennametal	SECO Tools	ISCAR	Taegu Tec
	P10	ST10P		TH10		WS10		S1P				
	P20	ST20E	UTi20T	KS20		EX35		SMA	K125M		IC70 IC50M	UF10
P	P30	A30N	UTi20T	KS15F UX30	PW30	EX35 EX40		SM30			IC54 IC28	P30
	P40	ST40E		TX40		EX45		S6			IC54 IC28	
R A	M10	EH510		TH10		EX35 WA10B	KM1	H10A	KU10 K313 K68 KYSM10	890	IC07 IC08 IC20	
M	M20	EH520	UTi20T	KS20		EX35		H13A	K313 K68	HX 883	IC07 IC08 IC20	UF10
	M30	A30 A30N	UTi20T	UX30				H10F SM30			IC28	
	K01	H2 H1	HTi05T	KS05F		WH01 WH05			KU10 K68 K313 K115M		IS8	
K	K10	H1 EH510	HTi10	TH10	KW10 GW15	WH10	KM1	H13A	KU10 K313 K68 K115M K110M KY3500	890	IC20 IS8	K10
	K20	G10E, H10E EH520	UTi20T	KS15F KS20	GW25	WH20	KM3	H13A	KMF KY3500 KYHS10	890 883 HX	IC20 IS8	
	K30	G10E, H10E	UTi20T			WH30			KY3500	883		
S	\$10 \$20	EH510 EH520	RT9005 RT9010 MT9015 TF15	TH10 KS05F KS15F KS20	SW05 SW10 SW25 KW10 GW15	WH10		H10A H10F H13A	KU10 K313 K68 KMF K110M K1025 KYHS10	HX H25	IC20 IC07 IC08 IC28	K10
Feinkörnig Hartmeta	jes all	A1		UM		NM25		N6F H10F		883	IC08	

■ CBN

Anwendung	Sorte	Sumitomo Electric	Mitsubishi	Tungaloy	Kyocera	NTK	Chukyo	Sandvik	Kennametal	SECO Tools	ISCAR
	K01	NCB100 BNC500* BN7000 BN500	MB710 MB5015	BX930 BX870 BX910	KBN475 KBN60M	B30 B16		CB7525 CB7925	KB1340		IB50 IB85
K	K10	BN7000 BN500	MB710 MB730 MB5015 MB4020	BX470 BX480 BX950	KBN60M KBN900	B23 B16	HB55 HB56 HB569 HB580 HB57	CB7925		CBN200 CBN300 CBN300P CBN400C	IB55 IB90
	K20	BN700 BN7000 BNS800	MB730 MB4020 MB4120 MBS140	BX470 BX480 BXC90 BX90S	KBN900		HB56 HB569 HB580 HB57				
	K30	BNC8115 Neu BNS8125	MBA4120 MBS140 BC5030	BX90S BXC90			HB57		KB5630	CBN500	
S	S01	NCB100 BN7000	MB730 MB4020 MB4120	BX940 BX950 BX470 BX480			HB55 HB580 HB52		KB5630 KB1340		IB85 IB05S IB10S
	H01	BNC2010 BNC2115 BN1000 BN2000	BC8105 BC8110 MBC010 MB810 MB8110	BXA10 BXM10 BX310	KBN05M KBN25M KBN510	B5K B52	HB55 HB550 HB580 HB590	CB7105	KB5610	CH0550 CBN10 CBN100 CBN60K	IB05H IB50 IB10HC
	H10	BNC2010 BNC2020 BNC2115 BNC2125 Neu BN2000	BC8110 BC8120 MBC020 MB8025 MB8110 MB825	BXA10 BXM10 BX330 BX530	KBN05M KBN25M KBN525	B5K B6K B52 B36	HB55 HB59 HB550 HB580 HB52	CB7015 CB7115 CB20	KBH20 KB5610 KB5625	CBN10 CBN150 CBN100 CBN060K CBN160C	IB10H IB55 IB25HA
	H20	BNC2020 BNC2125 BNX20	BC8120 ▶BC8020 MBC020 MB8025 MB8120	BXA20 BXM20 BX360	KBN30M KBN35M KBN900	B36 B40 B6K	HB57 HB59 HB590 HB580	CB7025 CB7125 CB50	KBH20 KB5625 KB5630	CH2540 CBN150 CBN160C	IB20H IB20HC IB25H IB25HC
	H30	BNC300 BN350 BNX25	MB835 MB8130 BC8130	BXM20 BXA20 BXC50 BX380	KBN30M KBN35M KBN900	B40	HB57 HB580	CB7525 CB7135	KB5630	CH3515	IB90

■ PKD

Anwendung	Sorte	Sumitomo Electric	Mitsubishi	Tungaloy	Kyocera	NTK	Chukyo	Sandvik	Kennametal	SECO Tools	ISCAR
	N01	DA90 DA1000	MD205	DX180 DX160	KPD001	PD1		CD05 CD10	KD1400		ID5
N	N10	DA150 DA1000	MD205 MD220	DX140	KPD001 KPD010 KPD230	PD2	HD100 HD30 HD60	CD1810	KD1400 KD1425	PCD05 PCD10	ID5
W	N20	DA1000 DA2200	MD220 MD230	DX120 DX110	KPD230	PD2	HD100 HD30 HD50		KD1400 KD1425	PCD05 PCD20	
	N30	DA1000 DA2200	MD2030 MD230	DX110			HD30 HD50 HD700 HC100		KD1400	PCD05 PCD30 PCD30M	

Neg. / Pos. Wendeschneidplatten

C1-C96

zum Drehen

ISO ISO - Schneidplattenbezeichnung C2-3

/	$\overline{}$
Г	<u>ร</u> ี

ſ	_	
ı	S	

	\wedge
	/ - \
,	/ I \

D / 55° rhombisch (mit Loch) ...

/ quadratisch (mit Loch)	
/ quadratisch (ohne Loch)	
/ drejeckia	C46_54

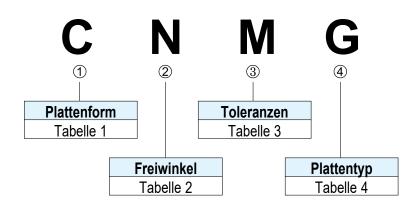
-REX - Platteri	U02
/ / 35° rhombisch (mit Loch)	C55-57
V / Trigon (mit Loch)	C58-62

Positive Schneidplatter	n
-------------------------	---

1	C / 80° rhombisch (mit Loch)	C63-69
	D / 55° rhombisch (mit Loch)	
	R / rund (mit Loch)	C74

C74
C75-78
C79
C80-87
C86-89
C90-93

Lagersymbol


•	:	Eurolager
0	:	Japanlager

: Wird durch neue Produkte ersetzt

- : Nicht herstellbar

Hinweis:

Bitte beachten Sie, dass unsere Produkte ständig weiterentwickelt werden. Es kann daher vorkommen, dass unsere Produktpalette sich ändert. Wir bitten Sie, sich bei unseren Verkaufsrepräsentanten über aktuelle Produkte zu informieren.

Tabelle 1: Plattenform

Symbol	Platte	Winkel		
С			80°	
D			55°	
Е		rhombisch 75°		
F			50°	
V			35°	
R	0	rund	_	
S		quadratisch	90°	
Т	Δ	dreieckig	60°	
W		trigon	80°	
Α			85°	
В		Parallelogramm	82°	
K			55°	
Н	\Diamond	hexagonal	120°	
0	0	octogonal	135°	
Р	\Diamond	pentagonal	108°	
L		rechteckig	90°	
М	\Diamond	rhombisch	86°	

Tabelle 2: Freiwinkel

Symbol	Freiwinkel
Α	3° 🗸
В	5° 🛴
С	7° 🔽
D	15°.
Е	20° 🔽
F	25°.
G	30° 🗸
N	0° 🛴
P*	11° 🛴
0	_
* - als "P" we	rden auch

^{* -} als "P" werden auch Platten mit einem Freiwinkel von 10° eingestuft

Tabelle 3: Toleranzen (mm)

Symbol	Plattenhöhe	Innenkreis	Plattendicke				
Α	± 0,005	± 0,025	± 0,025				
F	± 0,005	± 0,013	± 0,025				
С	± 0,013	± 0,025	± 0,025				
Н	± 0,013	± 0,013	± 0,025				
Е	± 0,025	± 0,025	± 0,025				
G	± 0,025	± 0,025	± 0,13				
J*	± 0,005	±0,05 – ±0,15	± 0,025				
K*	± 0,013	±0,05 – ±0,15	± 0,025				
L*	± 0,025	±0,05 – ±0,15	± 0,025				
M*	±0,08 - ±0,2	±0,05 – ±0,15	± 0,13				
N*	±0,08 - ±0,2	±0,05 – ±0,15	± 0,025				
U*	±0,13 - ±0,38	±0,08 - ±0,25	± 0,13				

Die Plattenhöhe "m" wird über die scharfen Schneidkanten gemessen.

Tabelle 4: Plattentyp

Symbol	Loch	Loch- stil	Span- brecher	Abb.		Abb.		Abb.		Symbol	Loch	Loch- stil	Span- brecher	Al	ob.
N			nein			Α			nein						
R	ohne Loch	I —	ein- seitig		\Box	М	mit Loch	Lymianoon	ein- seitig						
F			doppel- seitig			G			doppel- seitig						
W	mit	zylindrisch -es Loch +	nein			В	mit	zylindrisch -es Loch +	nein						
Т	Loch einseitige Senkung (40°-60°)	ein- seitig			Н	Loch	einseitige Senkung (70°–90°)	ein- seitig							
Q	mit	zylindrisch -es Loch + doppel-	nein			С	mit	zylindrisch -es Loch +	nein	H					
J	Loch	och seitige Senkung (40°–60°)	doppel- seitig			J	Loch	doppel- seitige Senkung (70°-90°)	doppel- seitig						
						Х	_	_	_	Sor	nder				

● Toleranzen der Schneidkantenhöhe (M-Klasse)

Innenkreis	dreieckig	viereckig	80° rhombisch	55° rhombisch	35° rhombisch	rund
6,35	± 0,08	± 0,08	± 0,08	± 0,11	_	_
9,525	± 0,08	± 0,08	± 0,08	± 0,11	± 0,16	
12,70	± 0,13	± 0,13	± 0,13	± 0,15		
15,875	± 0,15	± 0,15	± 0,15	± 0,18		
19,05	± 0,15	± 0,15	± 0,15	± 0,18		
25,40	± 0,18	± 0,18	± 0,18			
31,75	_	± 0,20				

● Toleranzen des Innenkreises (M-Klasse)

Innenkreis	dreieckig	viereckig	80° rhombisch	55° rhombisch	35° rhombisch	rund							
6,35	± 0,05	± 0,05	± 0,05	± 0,05	_	_							
9,525	± 0,05	± 0,05	± 0,05	± 0,05	± 0,05	± 0,05							
12,70	± 0,08	± 0,08	± 0,08	± 0,08	_	± 0,08							
15,875	± 0,10	± 0,10	± 0,10	± 0,10	_	± 0,10							
19,05	± 0,10	± 0,10	± 0,10	± 0,10	_	± 0,10							
25,40	± 0,13	± 0,13	± 0,13	_	_	± 0,10							
31 75	_	+ 0 15	_		_	+ 0 12							

ISO-Plattenbezeichnung

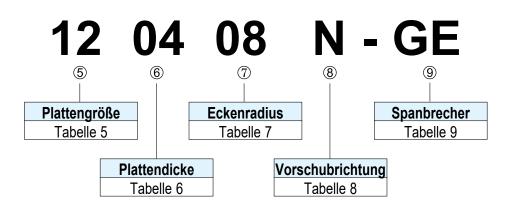


Tabelle 5: Plattengröße / Schneidenlänge (mm)

Tun	Symbol	Schneiden	Innen-	Тур	Symbol	Schneiden	Innen-		Symbol	Schneid	lenlänge			
Тур	oyo.	-länge	kreis	тур	Oyillboi	-länge	kreis	тур	Cymbol	Neg.	Pos.	Neg.	Pos.	
	03	3,55	3,50		07	7,7	6,35		03	3,8		5,56		
	04	4,97	4,30		09	9,7	7,94		04	4,3		6,35		
	06	6,4	6,35	D	11	11,6	9,525	W	05	5,4		7,94		
С	08	8,0	7,94		15	15,5	12,70		06	6,5		9,525		
ľ	09	9,7	9,525	-	19	19,4	15,875	\triangle	08	8,7		12,70		
	12	12,9	12,70						10	10,9		15,875		
	16	16,1	15,875		08	8,3	4,76		11		4,3		6,35	
	19	19,3	19,05	٧	09	9,7	5,56		16		6,5		9,525	
	25	25,8	25,4		11	11,1	6,35		08	8,0		8,0		
					16	16,6	9,525		10	10),0	10,0		
					22	22,1	12,7	R (12	12,0		12,0		
	06	6,35	6,35		06	6,9	3,97		12	12,70		12,	,70	
	S7	7,14	7,14		08	8,2	4,76		15	15,875		15,875		
s	07	7,94	7,94	т	09	9,6	5,56		16	16,0		16,0		
	09	9,525	9,525	•	11	11,0	6,35		19	19,05		19,05		
	12	12,70	12,70	^	13	13,7	7,94	→	20	20,0		20,0		
4+	15	15,875	15,875		16	16,5	9,525		24	24	24,0		24,0	
	19	19,05	19,05		22	22,0	12,70		25	25	25,0		5,0	
	25	25,40	25,40		27	27,5	15,875		25	25	25,40		,40	
	31	31,75	31,75		33	33,0	19,05		32	32	2,0	32	2,0	

Tabelle 6: Plattendicke

Symbol	Plattendicke (mm)
X1	*
01	1,59
02	2,38
T2	2,78
03	3,18
Т3	3,97
04	4,76
05	5,56
06	6,35
07	7,94
09	9,52

(*): CCET03X1 Plattendicke: 1,40 CCET04X1 Plattendicke: 1,80

Tabelle 7: Eckenradius

/**c**/

<u> K</u>

 (\mathbf{R})

S

Symbol	Eckenradius (mm)			
00	ohne Radius			
003	0,03			
800	0,08			
01	0,1			
015	0,15			
018	0,18			
02	0,2			
0,35	0,35			
04	0,4			
08	0,8			
10	1,0			
12	1,2			
16	1,6			
20	2,0			
24	2,4			
32	3,2			
M0	Runde WSP (metrisch)			
00	Runde WSP (Zollwert)			
(Zollwert) Ein "M" nach dem Eckenradius				

Ein "M" nach dem Eckenradius bedeutet Minus-Toleranz Beispiel:

CCG T09T302 M NSI AC520U

Tabelle 8: Vorschubrichtung

Symbol	Vorschubrichtung
R	rechtsschneidend
L	linkssschneidend
N	neutral

Tabelle 9: Spanformgeometrie

Symbol	Bearbeitung	Noppen-Typ	Standard	rechts-/links -schneidend
F	Zum Feinst- schlichten	FA, FL, FE, FB, FC FK, FP		FT, FX, FZ FY, FW
S L	Zum Schlichten	SE, SEW, SI, SC, SF, SP, SU, SX LU, LUW, LB		SD SDW ST
G U	Zum leichten bis mittleren Schruppen	GE, GU, GUW UG, UP US, UX	GZ UZ	UM
М	Zum Schruppen	MP, MU, MX, ME	МС	MM HM
Н	Zum schweren Schruppen	HG, HP, HF	HU HW	

Sonstige Spanfo	ormgeometrie
Breite Spanbrecher	W
Zum Fasendrehen	С
Für runde WSP	RD, RP, RX, RH
Hitzebeständige Leg.	EF, EG, EX, EM
Für Aluminium	AW, AG, AX, AY, LD, GD,
Gehärteter Stahl	FV, LV, GH
Hart- und Weichbearbeitung	SV
Für rostfreien Stahl	EF, EG, EM

Spanbrecher NGU-Typ

Für positive Wendeschneidplatten

■ Allgemeine Eigenschaften

Ein vielseitiger Spanbrecher, der vom Schlichte bis zum Schruppen einsetzbar ist.

Durch eine hohe Schneidkantenschärfe und -festigkeit wird eine stabile Bearbeitung in verschiedenen Einsatzbereichen ermöglicht.

Die Artikelpalette deckt eine große Bandbreite von Anwendungen ab.

/**C**/

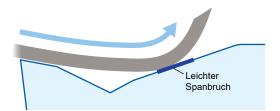
NGU-Spanbrecher für positive Wendeschneidplatten

Zuverlässige Spanflusskontrolle

 Breite Spantasche f
ür eine Vielzahl von Schnittbedingungen

Geringe Vibrationsneigung

Verbesserte Spankontrolle in einem breiten Anwendungsfeld



Unterdrückt den Spänestau bei hohen Vorschüben

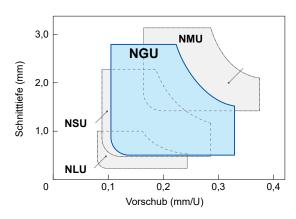
für eine ideale Spankontrolle

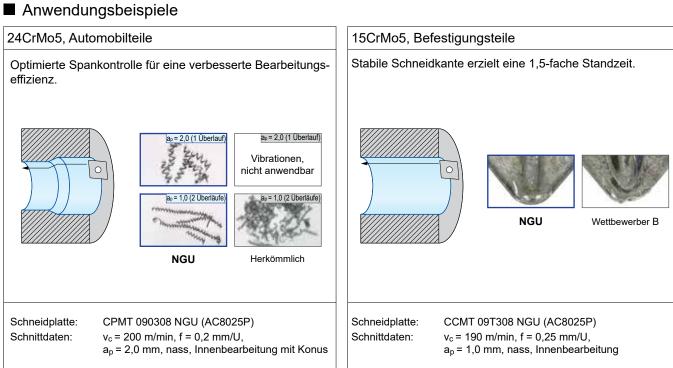
- Die neue Generation erlaubt eine gleichmäßige Spankontrolle bei geringer bis mittlerer Bearbeitung.
- Zeigt eine ausgezeichnete Spanabfuhr bei hohen Vorschüben und reduziert die Spanstauchung

 Sehr weichschneidender und zuverlässiger Spanbrecher.



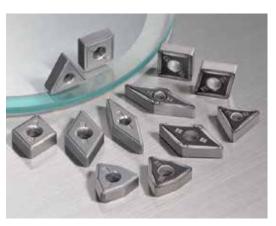
Spanbrecher NGU-Typ


■ Verbesserte Bruchfestigkeit


Die zweistufige Spanwinkelgeometrie sorgt für eine hervorragende Schärfe und Stabilität.

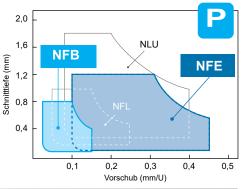
Anwendungsbereich

Erweiterter Anwendungsbereich gegenüber herkömmlichen Produkten.



/**c**/

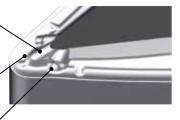
K/


 (\mathbf{R})

Allgemeine Eigenschaften

Der Hochleistungs-NFE-Typ wurde zur Spanbrecher-Serie für das Drehen von Stahl mit niedrigem Kohlenstoffgehalt und von allgemeinem Stahl hinzugefügt und gewährleistet stabile Spankontrolle für unterschiedlichste Vorschübe. Es sind erweiterte Produktlinien für verschiedene Bearbeitungsanforderungen verfügbar. Drehwendeschneidplatten des NFB-Spanbrechers sind ebenfalls in positiver Ausführung verfügbar.

Anwendungsbereich


NFE-Spanbrecher zum Schlichten

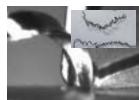
Einsetzbar bei allgemeiner Bearbeitung bis hin zur Hochgeschwindigkeitsbearbeitung.

Der bogenförmige Hauptspanbrecher ermöglicht eine stabile Spankontrolle in einem großen Vorschubbereich.

Die zweistufigen Spanbrecher ermöglichen eine stabile Spankontrolle bei niedrigen Vorschüben von f = 0,1 mm/U.

Sub-Spanbrecher - bieten gute Spankontrolle beim Profildrehen.

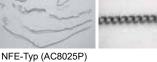
Querschnitt des Spanbrechers


Leistung

Werkstückstoff: Rohrstahl (H240LA, 1.0480) CNMG 120408 NFE (AC8025P) Schneidplatte: Schnittbedingungen: Vc = 200 m/min, f = 0.4 mm/U, $a_p = 0.2 \text{ mm}$, trocken

Sehr gute Spankontrolle bei niedriger Schnitttiefe und hohen Vorschüben

NFE-Typ (AC8025P)


Herkömmliche Spankontrolle

Anwendungsbeispiele

Werkstückstoff: Tiefziehstahl (SPHC440) WSP (Planen): CNMG 120408 NFE (AC8025P) Schnittbedingungen: $v_c = 200 \text{ m/min, } f = 0.15 \text{ mm/U,}$ $a_p = 0.2-0.5$ mm, Emulsion

Stabiles Einrollen und Brechen des Spans bei weichem, tiefziehbarem Stahl.

Wettbewerber

Werkstückstoff: C53E,1.1210 Ø20-100 Außen- Dreh-+Planen: DNMG 150412 NFE (AC8025P) Schnittbedingungen: v_c=180 m/min, f=0,25 mm/U (Radius), 0,45 mm/U (Plan), ap=0,3 mm, Emulsion

Stabile Spankontrolle sogar bei variablen Vorschüben und geringen Schnitttiefen.

NFE-Typ (AC8025P) Herkömmliche Spankontrolle

NFB-Spanbrecher zum Schlichten mit geringem Vorschub

Unterstützt Bearbeitungen mit niedrigem Vorschub.

Glatte Spanbrecher-Geometrie mit großem Spanwinkel für geringeren Schnittwiderstand.

Der variable Spanwinkel im Bereich des Eckenradius bewirkt eine größere Spanverformung und verbessert den Spanbruch.

Querschnitt des Spanbrechers

Anwendungsbeispiel

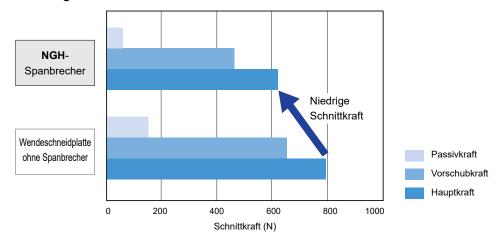
Werkstückstoff: Rohrstahl (STKM13C) DNMG 150404 NFB (T3000Z) Innendrehen, WSP: v_c = 352 m/min, f = 0,03–0,2 mm/U, a_p = 0,7 mm, Schnittbedingungen:

Emulsion

eng gerollte Späne; gute Spankontrolle

NFB Typ (T3000Z)

f c/


■ Allgemeine Eigenschaften

Die Sorte AC503U ermöglicht mittleres Schruppen von gehärtetem Stahl durch die Kombination von Substrat Beschichtung. Durch die Verwendung eines breiten neutralen Spanbrechers (geschliffen, Spanwinkel: 4°) und einer scharfen Schneide wird die Hitzeerzeugung verringert und größere Schnitttiefen (ap = 1–3 mm) in gehärtetem Stahl ermöglicht.

Fördert Späne reibungslos ab.

Negative Wendeschneidplatten für Schruppbearbeitung mit NGH-Spanbrecher

Leistung

Anwendungsbeispiele

NGH-Spanbrecher

Nach 40 Min. - Schneide zeigt nur geringen Verschleiß

Werkstückstoff:

X155CrVMo12-1 (61HRC, Gesenkstahl)

Schneidplatte: TNGG 160404 NGH (AC503U) Schnittbedingungen: v_c = 50 m/min, f = 0,05 mm/U, a_p = 3,0 mm, trocken

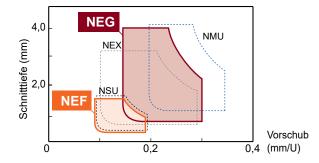
Stabile Spanbildung

Nach 20 Min. - Schneide mit großem Verschleiß

■ Empfohlene Schnittbedingungen

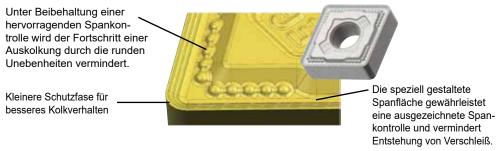
•	0 0			
Anwendungsbereich	Schnittgeschwindigkeit	Vorschub	Schnitttiefe	Empfohlener
Anwendungsbereich	vc (m/min)	f (mm/U)	a _p (mm)	Spanbrecher
Schlichten	40–100	0,02–0,10	<1	Wendeschneidplatte ohne Spanbrecher
Mittleres Schruppen	20–60	0,02-0,05	1–3	NGH-Typ

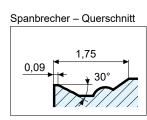
Spanbrecher NEG-Typ / NEF-Typ


Für warmfeste Superlegierungen und rostfreien Stahl

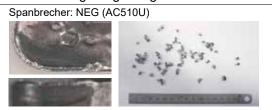
■ Eigenschaften

Die Spanbrecher vom Typ NEG/NEF können für die Bearbeitung von Titanlegierungen, hitzebeständigen Legierungen und einer Vielzahl anderer warmfester Superlegierungen eingesetzt werden.

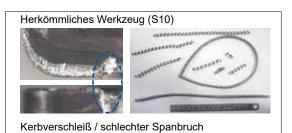

Sie zeigen eine exzellente Verschleißfestigkeit und ausgezeichnete Spankontrolle. Diese Spanbrecher können Probleme lösen, die beim Einsatz herkömmlicher Spanbrecher, wie instabile Standzeiten und schlechte Spankontrolle, entstehen.

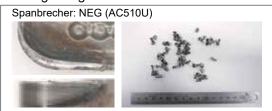

Anwendungsbereich

NEG Spanbrecher zum Schruppen


Überzeugt durch hohe Verschleißfestigkeit und hervorragende Spankontrolle bei der generellen sowie Schruppbearbeitung. Verringert Schäden an der Schneidplatte und eliminiert typische Probleme, die durch Späne bei der Bearbeitung von exotischen Materialien auftreten können. Zudem bietet NEG ein hohes Maß an Vielseitigkeit.

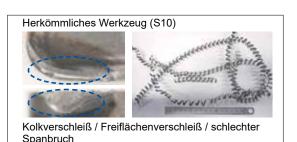
Leistungsmerkmale – NEG-Typ

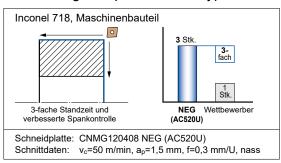

Hitzebeständige Legierung

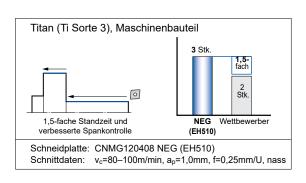

Minimiert die Abplatzungen an der peripheren Schneidkante sowie den Kerbverschleiß. Sehr guter Spanbruch. Werkstückstoff: Inconel 718

Schneidplatte: CNMG120412

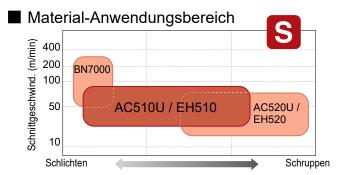
Schnittdaten: $v_c = 40 \text{ m/min}$ $a_p = 2,5 \text{ mm}$ f = 0,2 mm/Unass T = 7 min

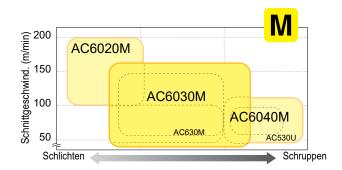

Titanlegierung


Unterdrückt Kolkverschleiß und Verschleiß an der Flanke. Sehr guter Spanbruch. Werkstückstoff: Ti-6Al-4V

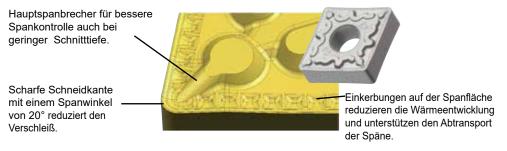

Schneidplatte: CNMG120412

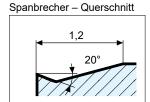
Schnittdaten: v_c = 65 m/min a_p = 2,5 mm f = 0,2 mm/U nass T = 8 min


Anwendungsbeispiele – NEG-Typ

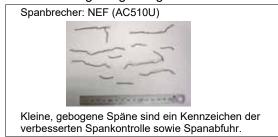


Für warmfeste Superlegierungen und rostfreien Stahl

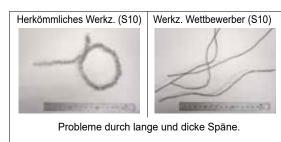

Spanbrecher NEG-Typ / NEF-Typ

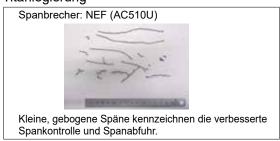


NEF-Spanbrecher zum Schlichten


Der NEF-Spanbrecher verkleinert beim Schlichten den Spandurchmesser der sich einrollenden Späne. Diese extrem gute Spankontrolle ist unabhängig von dem zu bearbeitenden Material.

Leistungsmerkmale – NEF-Typ


Hitzebeständige Legierung

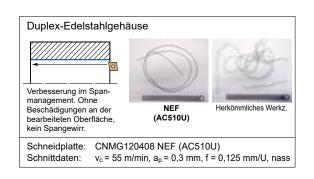

Werkstückstoff: Inconel 718

Schneidplatte: CNMG120408

Schnittdaten: $v_c = 55 \text{ m/min}$ $a_p = 0.3 \text{ mm}$ f = 0.15 mm/Unass T = 8 min

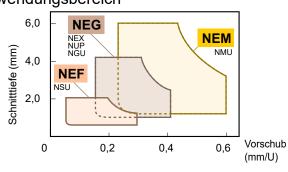
Titanlegierung

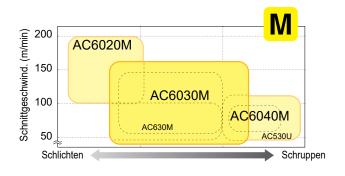
Werkstückstoff: Ti-6Al-4V


Schneidplatte: CNMG120408

Schnittdaten: $v_c = 80 \text{ m/min}$ $a_p = 0.5 \text{ mm}$ f = 0.2 mm/UT = 25 min

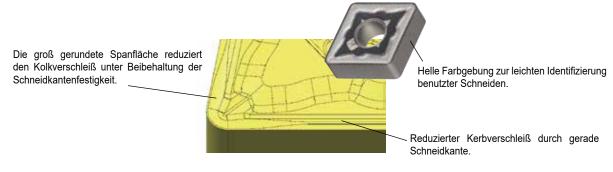
Anwendungsbeispiele – NEF-Typ





Spanbrecher **NEM-Typ**

Spanbrecher für rostfreien Stahl


Anwendungsbereich

NEM Spanbrecher für Schruppbearbeitung


Der NEM-Spanbrecher sorgt für einen zuverlässigen Schruppprozess durch seine stabile Schneidkante und die reibungsarme Spanableitung.

Reduzierung von Beschädigungen

	Reduzierung vor	n Kerbverschleiß	Reduzierung von Kolkverschleiß				
	Schneidkante	Vergleich Kerbverschleiß	Querschnitt	Vergleich Kolkverschleiß			
Herkömm- licher Spanbrecher							
NEM							
	Der NEM-Spanbrecher hat durc gleichmäßige Belastung. Der Kerbverschleiß wird reduzie	ch die gerade Schneidkante eine ert.	Der NEM-Spanbrecher leitet die an der Spanfläche sanft ab. Der Kolkverschleiß wird reduzie	Späne dank des großen Radius rt.			

Anwendungsbeispiel

350 300 250 250 150 100 NEM Herkömmlicher (AC6030M) Spanbrecher

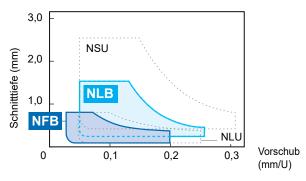
Verbesserte Schneidkantenstabilität sorgt für sichere Bearbeitung.

 $\label{eq:werkstückstoff:} Werkstückstoff: X5CrMo17 12 2 \\ Schneidplatte: SNMG190616NEM (AC6030M) \\ Schnittdaten: v_c = 70 m/min, f = 0,5 mm/U, a_p = 3,0-8,0 mm, nass$

Verbesserter Kerbverschleiß bietet eine hohe Stabilität bei doppelter Standmenge.

Werkstückstoff:	X5CrNiS18 10
Schneidplatte:	SNMG120408NEM (AC6030M)
Schnittdaten:	v_c = 100 m/min, f = 0,32 mm/U, a_p = 2,0–2,5 mm, nass

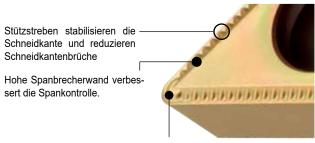
 $\mathsf{C}/$


K/

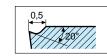
R

Positive M-Toleranz-Spanbrecher für das Drehen von Stahl mit niedrigem Kohlenstoffgehalt und von allgemeinem Stahl

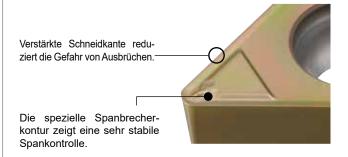
Anwendungsbereich


Spanbrecher

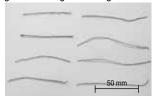
NFB-Typ / NLB-Typ


NFB-Spanbrecher zum Schlichten

NLB-Spanbrecher für die mittlere Bearbeitung

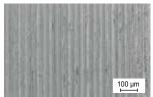

Der NFB-Typ zum Schlichten und der NLB-Typ für die mittlere Bearbeitung ergänzen die bereits vorhandenen Spanbrecher NLU und NSU. NFB und NLB verbessern die Spankontrolle und Oberflächengüte beim Schlichten von kohlenstoffarmen und allgemeinen Stählen.

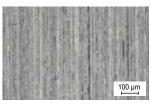
Der variable Spanwinkel im Bereich des Eckenradius bewirkt eine größere Spanverformung bei verbessertem Spanbruch.


Querschnitt des Spanbrechers

Leistung

Sorgt für stabile Spankontrolle bei geringen Schnitttiefen und niedriger Vorschubgeschwindigkeit.


NFB-Typ Spanbrecher (T1500A)


Wettbewerber-Produkt

Rohr (H240LA), Ø 30 Bohrung Werkstückstoff: TPMT 110304 NFB (T1500A) Schnittbedingungen: v_c = 100 m/min, f = 0,12 mm/U, a_p = 0,1 mm, nass

Vergleich der Rauigkeit von geschlichteten Oberflächen

Werkstückstoff: Rohr (H240LA), Ø 100 Bohrung TPMT 110304 NFB (T1500A) Schnittbedingungen: $v_c = 200 \text{ m/min}$, f = 0.07 mm/U, $a_p = 0.1 \text{ mm}$, nass

Leistung

Spankontrolle ①

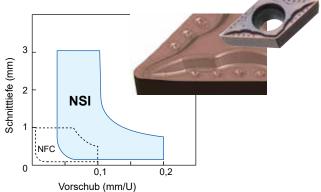
Sorgt für stabile Spankontrolle bei mittlerer Bearbeitung.

Wettbewerber-Produkt

Rohr (H240LA), Ø 30 Bohrung Werkstückstoff: TPMT 110304 NLB (T1500A) Schnittbedingungen: v_c = 200 m/min, f = 0,15 mm/U, a_p = 0, 5 mm, nass

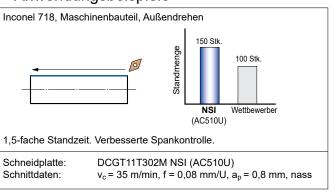
Spankontrolle ②

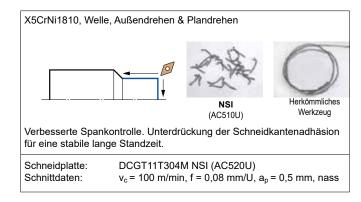
NLB -Typ Spanbrecher (T1500A)

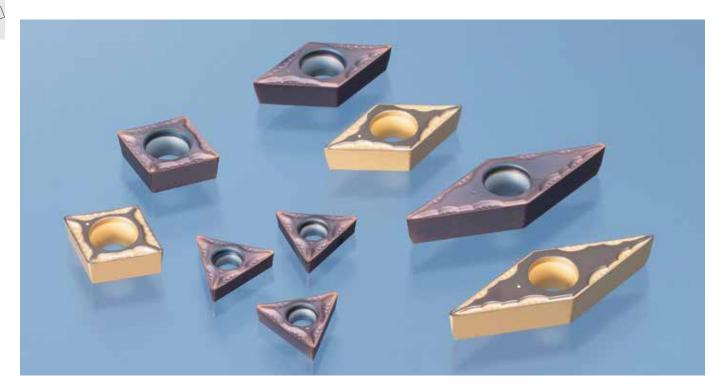

Wettbewerber-Produkt

Werkstückstoff: Nabe (C45)

VBMT 160408 NLB (T1500A) Schneidplatte: Schnittbedingungen: vc = 240 m/min, f =0,25-0,28 mm/U, ap=0,6 mm, nass


100 mm


■ Anwendungsbereich


Schneidleistung 3,0 15 cm 1,0 9 0,5 0,1 0,1 0,1 0,15 0,2 0,3 Vorschub (mm/U) Werkstückstoff: X5CrNiMo17122 Schneidplatte: DCGT11T304M NSI, Schnittdaten: v_c = 100 m/min

■ Anwendungsbeispiele

- scharfe Schneidkante erzeugt geringe Schnittkräfte
- ausgezeichnete Spankontrolle in großem Schnitttiefenbereich
- der extrem positive Spanwinkel und die Präzision der G-Toleranz der Platten garantieren hervorrragende Schneidleistungen
- geeignet für Teile der Medizintechnik und für Hochpräzisionsbearbeitung

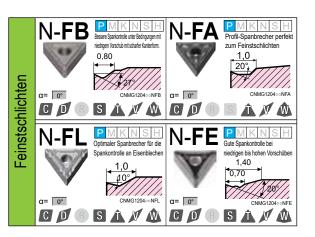
schnei

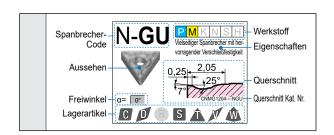
Spanbrechervergleich

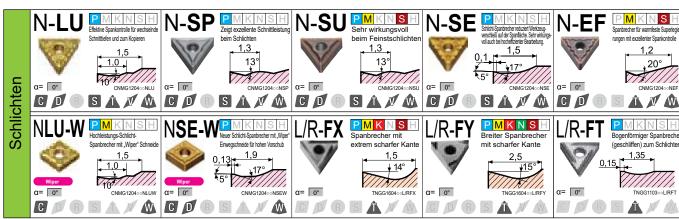
_C/

■ Negative WSP

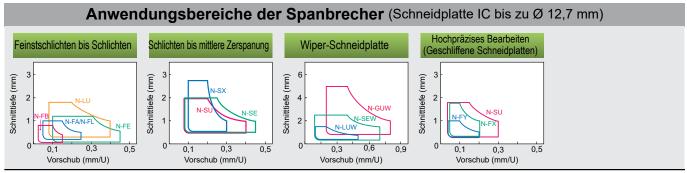
Klasse	Anwendung	Sumitomo Electric	Mitsubishi	Tungaloy	Kyocera	NTK	Sandvik	Kennametal	SECO Tools	WALTER	ISCAR
	Fairesta abliabtan	FA	FH,FP	TF	GP		QF	FF	FF1		SF
	Feinstschlichten	FL, FB	FS,FY	NS,ZF	XP,XF,VF	WM			FF2	FP5	
	Cabliabtan	LU, FE	SA,SY	NM	XQ,CQ,PP	TF1	LC	FN		NF3	
	Schlichten	SU	SH	TS,TSF	HQ	UL,WV	XF,MF	CT	MF2		NF
	"\ A (: " T	LUW		AFW, FW	WP,WF		WL,WP		W-FF2		
	"Wiper" - Typ	SEW	SW	ASW, SW	WQ		WF,WMX	FW	W-MF2	NF	WF
	Schlichten – Leichteres Schruppen	SE, SX	LP	AS,ZM	CJ,XS	ZW1,WR	PF,KF	LF, 33		MP3,NS6	F3P, TF
P	Mittlere	GU □UG□	MA,MV	TM,TQ	HS,PS	ZP	XM,QM	P,MG	M3	MU5	GN
	Zerspanung	GE, UX	MH,MP	DM,AM	CS,GS,PQ,PT	Z5	PM,SM,KM	MN, MP1		MP5,NM4,NM6	RF, LF
	"Wiper" - Typ	GUW	MW		WE		WM	MW, RW	W-M3	NM	WG
	0.1	MU, ME	GH, RP	TH, S	HT,GT,PH	G	PR,XMR,KR	RP	M5,MR7	NM7,NM9,RP5	M3P,NR
	Schruppen	MX, MP	HAS,MT	СН				RN	MR6		
		HG	HL,HZ,HX	THS,TRS	PX,Standard		QR	RM,MR	R4,R5,M6	NR6,NRF	NM
	Schweres	HP	HH,HXD,HR	65			HR,SR	RH	R7,MR7	NR8	TNM
	Schuppen	HU, HW	HV								
		HF	HCS	TUS			MR		RR9	NRR	R3P
	Schlichten	SU, EF	LM,SH	SS	MQ,GU	ZF1	MF	FP,FS,LF	MF2	NF4,FM5	F3M
	Leichtere – mittlere	EX, EG	GM,MS	SF,SA	MS, MU	ZP	23	MS	MF1,M1	MM5	TF,VL
M	Zerspanung	GU	MM	SM			MM, SMR	MP	MF3,M3	NM4,MS3	M3M,PP
	0.1	НМ	ES,1M,2M	S				UP	MF4, MF5	NR4, RM5	
	Schruppen	EM, MU	GH,RM,HM	SH	TK		MR, MRR		M5,MR3	HU5	MR,R3M
	Leichtere Zerspanung	UZ	LK,MA,MK,	CM,CF	Standard		KF	UN	M5	NM5	GN
K	Mittlere Zerspanung	GZ □UX□	GH,RK,GK	Standard,CH,33	ZS,GC,KG,KH		KM,KR		MR7	RK5, RK7	
N	Schlichten	AX		Р	АН			MS			
	Schlichten	EF	LS,FJ	HRF			SF, SGF			NFT	F3S
S	Mittlere Zerspanung	EG, EX	MJ,MS	HMM,SA	SQ		SM, SMC		M1	NMT,NMS	VL
	Schruppen	MU	GJ,RS		SG,SX		SMR		MR3,MR4	NRT,HU5	
	Schlichten	FV, GH		HP*							
H	Leichtere Zerspanung	LV	BF	HF*	HH*,HL*						
	Hart- u.Weichbearbeitung	SV	BM	HM*	HD*						

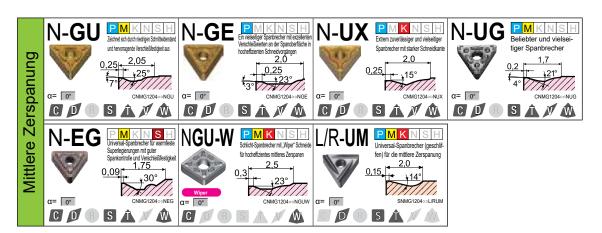

^{*} CBN/PCD Spanbrecher

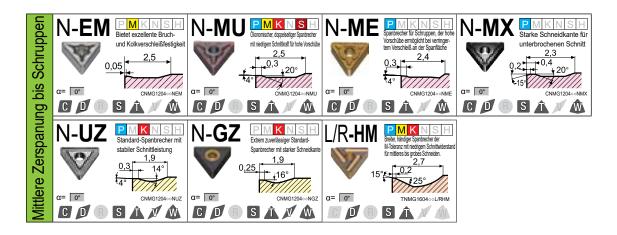

■ Positive WSP


Klasse	Anwendung	Sumitomo Electric	Mitsubishi	Tungaloy	Kyocera	NTK	Sandvik	Kennametal	SECO Tools	WALTER	ISCAR
	0.15.14	FC	FJ,AM	01, JRP,JTS	CF,GF,VF	AM3,AZ7,FG	UM		GT-F1	FM4	
	Schlichten	FB, LU (FP, FK)	FP,FM,FV,SQ	PSF,PF,23	GP,XP,MQ,PP	ZR	PF,UF,MF,KF	11,UF,MF,KF,XF	FF1	PF4	PF
	"\A!" " T	LUW	SW		WP		WF	FW	W-F1	PF	WF
	"Wiper" - Typ	SDW					WK,WM	MW	W-F2		WG
P	Schlichten –	SI	SMG	JS,CM,PSS	CK,SKS	YL,1L					
	Leichteres Schruppen	LB	LP,LM,SV,MQ	PSS,PS,24	XQ	AM2		LF			
	Leichte – Mittlere	SC			GQ,SK,standard	AF1,CL		MP	MF2		
	Zerspanung	SU, GU	SV,MQ	PS,TSF,TM	HQ,XQ,GK	AZ8,AM2,AM5	PM,UM,XM		F1	MP4,MM4,FK6	SM,14
	Mittlere Zerspanung	MU	MV,MM,MK	PM			PR,UR,NMC	MF	F2,M3,M5	RP4,RM4	19
	Schlichten	FC	FM,FV	PSF,PF,SS,JSS		AZ7	MF,XF	11,UF	FF1	FM4	PF
	Schlichten –	SI	SMG			YL,1L,CL	UF	LF,FP			
M	Leichteres Schruppen	LB	LM		MQ				F1		
	Leichte-Mittlere Zerspanung	SU,GU	SV		HQ	AM5	MM	MP	MF2	MM4,PS5	SM
	Mittlere Zerspanung	MU	NM,MV	PM			UM,MR,XR,UR	MF	F2,M3,M5	PM5,RM4	
K	Schlichten	FC		CF			KF,XF	11,UF		FK6	
	Leichte-Mittlere Zerspanung	MU	MK			AF1,FM	KM,UM,XR	FP,LF,MF,MP	M5	MK4,RK4	
N	Schlichten	AG,AW,AY	AZ	AL,PP	AH,AP		AL	HP	AL	PM2	AS,AF
	Schlichten-Leichteres Schruppen	LD, GD									
S	Schlichten	FC,SI	FS	PSS	PP,MQ		WF,MF		MF2,R2,R3		
2	Leichte-Mittlere Zerspanung	SU,GU	LS,MS	PS,PM	HQ,GK		UM,PM			FV4,MV4	
	Schlichten	FV		HP*							
Ш	Leichtere Zerspanung	LV	BF*								




Negative Schneidplatten Schlichten bis mittlere Zerspanung



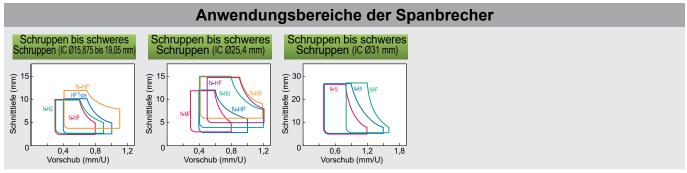


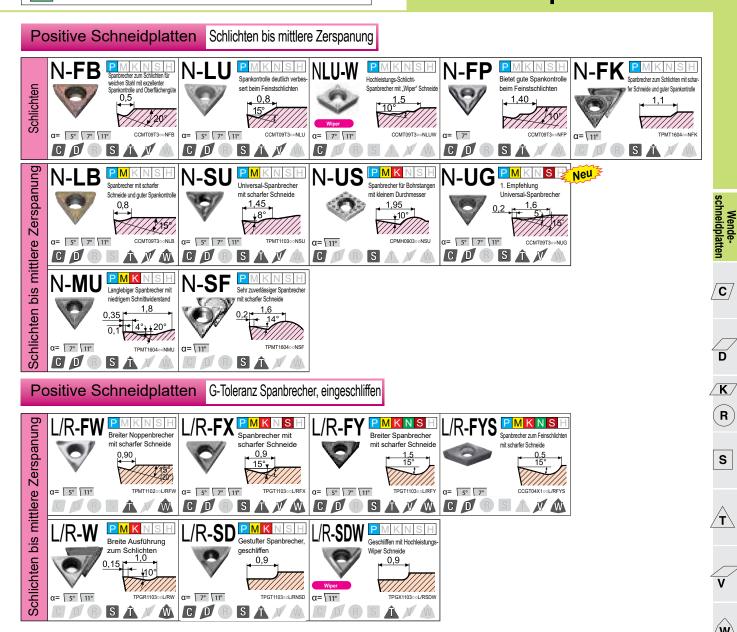
Die gezeigten Spanbrecher-Anwendungsbereiche und Formen stellen nur repräsentative Werte dar. Aktuelle Werte können je nach aktueller Katalognummer verschieden sein. Nähere Informationen siehe Lagerseiten (ab Kapitel B aufwärts).

(R)

Negative Schneidplatten Mittlere Zerspanung bis Schruppen

Die gezeigten Spanbrecher-Anwendungsbereiche und Formen stellen nur repräsentative Werte dar. Aktuelle Werte können je nach aktueller Katalognummer verschieden sein. Nähere Informationen siehe Lagerseiten (ab Kapitel B aufwärts).

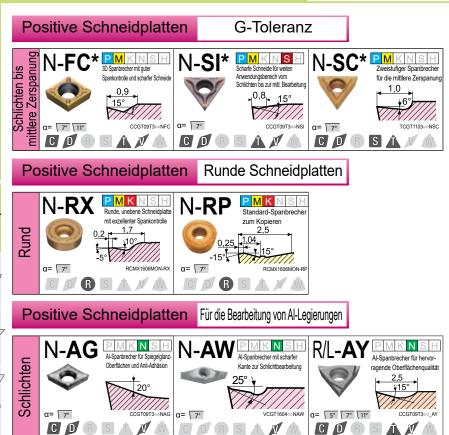


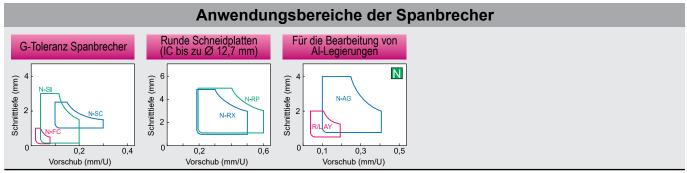

Negative Schneidplatten Für gehärteten Stahl

T V

Die gezeigten Spanbrecher-Anwendungsbereiche und Formen stellen nur repräsentative Werte dar. Aktuelle Werte können je nach aktueller Katalognummer verschieden sein. Nähere Informationen siehe Lagerseiten (ab Kapitel B aufwärts).

Die gezeigten Spanbrecher-Anwendungsbereiche und Formen stellen nur repräsentative Werte dar. Aktuelle Werte können je nach aktueller Katalognummer verschieden sein. Nähere Informationen siehe Lagerseiten (ab Kapitel B aufwärts).




DCGT 11T302 M NSI AC520U

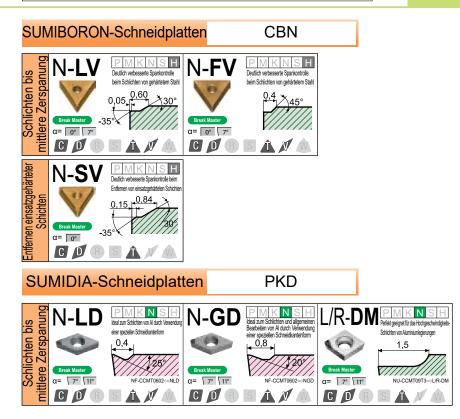
N-FC, N-SI und N-SC haben am Radius eine Minus-Toleranz.

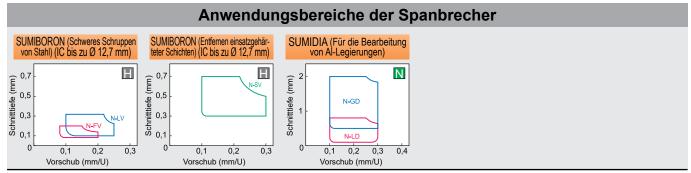
Hinweis:

Beispiel:

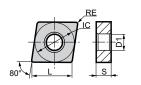
Die gezeigten Spanbrecher-Anwendungsbereiche und Formen stellen nur repräsentative Werte dar. Aktuelle Werte können je nach aktueller Katalognummer verschieden sein. Nähere Informationen siehe Lagerseiten (ab Kapitel B aufwärts).

 \mathbf{R}





S



Die gezeigten Spanbrecher-Anwendungsbereiche und Formen stellen nur repräsentative Werte dar. Aktuelle Werte können je nach aktueller Katalognummer verschieden sein. Nähere Informationen siehe Lagerseiten (ab Kapitel B aufwärts).

RHOMBISCH WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)					
CN	CN L IC S D ₁							
0903	9,7	9,525	3,18	3,81				
0904	9,7	9,525	3,18	3,81				
1204	12,9	12,7	4,76	5,16				

RE

0.4

0,8

0,4

0.8

0.2

0,4

8,0

0,2

0,4

0,8

0.8

0,4

0.8

0,8 0 000

0,4

8,0

0,2

0,4

0,8

1,2 0 OOO

0,4

8,0

0,2

0,4 0,8

0,4

0,8

1,2

0.4

8,0

0,4

0,8

1,2

0

0

a

OOO

0000

0000

0000

0000

OOO

000

Hartmetall beschichtet

0

0

0

O

OO

 \circ

 \circ

 \circ

olo

0 0

O •

0 0

•

• 0

 \circ

0

AC4010K AC4015K AC420K AC503U AC5005S AC5015S

Cermet Hartmetall

SN

beschichtet unbesch. unbeschichtet

T1500Z T3000Z T3000Z T1000A T1500A G10E EH510 EH520

0

0

o|o0

 \circ 0 0

OOO

 $|\mathbf{o}|\mathbf{o}|$

 $|\mathbf{o}|$ $|\mathbf{o}|\mathbf{o}|$

 $|\mathbf{c}|$ 0

 $|\mathbf{o}|$ 0

000

 $|\mathbf{o}|\mathbf{o}|$

0

 $|\mathbf{o}|\mathbf{o}|$

OO

000

•

• •

• •

00

•

0

0

ြ

0

0

•

•

•

000

M-Toleranz, doppelseitig

Anwendung Plattenform Feinstschlichten

Feinstschlichten

Feinstschlichten

Feinstschlichten (mm)

Schnitttiefe

(mm)

Schnittiefe (

Schnitttiefe (mm)

Schnitttiefe (mm)

Schlichten

Schlichter

Schnittliefe (mm)

0,2 0,4 0,6

0,2 0,4

"Standard'

0,2 0,4

0.2 0.4 Vorschub (mm/U)

Vorschub (mm/U)

Vorschub (mm/U)

Vorschub (mm/U)

 (\mathbf{R})

Schnittiefe (mm)

CNMG 090304 NFB CNMG 090308 NFB Schnittiefe (mm) **CNMG 090404 NFB CNMG 090408 NFB NFB CNMG 120402 NFB** 0,4 Vorschub (mm/U)

> NFA 0,6 0.4 Vorschub (mm/U)

> > NFL

NFE

NLU

NLU-W

NEF

0,6

0,6

CNMG 120404 NFB CNMG 120408 NFB

ISO Kat.-Nr.

CNMG 120402 NFA CNMG 120404 NFA CNMG 120408 NFA

CNMG 090308 NFL

CNMG 120404 NFL CNMG 120408 NFL

CNMG 090304 NFE CNMG 090308 NFE

CNMG 090404 NFE

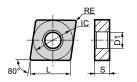
CNMG 090408 NFE

CNMG 120402 NFE CNMG 120404 NFE CNMG 120408 NFE CNMG 120412 NFE

CNMG 090304 NLU CNMG 090308 NLU

CNMG 120402 NLU CNMG 120404 NLU CNMG 120408 NLU CNMG 120412 NLU

CNMG 120404 NLU-W **CNMG 120408 NLU-W CNMG 120412 NLU-W**


CNMG 090404 NEF CNMG 090408 NEF

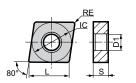
CNMG 120404 NEF

CNMG 120408 NEF CNMG 120412 NEF

● = Euro-Lager
○ = Lagerartikel in Japan

Vorschub (mm/U)

	Abmes	sungen	(mm)	
CN	L	IC	S	D_1
0903	9,7	9,525	3,18	3,81
0904	9,7	9,525	3,18	3,81
09T3	9,7	9,525	3,97	3,81
1204	12,9	12,7	4,46	5,16
1606	16,1	15,875	6,35	6,35



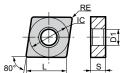
(CNMG •••••										met hich								erm	net		larti		
_		V		G.	P (ع او	M	M	5	P _M	동 K		Н .	s o					P		ŀ	3	S	N
_	M-Toleranz, doppelseitig	100 1/ 1 11		AC8015P	AC8020P	AC8025P	AC6020M	AC6030M	AC6040M	AC630M	AC4010K AC4015K	AC420K	C5031	C5015	AC5025S	C103C	AC530U	15002	T3000Z	T1000A	T1500A	EH510	H520	_
An	wendung Plattenform	ISO KatNr. CNMG 090304 NSU	0,4					A			4	\	⋖ •	< ⊲	(<	⋖	∢ ⊦	- -		-	<u>⊢</u> () Ш	Ш	I
		CNMG 090308 NSU	0,4		0	O	•			•														
		CNMG 09T304 NSU CNMG 09T308 NSU	0,4 0,8	0	0																			
Schlichten	Schnittliefe (mm) Schnittliefe (mm) Schnittliefe (mm) Schnittliefe (mm) NSU O2 O3 O4 O6	CNMG 090404 NSU CNMG 090408 NSU CNMG 090412 NSU	0,4 0,8 1,2	000	0	O	•))		0	0			
	0,2 0,4 0,6 Vorschub (mm/U)	CNMG 120402 NSU CNMG 120404 NSU CNMG 120408 NSU CNMG 120412 NSU	0,2 0,4 0,8 1,2	•	•		•	• • •	•	•			0	- 1					•	•	•			
		CNMG 120404 NSE CNMG 120408 NSE CNMG 120412 NSE	0,4 0,8 1,2	•	•															0				
Schlichten	"Standard" NSE "Wiper" W-Typ NSE-W	CNMG 090404 NSE-W CNMG 090408 NSE-W	0,4 0,8																					
Scl	NSE-W 0.2 0.4 0.6 0.8 Vorschub (mm/U)	CNMG 120404 NSE-W CNMG 120408 NSE-W CNMG 120412 NSE-W	0,4 0,8 1,2	•		O •															0			
Schlichten	NSX Vorschub (mm/U)	CNMG 120404 NSX CNMG 120408 NSX CNMG 120412 NSX	0,4 0,8 1,2	0	•																0			
		CNMG 090304 NGU CNMG 090308 NGU CNMG 090404 NGU CNMG 090408 NGU CNMG 090412 NGU	0,4 0,8 0,4 0,8 1,2	0	(• C C C												0		000	0			
chruppen	"Standard" NGU "Wiper" W-Typ NGU-W	CNMG 120404 NGU CNMG 120408 NGU CNMG 120412 NGU CNMG 120416 NGU	0,4 0,8 1,2 1,6	• • •	• • •			•	•	•				C			000				0			
Mittleres Schruppen	0,2 0,4 0,6 0,8 Vorschub (mm/U)	CNMG 160608 NGU CNMG 160612 NGU CNMG 160616 NGU	0,8 1,2 1,6	•	•		•	0	000	•														
_		CNMG 120408 NGU-W CNMG 120412 NGU-W	0,8		•			•		•	•													
		CNMG 160612 NGU-W	1,2	0	0	c																		

K (R)

C RHOMBISCH WENDESCHNEIDPLATTEN

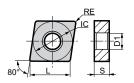
	Abmes	sungen	(mm)	
CN	L	IC	S	D ₁
0903	9,7	9,525	3,18	3,81
0904	9,7	9,525	3,18	3,81
09T3	9,7	9,525	3,97	3,81
1204	12,9	12,7	4,46	5,16
1606	16,1	15,875	6,35	6,35
1906	19,3	19,05	6,35	7,94

C/



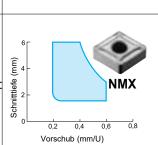
(CNMG •••••								b		tmo	hte	t					_	C		unb		unb	esch	ietal ichtet
		V		5P	Р	_	A N	N		M		K K	- -	_	S					P					N
	M-Toleranz, doppelseitig			AC8015P	C802(AC8025P	AC8035P	AC6030M	AC6040M	AC630M	C4010	24015	AC420K	C5009	AC5015S	C502E	C1030	AC530U	2002	T3000Z	1000A	T1500A	10E	H510	EH520 H1
Ar	wendung Plattenform	ISO KatNr.		Ă	ĕ	¥	Ă Z	ίď	Ă	Ă	Ă	Ă.	Ž ?	Ź	¥	A	Ă	Ă Ì	- -	F	È	È	ÖΪ	ם ע	ΔÌ
)en	6 6	CNMG 120404 NGE CNMG 120408 NGE CNMG 120412 NGE CNMG 120416 NGE	0,4 0,8 1,2 1,6	• • •	• • •	•	•																		
Mittleres Schruppen	NGE	CNMG 160608 NGE CNMG 160612 NGE CNMG 160616 NGE	1,2	0 •		- 1	0																		
Mittle	Vorschub (mm/U)	CNMG 190612 NGE CNMG 190616 NGE	1,2 1,6	•	•	•	0																		
		CNMG 090304 NUG CNMG 090308 NUG	0,4 0,8			0																			
	4	CNMG 090404 NUG CNMG 090408 NUG	0,4 0,8			0	o																		
neu	G G G G G G G G G G G G G G G G G G G	CNMG 09T304 NUG CNMG 09T308 NUG	0,4 0,8			0																			
Mittleres Schrinnen	NUG Output O	CNMG 120404 NUG CNMG 120408 NUG CNMG 120412 NUG CNMG 120416 NUG	0,4 0,8 1,2 1,6	•	•	•	•																		
MiH	voisciub (nim/o)	CNMG 160608 NUG CNMG 160612 NUG CNMG 160616 NUG	0,8 1,2 1,6				0																		
		CNMG 190608 NUG CNMG 190612 NUG CNMG 190616 NUG	0,8 1,2 1,6			0																			
	(E)	CNMG 090408 NEG CNMG 090412 NEG	0,8 1,2						00						0										
Mittleres Schruppen	Schnittiffe (mm	CNMG 120404 NEG CNMG 120408 NEG CNMG 120412 NEG	0,8	000	•	•				•					0									•	•
Mittleres 5	0 0,2 0,4 0,6 Vorschub (mm/U)	CNMG 160608 NEG CNMG 160612 NEG CNMG 160616 NEG	1,2	O	•	•		•	0	•				C	000	•							,	•	•
		CNMG 190612 NEG CNMG 190616 NEG	1,2 1,6	0	0	0		•		0				0	0	00									
Mittleres Schruppen	Schnittiefe (mm)	CNMG 120404 NEX CNMG 120408 NEX CNMG 120412 NEX	0,4 0,8 1,2					•	• • •	•				•	•	•	- 1	2							
tleres	0,2 0,4 0,6	CNMG 160612 NEX	1,2											C		•									
Miti	Vorschub (mm/U)	CNMG 190612 NEX	1,2											C	o	0									
	● = Euro-Lager																								

	Abmes	sungen	(mm)					
CN	L	IC	S	D_1				
1204	12,9	12,7	4,46	5,16				
1606	16,1	15,875	6,35	6,35				
1906	19,3	19,05	6,35	7,94				
2509	25,8	25,4	9,52	9,2				
	20,0 20,1 0,0							


		80° L S			_																							_
		NMG ••••											me hich							bi		ern chtet					neta hichte	
	J					P		Ī		М		м		K	Н	1	S	Ī	PM			Р			K	S		N
		A.T. Lancing J. 199			15P	20P	25P	35P	AC6020M	AC6030M	40M	5	5 5	AC4013N AC420K	30	058	AC5015S	258	000	3 2	7/2	Z	Υ	Υ		0		
-		M-Toleranz, doppelseitig	100 1/ 1 1		AC8015P	AC8020P	AC8025P	AC8035P	090		AC6040M	AC630M	818	5 6	C50	C50	C50	C20	AC1030U	T15007	2500	T3000Z	T1000A	T1500A	G10E	H51	79H	_
4	Αn	vendung Plattenform	ISO KatNr.	RE	٨	٨	⋖	∢ .	∢ •	∢ ,	∢ (∢	∢ <	1 4	. <	۹	A	A	∢ <	1 -	-	-	-			Ш	-	-
	Mittleres Schruppen	(ELL) Que 2	CNMG 120404 NUP CNMG 120408 NUP CNMG 120412 NUP	0,4 0,8 1,2		• • •	• • •	•	•	•	•	•				• • •	• • •	• • •		0				(0			
	Mittleres S	NUP Octobro (mm/U)	CNMG 160612 NUP CNMG 190612 NUP	1,2		•	•	•	•			•																
	pen	6.	CNMG 120408 NEM CNMG 120412 NEM CNMG 120416 NEM	0,8 1,2 1,6	000	•	•	000	•	•	•					000		0										
	Mittleres Schruppen	NEM NEM	CNMG 160608 NEM CNMG 160612 NEM CNMG 160616 NEM	0,8 1,2 1,6	0	•	•	0		C	•					000	00	0										
	Mittl	0 0.2 0.4 0.6 Vorschub (mm/U)	CNMG 190612 NEM CNMG 190616 NEM CNMG 190624 NEM CNMG 250924 NEM	1,2 1,6 2,4			• 0	0	o	٦ ا	0					000	O	0										

/C/

K/R)

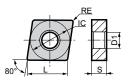

C RHOMBISCH WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
CN	L	IC	S	D ₁
1204	12,9	12,7	4,76	5,16
1606	16,1	15,875	6,35	6,35
1906	19,3	19,05	6,35	7,94
2509	25,8	25,4	9,52	9,2

CNMG 190612 NMX CNMG 190616 NMX

Hartmetall beschichtet

K

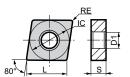

Cermet Hartmetall beschichtet unbesch. unbeschichtet

K S N

M-Toleranz, doppelseAnwendung Plattenform		RE	AC8015P	Ä	AC8025P	AC8035P	AC6030M	AC6040N	AC630M	AC4010K AC4015K	ACE	AC	AC5025S AC5025S	AC1030U	AC530U T1500Z	T2500Z	T3000Z	T1500A	G10E	ΗÏ	בַן בַ
8	CNMG 120408 NMU CNMG 120412 NMU CNMG 120416 NMU	0,8 1,2 1,6	•	•	•		•		•			•	• •		2				(С	
Schruppen Schriftiefe (mm)	CNMG 160608 NMU CNMG 160612 NMU CNMG 160616 NMU	0,8 1,2 1,6	•	•	•		•		•				0								
\(\frac{1}{50} \) \[\frac{1}{50} \] \[\frac{1}{0.2} \] \[\frac{1}{0.4} \] \[\frac{1}{0.6} \] \[\text{Vorschub (mm/U)} \]	CNMG 190608 NMU CNMG 190612 NMU CNMG 190616 NMU CNMG 190624 NMU	0,8 1,2 1,6 2,4	• •	• • •	•		•		•				0 0								
	CNMG 250924 NMU	2,4	O	o	0	•							၁								
	CNMG 120408 NME CNMG 120412 NME CNMG 120416 NME	0,8 1,2 1,6	•	•	•	•															
Schruppen Schnittiefe (mm)	CNMG 160608 NME CNMG 160612 NME CNMG 160616 NME	0,8 1,2 1,6	0	•	•	0															
Ö 10,2 0,4 0,6 Vorschub (mm/U)	CNMG 190612 NME CNMG 190616 NME CNMG 190624 NME	1,2 1,6 2,4	0	•	• •	•															
	CNMG 250924 NME	2,4	0	0	0)															
Schrittliefe (mm)	CNMG 090304 NUX CNMG 090308 NUX CNMG 120404 NUX CNMG 120408 NUX CNMG 120412 NUX CNMG 120416 NUX	0,4 0,8 0,4 0,8 1,2 1,6	0 • •	• • •	•																
Nochrippen	CNMG 160608 NUX CNMG 160612 NUX CNMG 160616 NUX	0,8 1,2 1,6	•	0	•	0			•		•										
	CNMG 190608 NUX CNMG 190612 NUX CNMG 190616 NUX	0,8 1,2 1,6		•	0				•												
6 (m 4 -	CNMG 120408 NMX CNMG 120412 NMX CNMG 120416 NMX	0,8 1,2 1,6		•	•	•															
Schruppen Schruppen Schrittiefe (mm)	CNMG 160608 NMX CNMG 160612 NMX CNMG 160616 NMX	0,8 1,2 1,6		•	•	•															

1,2 1,6

	Abn	nessunge	en (mm)			
CN	L	IC	S	D_1			
0904	9,7	9,525	3,18	3,81			
1204	12,9	12,7	4,76	5,16			
1606	16,1	15,875	6,35	6,35			
1906	19,3	19,05	6,35	7,94			
	10,0 10,00 0,00						


	CNMG •••••	• II -III			P			M			etal			S		M		Cer				artn nbeso	chich	
				15P	_	25P	20M		40M	10K M		_		_	_		Z(<u> </u>				
	M-Toleranz, doppelseitig Anwendung Plattenform	ISO KatNr.	RE	AC8015P	AC80	AC8035P	AC6020M	AC6030M	AC6040M	AC4010K	AC4015K	AC42 AC50	AC50	AC5015S	AC10	AC530U	T1500	T2500Z	T1000A	T1500A	G10E	EH510	EH52	Ŧ
	6-	CNMG 090408 NGZ CNMG 090412 NGZ CNMG 120404 NGZ	0,8 1,2 0,4								000	0												
2	NGZ	CNMG 120408 NGZ CNMG 120412 NGZ CNMG 120416 NGZ	0,8 1,2 1,6							•	-													
ď	7	CNMG 160608 NGZ CNMG 160612 NGZ CNMG 160616 NGZ	0,8 1,2 1,6							000														
		CNMG 190612 NGZ CNMG 190616 NGZ	1,2 1,6							0	0													
3		CNMG 120404 NUZ CNMG 120408 NUZ CNMG 120412 NUZ CNMG 120416 NUZ	0,4 0,8 1,2 1,6		O					• • •	•			0							0			
3	NUZ NUZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CNMG 160608 NUZ CNMG 160612 NUZ CNMG 160616 NUZ CNMG 190608 NUZ	0,8 1,2 1,6 0,8							•	1 1													
	Vorschub (mm/U)	CNMG 190612 NUZ CNMG 190616 NUZ	1,2 1,6			000				0	•													

/**c**/

K/R)

C RHOMBISCH WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
CN	L	IC	S	D ₁
1204	12,9	12,7	4,76	5,16
1606	16,1	15,875	6,35	6,35
1906	19,3	19,05	6,35	7,94
2507	25,8	25,4	7,94	9,2
2509	25,8	25,4	9,52	9,2

Hartmetall Cermet Hartmetal beschichtet beschichtet unbesch. unbeschichtet SN AC4010K AC4015K AC420K AC503U AC5005S AC5015S M-Toleranz, einseitig Anwendung Plattenform ISO Kat.-Nr. RE CNMM 120408 NMP CNMM 120412 NMP 0,8 • • 000 • 1,2 • • • 000 **CNMM 120416 NMP** 1,6 • 000 IC: ø15,875 ~ 19,05 CNMM 160608 NMP 0,8 Schweres Schruppen 000 Schnittiefe (mm) **NMP CNMM 160612 NMP** 1,2 000 0 1,6 **CNMM 160616 NMP** 0 000 **CNMM 160624 NMP** 2,4 **CNMM 190608 NMP** 0,8 000 **CNMM 190612 NMP** 1,2 000 **CNMM 190616 NMP** 1,6 • 0 • 000 **CNMM 190624 NMP** 000 000 Vorschub (mm/U) 2.4 **CNMM 250724 NMP** 0 **CNMM 250924 NMP** 2.4 0 CNMM 160612 NMH 1,2 Schweres Schruppen **CNMM 160616 NMH** 1,6 Schnittiefe (mm) **NMH CNMM 190612 NMH CNMM 190616 NMH** 1,6 **CNMM 190624 NMH** 2,4 • **CNMM 250924 NMH** . 04 06 08 Vorschub (mm/U) **CNMM 120408 NHG** 0,8 • • **CNMM 120412 NHG** 1,2 Schweres Schruppen **CNMM 120416 NHG** 1,6 0 Schnittiefe (mm) CNMM 160608 NHG 0,8 NHG • • • **CNMM 160612 NHG** 1,2 • **CNMM 160616 NHG** 1,6 **CNMM 160624 NHG** 2,4 0.4 **CNMM 190612 NHG** 1,2 Vorschub (mm/U) **CNMM 190616 NHG** 1,6 **CNMM 190624 NHG** 2.4 0 **CNMM 120408 NHP** 0,8

1,2

1,6

0,8

1,2

1,6

0,8

1,2

1,6

2.4

 $|\mathbf{o}|$

 \circ

.

0

• •

0

0

•

0

CNMM 120412 NHP

CNMM 120416 NHP

CNMM 160608 NHP

CNMM 160612 NHP

CNMM 160616 NHP

CNMM 190608 NHP

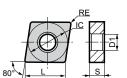
CNMM 190612 NHP

CNMM 190616 NHP

CNMM 190624 NHP

Vorschub (mm/U)

NHP

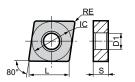

Schweres Schruppen

Schnittiefe (mm)

 \mathbf{R}

^{● =} Euro-Lager ○ = Lagerartikel in Japan

	Abmes	sungen	(mm)	
CN	L	IC	S	D_1
1906	19,3	19,05	6,35	7,94
2509	25,8	25,4	9,52	9,2


I												met								Се				artn		
	CNM	M •••••			_	Р		Т	M		sc	hich K	_	Н	E	S		M	bes	schich	rtet u	unbes	ch. L	inbeso	_	tet N
1					5P	OP	5P	MO	Mo	WO.	≥ 0	왕 당	×			=	_	1	N	2	NI.	⊿.	1			
-		anz, einseitig			AC8015P	AC8020P	AC8025P	AC6020M AC6020M	AC6030M	AC6040M	AC630M	AC4010K AC4015K	AC420K	2503	2500	AC5015S	AC1030U	530	5002	T2500Z	2000	T1000A	G10F	EH510	1520	
4	Anwendung	Plattenform	ISO KatNr.	RE	AC	¥	¥ ×	₹ ¥	¥	¥.	¥,	¥ ¥	A	A	¥.	¥ 4	Ā	¥	1	12	<u> </u>	Ξì	<u>.</u>	山山	亩	도
	Schweres Schruppen Schnittiefe (mm)	TC:#25.4 NHW	CNMM 190616 NHU CNMM 190624 NHU CNMM 250924 NHU	1,6 2,4 2,4							•															
		NHU 0.4 0.8 1.2 rschub (mm/U)	CNMM 250924 NHW	2,4							•															
	Schweres Schruppen Schnittiefe (mm) Schnittiefe (mm) Schnittiefe (mm) Schnittiefe (mm)	NHF	CNMM 190616 NHF CNMM 190624 NHF CNMM 250924 NHF	1,6 2,4 2,4		()																		
	SCHWere Oct		CNMM 250932 NHF	3,2) c																			

<u>/c/</u>

K/R)

C RHOMBISCH WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
CN	L	IC	S	D ₁
1204	12,9	12,7	4,76	5,16
1606	16,1	15,875	6,35	6,35
1906	19,3	19,05	6,35	7,94

Cermet Hartmetal

Cermet Hartmetall

beschichtet unbesch. unbeschichtet

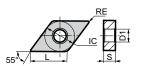
beschichtet unbesch. unbeschichtet

Hartmetall

beschichtet

Hartmetall

beschichtet


/ CNMX

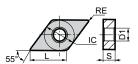
Sonstige i	neg. Wendeschn	eidplatten		8015P	8020P	AC8025P AC8035P	6020N	AC6030M	AC6040M	AC4010K	AC4015K	AC420K	AC5005S	AC5015S	50258	AC1030U	T1500Z	T2500Z	000A	500A	빙	510	EH520 H1
Anwendung	Plattenform	ISO KatNr.	RE	A	¥	A	AC	AC	A	Y S	A.	A	A	Y S	AC	A	Ξ	12	2 =	F	9	山口	크
ue		CNMA 120404 CNMA 120408 CNMA 120412 CNMA 120416	0,4 0,8 1,2 1,6							0	0 • •	•	0	0	0					•			
Schruppen		CNMA 160608 CNMA 160612 CNMA 160616	0,8 1,2 1,6							0	•	-											
		CNMA 190616	1,6							0	0	•											
Mittl. Schruppen	0	CNGA 120402 CNGA 120404 CNGA 120408	0,2 0,4 0,8												(0							
Schruppen	0	CNMX 120408 L	0,8		•	•																	
Schweres	0	CNMX 120408 R	0,8		•	•																	

•	G-Toleranz, doppelseitig			AC8015P	AC8020P	AC8035P	AC6020M	AC6030M AC6040M	AC630M	AC4010K	AC420K	AC503U	AC5005S	AC5015S AC5025S	AC1030U	AC530U	T1500Z	T2500Z	T1000A	T1500A	G10E EH510	EH520	
Ar	wendung Plattenform	ISO KatNr.	RE	S	A S	S S	AC	AOA	AC	9	88	AC.	A		AC	AC	Ξï	7	1 5			[6]	Ē
Schlichten	Ochulttige (mm/U)	CNGG 120402 NSU CNGG 120404 NSU CNGG 120408 NSU	0,2 0,4 0,8												•		\circ	300	\circ				
Schlichten	Computitive (m) 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CNGG 120402 NGH CNGG 120404 NGH CNGG 120408 NGH	0,2 0,4 0,8									000											
Schlichten	(um) 2 1 0.4 NEF Vorschub (mm/U)	CNGG 120402 NEF CNGG 120404 NEF CNGG 120408 NEF	0,2 0,4 0,8						00						•						00		
Für Alumilium	Solution (mm/U) (mm/U) (mm/U) (mm/U) (mm/U)	CNGG 120402 LAX CNGG 120404 LAX CNGG 120408 LAX CNGG 120402 RAX CNGG 120404 RAX CNGG 120408 RAX	0,2 0,4 0,8 0,2 0,4 0,8																				000 000

^{● =} Euro-Lager

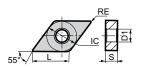
^{○ =} Lagerartikel in Japan

	Abmes	sungen	(mm)	
DN	L	IC	S	D ₁
1104	11,6	9,525	4,76	3,81
1504	15,5	12,7	4,76	5,16
1506	15,5	12,7	6,35	5,16



Г	NMO	G 00000											tall						be		erm htet	iet unbesc		lart unbes		
Ľ	ZINIVI				SP	P	ع اد	7 5	M		P _M	_	K K	H		SS	_	2 -	_		P		K	i	S	N
_		nz, doppelseitig	100 14 1 11	55	AC8015P	C802	C802	AC8035P AC6020M	AC6030M	AC6040M	C630	C4010	7401	AC503U	C500!	AC5015S	C2026	C103	AC5300 T1500Z	2500Z	3000Z	T1000A	G10F	H510	H520	_
Ar	wendung	Plattenform	ISO KatNr.	RE	∢ •	∢ .	∢ <	4	. ⋖	<	∢	∢ <	< □	< <	⋖	⋖ •	ξ <	1	(-	-			- 0) Ш	Ш	I
ten	2	-	DNMG 110404 NFB DNMG 110408 NFB	0,4 0,8						o 0										0			0			
Feinstschlichten	Schnittliefe (mm)	NFB	DNMG 150404 NFB DNMG 150408 NFB	0,4 0,8						0												0				
Fein		0,4 schub (mm/U)	DNMG 150604 NFB DNMG 150608 NFB	0,4 0,8						0									0			0				
chten	e (mm)		DNMG 150404 NFA DNMG 150408 NFA	0,4 0,8																		0				
Feinstschlichten	Schnittiefe (mm) 5 Character (mm) 2 Char	NFA 2 0,4 0,6 schub (mm/U)	DNMG 150604 NFA DNMG 150608 NFA	0,4 0,8															•	0						
chten	() 4 -		DNMG 150404 NFL DNMG 150408 NFL DNMG 150412 NFL	0,4 0,8 1,2			C				0											0				
Feinstschlichten	Schrittliefe (mm)	NFL 2 0,4 0,6 schub (mm/U)	DNMG 150604 NFL DNMG 150608 NFL	0,4 0,8															•		•					
			DNMG 110404 NFE DNMG 110408 NFE DNMG 110412 NFE	0,8	000	$ \mathbf{c} $	$ \mathbf{c} $)	0	000									0	000	$ \mathbf{c} $		0			
Feinstschlichten	Schnitttiefe (mm)	NFE	DNMG 150402 NFE DNMG 150404 NFE DNMG 150408 NFE DNMG 150412 NFE	0,4 0,8	0	C		o	0	0000									0000	0	000)			
Fein		0,4 schub (mm/U)	DNMG 150602 NFE DNMG 150604 NFE DNMG 150608 NFE DNMG 150612 NFE	0,8	0000	C	C	0	0	0000									0	0	0		0			
	6		DNMG 110404 NLU DNMG 110408 NLU	0,4 0,8	•	• (C			0		0								•				0			
Schlichten	Schnittiefe (mm)	NLU	DNMG 150402 NLU DNMG 150404 NLU DNMG 150408 NLU DNMG 150412 NLU	0,4	0000	C	C)	0000		0000							C		0	0))			
Š	0,2	2 0,4 0,6 schub (mm/U)	DNMG 150604 NLU DNMG 150608 NLU DNMG 150612 NLU	0,8	•	•													•							

(K)

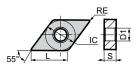


	Abmes	sungen	(mm)	
DN	L	IC	S	D ₁
1104	11,6	9,525	4,76	3,81
1504	15,5	12,7	4,76	5,16
1506	15,5	12,7	6,35	5,16

	55 L S]														501	iuit	otoi	Ů.	um	
F											etal chte								me et unb			tme eschicl	
	DNMG •••••				Р			М	P	м	K	Н		s	I	м	5000	_	P		K	_	N
	M-Toleranz, doppelseitig			AC8015P	020P	AC8035P	AC6020M	AC6030M	AC6040M	310K	AC4015K	330	AC5005S	AC5015S	AC20233 AC1030U	300	ZO	70 2	ZO A	δ.		2 0	
_	wendung Plattenform	ISO KatNr.	RE	AC8	A CS	AC8	AC6	AC60	AC6	§ §	AC4	AC5	AC5	AC5(AC10	AC5	T150	T2500Z	1001	T1500A	G10E	EHS	H
	<u>.</u>	DNMG 110404 NEF DNMG 110408 NEF DNMG 110412 NEF	0,4 0,8 1,2	0		0	•	•	•				0	000	0								
Schlichten	Schnittitefe (mm)	DNMG 150404 NEF DNMG 150408 NEF DNMG 150412 NEF	0,4 0,8 1,2			\circ	0	0					$ \circ $	0)							•	
	0 0,2 0,4 0,6 Vorschub (mm/U)	DNMG 150604 NEF DNMG 150608 NEF DNMG 150612 NEF	0,4 0,8 1,2	0	•		•	- 1	0				•									•	
u	6[DNMG 110404 NSU DNMG 110408 NSU DNMG 110412 NSU	0,4 0,8 1,2			0	•	0						• (•								
Schlichten	NSU NSU	DNMG 150402 NSU DNMG 150404 NSU DNMG 150408 NSU DNMG 150412 NSU	0,2 0,4 0,8 1,2	000		၂၀		0000		0			$ \circ $	0)	0	0						
	0.2 0.4 0,6 Vorschub (mm/U)	DNMG 150604 NSU DNMG 150608 NSU DNMG 150612 NSU	0,4 0,8 1,2	•		•	•	•	•						•			0	•	1 1			
	6	DNMG 110408 NSE	0,8			ဝ																	
Schlichten	Schnittinefe (mm) NSE	DNMG 150404 NSE DNMG 150408 NSE DNMG 150412 NSE	0,4 0,8 1,2)	၂၀											000	\circ	0	000			
S	0.2 0.4 0.6 Vorschub (mm/U)	DNMG 150604 NSE DNMG 150608 NSE DNMG 150612 NSE	0,4 0,8 1,2	•	•														0				
Schlichten	Scholittlefe (mm)	DNMG 150404 NSX DNMG 150408 NSX DNMG 150412 NSX	0,4 0,8 1,2	000		၂၀												0		0			
Sch	0,2 0,4 0,6 Vorschub (mm/U)	DNMG 150604 NSX DNMG 150608 NSX	0,4 0,8	•													0			0			
Jen	6F	DNMG 110404 NGU DNMG 110408 NGU DNMG 110412 NGU	0,4 0,8 1,2	•		0	•			0	000												
Mittleres Schruppen	NGU NGU	DNMG 150404 NGU DNMG 150408 NGU DNMG 150412 NGU DNMG 150416 NGU	0,4 0,8 1,2 1,6)	000	0	3	0	0000			0)	0	0	\circ		000			
Mitt	0 0 0,2 0,4 0,6 Vorschub (mm/U)	DNMG 150604 NGU DNMG 150608 NGU DNMG 150612 NGU DNMG 150616 NGU	0,4 0,8 1,2 1,6	•			•	•															

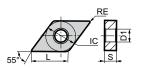
^{● =} Euro-Lager ○ = Lagerartikel in Japan

	Abmes	sungen	(mm)	
DN	L	IC	S	D_1
1104	11,6	9,525	4,76	3,81
1504	15,5	12,7	4,76	5,16
1506	15,5	12,7	6,35	5,16



l		G 00000											etall htet							Cer					neta chicht	_
	JINIVI				0	P	0 (1 5	N	1 5	PM		K	Н		S	_	M			Р		K	_	S	N
•	M-Tolera	nz, doppelseitig			AC8015P	AC8020P	8025F	ACSUSSP	AC6030M	AC6040M	AC630M	4010	AC4015K	5030	:2002	AC5015S	10301	5300	200S	T2500Z	2000	T1500A	OE OE	510	EH520	
Ar	wendung	Plattenform	ISO KatNr.	RE	AC	YO!	A S	A S	A	N A	AC	AC.	A A	AC	AC	A	A	A	1	12	_ ا	- 1	<u>G</u>	픕	山	티
			DNMG 110408 NGE DNMG 110412 NGE	0,8 1,2		0																				
Mittleres Schruppen	Schnittliefe (mm)	NGE	DNMG 150404 NGE DNMG 150408 NGE DNMG 150412 NGE DNMG 150416 NGE	0,4 0,8 1,2 1,6	000	0	c	o																		
Mittleres	ਲਿੰ ₀ O, Vor	2 0,4 0,6 rschub (mm/U)	DNMG 150604 NGE DNMG 150608 NGE DNMG 150612 NGE DNMG 150616 NGE	0,4 0,8 1,2 1,6	• • • •	•	•																			
en			DNMG 110404 NUG DNMG 110408 NUG	0,4 0,8			0	•																		
Mittleres Schruppen	Schnittliefe (mm)	NUG	DNMG 150404 NUG DNMG 150408 NUG DNMG 150412 NUG	0,4 0,8 1,2																						
Mittler	",	2 0.4 0.6 schub (mm/U)	DNMG 150604 NUG DNMG 150608 NUG DNMG 150612 NUG DNMG 150616 NUG	0,4 0,8 1,2 1,6	•	(0																		
en			DNMG 110408 NEG DNMG 110412 NEG	0,8 1,2	0					•						0										
leres Schruppen	chnittiefe (mm)	NEG	DNMG 150404 NEG DNMG 150408 NEG DNMG 150412 NEG	0,4 0,8 1,2	0	0	\mathbf{c}								000	0)							•	0	
Mittler	Ø 0 0,	2 0,4 0,6 schub (mm/U)	DNMG 150604 NEG DNMG 150608 NEG DNMG 150612 NEG	0,4 0,8 1,2	000	•				•	0				O •									0	•	
			DNMG 110404 NEX DNMG 110408 NEX	0,4 0,8					•		•					•										
Mittleres Schruppen	Schnittliefe (mm)	NEX	DNMG 150404 NEX DNMG 150408 NEX DNMG 150412 NEX	0,4 0,8 1,2				C							0	0)									
Mittleres 5		2 0,4 0,6 schub (mm/U)	DNMG 150604 NEX DNMG 150608 NEX DNMG 150612 NEX	0,4 0,8 1,2					•		•															

(K)

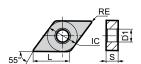

	Abmes	sungen	(mm)	
DN	L	IC	S	D ₁
1504	15,5	12,7	4,76	5,16
1506	15,5	12,7	6,35	5,16

									Н	art	me	tall					_		Cerr	me	t I	Ha	rtm	eta	ı
	DNMG •••••								be		hich	ntet					_		hichte	et unb		unt	besch	nichte	t
		V — ——		<u>a</u>	P Q	<u>.</u>	1 S	M S		M		K	H	_	s vo v				F			K	S	N	
•	M-Toleranz, doppelseitig			AC8015P	AC8020P	3025	AC8035P	AC6030M	AC6040M	AC630M	1010	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AC503U	5005	AC5075S	030	AC530U	200 200 200 200 200 200 200 200 200 200	T2500Z	NA W	90A	Щ	210	020	
_	nwendung Plattenform	ISO KatNr.	RE	ACE	Ğ.	ğ	A C	ACC	AC	ACE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ACE	AC	A C	AC	ACE	T15	52	12	T15	910	EH510	를 로	-
Mittleres Schruppen	NUP Occupancy Occupancy Occupancy NUP NUP NUP Occupancy Occupancy Occupancy Occupancy NUP NUP Occupancy NUP Occupancy NUP	DNMG 150404 NUP DNMG 150408 NUP DNMG 150412 NUP DNMG 150604 NUP DNMG 150608 NUP DNMG 150612 NUP	0,4 0,8 1,2 0,4 0,8 1,2		•			000	0	000				•											
Mittleres Schruppen	L/RUM Output Output	DNMG 150404 LUM DNMG 150408 LUM DNMG 150404 RUM DNMG 150408 RUM	0,4 0,8 0,4 0,8															0000			0000				
Schruppen	(mm) de	DNMG 150404 NMU DNMG 150408 NMU DNMG 150412 NMU DNMG 150416 NMU DNMG 150608 NMU DNMG 150612 NMU DNMG 150616 NMU	0,4 0,8 1,2 1,6 0,8 1,2 1,6			C		•		00				•											
Schruppen	NEM Vorschub (mm/U)	DNMG 150408 NEM DNMG 150412 NEM DNMG 150416 NEM DNMG 150608 NEM DNMG 150612 NEM DNMG 150616 NEM	1,2 1,6 0,8	0		C		00	00					0											
Schrubben	NME Oz. 0,4 0,6 0,8 Vorschub (mm/l.)	DNMG 150408 NME DNMG 150412 NME DNMG 150416 NME DNMG 150608 NME DNMG 150612 NME DNMG 150616 NME			\circ	CC	•					0													

^{● =} Euro-Lager ○ = Lagerartikel in Japan

Vorschub (mm/U)

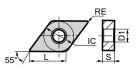
	Abmes	sungen	(mm)	
DN	L	IC	S	D_1
1104	11,6	9,525	4,76	3,81
1504	15,5	12,7	4,76	5,16
1506	15,5	12,7	6,35	5,16


		0 I-II							be	esc		ntet							Ce	ntet		ch. u	ınbes	met	tet
				5P	P 00:	5P	SP OM	M OM W	_	^P M ≥	_	K K	H	-	2 2 2 2	_	M B	N	N	P	4	K			N
	M-Toleranz, doppelseitig	ISO KatNr.	RE	AC8015P	AC8020P	AC8025P	AC8035P	AC6030M	AC6040M	AC630M	AC4010K	AC40 15R AC420K	\C503	AC500	AC5015S	AC30233	C530	T1500Z	T2500Z	T3000Z	110004	G10F	H510	EH520	두
An	wendung Plattenform		RE	A	4	۷,	4 4	L A	ď	a i	4	1 4	A	٩	4 <	I	L d	<u> </u>			- -		, ш		_
Schruppen	Schnittiffe (mm) Schnittiffe (mm) L/KHW	DNMG 150404 LHM DNMG 150408 LHM	0,4			0		0																	
Schr	L/RHM 0,2 0,4 0,6 Vorschub (mm/U)	DNMG 150404 RHM DNMG 150408 RHM	0,4	0	0			0		0															
		DNMG 110408 NUX	0,8	0	0	O	С																		
Sen	Schnittier (mm) Population (mm	DNMG 150404 NUX DNMG 150408 NUX DNMG 150412 NUX	0,4 0,8 1,2		000	\circ	Э																		
Schruppen	Vorschub (mm/U)	DNMG 150604 NUX DNMG 150608 NUX DNMG 150612 NUX DNMG 150616 NUX	0,4 0,8 1,2 1,6	•	•		•																		
Schruppen	NMX NMX Output Outp	DNMG 150408 NMX DNMG 150412 NMX DNMG 150608 NMX DNMG 150612 NMX	0,8 1,2 0,8 1,2				2																		
	ê ⁶ ſ	DNMG 110408 NGZ DNMG 110412 NGZ	0,8 1,2								0	200	,												
Schruppen	Schnittiefe (mm)	DNMG 150404 NGZ DNMG 150408 NGZ DNMG 150412 NGZ	0,4 0,8 1,2) c	,												
Sch	ol. i. j.	DNMG 150608 NGZ DNMG 150612 NGZ	0,8 1,2																						
pen	Schnittlefe (mm)	DNMG 150404 NUZ DNMG 150408 NUZ DNMG 150412 NUZ	0,4 0,8 1,2		0	0					0	$\mathbf{o} \mathbf{c}$			0										
Schruppen	NUZ 0.2 0.4 0.6 0.8 Vorschub (mm/U)	DNMG 150608 NUZ DNMG 150612 NUZ	0,8 1,2			0																			

/C/

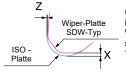
K (R)

RHOMBISCH WENDESCHNEIDPLATTEN



	Abmes	sungen	(mm)	
DN	L	IC	S	D ₁
1504	15,5	12,7	4,76	5,16
1506	15,5	12,7	6,35	5,16

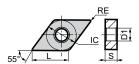
										eta								erm				net	
DNMM ••••			F	P			M k	PM	_	chte K	t E	Г	S	П	PM	be	schio	htet	unbes	ch. L	_	chicht	
			5P	5P	5P	MO	MO	Σ	쏭	쏤.	د ک	58	58	58	8=	N	N	N	<	1			
● M-Toleranz, einseitig			AC8015P AC8020P	3802	AC8035P	AC6020M	AC6030M AC6040M	AC630M	AC4010K	2401	AC503U	AC5005S	AC5015S	2502	AC1030U	T1500Z	200	T3000Z	000	G10F	1510	1520	
Anwendung Plattenform	ISO KatNr.	RE	¥¥	ξ¥	¥	Υ	¥ ¥	¥	¥	¥.	¥ ¥	¥	¥	¥	¥ ¥	F	12	E		<u>ئ</u>	山	亩	Ì
Schweres Schruppen Schweres Schruppen Ochweres Schruppen Ochweres Schruppen NN Ochweres Schruppen Ochweres Schruppen NN Ochweres Schruppen NN Vorschup (mm/U)	DNMM 150604 NMP DNMM 150608 NMP DNMM 150612 NMP	1,2 1,6 0,4 0,8 1,2		000	0			•															
Schrudpa (mm/n)	DNMM 150608 NHG DNMM 150612 NHG DNMM 150616 NHG	1,2	•	•	•			•															
Schweres Schrudpan (mm/n)	DNMM 150604 NHP DNMM 150608 NHP DNMM 150612 NHP	0,4 0,8 1,2 1,6 0,4 0,8 1,2 1,6			0 0 0																		



	Abmes	sungen	(mm)	
DN	L	IC	S	D_1
1104	11,6	9,525	4,76	3,81
1504	15,5	12,7	4,76	5,16
1506	15,5	12,7	6,35	5,16

П	NMA / DNMX									meta hicht							Cerr hichte			Hartı unbes		
					Р			М	PM	K		Н	S	_	PM		F			K	S	N
• :	Sonstige neg. Wendeschne			AC8015P	SUZUP	AC8035P	AC6020M	AC6030M AC6040M	AC630M	AC4010K AC4015K	AC420K	5030	AC5015S	250258	AC530U	T1500Z	2002	T1000A	T1500A	G10E EH510	1520	
An	wendung Plattenform	ISO KatNr.	RE	Ą;	₹ ₹	₹ ¥	Ą,	₹ ¥	¥.	¥ ¥	¥.	¥ ×	₹¥	¥ ×	44		<u> </u>	드	7	5 亩	山山	Ŧ
	>	DNMA 150404 DNMA 150408 DNMA 150412	0,4 0,8 1,2																			
Schruppen		DNMA 150608 DNMA 150612	0,8 1,2								1 - 1											
Schi		DNMX 150608 L	0,8																			
		DNMX 150608 R	0,8																			
	6	DNMX 110404 NSE-W DNMX 110408 NSE-W DNMX 110412 NSE-W		0	o	000																
Schlichten	Character (man) 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DNMX 150404 NSE-W DNMX 150408 NSE-W DNMX 150412 NSE-W	0,8	000))										0	0		0			
	0 0,2 0,4 0,6 0,8 Vorschub (mm/U)	DNMX 150604 NSE-W DNMX 150608 NSE-W DNMX 150612 NSE-W	0,4 0,8 1,2	•																<u> </u>		
		Z (Hinweis) Die Posi Winer-Platte identisch mit der e						DW-	Тур	ist r	nicht			r	Ž	(+)	⁹³ / ₇ Korre	ektu	ur (m) 		_

identisch mit der einer ISO-Schneidplatte. Wenn Sie eine Bohrstange mit Einstellwinkel 93° verwenden, sollte die Position der Schneide gemäß den Angaben in der Tabelle korrigiert werden.


r	Ko	rrektur (mm)	
ı	X ([Ourchmesser)	Z
0,4	-0,14	(Ø: -0,28)	-0,02
0,8	-0,14	(Ø: -0,28)	-0,02
1,2	-0,1	(Ø: -0,2)	-0,03

● = Euro-Lager ○ = Lagerartikel in Japan **/C**/

<u> K</u>/ (\mathbf{R})

RHOMBISCH WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
DN	L	IC	S	D ₁
1104	11,6	9,525	4,76	3,81
1504	15,5	12,7	4,76	5,16

Hartmetall beschichtet K

Hartmetall

beschichtet

 \mathbf{K}

Cermet Hartmetall beschichtet unbesch. unbeschichtet

Cermet Hartmetall

S

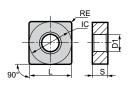

 Sonstige neg. Wendeschne 	eidplatten		38015P	8020P	3035P	36020M	:6040M	3630M	4010K 4015K	3420K	35005S	50158	50205	10300 5300	200S	500Z	000A	500A	0E	1510	020
Anwendung Plattenform	ISO KatNr.	RE	A.	4	A	AC	Y Y	AC	APP	AAA	A	AC	A	AAA	1	12	1	11	ည်		三三
Mittleres Schruppen	DNGA 150402 DNGA 150404 DNGA 150408	0,2 0,4 0,8								000		0	2				0				

DNGG ••••

•	G-Toleranz, doppelseitig			AC8015P	8020P	3025P	AC8033P AC6020M	AC6030M	AC6040M	AC4010K	AC4015K AC420K	AC503U	AC5015S AC5015S	AC5025S	AC10300	T1500Z	T2500Z	700V	T1500A	EH510	EH520 H1
Ar	wendung Plattenform	ISO KatNr.	RE	Y S	١	ػٳڒ ػٳػ	Y O	AC	Y O	Y Y	Š Š	AC	AC!	AÇ		7 115 115	T25	15	T15	温	표
Schlichten	NEF Oz.	DNGG 150404 NEF DNGG 150408 NEF	0,4										0	0							0
Schlichten	NSU -0,2 0,4 0,6 Vorschub (mm/U)	DNGG 150402 NSU DNGG 150404 NSU DNGG 150408 NSU	0,2 0,4 0,8										0	000		000	0	\circ	000		
ruppen	Schnittliefe (mm)	DNGG 110404 LUM DNGG 110408 LUM DNGG 150404 LUM DNGG 150408 LUM	0,4 0,8 0,4 0,8															0	0000		
Mittleres Schruppen	2 0,2 0,4 0,6 Vorschub (mm/U)	DNGG 110404 RUM DNGG 110408 RUM DNGG 150404 RUM	0,4 0,8 0,4															000	000	,	
Schlichten	NGH Output O	DNGG 150408 RUM DNGG 150402 NGH DNGG 150404 NGH DNGG 150408 NGH	0,8 0,2 0,4 0,8									000						0	0		
Für Aluminium	(mu) 3 2 L/RAX L/RAX 0,20 0,4 0,6 Vorschub (mm/U)	DNGG 150402 LAX DNGG 150404 LAX DNGG 150408 LAX DNGG 150402 RAX DNGG 150404 RAX DNGG 150408 RAX	0,2 0,4 0,8 0,2 0,4 0,8																		0000

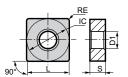
● = Euro-Lager O = Lagerartikel in Japan

	Abmes	sungen	(mm)	
SN	L	IC	S	D_1
1204	12,7	12,7	4,76	5,16



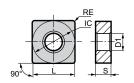
7												tall							Ceri				tme	
6	SNMG •••••				P			N	ı	PM		htet K	Н	5	3	P	M	Desc	hichte	_	esch.	unbe	S	ntet
_	M Talaman I 22			15P	20P	25P	35P	30M	40M	OM	10K	기 왕 왕	30	058	15S 25S	300	9	Z	70	1 4	ΑC	c	00	
	M-Toleranz, doppelseitig wendung Plattenform	ISO KatNr.	RE	4C80	AC8020P	AC80	AC8035P	4060	AC6040M	AC630M	4C40	AC4015K	4C50	AC50	AC5025S	AC10	AC530U	T150(T30007	T1000A	T1500	G10E	EH520	두
Feinstschlichten	_	SNMG 120404 NFB SNMG 120408 NFB	0,4						0									0		0	0			
Feinstschlichten	NFL Overschub (mm/U)	SNMG 120408 NFL	0,8			0												0	0		0			
Feinstschlichten	Schmitting Sommitting (a) NFE 1	SNMG 120404 NFE SNMG 120408 NFE SNMG 120412 NFE	0,4 0,8 1,2	0	000	0	O	0	000											000	000			
Schlichten	Octivation (mm/U)	SNMG 120408 NLU SNMG 120412 NLU		00	0	•		0 0		00											0			
Schlichten	NSU Ozenula (mm/U) Vorschub (mm/U)	SNMG 120408 NSU SNMG 120412 NSU	0,8	•	•	• (3	•	•	•				•	•			0		0	0			
Schlichten	NSE Vorschub (mm/U)	SNMG 120408 NSE SNMG 120412 NSE	0,8	•	0		3																	

K (R)



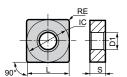
	Abmes	sungen	(mm)	
SN	L	IC	S	D₁
0903	9,525	9,525	3,18	3,81
1204	12,7	12,7	4,76	5,16
1506	15,875	15,875	6,35	6,35

(SVIV	1G 00000										tme							br		erm	net unbesc		lartr		
_	JINIV				n	Р	_	n >	M	_	PM	~	K	H	S	S		PM			P		K		S	N
•	M-Tole	ranz, doppelseitig			AC8015P	8020	AC8025P	AC8035P	AC6030M	6040	AC630M	4010	4015	AC420K	5005	AC5015S	5025	10301	2000	200S	T3000Z	T1000A	OE	1510	520	
Αı	nwendun	g Plattenform	ISO KatNr.	RE	AC	¥	Q.	A AC	N S	AC	AC	AC	A A	A A	AC	AC	AC AC	A	£ 1	T2	T3		<u>6</u>	品	픕	도
Schlichten	\ \overline{0}	NEF 0,2 0,4 Vorschub (mm/U)	SNMG 120404 NEF SNMG 120408 NEF	0,4	00	•				•						0 0										
Schlichten	_ o 0	NSJ 0,2 0,4 0,6 0,8 Vorschub (mm/U)	SNMG 090304 NSJ SNMG 120404 NSJ	0,4																		G				
Schlichten	y 0 □	NSX 0,2 0,4 0,6 Vorschub (mm/U)	SNMG 120404 NSX SNMG 120408 NSX SNMG 120412 NSX	0,4 0,8 1,2			0												0		00	C				
Mittleres Schrippen		NGU 0.2 0.4 0.8 0.8 Vorschub (mm/U)	SNMG 090304 NGU SNMG 090308 NGU SNMG 120404 NGU SNMG 120408 NGU SNMG 120412 NGU SNMG 120416 NGU SNMG 150608 NGU SNMG 150612 NGU SNMG 150616 NGU	0,4 0,8 0,4 0,8 1,2 1,6 0,8 1,2 1,6	• • • • • •	• • • • • • •				•		00 0000 000	0 0000 00		000		\circ	C				C				
Mittleres Schringen	Schnittiefe (mm)	NGE Vorschub (mm/U)	SNMG 120408 NGE SNMG 120412 NGE SNMG 120416 NGE SNMG 150608 NGE SNMG 150612 NGE SNMG 150616 NGE	1,2 1,6 0,8 1,2	0	• • • •		• 0																		


	Abmes	sungen	(mm)	
SN	L	IC	S	D₁
0903	9,525	9,525	3,18	3,81
1204	12,7	12,7	4,76	5,16
1506	15,875	15,875	6,35	6,35
1906	19,05	19,05	6,35	7,94
2509	25,4	25,4	9,52	9,2

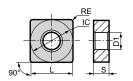
												etall							err			Hart		
3	SNMG •••••				Р	<u> </u>	T	N	_	PM	_	htet K	Н		S	P		besch	nichtel	_		unbe	schich S	ntet
				5P	OP	5P	5P	2 2	Z	Σ	S	쏫	<u> </u>	55	25.5	_		NI R		_	7			
•	M-Toleranz, doppelseitig			AC8015P	AC8020P	AC8025P	AC8035P	AC6020M	AC6040M	AC630M	AC4010K	AC4015K	2503	2500	AC5025S	3103	AC530U	2007		T1000A	T1500A	G10E FH510	1520	
Αı	nwendung Plattenform	ISO KatNr.	RE	A	¥	Ą.	¥,	2 4	Z A	A	A	A A	A	¥.	A A	A	A	디	<u> </u>	1	7	5 击	i iii	도
		SNMG 090308 NUG	0,8			0	•																	
Mittleres Schrinben	Schnittliefe (mm)	SNMG 120408 NUG SNMG 120412 NUG SNMG 120416 NUG	0,8 1,2 1,6	•		0	•																	
res 6	NUG	SNMG 150612 NUG	1,2			(0																	
Mittle	0 0,2 0,4 0,6 0,8 Vorschub (mm/U)	SNMG 190612 NUG SNMG 190616 NUG	1,2 1,6				0																	
		SNMG 250924 NUG	2,4			(0																	
Mittleres Schriippen	Schnitting (mm) 4 2 2 L/RMM	SNMG 120404 LUM SNMG 120408 LUM SNMG 120412 LUM	0,4 0,8 1,2																		000			
Mittleres	L/RUM O ₀ O _{0,2} O _{0,4} O _{0,8} Vorschub (mm/U)	SNMG 120404 RUM SNMG 120408 RUM	0,4 0,8																		0			
rinnen	e (mm)	SNMG 120404 NEG SNMG 120408 NEG SNMG 120412 NEG	0,4 0,8 1,2	000	•	•	000		•	•				•		•						•		
Mittleres Schringen	NEG	SNMG 150608 NEG SNMG 150612 NEG SNMG 150616 NEG	1,2	000		0				0				0		•						Q		
Mi	Vorschub (mm/U)	SNMG 190612 NEG SNMG 190616 NEG	1,2 1,6	0	00																	0 0	00	
Mittleres Schringen		SNMG 120404 NEX SNMG 120408 NEX SNMG 120412 NEX	0,4 0,8 1,2						•	•				0		•								
re s	NEX	SNMG 150612 NEX	1,2											0)	,								
Mittle	Vorschub (mm/U)	SNMG 190612 NEX SNMG 190616 NEX	1,2 1,6											0	S									
Mittleres Schringen	(u u u u u u u u u u u u u u u u u u u	SNMG 120404 NUP SNMG 120408 NUP SNMG 120412 NUP	0,4 0,8 1,2		•	•	•		•	•)		

K (R)



	Abmes	sungen	(mm)	
SN	L	IC	S	D ₁
0903	9,525	9,525	3,18	3,81
1204	12,7	12,7	4,46	5,16
1506	15,875	15,875	6,35	6,35
1906	19,05	19,05	6,35	7,94
2509	25,4	25,4	9,52	9,2

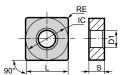
	C	1	\	N	1	2				Y	Y		Y				T														tm chic									Ce chich					tme eschic	
V	Q) [N	IV		J		J		_	人			4			_								Р	_		N	1	PN		K		Н		S	-	м			Р		_	_		N
•) N	И-	To	le	rai	٦Z.	d	on	g	els	eiti	g												AC8015P	3020F	3025F	3035F	AC6020M	AC6040M	AC630M	AC4010K	1015K	120K	020	0150	3025S	0300	AC530U	Z00	Z00	T3000Z	00A	00A	110	EH520	
_			nd				Pla		•			J		_	ISC) k	۲at	-Nr				F	RE	Ä	ğ	Ϋ́	ACC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ACC	ACE	AC4	AC4	AC4	A S	ָבָׁ ל	ACE	AC	ACE	T15	T25	T30	2 19	T15	3 E	出	Ξ
	ų.	(mu	°[\			di.	2	i s	,	;	SN	ΝG	09	03(80	NU	X		c	,8				Э																			
	Schruppen	Schnittiofo (mm)	2-),2 /ors	0,4 schu	0 b (m),6 nm/			UX		1	SN SN	MG MG	12 12	2040 204	08 12	NU NU NU NU	X		1),4),8 ,2 ,6	•	•	•	0																			
																			NU NU					0																						
!	bben	(10)	6						Ś					SN	MG	12	204	12	NM NM NM	IU		1	,	o	•			•		•						•		00								
	scurnbben	Schnittiofo (mm)	2-			,]			ML	,	;	SN	MG	15	606°	12	NM NM NM	IU		1	_	0			•			•				-			•									
			0-		o,2 Vors	o,4 schu	b (m			В				SN	MG	19	906	16	NM NM NM	IU		1	,2 ,6 2,4	•	•		•			•							,									
													;	SN	ИG	25	092	24	NM	IU		2	2,4	0	0	0	•							(,							_	ļ	
			6				\		4	le de		h							NE NE				,8 ,2	0																						
	scurnbben	Schnittiofo (mm)	4 -							N	EN	l l	;	SN	MG	15	606°	12	NE NE NE	M		1	,2	000			O		•)							•									
		Ü	, o∟	,	0,2 /ors		b (m),6 (U)	_			;	SN	MG	19	906	16	NE NE NE	М		1	,2 ,6 2,4	0	•		O	•		,						0	•									
													;	SN	ИG	25	092	24	NE	М		2	2,4	0	0	O	Э	C	0	,				(2	o	,									
														SN	MG	12	204	12	NM NM NM	ΙE		1	,8 ,2 ,6		\circ	\circ	Э				000	\circ														
	scurnbben	ittiofo (mm)	4-							N	ME			SN	MG	15	606°	12	NM NM NM	ΙE		1	9,8 ,2 ,6		•		Э				000	$ \mathbf{c} $														
		o do	<u>.</u> .L),2 /ors	_{0,4} schu	o b (m		'U)	8			;	SN	MG	19	906	16	NM NM NM	ΙE		1	,2 ,6 2,4	0		•	•				000	\circ														
													;	SN	ИG	25	092	24	NM	ΙE		2	2,4	O	C	O	С				O	0														


	Abmes	sungen	(mm)	
SN	L	IC	S	D ₁
1204	12,7	12,7	4,46	5,16
1506	15,875	15,875	6,35	6,35
1906	19,05	19,05	6,35	7,94

SNMG •••••				P			M	be		me		Н		S		M		Cer					neta chichte
			15P	_	_	35P	_	_		_	_	=		=-	_		ZC			۲ ۵			
■ M-Toleranz, doppelseitig Anwendung Plattenform	ISO KatNr.	RE	AC8015P	AC8020P	AC80	AC80	AC6030M	AC6040M	AC630M	AC4010K	AC42	AC503U	AC50	AC5015S	AC10	AC530U	T1500	T2500Z	T10004	T150C	G10E	EH51	EH520
	SNMG 120408 LHM	0,8	0	0	0	0	•																
Ceptropose (mm/U)	SNMG 120408 RHM	0,8	O	0	0	0	•		0														
	SNMG 120408 NMX SNMG 120412 NMX SNMG 120416 NMX	0,8 1,2 1,6		000	0	0																	
NMX Vorschub (mm/U)	SNMG 150612 NMX SNMG 150616 NMX SNMG 190612 NMX SNMG 190616 NMX	1,2 1,6 1,2 1,6		•	•	•																	
fe (mm)	SNMG 120408 NGZ SNMG 120412 NGZ SNMG 120416 NGZ SNMG 150612 NGZ	0,8 1,2 1,6								0													
NGZ Vorschub (mm/U)	SNMG 150616 NGZ SNMG 190612 NGZ SNMG 190616 NGZ	1,2 1,6 1,2 1,6																					
	SNMG 120408 NUZ SNMG 120412 NUZ SNMG 120416 NUZ	0,8 1,2 1,6			000	\circ				0		•	00	000	0						0		
Schrügering (mm/n)	SNMG 150612 NUZ SNMG 150616 NUZ SNMG 190612 NUZ SNMG 190616 NUZ	1,2 1,6 1,2 1,6			0	0				0													

K (R)

Abmes	sungen	(mm)	
L	IC	S	D ₁
12,7	12,7	4,46	5,16
15,875	15,875	6,35	6,35
19,05	19,05	6,35	7,94
25,4	25,4	7,94	9,2
25,4	25,4	9,52	9,2
31,75	31,75	9,52	8,8
	L 12,7 15,875 19,05 25,4 25,4	L IC 12,7 12,7 15,875 15,875 19,05 19,05 25,4 25,4 25,4 25,4	12,7 12,7 4,46 15,875 15,875 6,35 19,05 19,05 6,35 25,4 25,4 7,94 25,4 25,4 9,52


	SNMM •••••										etall htet							Cei		et ibesch.			eta nichtet
Š	DIVIDINI OOOO				Р			M	PN	1	K	Н		S	_	м			P		K	S	
_				15P	20P	25P	20M	30M	MO	10K	15 25 25	30	058	158	3011	00	ZC	Z	7 5	K A		0	
_	M-Toleranz, einseitig	ISO KatNr.	RE	AC8015P	C80		AC6020N	AC6030M	AC630M	\C40	AC4015K	\C50	\C50	AC5015S	010	AC530U	1500	T2500Z	13000Z	T1500A	310E	-H51	H1
	10- 10: sts.875 -	SNMM 120408 NMP SNMM 120412 NMP SNMM 120416 NMP SNMM 120420 NMP	0,8 1,2 1,6 2,0	00		•		•	•		4	4	o 0	000	0	4				-			
chruppen	(ILL) (1905 NMP	SNMM 150612 NMP SNMM 150616 NMP	1,2 1,6	0		•		0	•														
Schweres Schruppen	Schnittiefe (mm)	SNMM 190612 NMP SNMM 190616 NMP SNMM 190624 NMP	1,2 1,6 2,4	0)	•	•					0									
ြိ	0,2 0,4 0,6 0,8 1,0 1,2	SNMM 250724 NMP	2,4	$ \mathbf{c} $	$ \mathbf{c} $)		0	o	•													
	Vorschub (mm/U)	SNMM 250924 NMP	2,4	O	\mathbf{c}	2		0	o	,													
		SNMM 310924 NMP	2,4	O	\mathbf{c}	2		0	0	,													
Schweres Schruppen	NMH 12	SNMM 190612 NMH SNMM 190616 NMH SNMM 250724 NMH SNMM 250924 NMH	1,2 1,6 2,4 2,4	•				•															
Schweres Schruppen		SNMM 120408 NHG SNMM 120412 NHG SNMM 120416 NHG SNMM 150612 NHG SNMM 150616 NHG SNMM 190612 NHG SNMM 190616 NHG SNMM 190624 NHG SNMM 190616 NHGS	0,8 1,2 1,6 1,2 1,6 1,2 1,6 2,4	0 0																			
Schweres Schruppen	10- (C: #15.875- 19,05 NHP 10- 10- 10- 10- 10- 19,05 NHP	SNMM 120408 NHP SNMM 120412 NHP SNMM 120416 NHP SNMM 150612 NHP SNMM 190612 NHP SNMM 190616 NHP SNMM 190624 NHP SNMM 250724 NHP	0,8 1,2 1,6 1,2 1,2 1,6 2,4 2,4	0																			

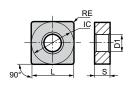
2,4

SNMM 310924 NHP

^{● =} Euro-Lager ○ = Lagerartikel in Japan

Abmessungen (mm)											
SN	L	IC	S	D_1							
1906	19,05	19,05	6,35	7,94							
2507	25,4	25,4	7,94	9,2							
2509	25,4	25,4	9,52	9,2							
3109	31,75	31,75	9,52	8,8							

CNIMA AAAA										tme chick								Cer				artm besch		
SNMM •••••				Р			٨	_	PM	_	(Н		S	F	M	500		P	100001	K	S	_	
			15P	20P	AC8025P	35P	MOZ SOM	40M	OM	5 1	S S	30	058	AC5015S	300	88	Z	Z	<u> </u>	<u>د</u> ح			5	
M-Toleranz, einseitig	ICO Kat Nin	DE	AC8015P	(C80	(C80)	080	AC6020M	AC6040M	AC630M	AC4010K	045	C50	(C20	C50	C10	C53	1500	T2500Z	T10007	1500	G10E	H51	ZCH:	
Anwendung Plattenform	ISO KatNr.	RE	٩	7	۷,	Q 4	4	. 4	d	Q <	LQ	٩	Q.	Q <	L Q	. 4	-	-		- -	0	ш		
	SNMM 190616 NHU	1,6							•															
	SNMM 250724 NHU	2,4	0	•	•				•															
15 IC: #25,4	SNMM 250924 NHU	2,4	0	0	0				•															
Schrittlefe (mm) Schrittlefe (mm) NHM	SNMM 310924 NHU	2,4	0	0	O																			
NHW																								
NHU	SNMM 190616 NHW	1,6							•															
NHU	SNMM 250724 NHW	2,4	0	•	•				•															
Vorschub (mm/U)	SNMM 250924 NHW	2,4	O	•	•				•															
	SNMM 310924 NHW	2,4	o	0	O				o															
						+																+		
	SNMM 190616 NHF	1,6			0																			
15	SNMM 190624 NHF	2,4			0																			
Schnittier (mm) 10 - NHF	SNMM 250724 NHF	2,4			0				0															
NHF	SNMM 250732 NHF	3,2			0	0																		
15 - NHF 10 - 0,5 1,0 1,5 Vorschub (mm/U)	SNMM 250924 NHF SNMM 250932 NHF	2,4			000	•			•															
Vorschub (mm/U)		3,2																						
	SNMM 310924 NHF	2,4			0	0																		
											+													
			1																					



Abmessungen (mm)											
SN	L	IC	S	D ₁							
0903	9,525	9,525	3,18	3,81							
1204	12,7	12,7	4,76	5,16							
1506	15,875	15,875	6,35	6,35							
1906	19,05	19,05	6,35	7,94							

Cermet Hartmetal

Cermet Hartmetal

SN

beschichtet unbesch. unbeschichtet

SN

beschichtet unbesch. unbeschichtet

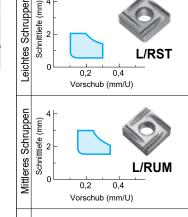
Hartmetall

beschichtet

Hartmetall

beschichtet

PM K


● G/M-Tolera	anz, sonstige neg. V	Vendeschneidplatten		:8015P	:8020P	AC8025P AC8035P	:6020M	AC6030M AC6040M	AC630M	4010K	AC4015K AC420K	2503U	C5005S	50158	:1030U	530U	500Z	T3000Z	T1000A	T1500A	1510	EH520 H1
Anwendung	Plattenform	ISO KatNr.	RE	8	۶ کا		A	A A	AC	AC.		AC	¥	A	8	AC	드	<u> 1</u> 2	Γį	7 7	宣	파도
Schruppen		SNMA 120404 SNMA 120408 SNMA 120412 SNMA 120416 SNMA 120420 SNMA 150612 SNMA 150616 SNMA 190612 SNMA 190616	0,4 0,8 1,2 1,6 2,0 1,2 1,6							• 0 0 0 0												
Mittl. Schruppen	0	SNGA 120404 SNGA 120408 SNGA 120412	0,4 0,8 1,2									0							0			

SNGG

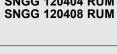
G-Toleranz, doppelseitig

			• • •
/	An	wendung	Plattenform
	_	4.1	

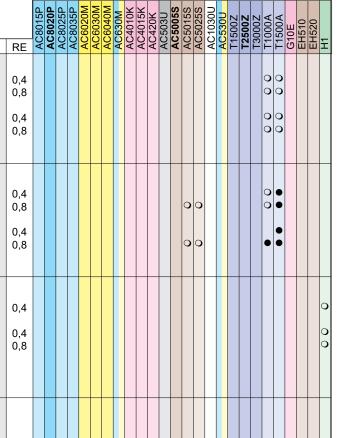
(R)

SNGG 120404 LUM
SNGG 120408 LUM

ISO Kat.-Nr.


SNGG 090304 LST

SNGG 090308 LST


SNGG 090304 RST

SNGG 090308 RST

0,2 0,4 0,6 Vorschub (mm/U)

L/RAX

Schnitttiefe (mm)

3 2

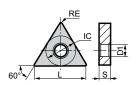
1

0

Für Aluminium

^{● =} Euro-Lager

	Abmes	sungen	(mm)	
SN	L	IC	S	D ₁
1204	12,7	12,7	4,76	5,16


(Hartmetall beschichtet						Cermet Hartm														
Ì	SN_N					Р		T	M		esch M	icht K	et	Н	s		P		esch	ichtet	unbe	sch. L	_	schich	ntet
			<u> </u>		5P	9	5 5 7	MO	Mo			5K	¥	U S	55	58	3	٥,			4	_			
•	G/M-Toleranz, sonsti	ge neg. V	Vendeschneidplatten		3801	3802	AC8025P	3602	AC6030M	604	630	401	:420	AC503U	501	505	103	AC530U	2007	000	7000	T1500A	1510	1520	
Ar	nwendung Plattenfo	orm	ISO KatNr.	RE	A	¥,	A A	Y Y	A	AC	A	¥ ¥	AC	A	Y \	A	A	Y i	1	13	T i	<u> </u>	山	山	Ξ
Mittl. Schruppen			SNGN 120408	0,8																	0	c			
Mittl. Schruppen			SNMN 120408 SNMN 120412 SNMN 120416	0,8 1,2 1,6							C				0	000					0	2			

K (R)

s

DREIECKIG WENDESCHNEIDPLATTEN

Γ		Abmes	sungen	(mm)	
Γ	TN	L	IC	S	D ₁
Γ	1604	16,5	9,525	4,76	3,81
Γ					
Г					
Г					
Г					
Г					

RE

0,2

0,4

0,8

0,2

0.4 0.8

0,4

0,8

0,4

0,8 O OOO

1,2

0,2

0,4

0,8

0,8

0,2

0,4

0,8

1,2

. .

a

OCO

0000

Cermet Hartmetall

SN

beschichtet unbesch. unbeschichtet

T1500Z T3000Z T3000Z T1000A T1500A G10E EH510 EH520 H1

00000

 $|\mathbf{o}|$

•|0|•

0000

• • •

000

000

000

000

00

Hartmetall

beschichtet

0

0

O

O

 \circ

0 0

. . . •

•

0

AC4010K AC4015K AC420K AC503U AC5005S AC5015S

TNMG ••••• I - I	

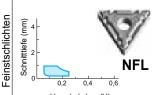
M-Toleranz, doppelseitig

Anwendung Plattenform

Feinstschlichten		NFB .4 b (mm/U)
Ę	<u> </u>	6750

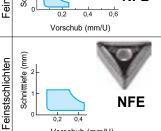
Schnitttiefe (mm) Feinstschlichte

TNMG 160402 NFA

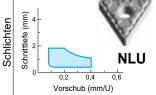

ISO Kat.-Nr.

TNMG 160402 NFB

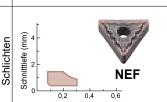
TNMG 160404 NFB

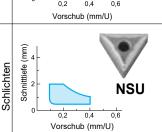

TNMG 160408 NFB

TNMG 160404 NFA TNMG 160408 NFA


Vorschub (mm/U)

TNMG 160404 NFL TNMG 160408 NFL

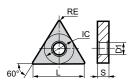

TNMG 160402 NFE TNMG 160404 NFE TNMG 160408 NFE



0,4

TNMG 160402 NLU TNMG 160404 NLU TNMG 160408 NLU TNMG 160412 NLU

TNMG 160404 NEF TNMG 160408 NEF


TNMG 160402 NSU TNMG 160404 NSU TNMG 160408 NSU

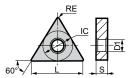
TNMG 160412 NSU

● = Euro-Lager ○ = Lagerartikel in Japan

T DREIECKIG

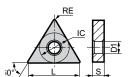
Abmessungen (mm)												
TN	L	IC	S	D ₁								
1603	16,5	9,525	3,18	3,81								
1604	16,5	9,525	4,76	3,81								
2204	22,0	12,7	4,76	5,16								

E													eta								Cer					etal
	INIV	IG •••••				Р		T	N	_	PM	chic	K		1	S		P	_	besc	_	et un	besch.	K	besch	nichtet N
	M Tala	ronz donnolositis			15P	120P	25P	135F	30M	140M	MOS	10K	15K	S S	000	150	258	300	300	7	7 0	7 4	OA O		0	0
	IVI- I Oler nwendung	ranz, doppelseitig Plattenform	ISO KatNr.	RE	AC80	AC80	AC8025P	AC8035P	ACION PCRO	AC6040M	AC630M	AC40	AC4015K	AC42	ACE	ACSO ACSO	AC5025S	AC10	AC530U	T150	T2500Z	T1000A	T150	G10E	EH51	EH520 H1
Schlichten	(uu	NSE	TNMG 160404 NSE TNMG 160408 NSE TNMG 160412 NSE TNMG 220404 NSE TNMG 220408 NSE	0,4 0,8 1,2 0,4 0,8	• • • •	• • • •													(0	0		0			
\(\)		0.2 0,4 0,6 orschub (mm/U)	TNMG 220412 NSE	1,2	0	0	3																			
	 _		TNMG 160304 NSX TNMG 160308 NSX		0			c																		
Schlichten	Schnittliefe (mm)	NSX	TNMG 160404 NSX TNMG 160408 NSX																				0			
		0,2 0,4 0,6 orschub (mm/U)	TNMG 220404 NSX TNMG 220408 NSX TNMG 220412 NSX		O	0	000	c																		
Mittleres Schruppen	Schnittliefe (mm)	NGU	TNMG 160404 NGU TNMG 160408 NGU TNMG 160412 NGU TNMG 160416 NGU TNMG 220404 NGU TNMG 220408 NGU TNMG 220412 NGU	0,4 0,8 1,2 1,6 0,4 0,8 1,2	• • • •	•				•	•	0000 000	$ \mathbf{o} $		C				0	000	0		00			
	Vo	orschub (mm/U)																								
uppen	Schnittiefe (mm)		TNMG 160404 NGE TNMG 160408 NGE TNMG 160412 NGE		• • •	• • •		0																		
Mittleres Schruppen	Vo	NGE 0.2 0.4 0.6 orschub (mm/U)	TNMG 220408 NGE TNMG 220412 NGE	0,8 1,2	00			•																		



T DREIECKIG WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
TN	L	IC	S	D ₁
1604	16,5	9,525	4,76	3,81
2204	22,0	12,7	4,76	5,16

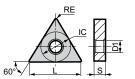


	60° L S											4 - 11							0 -		- 4			4 - 11
	TNMG •••••										tme chic								Ce schich		et nbesch		nbeso	netall chichtet
					P			N	_	PM	_	K	Н		S	_	PM			P		K		N
•	M-Toleranz, doppelseitig			AC8015P	020F	025	ACSU35P ACG020N	AC6030M	AC6040M	AC630M	010K	2012	AC503U	0058	0158	0220	AC530U AC530U	Z0C	Z0C	Z00	Z A	Ш	10	20
	wendung Plattenform	ISO KatNr.	RE	AG8	AC8	A C C	ACS ACS	ACA	AC6	AC6	A 5	4 S	ACS	AC5	AC5	ACS ACS	AC5 AC5	T1500Z	T25(T300	T1500A	G10	EH5	EH520 H1
Mittleres Schruppen	(0.000000)	TNMG 160404 NUG TNMG 160408 NUG TNMG 160412 NUG TNMG 160416 NUG TNMG 220408 NUG TNMG 220412 NUG	0,4 0,8 1,2 1,6 0,8 1,2	•																				
Mittleres Schrubben	Schnittliefe (mm) 2 Chairtiefe	TNMG 160404 LUM TNMG 160408 LUM TNMG 220404 LUM TNMG 220408 LUM TNMG 160404 RUM	0,4 0,8 0,4 0,8	•														0	0					
Mittlere	Vorschub (mm/U)	TNMG 160408 RUM TNMG 220404 RUM TNMG 220408 RUM	0,8 0,4 0,8	•														0	0	3				
Mittleres Schruppen	NEG Neg Vorschub (mm/U)	TNMG 160404 NEG TNMG 160408 NEG TNMG 160412 NEG	0,4 0,8 1,2	000	•			•	•						000								•	•
Mittleres Schruppen	NEX Vorschub (mm/U)	TNMG 160404 NEX TNMG 160408 NEX TNMG 160412 NEX	0,4 0,8 1,2						•	•				0 • •	• •		0							
Mittleres Schruppen	NUP Vorschub (mm/U)	TNMG 160404 NUP TNMG 160408 NUP TNMG 160412 NUP TNMG 220408 NUP	0,4 0,8 1,2 0,8						•	•				•	• 0	O	0					0		

^{● =} Euro-Lager ○ = Lagerartikel in Japan

T DREIECKIG

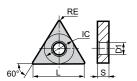
	Abmes	sungen	(mm)	
TN	1	IC	S	D ₁
1604	16,5	9,525	4,76	3,81
2204	22,0	12,7	4,76	5,16
2706	27,5	15,875	6,35	6,35
3309	33,0	19,05	9,52	7,93


Е		A = ==							I	Har	tm	eta							C)er	me	t	Har	tme	tall
	TNMG •••••				P	1	1	_	VI	bes	_	chte K	T	H	S		P	_	besch	_	et uni	_	_	schic	htet
				5P	OP.	5P	2P		2 2	_			_	200	_	58	_	-		Ť				Ī	
	M-Toleranz, doppelseitig			3801	AC8020P	3802	3803	ACCOSON	AC6040M	0890	AC4010K	AC4015K	7420	ACS030	501	3502	3103	AC530U	2007	Z00021	7000	T1500A	10E	EH520	
Αı	wendung Plattenform	ISO KatNr.	RE	AC	¥	¥.	Ϋ́	¥ ?	1 4	ξ ¥	Ä	¥.	₹ ₹	₹ 4	¥	Y	Ψ	Ä		F	, <u>F</u>	F	ம் ப்	山山	ΞĮ
Schringen	Schnittiefe (mm) 2 NMX	TNMG 160404 NUX TNMG 160408 NUX TNMG 160412 NUX	0,4 0,8 1,2	•	_		•																		
Schr	NUX 0,0,4 0,6 Vorschub (mm/U)	TNMG 220408 NUX TNMG 220412 NUX	0,8 1,2		0																				
5	(interest)	TNMG 160408 NMU TNMG 160412 NMU	0,8 1,2	•		•				•				0		0		0							
Schringen	Schnittiefe (mm)	TNMG 220408 NMU TNMG 220412 NMU TNMG 220416 NMU	0,8 1,2 1,6	• • •	• • •	•				•				C		•									
	0 02 04 08 08 Vorschub (mm/U)	TNMG 270612 NMU TNMG 270616 NMU	1,2 1,6			0	•																		
Schrinnen	Schnitttiefe (mm)	TNMG 160408 NEM TNMG 160412 NEM TNMG 330924 NEM	0,8 1,2 2,4	00			C)						C		0									
Schr	NEM 0 0 0.2 0.4 0.6 0.8 Vorschub (mm/U)	TNING 330924 NEW	2,4													9									
	((mu))	TNMG 160408 NME TNMG 160412 NME	0,8 1,2		• •				İ			0													
Schrinnen		TNMG 220408 NME TNMG 220412 NME TNMG 220416 NME	0,8 1,2 1,6	0	000	\circ	C				0	000													
Schrippen	(www.) 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TNMG 160408 NMX TNMG 160412 NMX TNMG 220408 NMX TNMG 220412 NMX	0,8 1,2 0,8 1,2		0 0 0		• C																		

/C/

K (R)

DREIECKIG


	Abmes	sungen	(mm)	
TN	L	IC	S	D ₁
1604	16,5	9,525	4,76	3,81
2204	22,0	12,7	4,76	5,16
2706	27,5	15,875	6,35	6,35

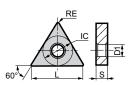
ı		3		n.							-																			Har											rm				me	
			V	IV	1	j		J			X					1									Р	Т	T		M I	bes	chi	chte K	_	1	5	3	Т	M	bes	_	ntet u	ınbesc	th. u	_	schic	ntet
																					•			5P	9	5P	5P	MO.		2	SK	5K	소	2 4	55.5	55	3 5	3	Z	7	N	4 <	1			
					-				-		eiti	g												AC8015P	2802	3802	2803	3602	AC6030M AC6040M	AC630M	2401	AC4015K	AC420K	2002	501	AC5025S	103	AC530U	2007	2007	T3000Z		10E	1510	EH520	_
	An	W	enc	un	g		Pla	atte	enf	orı	n				ISC) k	C at	Nr	r.				RE	¥	ĕ	¥	¥,	Ă.	¥ 4	ί¥	¥	Ă	¥	₹ ₹	Í	¥	Ā	ξ ¥	1	T2		= }	Ů	亩	亩	Ŧ
	Schruppen	,	6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- - (0,2 Vors	o, ochul		0,6 m/U		N 0,8	GZ			TN TN TN	MG MG MG MG	16 16 22 22	604 604 204 204	108 112 108 112	NG NG NG NG NG	Z Z Z Z			0,4 0,8 1,2 0,8 1,2 1,6								• 0 0 0	0 • 0 000	•													
			6	-							9 8	1	•	ΓN	MG	16	604	804	LHI LHI	М			0,4 0,8	000	0	0	0		•	000)									
	Schruppen	,		- - -				-1-			RHM	Λ	•	TN	MG	22	204	804	LHI	M			0,4 0,8	0						00																
	S		, 0		0,2 Vors	o, ichul		0,6 m/ L		0,8			•	ΓN	MG	16	604	804	RH RH	М			0,4 0,8	•		0			•	0)									
																			RH RH				0,4 0,8	0						00																
	en	()	6 (IIIIII) au							N.	1	P		TN TN TN	MG MG MG	16 16 16	604 604 604	108 112 116	NU. NU. NU. NU.	Z Z Z			0,4 0,8 1,2 1,6 2,0				0				• 0		•													
	Schruppen	1 11 1		-	0,2	0,	4	0,6		N	UZ		•	ΓN	MG	22	204	112	NU. NU.	Z			0,8 1,2 1,6			000					000	$ \mathbf{o} $	0													
					Vors	chul) (m	m/L	J)				•	ΓN	MG	27	'06	12	NU.	Z			0,8 1,2 1,6			000	0																			

T DREIECKIG

	Ahmoo	cundon	(mm)	
	Abmes	sungen	(111111)	
TN	L	IC	S	D_1
1604	16,5	9,525	4,76	3,81
2204	22,0	12,7	4,76	5,16
2706	27,5	15,875	6,35	6,35

ľ	Т	NIN										lartı escl										rm tet			lartr unbeso		
		IΝI	/IM				P	Ī		М	_	PM		K	Н	I	S	П	M	500	OTILOI	P	unboo	K	_		N
						5P	В	5P	r S	M	Mo	≥ 3	S	۲ ک	U	55	S	3 =	3 5	N	N	NI.	,	7			
•	M	-Tole	eranz, einseitig			801	AC8020P	802	AC8035P AC6020M	AC6030M	AC6040M	630	401	AC420K	503	200	AC5015S	103	AC530U	5002	T2500Z	000	T1000A		EH510	520	
Α	١nw	endur	ng Plattenform	ISO KatNr.	RE	AC	AC	AC P		8	AC	AC	A C	A A C	AC	AC	AC	V	S S	T1	T2	130	T1(<u> </u>	品		도
	schruppen	Schnittlefe (mm)	IC: #15.875- 19.05	TNMM 160404 NMP TNMM 160408 NMP TNMM 160412 NMP	0,4 0,8 1,2	•		- 1	•			•															
	Schweres Schruppen	2- 2-	10-912)	TNMM 220408 NMP TNMM 220412 NMP TNMM 220416 NMP	0,8 1,2 1,6	•		- 1				•															
		0	0,2 0,4 0,6 0,8 1,0 Vorschub (mm/U)	TNMM 270612 NMP TNMM 270616 NMP	1,2 1,6			0																			
- (Schweres Schruppen	Schnittlefe (mm) 8	IC: #15.875 - 13.005 NHG IC: -#12.7 NHG 0.2 0.4 0.6 0.8 1.0 Vorschub (mm/U)	TNMM 160408 NHG TNMM 160412 NHG TNMM 220408 NHG TNMM 220412 NHG TNMM 220416 NHG	0,8 1,2 0,8 1,2 1,6	•						•															
- (Schweres Schruppen	Schnittliefe (mm) 8	1C: #15,875 - NHP	TNMM 160408 NHP TNMM 160412 NHP TNMM 220408 NHP TNMM 220412 NHP TNMM 220416 NHP	0,8 1,2 0,8 1,2 1,6			0000)																		
-	Sch	٥	0,2 0,4 0,6 0,8 1,0	TNMM 270612 NHP TNMM 270616 NHP	1,2 1,6																						

TNMN •••••										etal hte							ern chtet	net unbesc	Ha h. unb	rtme eschi	
I INIVIIN GOOG				Р		_	М	PM		K	Н	E	S	P	v		Р		K	S	N
M-Toleranz, sonstige neg. We	ndeschneidplatten		AC8015P	38020P	38025P	AC6020M	AC6030M	AC630M	34010K	34015K	5030	250055	50158	1030U	2530U	T1500Z	Z000E	T1000A	G10E	1510	
Anwendung Plattenform	ISO KatNr.	RE	A	AC.	A A	A	¥	Z Z	A	S S	A	AC .	AA	¥	Ä	1	<u>T</u> 3	디디	Öί		三
Mittleres Schruppen	TNMN 160408 TNMN 160412 TNMN 160416	0,8 1,2 1,6							$ \mathbf{c} $	000											


^{● =} Euro-Lager ○ = Lagerartikel in Japan

Vorschub (mm/U)

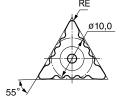
K (R)

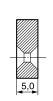
DREIECKIG WENDESCHNEIDPLATTEN

Abmessungen (mm) TN_	
1604 16,5 9,525 4,76 3,81	
2204 22,0 12,7 4,76 5,16	;

Hartmetall beschichtet

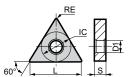
Hartmetall


beschichtet \mathbf{K}



				Р			M	PM	K	ŀ	1	S	F	м		Р		K	SN
● M-Toleranz, sonstig	ge neg. Wendeschneidplatten		38015P	38020P	38025P	36020M	AC6040M AC6040M	AC630M	40 10K	AC420K	35005C	AC5015S	31030U	AC530U	500Z	T3000Z	500A	10E 1510	EH520 H1
Anwendung Plattenfo	orm ISO KatNr.	RE	¥	¥.	¥ ¥	¥.	¥¥	¥ ×	ξĕ	Ϋ́	Ž	Ϋ́	8	¥ i	7	13	- -	回	立
Schruppen	TNMA 160404 TNMA 160408 TNMA 160412 TNMA 160416 TNMA 160420 TNMA 220408 TNMA 220412 TNMA 220416	0,4 0,8 1,2 1,6 2,0 0,8 1,2 1,6								•									

Cermet Hartmetall


Cermet Hartmetall beschichtet unbesch. unbeschichtet

TRM		

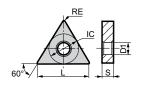
	M-Toleran wendung	z, doppelseitig Plattenform	ISO KatNr.	RE	ACR01	AC8020F	AC8025F	AC60201	AC6030N	AC630M	AC4010k	AC4015P	AC503U	AC501	AC50258	AC1030L	AC530L T1500Z	T2500Z	T1000Z	T1500A	G10E EH510	EH520	ī
Feinstschlichten	J	-FL	TRM 551704 -FL TRM 551708 -FL	0,4			00												2				
Schlichten	fe (mm)	-LU	TRM 551704 -LU TRM 551708 -LU TRM 551712 -LU	0,4 0,8 1,2			000												0				
Schlid		.2 0,4 0,6 -SU schub (mm/U)	TRM 551704 -SU TRM 551708 -SU TRM 551712 -SU	0,4 0,8 1,2			000			•									2				
Mittleres Schruppen	Schniff 0	-GU	TRM 551704 -GU TRM 551708 -GU TRM 551712 -GU	0,4 0,8 1,2			000			• • • •													

T DREIECKIG WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)							
TN	L	IC	S	D_1						
1103	11,0	6,35	3,18	2,26						
1603	03 16,5 9,525 3,18									
1604	16,5	9,525	4,76	3,81						

E		٧.	16	60°5/												met								ern			artm		1
			V	GG							P	П	N		PM	hich K	_	Н	s		P	_	oesch	P	unbes	ch. u	nbesch	_	
								_		5P	5P	35P	MO	MO	N	治	X	<u>ي</u> 2	55	255	300	7	7	2	4	<			
_					doppel					AC8015P	AC8025P	AC8035P	AC6020M AC6030M	AC6040M	AC630M	AC4010K AC4015K	AC420K	C503	AC5015S	AC5025S	AC1030U	AC530U	1500	T3000Z	T1000A	G10E	H510	EH520 H1	
Α	n۷	ve	ndur	ng∣ P	Plattenfo	rm	ISO KatNr.		RE	∢ <	(<	(4	4	₹	∢ •	4	Ā	₹ •	₹ ₫	A	Ā	∢ F	- È	ř	Ĥ Ĥ	_ (0	Ш	ΠI	ł
Schlichten		Schnittiefe (mm)	3 - 2 - 1 -		13		TNGG 110302 LFT TNGG 110304 LFT		0,2 0,4																0				
450	5	Schi	0	0,2 Vorschub (0,4 I (mm/U)	_/RFT	TNGG 110302 RFT TNGG 110304 RFT		0,2 0,4																0				
							TNGG 160302 LST TNGG 160304 LST TNGG 160308 LST		0,2 0,4 0,8																0	O			
naddinde	III abbail	(mı	4		K		TNGG 160402 LST TNGG 160404 LST TNGG 160408 LST TNGG 160412 LST		0,2 0,4 0,8 1,2																000	2			
Leichtes Schringen	Laid lias of	Schnittliefe (mm)	3 - 2 - 1 - 0 -			/RST	TNGG 160302 RST TNGG 160304 RST TNGG 160308 RST		0,2 0,4 0,8																000)			
			-	0,2 Vorschub (r	0,4 mm/U)		TNGG 160402 RST TNGG 160404 RST TNGG 160408 RST TNGG 160412 RST		0,2 0,4 0,8 1,2																000	2			
Schlichten	Collicinal	Schnittliefe (mm)	3 - 2 - 1 - 0	0,2 Vorschub (٥, .	NSU	TNGG 160402 NSU TNGG 160404 NSU TNGG 160408 NSU		0,2 0,4 0,8										000	O			\mathbf{c}		000	C			
hten		mm)	3 - 2 -				TNGG 160401 LFY TNGG 160402 LFY TNGG 160404 LFY TNGG 160408 LFY TNGG 160412 LFY		0,1 0,2 0,4 0,8 1,2										0 0	000	000) C		0000	0			
Schlichten		Schnitttiefe (mm)	1-0	0,2 Vorschub (0,4	/RFY	TNGG 160401 RFY TNGG 160402 RFY TNGG 160404 RFY TNGG 160408 RFY TNGG 160412 RFY		0,1 0,2 0,4 0,8 1,2										0 0	000	000) C		0000	0			
Schlichten		.e (mm)	3 - 2 -			*	TNGG 160402 LFX TNGG 160404 LFX TNGG 160408 LFX		0,2 0,4 0,8										O	000					0				
ildo	500	Schnittliefe (mm)	1 0	0,2 Vorschub (0,4	/RFX	TNGG 160402 RFX TNGG 160404 RFX TNGG 160408 RFX		0,2 0,4 0,8										0 0	000	000				0				

● = Euro-Lager ○ = Lagerartikel in Japan



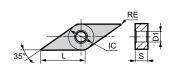
DREIECKIG

	Abmes	sungen	(mm)	
TN	L	IC	S	D ₁
1103	11,0	6,35	3,18	2,26
1604	16,5	9,525	4,76	3,81
2204	22,0	12,7	4,76	5,16

Hartmetall beschichtet Cermet Hartmetall beschichtet unbesch. unbeschichtet

			Į.		<u>.</u>			171	_^	1	`_		=	5	M	4	_	÷		K	S		4
● G-Toleranz, dopp				AC8015P	C8020P	AC8025P AC8035P	AC6020M	AC6030M	AC6040M AC630M	AC4010K	24015K	AC503U	C5005S	AC5025S	AC1030U	C530U	2500Z	T3000Z	T1000A	G10E	H510	EH520 H1	
Anwendung Platten	form	ISO KatNr.	RE	ĕ١	₹ ?	ăă	Ă	ă ?	Ž Ž	ă	ξ Ž	Ă	Ž Ž	ίŽ	Ă.	ďμ	F	Ĕ	Èβ	<u>-</u> ග	шī	ŪΙ	:
hruppen	W.	TNGG 160402 LUM TNGG 160404 LUM TNGG 160408 LUM TNGG 160412 LUM TNGG 220404 LUM TNGG 220408 LUM	0,2 0,4 0,8 1,2 0,4 0,8													0 0 0		000					
Sct Sct	L/RUM		-,-																				
Wittleres Schruppen Schrittere (mm) 2 Schrittere (mm) 2 Schrittere (mm) 4 - 0.2 0.4 Vorschub (mm/U)		TNGG 160402 RUM TNGG 160404 RUM TNGG 160408 RUM TNGG 160412 RUM	0,2 0,4 0,8 1,2														\circ		•			0	,
		TNGG 220404 RUM TNGG 220408 RUM	0,4 0,8																0				
Schlichten (mm/n)	NGH	TNGG 160402 NGH TNGG 160404 NGH TNGG 160408 NGH	0,2 0,4 0,8									000											
Schnittiefe (mm)	L/RAX	TNGG 160402 LAX TNGG 160404 LAX TNGG 160408 LAX	0,2 0,4 0,8																			000	•
σ 0 0,2 0,4 0,6 Vorschub (mm/U)		TNGG 160402 RAX TNGG 160404 RAX TNGG 160408 RAX	0,2 0,4 0,8																			0)

TNGA •••••									neta ichte							erm			artme	
				Р		M		M	K	Н	П	S	F	м		Р		K	S	N
G-Toleranz, sonstige neg.			38015P	38025P	38035P	36020M	36040M	.630M	34015K	3420K	35005S	50158	1030U	2530U	500Z	Z000	000A	10E	1510	2 - 2
Anwendung Plattenform	ISO KatNr.	RE	\	ίď	\forall	A	¥.	¥ \		된	¥	A		A	1 ۲	12	디디	9	山山	三
Mittleres Schruppen	TNGA 110308 TNGA 160402 TNGA 160404 TNGA 160408	0,8 0,2 0,4 0,8								000		0					0			0


Hartmetall beschichtet

Hartmetall

beschichtet

K

	Abmes	sungen	(mm)	
VN	L	IC	S	D_1
1604	16,6	9,525	4,76	3,81

Cermet Hartmetall beschichtet unbesch. unbeschichtet

Cermet Hartmetall

beschichtet unbesch. unbeschichtet

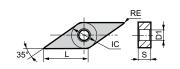
K S N

/**c**/

<u> K</u>

 (\mathbf{R})

S


• IVI- I Oleran	z, sonstige neg. v	vendeschneidplatten		Įχ	ĕ	쩛	8	٤١٤	9	4	4	4 5	35	350	3		500	2	8 8	50	OE	151	152	
Anwendung	Plattenform	ISO KatNr.	RE	A	¥	A	A	1	AC	A	A P	A	A	AC	A S	4	ξ F	T2	1 13	F	G1	山	山	=
Schruppen		VNMA 160404 VNMA 160408 VNMA 160412	0,4 0,8 1,2							000	o	2												

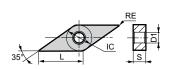
Т,		-			ŀ	_		IVI		M	K	Į.		S	1	_		Р		K	S		N
•	M-Toleranz, doppelseitig			3015P	8020P	3025P	AC6020M AC6020M	3030M	AC6040M	330M 4010K	AC4015K	503U	5005S	50158	1030U	AC530U	700	Z00	00 A)E	EH510	220	
	wendung Plattenform	ISO KatNr.	RE	Ϋ́	AC	Ş	A S	ACC.	4C6			SO P	AC!	A C	ζ(¢	AC!	2 2 2	130	212	915	III.	Ë	-
Feinstschlichten	NFB Occupancy Occupancy Occupancy Occupancy Occupancy Occupancy NFB Vorschub (mm/U)	VNMG 160404 NFB VNMG 160408 NFB	0,4						00									0	000)			
Feinstschlichten	NFA Output O	VNMG 160404 NFA VNMG 160408 NFA	0,4 0,8													C		0	0				
Feinstschlichten	NFL Open MFL	VNMG 160404 NFL VNMG 160408 NFL	0,4			•				0									•				
Feinstschlichten	Ocharitation of the contraction	VNMG 160402 NFE VNMG 160404 NFE VNMG 160408 NFE VNMG 160412 NFE	0,2 0,4 0,8 1,2	0	0)	0	0000									о 0))			
Schlichten	Ochonic (mm/U)	VNMG 160402 NLU VNMG 160404 NLU VNMG 160408 NLU VNMG 160412 NLU	0,2 0,4 0,8 1,2	•		•		000		000									0				
Mittleres Schruppen	NEF Vorschub (mm/U)	VNMG 160402 NEF VNMG 160404 NEF VNMG 160408 NEF	0,2 0,4 0,8	000				•		0			000	000							- 1	•	

● = Euro-Lager ○ = Lagerartikel in Japan

RHOMBISCH WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)		
VN	L	IC	S	D_1	
1604	16,6	9,525	4,76	3,81	

VNMG (-	



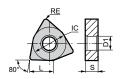
	\	/NIN	/IG													artr esch							_		Cerr nichte			Hartr unbes	
											P 040	15P	MO	M MOS	MO	M N	Y X:		H Us	_	S SS	000 0000	_	7	F	4			S
_		M-Tole wendun			pelseit nform	ig	ISO KatNr.	R		AC8015P		AC803	AC602	AC6030M	AC6040M	AC630M	AC4015K	AC420	AC503	AC500	AC5025S	AC103	AC530U	T1500,	T30007	T1000A	T1500A	EH510	EH520
20140	Schlichten	Schnittiefe (mm)		0,4 0,6 sub (mm/U			VNMG 160402 NSU VNMG 160404 NSU VNMG 160408 NSU	0, 0, 0,	2 4	•				•	• • •	•				0			00	00		O			
Miking O conclusion	Mittleres Schruppen	Schnittiefe (mm)		0,4 0,6 ub (mm/L			VNMG 160404 NSE VNMG 160408 NSE	0, 0,		0														0		00			
Millim de O conclutiv	Mittleres Schruppen	Schnittliefe (mm)		0,4 0, ub (mm/L		•	VNMG 160404 NSX VNMG 160408 NSX	0,		000														0			00		
and O conclution	Mittleres Schruppen	Schnittiefe (mm)		0,4 0,4 ub (mm/L			VNMG 160404 NGU VNMG 160408 NGU VNMG 160412 NGU	0, 0, 1,	8	•			•			•				\circ		•	0	0			0		
a de O conclutiv	Mittleres Schruppen	Schnittliefe (mm)		0,4 0,4 ub (mm/U			VNMG 160404 NGE VNMG 160408 NGE VNMG 160412 NGE	0, 0, 1,	8	000																			
A Committee Comm	Mittleres Schruppen	Schnittiefe (mm)		0,4 0,4 ub (mm/U			VNMG 160404 NUG VNMG 160408 NUG VNMG 160412 NUG	0, 0, 1,		•																			
and O conclutive	Mittleres Schruppen	Schnittliefe (mm)		0,4 0,6 aub (mm/L	NEG		VNMG 160404 NEG VNMG 160408 NEG VNMG 160412 NEG	0, 0, 1,	8	000			•	•	•					\circ		•						0	0
	Mittleres Schruppen	Schnittliefe (mm)		0,4 0,4 ub (mm/U			VNMG 160404 NEX VNMG 160408 NEX	0,					•	•	• •	•			1 1		• 0		0						

^{● =} Euro-Lager ○ = Lagerartikel in Japan

	Abmes	sungen	(mm)	
VN	L	IC	S	D_1
1604	16,6	9,525	4,76	3,81

١	/NMG •••••										me chic									rme tet ur	et inbesch	Hai n. unb	rtme eschio	
/	INIVIO OCCUPA	V E-EE			Р			М		PM		K	H		s	F	м		Ţ	Р	_	K	S	N
_	M-Toleranz, doppelseitig	ISO Kat Nr	DE	AC8015P	AC8020P	AC8025P	AC8035P	AC6030M	AC6040M	AC630M	AC4010K	C4015K	AC503U	AC5005S	AC5015S	AC1030U	AC530U	T1500Z	T2500Z	T3000Z	1500A	G10E	EH510	7
Mittleres Schruppen	wendung Plattenform NUP NUP Vorschub (mm/U)	VNMG 160404 NUP VNMG 160408 NUP	0,4 0,8	ď	d • •				0	•	4	4	T d		•		4					0		
Mittleres Schruppen	Schniftler (mm) of the control of th	VNMG 160404 NUX VNMG 160408 NUX VNMG 160412 NUX	0,4 0,8 1,2	0	000	\circ	C																	
Mittleres Schruppen	Squifffel (mm) NGZ NGZ OJ.4 OJ.6 Vorschub (mm/U)	VNMG 160404 NGZ VNMG 160408 NGZ VNMG 160412 NGZ	0,4 0,8 1,2									3												
Mittleres Schruppen	Schnittiefe (mm) NMZ 10'5 0'4 0'6	VNMG 160404 NUZ VNMG 160408 NUZ VNMG 160412 NUZ	0,4 0,8 1,2			000	C				000	c)		0									

VNGG •••••										neta						t		err		-	Hart	tme [*]	_
VINGG GOOD	V E - E E			Р			М	J	м	K		Н	s		PM			Р			K	S	N
● G -Toleranz, doppelseitig			AC8015P	AC8020P	AC8025P	AC6020M AC6020M	AC6030M	AC6040M	AC630IM AC4010K	34015K	AC420K	55030	AC5015S	AC5025S	AC1030U	AC530U	11500Z	T3000Z	T1000A	500A	G10E FH510	1520	
Anwendung Plattenform	ISO KatNr.	RE	¥	ĕ.	\forall	${\forall}$	¥	A	4 4	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	¥.	₹ ₹	ίξ	¥	A	Ϋ́	-	3 2	F	Ξ	9 ப	山山	Image: Control of the property o
Schildren (mm/n)	VNGG 160402 NSU VNGG 160404 NSU VNGG 160408 NSU	0,2 0,4 0,8)		O	0			
Wittleres Schruthes Schrittige (mm) NEF Octobro (mm) Vorschub (mm/U)	VNGG 160402 NEF VNGG 160404 NEF	0,2 0,4						C					00										
Schnittiefe (mm) 2 L/RAX	VNGG 160402 LAX VNGG 160404 LAX VNGG 160408 LAX	0,2 0,4 0,8																					000
Eninimal Animal	VNGG 160402 RAX VNGG 160404 RAX VNGG 160408 RAX	0,2 0,4 0,8																					000

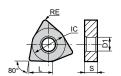

^{● =} Euro-Lager ○ = Lagerartikel in Japan

Vorschub (mm/U)

K (R)

W TRIGON-TYP WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
WN	L	IC	S	D ₁
0604	6,5	9,525	4,76	3,81
0804	8,7	12,7	4,76	5,16

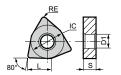


I	1											etal								me				neta	
	V	VNMG •••••				Р		Τ	M	bes	$\overline{}$	chtet K	Н	Г	S	Т	PM	bes	_	tet un	besch.	ı. un	besch	nichtet	_
					5P	0 0	ם מקצ	MO	MOS		Š	쏬	£ 2	55	55	0 5	3	Z	7	V	(<				
_		M-Toleranz, doppelseitig		1	AC8015P	AC8020P	200	AC6020M	AC6030M	AC630M	AC4010K	AC4015	AC503U	C500	AC5015S	2000	AC530U AC530U	T1500Z	T2500Z		T1500A	G10E	1510	EH520 H1	
ŀ	An	wendung Plattenform	ISO KatNr.	RE	Ā	₹ ₹	(4	Ā	Α̈́	(4	Ā	₹ <	ξĀ	Ā	₹ ₹	₹ <	7	È	ï	Ť	- <u>`</u>	ß	Ш	ŪΙ	-
	Feinstschlichten	Schnittiefe (mm)	WNMG 060404 NFB WNMG 060408 NFB WNMG 080402 NFB	0,4 0,8 0,2)								0			000				
	Feins	हुँ 0 0,2 0,4 Vorschub (mm/U)	WNMG 080404 NFB WNMG 080408 NFB	0,4 0,8																					
	Feinstschlichten	Operation of the control of the cont	WNMG 080402 NFA WNMG 080404 NFA WNMG 080408 NFA	0,2 0,4 0,8															000	0	0				
	Feinstschlichten	Worschub (mm/U)	WNMG 080404 NFL WNMG 080408 NFL	0,4						0 0								•			•				
	Feinstschlichten	Schmitting	WNMG 060404 NFE WNMG 060408 NFE WNMG 080402 NFE WNMG 080404 NFE WNMG 080408 NFE WNMG 080412 NFE	0,4 0,8 0,2 0,4 0,8 1,2	0 0 0				00000									0 0 0 0							
	Schlichten	Standard" NLU NLU O,2 O,4 O,6 Vorschub (mm/U)	WNMG 060404 NLU WNMG 060408 NLU WNMG 060412 NLU WNMG 080404 NLU WNMG 080408 NLU WNMG 080412 NLU	0,4 0,8 1,2 0,4 0,8 1,2					000	000								•	000	•	•				
	Schlichten	(imi) epimimious of the control of t	WNMG 060404 NLU-W WNMG 060408 NLU-W WNMG 080404 NLU-W WNMG 080408 NLU-W WNMG 080412 NLU-W	0,4 0,8 0,4 0,8 1,2	•		•	•	00000	•	•	•						•			•				

^{● =} Euro-Lager ○ = Lagerartikel in Japan

WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
WN	L	IC	S	D_1
0604	6,5	9,525	4,76	3,81
06T3	6,5	9,525	3,97	3,81
0804	8,7	12,7	4,76	5,16

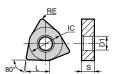


I		A (N IN 4 O O O O								F	lar	tme	etal	l					(Cerr	nei		Har	tme	etall
	V	VNMG 👀				Р	_	T		_	es	chic	chtet K	H		S	F	M	besc	hichte	_	_		schio	chtet
			_		5P	90.	5P	15P		M	Σ	S	곳 Ž	4 ⊃	55	55	200	2	N	7 /	I 4	4			
_		M-Toleranz, doppelsei			AC8015P	AC8020P	AC8025P	AC8035P	ACGUZUM	AC6040M	AC630M	AC4010K	2401	AC503U	AC5005S	AC5015S	AC1030U	AC530U	1500	125002	T1000A	T1500A	G10E EH510	4520	
/	٩n	wendung Plattenform	ISO KatNr.	RE	A	Ă	ĕ	ă	₹ <	Ž	Ă	Ă	¥ >	Ž	¥	Ϋ́	Ž	Ă	<u>`</u> l		È	Ì	ם פ	سَ ز	
	Schlichten	Schnittiefe (mm)	WNMG 060404 NEF WNMG 060408 NEF WNMG 080404 NEF	0,4 0,8 0,4	000	• •	•				•				000		•								
	Sc	0 0,2 0,4 0,6 Vorschub (mm/U)	WNMG 080408 NEF	0,8	0	•	•	0							•	•								•	,
	u.	e 4	WNMG 060404 NSU WNMG 060408 NSU WNMG 060412 NSU	0,4 0,8 1,2	• • •	• • 0					•					•	•))					
	Schlichten	NSI Property of the control of the c	WNMG 06T304 NSU WNMG 06T308 NSU	0,4 0,8			0																		
	S	(mm/U)	WNMG 080404 NSU WNMG 080408 NSU WNMG 080412 NSU	0,4 0,8 1,2	• • •	• • •	•	•			•				0	•)	0			,	• • •			
		"Standard"	WNMG 080404 NSE WNMG 080408 NSE WNMG 080412 NSE	0,4 0,8 1,2	• • •	•		0											0))		00			
	Schlichten	NSE "Wiper" W-		0,4 0,8	00		0																		
	Sc	5	ปี WNMG 080404 NSE-W WNMG 080408 NSE-W WNMG 080412 NSE-W	0,4 0,8 1,2	• • •	• • •	•												0			0			
	Schlichten	(E) 4 - (D) (E) (E) (D) (E) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	WNMG 080404 NSX WNMG 080408 NSX WNMG 080412 NSX	0,4 0,8 1,2	•	0	0	•												30		00			
	ruppen	"Standard" ⁶ Γ NGU	WNMG 060404 NGU WNMG 060408 NGU WNMG 060412 NGU	0,4 0,8 1,2	• •	• • •	•				•	000	0						0						
	Mittleres Schruppen	(mu) 4 - NGU		0,4 0,8 1,2	• • •	• • •	•	•			•	000	0		O	000		0	0	CC		00			
	Ĭ	8 0	WNMG 060408 NGU-W	0,8	0	0	0	0																	
			WNMG 080408 NGU-W WNMG 080412 NGU-W	0,8 1,2	•	•					•	•													

K (R)

V TRIGON-TYP WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
WN	L	IC	S	D_1
0604	6,5	9,525	4,76	3,81
06T3	6,5	9,525	3,97	3,81
0804	8,7	12,7	4,76	5,16

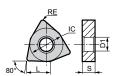


					ŧ	Ī.08	1	L				S	-				Ĺ		_]																		JC1	iait	Cic		λία		
1	٨	/ N	T	١	11	7			Y					Y			ı		T															me hic								b		eri					net chich	
V	/ ۱	<i>/</i>	1	V	11	J			lacksquare	J				lacksquare					Ţ								F				М		M	_	K	I	=		s	_	PM		0001	F	_		K	_	S	_
	N A	_	ماد		n-		4.	'n	n	ماد	oit	~														AC8015P	320P)25P	35P)20M	AC6030M	AC6040M	MOX	AC4010K	70.0	202	000	2022	AC5015S	2007	AC10300	200	3 5	3 6	 	OA		0	50	
_			dur	_	31 IZ				_	for	eit m	9			_	SC) k	 (ai	 tN	ار الا	—	—		F	RE	AC8(AC8	AC8(AC8(AC6020N	AC6(AC6(AC6	AC4	400	7 7		A CO	ACD V	Y CO	ACI	115 15 15	0 4 C F	T30007	T100	T1500A	G10E	EH5′	EH52	Ξ
Mittleres Schruppen		ttiefe (mm)	- - - -		0,2		0,4		0,	N	GE)		W W	/N /N /N /N	MG MG MG MG	0 0 0	60 60 80 80)40)41)40)40)41)8 2 4 8 2	NG NG NG NG	SE SE SE		0 1),8 ,2),4),8 ,2 ,6	•	•	•	000			`																		
Mittleres Schruppen		Schnittiefe (mm)	?-		0,2 prsch),4 (m	m/l	0, U)	_	IU	3		× × ×	/N /N /N /N	MG MG MG MG	0 0 0	60 6T 6T 80	30 30 30 40)8)4)8)4	NU NU NU NU NU	JG JG JG),4),8),4),8),4),8	•	• •	00000	0																					
Mittleres Schruppen		Schnittliefe (mm)	-		0,2 orsch),4 (m	m/l	o, U)		NE	•		W	/N /N /N	MG MG MG	0	60 80 80	41 40 40	12)4)8	NE NE NE NE	G G G		0 0),8 ,2),4),8 ,2	O	•	•	0	•	•	•	•							0								•	• •	
Mittleres Schruppen		Schnitttiefe (mm)	- - - -		0,2 orsch),4 (m	m/	0, U)	_	NE	(W	/N /N /N	MG MG MG	0	60 80 80	40 40 40)4)8	NE NE NE NE	X X X),4),8),4),8 ,2					• • • • •		• • •	• • • • • • • • • • • • • • • • • • • •						•		C)								
Mittleres Schruppen	5	Schnittliefe (mm)	-		0,2 orsch),4 (m	m/l	0, U)	_	NU	>									NU NU),8 I,2		•	•	•	•	•	•	•																	
Mittleres Schruppen	5	Schnitttiefe (mm)	6 4 - 2 - 0		0,2 orsch		,4 (m		0,6 U)		IEN	1		V	'NI	ИG ИG	0 0	80 80	40 41	8 2	NE NE	:M :M),8 ,2	0	•	•	0	•	•	•																		

^{● =} Euro-Lager ○ = Lagerartikel in Japan

WENDESCHNEIDELATTEN

	Abmes	sungen	(mm)	
WN	L	IC	S	D_1
0604	6,5	9,525	4,76	3,81
0804	8,7	12,7	4,76	5,16



1											net								erm				neta	
V	VNMG •••••				Р		Т	М	_	esch M	nich K	_	Н	S		PM		eschio	P	unbes	ch. ur	besch	nichte	_
				5P	OP.	55P	JON MAN	MO	MO	Z	S K	Ā) 1	55	25	⊚:	20 ~	J N	N	4	1			
	M-Toleranz, doppelseitig			AC8015P	AC8020P	3802		AC6030M	AC6040M	AC630M	AC4010K AC4015K	AC420K	AC5003U	3501	AC5025S	AC1030U	AC530L T15007	500	T3000Z	T1000A	G10E	1510	EH520 H1	
An	wendung Plattenform	ISO KatNr.	RE	¥	¥	¥;	¥ ¥	ξ¥	¥	A	¥ ¥	¥	¥	ί¥	A	¥.	₹ F	12	E	7	Ċ	山i	Ξ	
Schruppen	Output (mm/U) Robin Mux Nux Nux Nux Vorschub (mm/U)	WNMG 080404 NUX WNMG 080408 NUX WNMG 080412 NUX	0,4 0,8 1,2	•	• • •																			
Schruppen	8 NMU NMU 2 0,2 0,4 0,6 0,8 Vorschub (mm/U)	WNMG 060408 NMU WNMG 060412 NMU WNMG 080408 NMU WNMG 080412 NMU WNMG 080416 NMU	0,8 1,2 0,8 1,2 1,6	• • • •	•	•				•					•		0							
Schruppen	6 NME NME 0,20,14,0,6,0,8 Vorschub (mm/U)	WNMG 060408 NME WNMG 060412 NME WNMG 080408 NME WNMG 080412 NME WNMG 080416 NME	0,8 1,2 0,8 1,2 1,6	1	•																			
Schruppen	NMX NMX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WNMG 080408 NMX WNMG 080412 NMX	0,8			00																		
Schruppen	NGZ NGZ 0,2,0,4,0,6,0,8 Vorschub (mm/U)	WNMG 060408 NGZ WNMG 060412 NGZ WNMG 080404 NGZ WNMG 080408 NGZ WNMG 080412 NGZ	0,8 1,2 0,4 0,8 1,2									•												
Schruppen	NUZ 0,2 0,4 0,6 0,8 Vorschub (mm/U)	WNMG 080404 NUZ WNMG 080408 NUZ WNMG 080412 NUZ	0,4 0,8 1,2			000				(o •	•			000									

K/R)

TRIGON-TYP WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
WN	L	IC	S	D ₁
0804	8,7	12,7	4,76	5,16

RE

Cermet Hartmetall

Cermet Hartmetall

Cermet Hartmetall

SN

beschichtet unbesch. unbeschichtet

S

SN

beschichtet unbesch. unbeschichtet

Hartmetall

beschichtet

Hartmetall

beschichtet

Hartmetall

beschichtet

K

M-Toleranz, einseitig

Anwendung Plattenform Schweres Schruppen Schnitttiefe (mm) **NMP** Vorschub (mm/U) Schweres Schruppen Schnittliefe (mm)

Vorschub (mm/U)

WNMM 080408 NMP WNMM 080412 NMP

ISO Kat.-Nr.

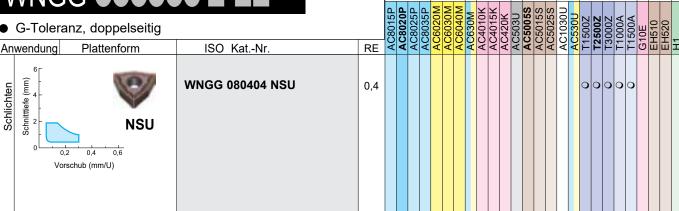
WNMM 080408 NHG WNMM 080412 NHG 0,8 1,2

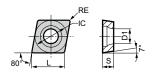
S

AC4010K AC4015K AC420K AC503U AC5005S AC5015S

S

R



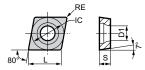


NHG

•	M- I olera	nz, sonstige neg. V	Vendeschneidplatten			280	링읋	260	090		4	315	515	350	50	350	710	500	20		200	삥	51	7
Ar	wendung	Plattenform	ISO KatNr.	RE	M	¥ا	₹ ₹	A	A	Z Z		¥إ≽		¥		¥	Z Z	Ę	12	ᆌ걸	- -	ပ်	面位	디도
Schruppen			WNMA 080408 WNMA 080412 WNMA 080416	0,8 1,2 1,6							O													

G-Toleranz, doppelseitig Anwendung Plattenform ISO Kat.-Nr. RE

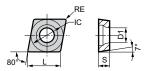
	Abmes	sungen	(mm)	
CC	L	IC	S	D ₁
03X1	3,55	3,5	1,4	1,9
04X1	4,37	4,3	1,8	2,3
0602	6,4	6,35	2,38	2,8
09T3	9,7	9,525	3,97	4,4



(CCET •••••										neta iicht							Ce		et nbesch.		rtme eschio		
	JOLI VIVI			Д	P		1 >	M S		P _M	K		:	S	ഗ				P		K	S	N	
•	E-Toleranz			8015	AC8020P	8025	AC8035P AC6020M	AC6030M	AC6040M	AC630M	AC40 10K	AC420K	5005	AC5015S	5025	AC1030U	500Z	T2500Z	T3000Z	T1500A	OE	EH510	070	
Ar	wendung Plattenform	ISO KatNr.	RE	AC	Ą	S S	A A	88	AC	A S	{	A A	₹ Q	Y S	AC	S S	2 5	12	<u> </u>	F	<u>ن</u>	山山	主に	4
		CCET 03X1003 LFY CCET 03X101 LFY CCET 03X102 LFY CCET 03X104 LFY	0,03 0,1 0,2 0,4												•	0								
		CCET 04X1003 LFY CCET 04X101 LFY CCET 04X102 LFY CCET 04X104 LFY	0,03 0,1 0,2 0,4																					
		CCET 060201 LFY CCET 060202 LFY	0,1 0,2																					
Schlichten	Schnitting (mm) 1 2 L/RFY	CCET 09T301 LFY CCET 09T302 LFY	0,1 0,2																					
Schli	URFY Vorschub (mm/U)	CCET 03X1003 RFY CCET 03X101 RFY CCET 03X102 RFY CCET 03X104 RFY	0,03 0,1 0,2 0,4																					
		CCET 04X1003 RFY CCET 04X101 RFY CCET 04X102 RFY CCET 04X104 RFY	0,03 0,1 0,2 0,4																					
		CCET 060201 RFY CCET 060202 RFY	0,1 0,2																					
		CCET 09T301 RFY CCET 09T302 RFY	0,1 0,2																					

 $({f R})$

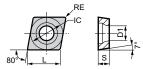
C RHOMBISCH WENDESCHNEIDPLATTEN



	Abmes	sungen	(mm)	
CC	L	IC	S	D ₁
03X1	3,55	3,5	1,4	1,9
04X1	4,37	4,3	1,8	2,3
0602	6,4	6,35	2,38	2,8
09T3	9,7	9,525	3,97	4,4

	80	S	†																				
7	CCCT	00000									t <mark>me</mark> chicl			-			be		erm	et unbesch.		rtme eschio	etall chtet
					_	•		N	1	PM		K	н		S	PM			Р		K	S	N
_	G-Toleranz				AC8015P AC8020P)25P	AC8035P	AC6020M	340M	AC630M	AC4010K	Z Z	330	AC5005S)15S	AC1030U	200	2 0		8 8		0 0	2
_	nwendung	Plattenform	ISO KatNr.	RE	AC8(AC8(AC80	AC60	AC60	AC6	AC40	AC40 13	AC503U	AC5	AC5015S AC5025S	AC10	AC5,	T250	T3000Z	T1000A T1500A	G10E	EH5,	H1
, actdoildo O	Schnittiere (mm)	NFC	CCGT 060201M NFC CCGT 060202M NFC CCGT 060204M NFC CCGT 09T301M NFC CCGT 09T302M NFC CCGT 09T304M NFC	<0,1 <0,2 <0,4 <0,1 <0,2 <0,4												• • •							
			CCGT 0602003 LFX CCGT 060201 LFX CCGT 060202 LFX CCGT 060204 LFX CCGT 09T3003 LFX	0,03 0,1 0,2 0,4												•							
Cobliob‡on	Schnittiefe (mm)	L/R FX	CCGT 09T3003 LFX CCGT 09T301 LFX CCGT 09T302 LFX CCGT 09T304 LFX CCGT 09T308 LFX	0,03 0,1 0,2 0,4 0,8												0				•			
1400	yorschub	0,2 0,3 (mm/U)	CCGT 0602003 RFX CCGT 060201 RFX CCGT 060202 RFX CCGT 060204 RFX CCGT 09T3003 RFX CCGT 09T301 RFX CCGT 09T302 RFX CCGT 09T304 RFX CCGT 09T308 RFX	0,03 0,1 0,2 0,4 0,03 0,1 0,2 0,4 0,8												•							
20	Schnittlefe (mm)		CCGT 03X1003 LFYS CCGT 03X101 LFYS CCGT 03X102 LFYS CCGT 03X104 LFYS CCGT 04X1003 LFYS CCGT 04X101 LFYS CCGT 04X102 LFYS CCGT 04X104 LFYS	0,03 0,1 0,2 0,4 0,03 0,1 0,2 0,4												0000 0000							
20140:140 S	Vorschub		CCGT 03X1003 RFYS CCGT 03X101 RFYS CCGT 03X102 RFYS CCGT 03X104 RFYS CCGT 04X1003 RFYS CCGT 04X101 RFYS CCGT 04X101 RFYS CCGT 04X102 RFYS CCGT 04X104 RFYS	0,03 0,1 0,2 0,4 0,03 0,1 0,2 0,4												0000							

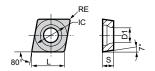
	Abmes	sungen	(mm)	
CC	L	IC	S	D_1
03X1	3,55	3,5	1,4	1,9
04X1	4,37	4,3	1,8	2,3
0602	6,4	6,35	2,38	2,8
0903	9,7	9,525	3,18	4,4
09T3	9,7	9,525	3,97	4,4
1204	12,9	12,7	4,76	5,5



1	CC	T 00000									tme						be	Ce schich				rtme eschic	
						Р		_	M	PM		K	Н	_	S	PN			P		K	S	
•	G-Tolera	nz			AC8015P	3020F	035P	3020N	AC6030M AC6040M	AC630M	AC4010K	20K	9030	50055	AC5025S AC5025S	030	AC530U T15007	Z00	Z00	T1500A	Щ	20	
_	nwendung	Plattenform	ISO KatNr.	RE	AC8			ACG	S S S	AC6	AC4	4 A	AC5	ACS	S S	AC1	ACS T	T2500Z	T30	T15	G10	EH510 EH520	도
Schlichten	Schnittiefe (mm)	\line{\circ}	CCGT 03X101 LFY CCGT 03X102 LFY CCGT 03X104 LFY CCGT 04X101 LFY CCGT 04X102 LFY CCGT 04X104 LFY	0,1 0,2 0,4 0,1 0,2 0,4												000000				0			
ildox	0	L/R FY 1.2.2 0,4 nub (mm/U)	CCGT 03X101 RFY CCGT 03X102 RFY CCGT 03X104 RFY CCGT 04X101 RFY CCGT 04X102 RFY CCGT 04X104 RFY	0,1 0,2 0,4 0,1 0,2 0,4												00000				0			
Leichtes Schrinnen	Septimination of the septiment of the se	NAG 0,2 0,3 0,4 chub (mm/U)	CCGT 060202 NAG CCGT 060204 NAG CCGT 09T302 NAG CCGT 09T304 NAG CCGT 09T308 NAG CCGT 120404 NAG CCGT 120408 NAG	0,2 0,4 0,2 0,4 0,8 0,4																			• • • • • •
l eichtes Schrinnen	Schnitttiefe (mm)	NSI chub (mm/U)	CCGT 09T301M NSI CCGT 09T302M NSI CCGT 09T304M NSI	<0,1 <0,2 <0,4						•						•		0000					
			CCGT 0602003 NSC CCGT 09T3003 NSC	0,03 0,03																00			
l eichtes Schruppen	Schnittie 0,	NSC 1 0.2 0.3 chub (mm/U)	CCGT 060201M NSC CCGT 060202M NSC CCGT 060204M NSC CCGT 080201M NSC CCGT 080202M NSC CCGT 090301M NSC CCGT 090302M NSC CCGT 091301M NSC CCGT 091301M NSC CCGT 091301M NSC CCGT 091304M NSC CCGT 091304M NSC CCGT 091308M NSC	<0,1 <0,2 <0,4 <0,1 <0,2 <0,1 <0,2 <0,1 <0,2 <0,4 <0,8														• 0 0 0					
iniim	Schnittliefe (mm)	L/RAY	CCGT 060202 LAY CCGT 060204 LAY CCGT 09T301 LAY CCGT 09T302 LAY CCGT 09T304 LAY	0,2 0,4 0,1 0,2 0,4																			00000
Für Aluminium	0,	2 0,4 0,6 chub (mm/U)	CCGT 060201 RAY CCGT 060202 RAY CCGT 060204 RAY CCGT 09T301 RAY CCGT 09T302 RAY CCGT 09T304 RAY	0,1 0,2 0,4 0,1 0,2 0,4																			000000

(K)

C RHOMBISCH WENDESCHNEIDPLATTEN



	Abmes	sungen	(mm)	
CC	L	IC	S	D ₁
0602	6,4	6,35	2,38	2,8
09T3	9,7	9,525	3,97	4,4
1204	12,9	12,7	4,76	5,5

					8). 	<u> </u>	L	-				S		†																																		
)	\bigcap	١	/	T								Y						ı													me hicl								bes		erm htet	net unbe				neta chicht	
ı	_		U		41					4				_	4											_	2	1.	_	M	_	M	_	K	_	Н		S		M			P			K	5	S	N
•	Ð ¦	М-	-To	ole	ra	nz																			AC8015P	AC8020P	025P	AC8035P	AC6020N	AC6030M	AC6040M	AC630M	AC4010K	215	AC420K	030	2000	AC5015S	0.20	AC1030U	ZOC	Z00	ZOC	90V	Y00	ш	10	20	
_			end				Pla	att	ter	nfo	orn	1				IS	О	Ka	atN	Nr.				RE	AC8	ACS	Δ	AC8	AC6	AC6	AC6	AC6	8	A 5	2 2	5	AC.	S S	ACS :		T15	T2500Z	T3000Z	T1000A	T1500A	G10E	EHS	EH520	Ξ
	Schlichten	O chuittiofo (mm)		V	orso	_{0,2}	0,3 (mn		0,4		NI	FB)		CC	M M M	T 0)60)9T)9T	30: 30:	4 I 2 I 4 I	NFI NFI NFI NFI	B B B		0,2 0,4 0,2 0,4 0,8																00000	•	•	•	•	• • •				
	Schlichten-Leichtes Schruppen	Schnittliefe (mm)	2 1 1 0 0		orso	0,2 thub	0,5 (mn		0,4))		N	FP	ì			M M M	T 0 T 0 T 0 T 0 T 0)60)60)9T)9T)9T	30; 30; 30; 30; 40;	4 8 2 4 8	NFI NFI NFI NFI NFI	P P P P		0,2 0,4 0,8 0,2 0,4 0,8	•																••••		•	•	•				
	Schlichten	Schnittliefe (mm)		V	0,1	0,2 hub	0,5	n/U	0,4	N		LU J-V	V		CC	M'	T 0)60)9T)9T)9T	30: 30: 30: 30:	4 I 2 I 4 I 8 I		U U U		0,2 0,4 0,2 0,4 0,8	•	•	•		• • • • • •	•	•	•••									0	•	•	000	0				
	Leichtes Schruppen	(mm) ofoitting			orso	0,2 hub	0,3 (mn		0,4	-	NI	LB			CC	M M M	T 0)60)60)9T	204 208 308 304	4 I 8 I 2 I 4 I	NLE NLE NLE NLI NLI	B B B		0,2 0,4 0,8 0,2 0,4 0,8		000	0000	0 0 0	0000	•	•										• • •	0 0 0	•		•				
	Leichtes Schruppen	(mm) of citizens	3CITINUME (TITILITY)			0,2 thub			0,4 I)	4	N:	SU	,			M' M' M'	T 0 T 0 T 0 T 0 T 0)60)60)9T)9T)9T	30; 30; 30; 30; 40;	4 I 8 I 2 I 4 I 8 I	NSI NSI NSI NSI NSI	U U U U U		0,2 0,4 0,8 0,2 0,4 0,8	•	•	• • • • • •	•	• • • • • • •	• • • • •	•		•									• • • • • • • • • • • • • • • • • • • •	•	•	•				

	Abmes	sungen	(mm)	
C	L	IC	S	D ₁
0602	6,4	6,35	2,38	2,8
0803	8,0	7,94	3,18	3,4
0903	9,7	9,525	3,18	4,4
09T3	9,7	9,525	3,97	4,4
1204	12,9	12,7	4,76	5,5


CCMT/-W ●●●	000 O-HH						b	esc	tme	ntet							err	unb			schich	ntet
OGWITT WOOD			0	P			M S S	P _M		K	Н	(0	S				F			K	S	N
M-Toleranz			3015F	3020	AC8035P	AC6020M	AC6030M AC6040M	AC630M	AC4010K	AC4015K	AC503U	AC5005S	AC5025S	AC1030U	AC530U	Z00	700	T1000A	T1500A	Ш.	200	
Anwendung Plattenform	ISO KatNr.	RE	ACE	Š	¥ S	ACC	S S	ACC	AC4	A C	ACE	AC	ACE	AC1	ACE	T1500Z	T30007	T10	T15	G10E		王
NUS Schnittliefe (mm) Schnittliefe (mm) NUS NUS Vorschub (mm/U)	CCMT 09T308 NUS	0,8			•																	
NSC Nschutimede (mm) of the control	CCMT 060204 NSC CCMT 080304 NSC CCMT 090308 NSC CCMT 120408 NSC	0,4 0,4 0,8 0,8																				
NSK Vorschub (mm/U)	CCMT 060204 NSK CCMT 060208 NSK CCMT 09T304 NSK CCMT 09T308 NSK CCMT 120404 NSK CCMT 120408 NSK CCMT 120412 NSK	0,4 0,8 0,4 0,8 0,4 0,8 1,2	•																			
NGU NGU NGU NGU NGU NGU NGU NGU	CCMT 060204 NGU Neu CCMT 060208 NGU Neu CCMT 09T304 NGU Neu CCMT 09T308 NGU Neu CCMT 120408 NGU Neu Neu Neu CCMT 120408 NGU Neu	0,4 0,8 0,4 0,8 0,8	•		0	•				•			• 0						000			
Schrubpen Schrubpen Schrubpen Schrubpen Schrubpen Schrubpen Schrübpen Schrüb	CCMT 09T304 NMU CCMT 09T308 NMU	1 '	•		•	•	•	•	0													
Schruppen	CCMW 060204 CCMW 09T304 CCMW 09T308	0,4 0,4 0,8							000)												

C/

 $({f R})$

RHOMBISCH

	Abmes	sungen	(mm)	
CP	L	IC	S	D ₁
0802	8,0	7,94	2,38	3,4
0903	9,7	9,525	3,18	4,4
1204	12,9	12,7	4,76	5,5

Hartmetall

beschichtet

Hartmetall

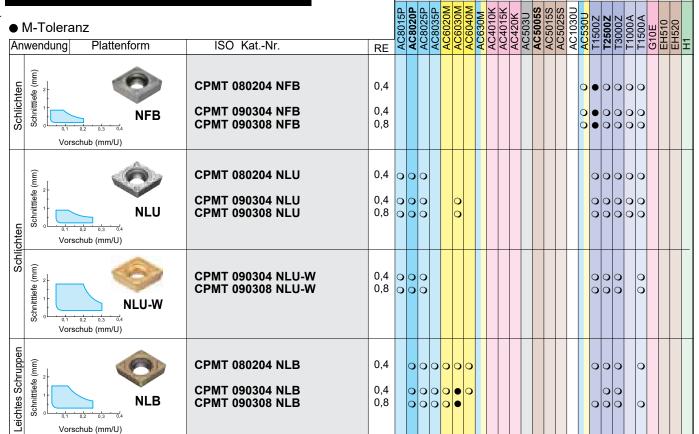
beschichtet

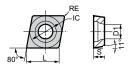
K

Hartmetall

unbeschichtet SN

Cermet Hartmetall


unbeschichtet SN

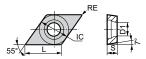

Cermet

G-Toleranz

S

AC4010K AC4015K AC420K AC503U AC5005S Anwendung Plattenform ISO Kat.-Nr. RE Schlichten-Leichtes Schruppen **CPGT 080202 NSD** 0,2 **CPGT 080204 NSD** 00 0,4 $|\mathbf{o}|\mathbf{o}|$ |o|o**CPGT 080208 NSD** 0,8 00 Schnittiefe (mm) 0,2 **CPGT 090302 NSD** 0 00 **CPGT 090304 NSD** 0,4 00 **CPGT 090308 NSD** 0.8 00 OO 00 0,2 |o|o**CPGT 120402 NSD** 0,2 0 Vorschub (mm/U) **CPGT 120404 NSD** $|\mathbf{c}|$ 00 0 0.4**CPGT 120408 NSD** 0,8 00 OO

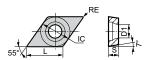
	Abmes	sungen	(mm)	
CP	L	IC	S	D ₁
0602	6,4	6,35	2,38	2,8
0802	8,0	7,94	2,38	3,4
0903	9,7	9,525	3,18	4,4
09T3	9,7	9,525	3,97	4,4
1204	12,9	12,7	4,76	5,5
1604	16,1	15,875	4,76	6,5


											neta								erm			lartı		
	CPMT/-H ••••				P	1	Т	М	bes	schi	ichte K		Н	S	П	PN		eschi	chtet	unbe	_	inbes	chich S	_
				5P	P	5P	J S	MO	Mo	ΣŽ	_=	~	55	_				\	J N 1	4	4			
•	M-Toleranz			3801	3802	AC8025P	503	AC6030M	AC6040M	401	401	7420	AC5030 AC5005S	501	205	3103	530	700CL1	000	000	T1500A	1510	1520	
Ar	nwendung Plattenform	ISO KatNr.	RE	A	¥	2	4 4	¥	A	¥ 4	¥	¥.	¥	A	AC	¥	¥	1	13	F	7	5 亩	血	王
Leichtes Schruppen	NSU Output O	CPMT 080204 NSU CPMT 080208 NSU CPMT 090304 NSU CPMT 090308 NSU	0,4 0,8 0,4 0,8	o 0	0								000							0	0			
		CPMT 060204 NUS	0,4				•		C))		
_		CPMT 080308 NUS	0,8			•	•																	
Leichtes Schruppen	Schnittliefe (mm)	CPMT 09T308 NUS	0,8						C															
chtes		CPMH 120408 NUS	0,8				•																П	
Lei	Vorschub (mm/U)	CPMH 160408 NUS	0,8																					
		OF WITT 100400 NOS	0,0																					
Leichtes-Mittleres Schruppen	NGU 1 0,2 0,4 0,6 Vorschub (mm/U)	CPMT 090304 NGU Neu CPMT 090308 NGU	0,4 0,8	00	0	30			00											1 1	0			
Schruppen	€ 3[CPMT 080204 NMU	0,4	0	0	o					o													
leres S	thiefe (m)	CPMT 080208 NMU	0,8	0	0	0				C	0													
Leichtes-Mittleres Schruppen	NMU NMU Orschub (mm/U)	CPMT 090304 NMU CPMT 090308 NMU	0,4 0,8		0			000			00													

C

K (R)

	Abmes	sungen	(mm)	
DC	L	IC	S	D ₁
0702	7,7	6,35	2,38	2,8
11T3	11,6	9,525	3,97	4,4

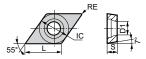


	55° L																H	Ge	härt	.eteı	r St	ah	l	
ı										rtm									mei		Har			
	DCGT •••••	U U-EE			Р			M	P		K	H	_	S	-	Рм		CHICHO	P	esui.	K	S	_	-
•	G-Toleranz			AC8015P	8020F	AC8035P	AC6020M	AC6030M	AC630M	AC4010K	4015K	AC420K	5005S	AC5015S	AC5025S	AC530U	T1500Z	T2500Z	T3000Z	T1500A	G10E	510	070	
Α	nwendung Plattenform	ISO KatNr.	RE	S S	۲	88	AC	S S		S S	AC C	A A	ACC	YC:	AC AC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	12g	T30	11	ည်		<u>.</u>	Ē
2040	(mum) elemination of the control of	DCGT 070201M NFC DCGT 070202M NFC DCGT 070204M NFC	<0,1 <0,2 <0,4											0	0	•				000				
ildo	NFC 0,1 0,2 0,3 Vorschub (mm/U)	DCGT 11T301M NFC DCGT 11T302M NFC DCGT 11T304M NFC	<0,1 <0,2 <0,4												0	•			0	000				
		DCGT 0702003 LFX	0,03											o	O	0								
		DCGT 070201 LFX DCGT 070202 LFX DCGT 070204 LFX	0,1 0,2 0,4												0				•	0				
		DCGT 11T3003 LFX	0,03											O	0	0								
20,40		DCGT 11T301 LFX DCGT 11T302 LFX DCGT 11T304 LFX	0,1 0,2 0,4											0	0	•	•		•	•				
201400	L/RFX	DCGT 0702003 RFX	0,03											O	o	0								
	0,1 0,2 0,3 Vorschub (mm/U)	DCGT 070201 RFX DCGT 070202 RFX DCGT 070204 RFX	0,1 0,2 0,4											0	0	•	-		•	•				
		DCGT 11T3003 RFX	0,03											O	0	0								
		DCGT 11T301 RFX DCGT 11T302 RFX DCGT 11T304 RFX	0,1 0,2 0,4											0	0	•	•		•					
		DCGT 0702003 LFYS	0,03												c	,								
		DCGT 070201 LFYS DCGT 070202 LFYS DCGT 070204 LFYS	0,1 0,2 0,4)								
		DCGT 11T3003 LFYS	0,03												C)								
a option	((umu) 1 -	DCGT 11T301 LFYS DCGT 11T302 LFYS DCGT 11T304 LFYS	0,1 0,2 0,4)								
400	L/R FYS O 1 0,2 0,4 Vorschub (mm/U)	DCGT 0702003 RFYS DCGT 070201 RFYS DCGT 070202 RFYS	0,03 0,1 0,2													,								
		DCGT 070204 RFYS DCGT 11T3003 RFYS	0,4																					
		5001 1110000 Ki 10	0,03																					

0,1 0,2 0,4

DCGT 11T301 RFYS DCGT 11T302 RFYS DCGT 11T304 RFYS

	Abmes	sungen	(mm)	
DC	L	IC	S	D ₁
0702	7,7	6,35	2,38	2,8
11T3	11,6	9,525	3,97	4,4



CGT •••••								hes	chic	etall htet						chichte	me			tme eschich	
				Р		I	M	P	И	K	Н	I	S	PM	Doc		P	1000011.	K	S	N
G-Toleranz			AC8015P	020P	AC8025P	AC6020M	AC6030M	AC6040M	AC4010K	AC4015K	330	AC5005S	AC5025S	AC1030U	200	Z00	707	Y A	UI	000	
wendung Plattenform	ISO KatNr.	RE	AC8(AC8	AC8C	AC6(AC60	AC6040N	AC4(AC4015	AC503L	AC5	AC5(AC1030	T1500Z	T2500Z	13000Z	T1500A	G10F	EH520	도
<u> </u>	DCGT 0702003 LFY	0,03										C	0	0							
(ILIL) 2 LFY	DCGT 070201 LFY DCGT 070202 LFY DCGT 070204 LFY	0,1 0,2 0,4										C		O							
ish nitti	DCGT 11T3003 LFY	0,03										C	ဝ	0							
0,2 0,4 Vorschub (mm/U)	DCGT 11T301 LFY DCGT 11T302 LFY DCGT 11T304 LFY	0,1 0,2 0,4										C	$ \mathbf{c} $	0			•	• 0			
	DCGT 0702003 RFY	0,03										C		0							
(LILLI) eg	DCGT 070201 RFY DCGT 070202 RFY DCGT 070204 RFY	0,1 0,2 0,4										C	$ \mathbf{c} $	O							
R FY	DCGT 11T3003 RFY	0,03										C	C								
Vorschub (mm/U)	DCGT 11T301 RFY DCGT 11T302 RFY DCGT 11T304 RFY	0,1 0,2 0,4										C	O	0)		•	0			
	DCGT 070202 LSD DCGT 070204 LSD	0,2													O						
(L/RSD	DCGT 11T304 LSD DCGT 11T308 LSD	0,4 0,8													0						
Ochaittiefe	DCGT 070202 RSD DCGT 070204 RSD	0,2 0,4														1 1					
Vorschub (mm/U)	DCGT 11T304 RSD DCGT 11T308 RSD	0,4 0,8																			
(mu) epoly a long of the long	DCGT 070202 NAG DCGT 070204 NAG DCGT 11T302 NAG DCGT 11T304 NAG DCGT 11T308 NAG	0,2 0,4 0,2 0,4 0,8																			•
	Schnittliefe (mm) Schnittliefe (mm) Vorschub (mm/U) RFY Vorschub (mm/U) NAG NAG	DCGT 070202 LFY	DCGT 070202 LFY DCGT 11T3003 LFY DCGT 11T301 LFY DCGT 11T302 LFY DCGT 11T304 LFY DCGT 11T3	DCGT 070202 LFY DCGT 11T3003 LFY DCGT 11T301 LFY DCGT 11T304 LFY DCGT 11T304 LFY DCGT 070201 RFY DCGT 070202 RFY DCGT 11T301 RFY DCGT 11T302 RFY DCGT 11T302 RFY DCGT 11T302 RFY DCGT 11T302 RFY DCGT 11T304 RSD DCGT 11T304 R	DCGT 070202 LFY DCGT 070204 LFY DCGT 11T3003 LFY DCGT 11T301 LFY DCGT 11T302 LFY DCGT 11T302 LFY DCGT 11T302 LFY DCGT 11T302 RFY DCGT 11T302 RFY DCGT 11T302 RFY DCGT 11T302 RFY DCGT 11T304 RSD DCGT 11T308 R	DCGT 070202 LFY DCGT 11T3003 LFY	DCGT 070202 LFY DCGT 11T3003 LFY DCGT 11T301 LFY DCGT 11T301 LFY DCGT 11T302 LFY DCGT 11T302 LFY DCGT 11T302 LFY DCGT 11T304 LFY DCGT 11T303 RFY DCGT 070202 RFY DCGT 070204 RFY DCGT 11T303 RFY DCGT 11T303 RFY DCGT 11T304 RFD DCGT 11T304 R	DCGT 070202 LFY DCGT 11T301 LFY DCGT 11T304 LSD DCGT 11T304 RSD DCGT 11T304 RAG DCGT 11T304 RA	DCGT 070202 LFY D.CGT 11T3003 LFY D.CGT 11T301 LFY D.CGT 11T302 LFY D.CGT 11T303 RFY D.CGT 11T301 RFY D.CGT 11T302 RFY D.CGT 11T302 RFY D.CGT 11T304 RFY D.CGT 11T304 RSD D.CGT 11T304 RSD D.CGT 11T304 RSD D.CGT 11T308 RSD D.CGT	DCGT 070202 LFY	DCGT 070202 LFY	DCGT 070202 LFY	DCGT 070202 LFY DCGT 11T3003 LFY D.0.03 DCGT 11T301 LFY D.1 DCGT 11T304 LFY D.4 DCGT 11T301 LFY D.4 DCGT 11T301 LFY D.4 DCGT 11T301 LFY D.4 DCGT 070202 RFY D.2 DCGT 070204 RFY D.2 DCGT 11T301 RFY D.4 DCGT 11T304 RFD D.4 DCGT 1	DCGT 070202 LFY DCGT 070204 LFY DCGT 1113003 LFY DCGT 1113001 LFY DCGT 1113001 LFY DCGT 1113001 LFY DCGT 1113004 LFY DCGT 111304 LFY DCGT 111304 LFY DCGT 1113004 LFY DCGT 070202 RFY DCGT 070202 RFY DCGT 070204 RFY DCGT 111301 RFY DCGT 111302 RFY DCGT 111302 RFY DCGT 111302 RFY DCGT 111302 RFY DCGT 111304 LSD DCGT 111	DCGT 070202 LFY						

K (R)

D RHOMBISCH WENDESCHNEIDPLATTEN

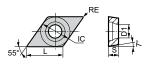
	Abmes	sungen	(mm)	
DC	L	IC	S	D ₁
0702	7,7	6,35	2,38	2,8
0902	9,7	7,94	2,38	3,4
1103	11,6	9,525	3,18	4,4
11T3	11,6	9,525	3,97	4,4

0

0

Cermet Hartmetall Hartmetall beschichtet esch. unbeschichtet SN AC4010K AC4010K AC4015K AC420K AC503U AC503U T1500Z T2500Z T3000Z T1000A T1500A G10E EH510 EH520 H1 G-Toleranz Anwendung Plattenform ISO Kat.-Nr. RE **DCGT 070201M NSI** <0,1 Leichtes Schruppen **DCGT 070202M NSI** <0,2 $|\circ|$ Schnittiefe (mm) **DCGT 070204M NSI** <0,4 $|\mathbf{o}|$ • NSI DCGT 11T301M NSI <0.1 DCGT 11T302M NSI <0,2 • 0 $\mathbf{o}|\mathbf{o}$ DCGT 11T304M NSI <0.4 • 0 OO DCGT 11T308M NSI <0,8 Vorschub (mm/U) 0 **DCGT 0702003 NSC** 0,03 OO OO **DCGT 11T3003 NSC** 0,03 \circ o|o**DCGT 070201M NSC** <0,1 \circ • • 0 **DCGT 070202M NSC** <0,2 eichtes Schruppen **DCGT 070204M NSC** < 0.4 . O Schnittliefe (mm) NSC **DCGT 090201M NSC** <0,1 $\mathbf{o} | \mathbf{o}$ **DCGT 090202M NSC** <0,2 OO **DCGT 110301M NSC** <0,1 0.2 $\mathbf{o} | \mathbf{o}$ **DCGT 110302M NSC** <0,2 • • Vorschub (mm/U) DCGT 11T301M NSC DCGT 11T302M NSC < 0.1 \circ <0,2 • DCGT 11T304M NSC • • <0,4 DCGT 11T308M NSC <0.8 **DCGT 11T301 LAY** 0,1 0 **DCGT 11T302 LAY** 0,2

0,4


0,2

Für Aluminium	(iii) 9 1 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DCGT 11T304 LAY DCGT 070202 RAY DCGT 070204 RAY DCGT 11T301 RAY DCGT 11T302 RAY DCGT 11T304 RAY
Leichtes Schruppen		DCGW 070202 DCGW 070204 DCGW 070208 DCGW 11T302 DCGW 11T304 DCGW 11T304

DOOT 0/0204 IVAT	0,4											
DCGT 11T301 RAY DCGT 11T302 RAY DCGT 11T304 RAY	0,1 0,2 0,4											0
DCGW 070202 DCGW 070204 DCGW 070208	0,2 0,4 0,8					0 0 0						
DCGW 11T302 DCGW 11T304 DCGW 11T308	0,2 0,4 0,8					0 0 0						

 \mathbf{R}

^{● =} Eurolager○ = Japanlager


	Abmes	sungen	(mm)	
DC	L	IC	S	D ₁
0702	7,7	6,35	2,38	2,8
11T3	11,6	9,525	3,97	4,4

F											artm									me			tme	
Ľ		00000				Р			M	be	sch M	K	ει 	Н	s		PM	Desc	nichte	et unb		K	S	
_	NA T-1				15P	AC8020P	25P	20M	30M	40M	MO Y	15X	N N	AC5030 AC5005S	158	258	2000	ZC	0Z	ZOZ V	S &		5 0	
_	M-Toleran nwendung	nz Plattenform	ISO KatNr.	RE	AC8015P	AC80		AC6020M	AC6030M	AC6040M	AC630M AC4010K	AC4015K	AC42	AC50	AC5015S	AC50	AC1030U AC530U	T150	T250	T3000Z	T1500A	G10E	EH520	도
Schlichten	Schnittliefe (mm)	NFB	DCMT 070202 NFB DCMT 070204 NFB DCMT 070208 NFB DCMT 11T302 NFB DCMT 11T304 NFB DCMT 11T308 NFB	0,2 0,4 0,8 0,2 0,4 0,8													0000	• • • • •						
Schlichten	0,1	NFP	DCMT 070202 NFP DCMT 070204 NFP DCMT 11T302 NFP DCMT 11T304 NFP DCMT 11T308 NFP DCMT 11T312 NFP	0,2 0,4 0,2 0,4 0,8 1,2													•	• • • • •			•			
Schlichten		NLU 10,2 0,3 nub (mm/U)	DCMT 070202 NLU DCMT 070204 NLU DCMT 11T302 NLU DCMT 11T304 NLU DCMT 11T308 NLU	0,2 0,4 0,2 0,4 0,8	••••	0		• • •	• • •	• • • •							•	ullet	0					
l eichtes Schruppen		NLB nub (mm/U)	DCMT 070202 NLB DCMT 070204 NLB DCMT 070208 NLB DCMT 11T302 NLB DCMT 11T304 NLB DCMT 11T308 NLB	0,2 0,4 0,8 0,2 0,4 0,8		000			•	• • • •								• • •	0	•	• • • • • •			
chtes Schrippen II eichtes Schrippen	Sorbittities (Cm) 1 Constitution (Cm) 2 Consti	NSU 0.2 0.3 nub (mm/U)	DCMT 070202 NSU DCMT 070204 NSU DCMT 070208 NSU DCMT 11T302 NSU DCMT 11T304 NSU DCMT 11T308 NSU	0,2 0,4 0,8 0,2 0,4 0,8	• • • • •	•		•	• • • • •	• • • • •		•			• • • •	• • • •	•		0		O			
I eichtes Schruppen	Schnittliefe (mm) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NSK	DCMT 070204 NSK DCMT 070208 NSK DCMT 11T304 NSK DCMT 11T308 NSK DCMT 11T312 NSK	0,4 0,8 0,4 0,8 1,2	•																			
Schruppen-Leichtes Schruppen 1 ei	(mg) 22 - 10,2 Vorsel	NGU 0,4 0,6 nub (mm/U)	DCMT 070204 NGU DCMT 070208 NGU DCMT 11T302 NGU DCMT 11T304 NGU DCMT 11T308 NGU DCMT 11T312 NGU	0,4 0,8 0,2 0,4 0,8 1,2	• • • •				• • • • •	00000		•			• •			ullet			0 0 0 • •			
Schrippen		NMU 122 0,3 0/4 nub (mm/U)	DCMT 11T304 NMU DCMT 11T308 NMU	0,4 0,8	• •	•		•	•		• 0	•	•											
Schrippen			DCMW 070204 DCMW 070208 DCMW 11T304 DCMW 11T308	0,4 0,8 0,4 0,8								\circ	0											
Schlichten			DCMX 11T308 NLUW	0,8	•						•		•											

K/**R**)

RCMX	
<u> </u>	

RC	ı	IC	S	D ₁								
1003	-	10,0	3,18	3,6								
10T3	-	10,0	3,97	3,6								
12	_	12,0	4,76	4,2								
16	-	16,0	6,35	5,2								
20	-	20,0	6,35	6,5								
25	1	25,0	7,94	7,2								
32	ı	32,0	9,52	9,5								
(M0: IC ist metrisch												

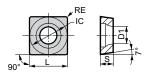
Cermet Hartmetall

Fos. nneidplatten

C/

/K

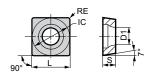
S



			(IVIO. IC IST	1161113611.	,																				
		CNAT AAAANA									artn									erm			artm		
		RCMT ••••M				_				_	esch							_	schic	_	unbesc		besch		
I	Ш				L	Р			1	M	PM	K		Н	S	1	PM			Р		K	٤	S	N
					5	용	6	25 P			>	싫		اد	ဂ္ဂ	55	≳ .	5				_			
	•	M-Toleranz, einseitig mit No	ppengeometrie		01	202	02	03	700	200	30	0	20	03	015	02	030		002	00	000	اۋ	10	20	
-		wendung Plattenform	ISO KatNr.	RE	18	AC8020P	8	AC8035	AC6020M	AC6030N AC6040N	AC630M	AC4015K	AC420K	AC503U	AC5015S	55	AC1030L	AC5300 T15007	T2500Z	T3000Z	T1000A	310	EH510	H H	÷
ľ	ΑII	Platteriloriii	ISO RatINI.	KE	_		7		'			_			_	1	1	1	-		4		ш	-	_
			RCMT 1003M0 NRX	_	•		•	O			•														
			DOME 40TOMO NOV																						
		6	RCMT 10T3M0 NRX	_	•		9	•																	
	드	NDV	RCMT 1204M0 NRX				•																		
	bbe	<u> </u>	ROMIT 1204MIO NICK				_	•								_									
	Schruppen	Schnittiefe (mm)	RCMT 1606M0 NRX	_	•		•	•			•					•									
	Scl	# 2 -																							
		ой I	RCMT 2006M0 NRX	_	•		•	•			•					•									
		0,2 0,4 0,6 0,8																							
		Vorschub (mm/U)	RCMT 2507M0 NRX	_	O	0	9	0																	
-												H									+			4	
			RCMT 1204M0 NRH	_	O	$ \mathbf{c} $	0	C			0														
	드	_€ 6 -																							
	Schruppen	Schnittiefe NKH	RCMT 1606M0 NRH	-	O		•	O			0														
	hru	ttiefe	DOME COCCINO NIDII					_																	
	Sc	ig 2	RCMT 2006M0 NRH	_	0	0		J																	
		**																							
		0 0,2 0,4 0,6																							
		Vorschub (mm/U)																							

K S N M-Torelanz, mit runder Spanleitstufe Plattenform Anwendung ISO Kat.-Nr. RE RCMX 1003M0 NRP |o|o**RCMX 1204M0 NRP** OOO 000 NRP Schruppen RCMX 1606M0 NRP OOOO Schnitttiefe (mm) RCMX 2006M0 NRP 000 RCMX 2507M0 NRP 0000 0,4 **RCMX 3209M0 NRP** 000 Vorschub (mm/U)

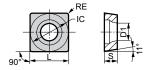
	Abmes	sungen	(mm)	
SC	L	IC	S	D_1
0702	7,94	7,94	2,38	3,4
0903	9,525	9,525	3,18	4,4
09T3	9,525	9,525	3,97	4,4
1204	12,7	12,7	4,76	5,5



(neta								me		lart		
7	SCGT •••••				Р		T	М		M	chte K	E		S		М	Descr	_	et unb	_	unbe	_	N
•	G-Toleranz			015P	AC8020P	025P	020M	AC6030M	AC6040M	AC4010K	AC4015K	20K	AC5005S	AC5015S	0258	AC530U	Z0(700	ZOZ VOZ	00A	П С	200	,
_	wendung Plattenform	ISO KatNr.	RE	AC8	AC8	A C	AC6	AC6	AC6	AC4010k	AC4	AC5	AC5	AC5	AC5	AC5	T150	125002 T20007	T10C	T1500A	G10E	THE STATE OF THE S	įΞ
		SCGT 09T302 LFX SCGT 09T304 LFX	0,2 0,4												0 0	0							
Schlichten	Schnittliefe (mm) 1 L/RFX	SCGT 120404 LFX	0,4												0	0							
Schl	0,2 0,4	SCGT 09T302 RFX SCGT 09T304 RFX	0,2 0,4													000							
	Vorschub (mm/U)	SCGT 120404 RFX	0,4												0	0							
ruppen	(ELLE) 2	SCGT 070201M NSC SCGT 070202M NSC	<0,1 <0,2													000				00			
Leichtes Schruppen	Schnittitefe (mm)	SCGT 090301M NSC SCGT 090302M NSC	<0,1 <0,2																	00			
Leic	0 0,1 0,2 0,3 Vorschub (mm/U)	SCGT 09T301M NSC SCGT 09T302M NSC	<0,1 <0,2													00				00			

K (R)

S QUADRATISCH WENDESCHNEIDPLATTEN


	Abmes	sungen	(mm)	
SC	L	IC	S	D ₁
09T3	9,525	9,525	3,97	4,4
1204	12,7	12,7	4,76	5,5

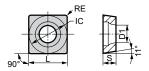
	COMT/W/									tme chic	etall htet								me et unb			tme eschic	
7	SCMT/-W ●●●				Р			M	P		K	Н		S	J	м		_	Р		_	S	N
• 1	M-Toleranz			AC8015P	ACSUZUP ACSU20P	AC8035P	AC6020M	AC6030M	AC630M	4010K	AC4015K	5030	AC5005S	AC5015S	10301	530U	T1500Z	5002	DUUZ	T1500A	OE OE	EH520	2
An	wendung Plattenform	ISO KatNr.	RE	S S	A	8	AC	AC		AC	A	AC	AC	A	S A	A S	1	2 5	ر ا	Ē	ည်		Ŧ
Schlichten	Vorschub (mm/U)	SCMT 09T304 NFB SCMT 09T308 NFB	0,4														• (
Schlichten	Output of the control	SCMT 09T304 NFP SCMT 09T308 NFP SCMT 120404 NFP	0,4 0,8 0,4														•		•				
Schlichten	(mu) opinitation of the control of t	SCMT 09T304 NLU SCMT 09T308 NLU SCMT 120412 NLU	0,4 0,8 1,2	0		•		0	0									2	0	0			
Leichtes Schruppen	Occupation of the control of the con	SCMT 09T304 NLB SCMT 09T308 NLB	0,4					0									0			0			
Leichtes Schruppen	Schnittlefe (mm) NSU NSU Vorschub (mm/U)	SCMT 09T304 NSU SCMT 09T308 NSU SCMT 120404 NSU SCMT 120408 NSU	0,4 0,8 0,4 0,8	0		•	••••	•	•		•		•			• • • •							
Leichtes Schruppen	Outside Mark North	SCMT 09T304 NSK SCMT 09T308 NSK SCMT 120404 NSK SCMT 120408 NSK SCMT 120412 NSK	0,4 0,8 0,4 0,8 1,2																				
Leichtes-mittl. Schruppen	(mu) 3 2	SCMT 09T304 NGU SCMT 09T308 NGU SCMT 120408 NGU	0,4 0,8 0,8				00				•			•	•								
Leichtes-mittl. Schruppen	Schultting (mm) 2	SCMT 09T308 NMU SCMT 120408 NMU SCMT 120412 NMU	0,8 0,8 1,2	•		•	0	•															
		SCMW 09T308 SCMW 120408 SCMW 120412	0,8 0,8 1,2							o													

S QUADRATISCH WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
SP	L	IC	S	D_1
0602	6,35	6,35	2,38	2,8
0703	7,94	7,94	3,18	3,4
0903	9,525	9,525	3,18	3,4
09T3	9,525	9,525	3,97	4,4
1204	12,7	12,7	4,76	5,5
1504	15,875	15,875	4,76	6,5

Ç	3	P	Ν.	11	/	Ī			Y		Y	Y	Y				T		Ī		Hartmetall beschichtet														_	t un	e t besch.	unt	besch	neta nichtet				
	4		II W																			_	P L	ت ام	Z	M N	5	M	_	K K		_	S		2				P		K		1 6	
				rar																		AC8015P	ACSUZUP	AC8022P	AC6020M	AC6030M	AC6040M	AC630M	AC4010K	74015	AC50311	C500	AC5015S	25025	21030	AC530U	1500Z	Z00021	1 3000Z	T1500A	10E	1510	EH520 H1	
An	WE	enc	lun	g	F	lat	te	nfo	rm				18	80	Ka	tN	lr.			RE	-	ĕ ?	₹ >	Į į	Ž	ĕ	Ă	Ä	¥.	₹ <	ίĕ	Ă	¥	Ă	Ĭ	Ă	ì	ř	Ì	- È	Ö	шļi		4
Schlichten	Schnittliefe (mm)	1 0	-	0,1 /orsc	o,		° /U)	3	NF	В							NF NF			0,4																								
Schlichten	Schnittliefe (mm)	1 0	- - - - - - V	0,1 orsch	ub (n	0,2 nm/l	U)	0,3	NL	.U							NL NL			0,4						00		0																
Schlichten	Schnittliefe (mm)	1 0	- - - - V	0,1 orsch	ub (n),2 nm/l		0,3	NF	K		SI	PM	Τ 0	903	304	NF	K		0,4	,																			•				
nedd	(mm)	2		_				æ.	á	200		S	PM	Τ 0	602	204	NU	JS		0,4								0																
Schru	Schnitttiefe (mm)	1	ļ (100	9			S	PM	Τ 0	703	308	NU	JS		0,8	3							0																
Leichtes Schruppen	128	0		0,2 orsch	0, nub (ı		'U)	I	NL	S		S	PM	Τ 0	9Т:	308	NU	JS		0,8	3							0																
neddi	(шш)	2	 	_				5	á			SI	PM	Н 0	90	308	NU	JS		0,8	3							0									Ť	t				1	Ī	1
Schru	Schnittiefe (mm)	1	L ("	NU.	1		SI	PM	H 1	204	408	NU	JS		0,8	3							0																
Leichtes Schruppen	200	0		0,2 orsch	0, nub (ı		'U)		NU	3		SI	PM	H 1	50	408	NL	JS		0,8	3							0																
Leichtes-mittleres Schruppen	Schnittliefe (mm)	1 0	-[0,2 forsch	c nub (i),4 mm/	'U)		NI	_B							NL NL			0,4																	3 C			0				
Leichtes-mittleres Schruppen Leichtes-mittleres Schruppen	Schnittiefe (mm)	2 0	- -	0,1 orsch	o ub (n	,2 nm/l		0,3	NS) F		SI	PM PM	T 0:	903 903	304 308	NS NS	SF SF		0,40																								

 $({f R})$


beschichtet

Hartmetall

beschichtet

QUADRATISCHWENDESCHNEIDPLATTEN

		Abmes	sungen	(mm)	
SP		L	IC	S	D ₁
07	03	7,94	7,94	3,18	3,4
09	03	9,525	9,525	3,18	3,4

Cermet

Cermet

peschichtet unbesch. unbeschichtet

Hartmetall

unbeschichtet SN

SPGW

G-Toleranz, sonstige pos. Wendeschneidplatten

AC4010K AC4015K AC420K AC503U AC5005S Anwendung Plattenform ISO Kat.-Nr. RΕ **SPGW 090304 T** 0,4 **SPGW 070304** 0,4 0 **SPGW 090304** 0,4

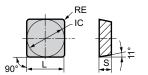
G-Toleranz

Anwendung

Schlichten/leichtes Schruppen Schnittiefe (mm) 0,2 Vorschub (mm/U)

Plattenform

SPGT 090302 LSD	0,2 0,4 0,8
SPGT 090304 LSD	0,4
SPGT 090308 LSD	0,8
	1

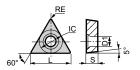

SPGT 090302 RSD SPGT 090304 RSD SPGT 090308 RSD

ISO Kat.-Nr.

SN $|\mathbf{o}|$ 0000 O |o|o0,2 O $|\mathbf{o}|\mathbf{o}|$ 0,4 $|\mathbf{o}|$ 0,8

^{• =} Eurolager ○= Japanlager

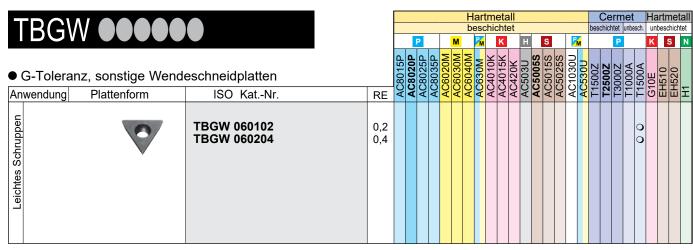
	Abmes	sungen	(mm)	
SP	L	IC	S	D ₁
0903	9,525	9,525	3,18	-
1203	12,7	12,7	3,18	-
1504	15,875	15,875	4,76	-


c											eta							Cer				tmeta	
1	SPMR •••••	V V-BB			D		т	M	bes	scni	chte K	Je	7	S	$\overline{}$	P _M	bes	chichte	et Jun	besch.	_	schichte	et N
					_	0 0	, 5	 -	5	M					_	j				Т			
•	M-Toleranz			AC8015F	AC8020P	8025F	AC8035P AC6020M	AC6030M	AC6040M	AC4010K	AC4015K	AC420K	ACSUSU	AC5015S	5025	AC1030L	T1500Z	T2500Z	T3000Z	T1500A	0E	EH520	
An	wendung Plattenform	ISO KatNr.	RE	AC	R	SIS	A S	P	AC	A S	AC	A S	۲		A.	A		T2	<u>ا ا</u>		2	訓	도
Schlichten	NFK 0 NFK Noschub (mm/U)	SPMR 090304 NFK SPMR 090308 NFK SPMR 120304 NFK SPMR 120308 NFK	0,4 0,8 0,4 0,8														0000	0	2				
eres Schruppen	NSF Output O	SPMR 090304 NSF SPMR 090308 NSF SPMR 120304 NSF SPMR 120308 NSF SPMR 120312 NSF	0,4 0,8 0,4 0,8 1,2	1																			
Leichtes - mittleres	(ma) 3	SPMR 090304 NUJ SPMR 090308 NUJ SPMR 120304 NUJ SPMR 120308 NUJ	0,4 0,8 0,4 0,8		,	0																	

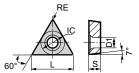
	CL) k											met						4		rme			tmet	
	SF	′ \	00000					Р		M		esc M	hich K		н	S		PM		eschic	htet unl	oescn.		schicht	
_	● Sor Anwen		oos. Wendeschne	idplatten	•	RE	AC8015P	AC8025P	AC8035P	AC6020M	AC6040M	AC630M	AC4010K	AC420K	AC503U	AC50053	AC5025S	AC1030U	AC530U	T2500Z	T3000Z	T1500A	G10E	EH520	H1
	Leichtes Schruppen			SPGN 090304 SPGN 090308 SPGN 090308T SPGN 120304 SPGN 120308		0,4 0,8 0,8 0,4 0,8										C						•	3		0
	Leichtes Schruppen			SPMN 090304 SPMN 090308 SPMN 120304 SPMN 120308 SPMN 120312 SPMN 150408		0,4 0,8 0,4 0,8 1,2									(000	(0				0		

0,2 0,4 0,6 Vorschub (mm/U) /**K**/

 (\mathbf{R})

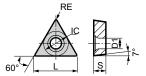


	Abmes	sungen	(mm)	
TB	L	IC	S	D ₁
0601	6,9	3,97	1,59	2,2


1											me								ern			artme	
		BGT •••••				P			M M	esc	hich	tet	Н		S	I	M	besch	ichtet P	_	ich. ur	nbeschi	
	• (G-Toleranz rechts-/linksscl	nneidende Geometrie		AC8015P	COCCE	AC8035P	:6020M	AC6040M	AC630M	AC4010K	AC420K	:503U	5005S	AC5025S	:1030U	2530U	T1500Z	2000	T1000A	500A 0F	EH510	
/	۹n۱	wendung Plattenform	ISO KatNr.	RE	8	{ <	Z Z	Ą.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	A	{ \	A	¥,	A A	A	Y	F	13	Ξ	드		크
	Schlichten	Copunitation (mm) 2 L/RFW	TBGT 060102 LFW TBGT 060104 LFW	0,2 0,4														0			0		
	Schli	L/RFW 0 0,1 0,2 0,3 Vorschub (mm/U)	TBGT 060102 RFW TBGT 060104 RFW	0,2 0,4														0			0		
	Schlichten	Schnittliefe (mm) 1 L/RFX	TBGT 060102 LFX TBGT 060104 LFX	0,2 0,4											200		00						
	Schli	L/RFX 0,1 0,2 0,3 Vorschub (mm/U)	TBGT 060102 RFX TBGT 060104 RFX	0,2 0,4											200		00						
	hten	Schnittiefe (mm)	TBGT 060101 LFY TBGT 060102 LFY TBGT 060104 LFY	0,1 0,2 0,4												0	000			00	0		
	Schlichten	L/RFY 0,1 0,2 0,3 Vorschub (mm/U)	TBGT 060101 RFY TBGT 060102 RFY TBGT 060104 RFY	0,1 0,2 0,4												000				00			
,	Schlichten-leichtes Schrup.	Schnittliefe (mm)	TBGT 060102 LW TBGT 060104 LW	0,2 0,4													000		ဝ	0			
	Schlichten-lei	E L/RW 0 0 0.1 0.2 0.3 Vorschub (mm/U)	TBGT 060102 RW TBGT 060104 RW	0,2 0,4													00			0	• •		
	ir Aluminium	Schnittliefe (mm)	TBGT 060101 LAY	0,1																			0
	r Alu	0,2 0,4 0,6 L/R AY	TBGT 060101 RAY	0,1																			0

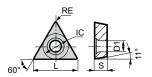
0,2 0,4 0,6 Vorschub (mm/U)

Für Aluminium


			, ,	
	Abmes	sungen	(mm)	
TC	L	IC	S	D_1
0802	8,2	4,76	2,38	2,3
0902	9,62	5,56	2,38	2,5
1102	11,0	6,35	2,38	2,8
16T3	16,5	9,525	3,97	4,3

		60° 1 S																						_
		CGT •••••	0-88									neta nicht							hichtet	net t unbes		besch	netal nichtet	
					_	P	_	, -	M		M _N	K		H	S		P _M		F		K	8	N	
•	• (G-Toleranz			015F	020F	AC8025P	1030	AC6030M	AC6040M	AC630M	AC4010K AC4015K	20K	030	AC5015S	0255	AC530U	Z00	200	00A	DOA E	10	20	
_		wendung Plattenform	ISO KatNr.	RE	AC8	AC8	S S	A Ca	A CO	AC6	ACG	\$ \\ \{\}	AC4	ACS ACS	AC5	ACS	A C	T15	T2500Z	T1000A	T15 G10	EHS	EH520 H1	
			TCGT 090201 LFX TCGT 090202 LFX	0,1 0,2																				
			TCGT 110201 LFX TCGT 110202 LFX	0,1 0,2													0							
	Schlichten	Schnittiefe (mm) 1 L/RFX	TCGT 110301 LFX TCGT 110302 LFX TCGT 110304 LFX	0,1 0,2 0,4																	0			
	Schli	0,2 0,4	TCGT 090201 RFX TCGT 090202 RFX	0,1 0,2													2							
		Vorschub (mm/U)	TCGT 110201 RFX TCGT 110202 RFX	0,1 0,2																				
			TCGT 110301 RFX TCGT 110302 RFX TCGT 110304 RFX	0,1 0,2 0,4																	0			
			TCGT 090201 LFY TCGT 090202 LFY	0,1 0,2																				
	Schlichten	Corputtified (mm)	TCGT 110201 LFY TCGT 110202 LFY	0,1 0,2																				
	Schli	L/RFY	TCGT 090201 RFY TCGT 090202 RFY	0,1 0,2													2							
		Vorschub (mm/U)	TCGT 110201 RFY TCGT 110202 RFY	0,1 0,2													2							
	Leichtes Schruppen	Oschub (mm/U) NSI Vorschub (mm/U)	TCGT 110204M NSI	<0,4							•				•	•	•	(2		0			
	Leichtes Schruppen	Schnittliefe (mm)	TCGT 110202 NAG TCGT 110204 NAG	0,2 0,4																			•	
	Leichtes 3	NAG Vorschub (mm/U)	TCGT 16T304 NAG TCGT 16T308 NAG	0,4 0,8																			•	
			TCGT 080201M NSC TCGT 080202M NSC	<0,1 <0,2																0				
	hrupper	Schnittliefe (mm) 2 NSC	TCGT 090201M NSC TCGT 090202M NSC	<0,1 <0,2																o •				
	Leichtes Schruppen	0 0,1 0,2 0,3	TCGT 110201M NSC TCGT 110202M NSC TCGT 110204M NSC	<0,1 <0,2 <0,4												•					•			
		Vorschub (mm/U)	TCGT 110301M NSC TCGT 110302M NSC	<0,1 <0,2																0				

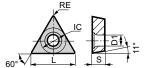
(**K**)



	Abmes	sungen	(mm)	
TC	L	IC	S	D ₁
0902	9,6	5,56	2,38	2,5
1102	11,0	6,35	2,38	2,8
16T3	16,5	9,525	3,97	4,3

		60	,,,,	L	s	ļ'~																										
E	$\Gamma \cap$	N // T	۲/۱	۸/																etal								met		Hart unbes		
		IVI	/-\	/ V	00									Р		Ι	M	P	м	K	E	I	s		PM	D000	_	P		K	S	N
•	M-Ta	olerar	1 <i>7</i>										AC8015P	AC8020P	AC8025P	AC6020M	AC6030M	AC6040M	010K	AC4015K	20K	0058	AC5015S	025S	AC530U	Z0C	20 2	70K	90A	4 E	20	
_	nwend			ttenfo	orm		ISO	Kat.	-Nr.			RE	AC8	AC8	A CS	ACG	AC6	AC6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	AQ	ACS ACS	ACS	AC5	AC5	A S	T15	T2500Z	T10	T1500A	G10E FH51(EH520	도
Schlichten	Schnittiefe (mm)	0,1	0,2 schub (m		NFB)4 NF)8 NF			0,4 0,8													00				•			
ten	(mm) a	L		R		TCI	O TN	9020 9020	02 NF 04 NF 08 NF	P P		0,2 0,4 0,8																	•			
Schlichten	Schnittiefe (mm)	0,1	1 0,2		NFP	TCI	NT 1 NT 1	1020 1020	02 NF 04 NF 08 NF	P		0,2 0,4 0,8														•			•			
		Vors	schub (m	m/U)					04 NF 08 NF			0,4 0,8														•			•			
Schlichten	Schnittiefe (mm)	0,1	1 0,2 schub (m		NLU				04 NL 08 NL			0,4 0,8					00								•							
Leichtes Schruppen	Schnitttiefe (mm)	0,2	0,4 schub (m	m/U)	NLB				04 NL 08 NL			0,4 0,8					000										300		0			
hruppen	(mm) 2			B					04 NS 08 NS			0,4 0,8	•			•		•	•			0	00		•	•	•					
Leichtes Schruppen	Schnittiefe (mm)	0,1	1 0,2 schub (m	0,3	NSU				04 NS 08 NS			0,4 0,8	•			•	•			•		0			•							
chruppen	Schnittliefe (mm)	-		K		TCI	MT 1	1020	04 NS 08 NS	SK		0,4 0,8																				
Leichtes Schruppen	Schnittt	0,1 Vors	1 0,2 schub (m	0,3	NSK	TCI	NT 1	6T30	04 NS 08 NS 12 NS	SK		0,4 0,8 1,2		•					•													
hruppen	5							1102 1102				0,4 0,8								0												
eichtes Schruppen				7		TCI	WN.	16T3 16T3 16T3	808			0,4 0,8 1,2							0	000	o											

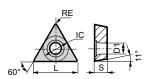
	Abmes	sungen	(mm)	
TP	L	IC	S	D_1
0802	8,2	4,76	2,38	2,4
0902	9,6	5,56	2,38	2,8
1103	11,0	6,35	3,18	3,4
1603	16,5	9,525	3,18	4,4



P Stahl
M Rostfreier Stahl
K Grauguss
N Nichteisenmetalle
S Super-Legierungen
H Gehärteter Stahl

I		D(2Т			0 0-11								neta								net		artn nbescl		
		\						_	P n	0	_	M S S	P _M	K		Н	S		Рм		F	•	K	5	S	N
•	(3-To	olerar	ıZ				8015F	AC8020P	8035	AC6020M	AC6040M	630M	AC4010K AC4015K	420K	503U	5015	5025	530U	T1500Z	2000	T1000A	500A	EH510	1520	
Α	nw	endu	ıng	Platten	form	ISO KatNr.	RE	A	A	P P	AO	N A	AC.	A A	AC	A A	AC	A	2 8 8	<u>-</u>	72	7	T G	山山	山	Ξ
:	Schlichten	Schnittiefe (mm)	0,1 Vorso	0,2 0 hub (mm/U)	NFC	TPGT 110302M NF0 TPGT 110304M NF0	<0,2 <0,4											000				0	0			
				•		TPGT 080202 LFW TPGT 080204 LFW	0,2 0,4													000		0	0			
	Schlichten	Schnittliefe (mm)			L/RFW	TPGT 110202 LFW TPGT 110204 LFW	0,2 0,4													0			0			
	OCU	Schnit	0,1	0,2 0 hub (mm/U)	,3	TPGT 080202 RFW TPGT 080204 RFW	0,2 0,4													0		0	0			
			VOISC	nub (mm/o)		TPGT 110202 RFW TPGT 110204 RFW	0,2 0,4													0		0	0			
						TPGT 080202 LFX TPGT 080204 LFX	0,2 0,4											0								
						TPGT 090204 LFX	0,4															0	0			
		3 -			(7)	TPGT 110202 LFX TPGT 110204 LFX TPGT 110208 LFX	0,2 0,4 0,8										000	0								
	inten	Schnittliefe (mm)			L/RFX	TPGT 110302 LFX TPGT 110304 LFX TPGT 110308 LFX	0,2 0,4 0,8										0	0	•							
:	SCUIICUE	Schnif	0,1 Vorso	0,2 0 hub (mm/U)	,3	TPGT 160304 LFX TPGT 160308 LFX	0,4 0,8																			
						TPGT 080202 RFX TPGT 080204 RFX	0,2 0,4											0								
						TPGT 110202 RFX TPGT 110204 RFX TPGT 110208 RFX	0,2 0,4 0,8										000	0								
						TPGT 110302 RFX TPGT 110304 RFX TPGT 110308 RFX	0,2 0,4 0,8										0									
						TPGT 160304 RFX TPGT 160308 RFX	0,4 0,8																			

(**K**)


	Abmes	sungen	(mm)	
TP	L	IC	S	D ₁
0802	8,2	4,76	2,38	2,4
0902	9,6	5,56	2,38	2,8
1102	11,0	6,35	2,38	2,8
1103	11,0	6,35	3,18	3,4
1603	16,5	9,525	3,18	4,4

E											net							Cer			lartı		
	PGT/-W ●●●				P		Τ	M	_	sch	nich I		1	S	П	PM	beso	chichte	t lunk	_	unbes	schicht	_
						ה ה	MC							_=					Ť				
•	G-Toleranz			AC8015P	208	2007	602	,603	,604	630	401	AC420K	5007	AC5015S	505	AC1030U AC530U	5002	T2500Z	T1000A	T1500A	0E	520	
Ar	wendung Plattenform	ISO KatNr.	RE	8	\ \ \	2 4	N A	A	¥.	A G	A A	A	2 4	¥ \	AC	AAA	Ξ	12	5 F	1	5 古	山山	Ξ
		TPGT 0802003 LFY TPGT 080201 LFY TPGT 080202 LFY TPGT 080204 LFY	0,03 0,1 0,2 0,4											0						00			
		TPGT 090201 LFY TPGT 090202 LFY TPGT 090204 LFY	0,1 0,2 0,4											0))				0			
		TPGT 110202 LFY TPGT 110204 LFY TPGT 110208 LFY	0,2 0,4 0,8																0				
		TPGT 1103003 LFY TPGT 110301 LFY TPGT 110302 LFY TPGT 110304 LFY TGPT 110308 LFY	0,03 0,1 0,2 0,4 0,8											000	$ \mathbf{c} $)))	0	0					
	3	TPGT 160302 LFY TPGT 160304 LFY TPGT 160308 LFY	0,2 0,4 0,8))							
Schlichten	Schnittliefe (mm) 2 L/RFY	TPGT 0802003 RFY TPGT 080201 RFY TPGT 080202 RFY TPGT 080204 RFY	0,03 0,1 0,2 0,4											0000	0					0			
	0 0,1 0,2 0,3 Vorschub (mm/U)	TPGT 090201 RFY TPGT 090202 RFY TPGT 090204 RFY	0,1 0,2 0,4))							
		TPGT 110202 RFY TPGT 110204 RFY TPGT 110208 RFY	0,2 0,4 0,8																0 0	000			
		TPGT 1103003 RFY TPGT 110301 RFY TPGT 110302 RFY TPGT 110304 RFY TPGT 110308 RFY	0,03 0,1 0,2 0,4 0,8											000	0))	00		0 0	0000			
		TPGT 160302 RFY TPGT 160304 RFY TPGT 160308 RFY	0,2 0,4 0,8))							
Für Aluminium	Schnittliefe (mm) 3 L/RAY	TPGT 110202 LAY TPGT 110302 LAY TPGT 110304 LAY	0,2 0,2 0,4																				0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TPGT 110302 RAY TPGT 110304 RAY	0,2 0,4																				0
eichtes Schruppen		TPGW 080202 TPGW 110302 TPGW 110304 TPGW 110308 TPGW 160404	0,2 0,2 0,4 0,8 0,4										0	0						0	•		

DREIECKIG

	Abmes	sungen	(mm)	
TP	L	IC	S	D ₁
0802	8,2	4,76	2,38	2,4
1103	11,0	6,35	3,18	3,4
1604	16,5	9,525	4,76	4,4

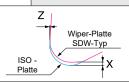
Hartmetall beschichtet P Stahl Rostfreier Stahl Grauguss K Grauguss
Nichteisenmetalle S Super-Legierungen H Gehärteter Stahl

Cermet Hartmetall eschichtet unbesch. unbeschichtet

K S N

/**c**/

<u>/K</u>/

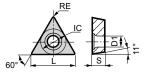

 (\mathbf{R})

S

TPGT/-X •••••• •- III	
------------------------------	--

nwendung Plattenform	ISO KatNr.	RE	AC8015P	ğ	AC8025P	AC6020N	AC6030N	AC6040N	AC630M AC4010k	AC4015K	AC420K	Y C	AC5015S	Y G	AC53011	T1500Z	T2500Z	T1000A	T1500A		EH520
	TPGT 080202 LW TPGT 080204 LW	0,2 0,4													0		0		•	2	
indpen	TPGT 110302 LW TPGT 110304 LW	0,2 0,4																	•		
	TPGT 160402 LW TPGT 160404 LW	0,2 0,4																	•		
Schiltinge (mm) Schiltinge (mm) Schiltinge (mm)	TPGT 080202 RW TPGT 080204 RW	0,2 0,4																	•	2	
On the second se	TPGT 110302 RW TPGT 110304 RW	0,2 0,4																	•		
Voiscilla (illino)	TPGT 160404 RW	0,4																	•		
ueu	TPGT 110302 LSD TPGT 110304 LSD TPGT 110308 LSD	0,2 0,4 0,8											0	0	•	$ \mathbf{o} $		0		2	
Schildness Schruppen Schriftiefe (mm) 3	TPGT 160402 LSD TPGT 160404 LSD TPGT 160408 LSD	0,2 0,4 0,8											0	0		0	o	o	•		
Schnittiefe (mm)	TPGT 110302 RSD TPGT 110304 RSD TPGT 110308 RSD	0,2 0,4 0,8														000	o	0	• • •		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TPGT 160402 RSD TPGT 160404 RSD TPGT 160408 RSD	0,2 0,4 0,8														00	o	\circ	•		
upbeu	TPGX 110304 L-SDW TPGX 110308 L-SDW	0,4 0,8															•				
	TPGX 160404 L-SDW TPGX 160408 L-SDW	0,4 0,8														0			0		
L/RSDW	TPGX 110304 R-SDW TPGX 110308 R-SDW	0,4 0,8																			
0 0,1 0,2 0,3 Vorschub (mm/U)	TPGX 160404 R-SDW TPGX 160408 R-SDW	0,4 0,8														0			0		

Ž (+)

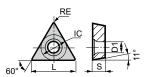


(Hinweis) Die Position der Schneide vom SDW-Typ ist nicht identisch mit der einer ISO-Schneidplatte.

Wenn Sie eine Bohrstange mit Einstellwinkel 93° verwenden, sollte die Position der Schneide gemäß den Angaben in der Tabelle korrigiert werden.

RF	Korrektur (mm	1)
KE	X (Durchmesser)	Z
0,4	+0,12 (Ø: +0,24)	-0,02
0,8	+0,12 (Ø: +0,24)	-0,02

60° Dreieckiger Typ Lochausführung



	Abmes	sungen	(mm)	
TP	L	IC	S	D ₁
0802	8,2	2,38	2,4	
0902	9,6	5,56	2,38	2,8
1103	11,0	6,35	3,18	3,4
1603	16,5	9,525	3,18	4,4
1604	16,5	9,525	4,76	4,4

I		DMT AAAAA											tall							Cei				artm nbesch	
		PMT •••••				Р			Į	M	PM		K	Н		s	I	PM	000		P	IIDOGG	K		N
_		M Talanana			15P	AC8020P	25P	35P	20M	30M	Mo	AC4010K	15K	30	990	AC5015S	252	S S	ZC	ZO	ZC	A ۲	5	0	0
		M-Toleranz wendung Plattenform	ISO KatNr.	RE	AC8015P	AC80	1C80	AC80	AC6020M	AC6040M	AC630M	1C40	1040 1040	AC503U	AC50	AC50	AC50255	AC1030U AC530U	L150	T2500Z	T3000Z	7100	G10F	H51	EH520 H1
	111	werldung Flatternorm	TPMT 080202 NFB TPMT 080204 NFB	0,2 0,4	1	_	1					1						00	•	0	0	0	0		
	Schlichten	Schnittlefe (mm)	TPMT 090202 NFB TPMT 090204 NFB TPMT 110302 NFB TPMT 110304 NFB	0,2 0,4 0,2 0,4															•	0000)		
	Sch	0,1 0,2 0,3 Vorschub (mm/U)	TPMT 110308 NFB TPMT 160304 NFB TPMT 160308 NFB	0,8 0,4 0,8														0	•	000					
			TPMT 160404 NFB TPMT 160408 NFB	0,4 0,8																0					
			TPMT 080202 NLB TPMT 080204 NLB	0,2 0,4																0					
	Schruppen	Schnittiefe (mm)	TPMT 090202 NLB TPMT 090204 NLB	0,2 0,4		0	0	O	Э	•									0	0	0	C			
	Leichtes Sc	Vorschub (mm/U)	TPMT 110302 NLB TPMT 110304 NLB TPMT 110308 NLB	0,2 0,4 0,8		0	0	O))											000	0				
-	_		TPMT 160304 NLB TPMT 160308 NLB TPMT 160404 NLB	0,4 0,8 0,4		0	0	0	C										0	0	0				
			TPMT 160408 NLB	0,8		0	0	0	C)							_		0	0	O)		
	Schlichten	Schnittiefe (mm)	TPMT 110304 NFK TPMT 110308 NFK	0,4 0,8																	(•		
(Sc	Vorschub (mm/U)	TPMT 160404 NFK TPMT 160408 NFK	0,4																					
			TPMT 080202 NLU TPMT 080204 NLU	0,2 0,4	•													00		•		0			
	Schlichten	Schmittine (e (mm))	TPMT 090202 NLU TPMT 090204 NLU	0,2 0,4	0														O	0		0			
	Schl	Vorschub (mm/U)	TPMT 110302 NLU TPMT 110304 NLU TPMT 110308 NLU	0,2 0,4 0,8	•						•							•	O	000			o		

	Abmes	sungen	(mm)	
TP	L	IC	S	D_1
0802	8,2	4,76	2,38	2,4
1103	11,0	6,35	3,18	3,4
1604	16,5	9,525	4,76	4,4

beschichtet

P_M K

Н Ѕ

Cermet

eschichtet unbesch. unbeschichtet

Hartmetall

K S N

P Stahl
M Rostfreier Stahl K Grauguss
N Nichteisenmetalle S Super-Legierungen
H Gehärteter Stahl

I			ī		1	l	/	Ē				1			7					1		ı																				eta							ho	Ce	erm				me schick		
			j	ĺ		V	4					J								4	4				H									Р	1		Τ	M		PM	_	K	- L	Н		S	Τ	PM	De	301110	P	unibes	_	_	S	-	_
																																	15P	AC8020P	25P	35P	MO	30M	10M	M	10K	AC4015K	X	N N	058	AC5015S	222	200	2 ~	7 7	Z	Ā	⋖				
									n																								280	C80;	280	080	AC6020M	AC6030M	AC6040M	263(C40,	C40,	C42(AC503U	C20	220	7000	AC1030U	T15007	2500	T3000Z	T1000A	150	151	EH520		
/	An	۱V	/e	n	dι	ır	ıç	I		F	임	at	te	n	fc	rn	1		4		_!5	0	K	at.	-Nı	·					F	RE	₹	Ā	₹	₹	Ā	Ā	₹	₹	Ā	Ā	Ā	ĕ	∢ .	₹ <	₹ 4	44	ζŀ	- -	ř	È	È	ם כ	ıЩ	Ī	4
	Leichtes Schruppen		Schnittiefe (mm)	3 1 (3 [V	opre	,1 scl	nub	1,2 (m		0,3 /U	,	9	6	N	SI	J		TE TE TE	M.	Γ 0 Γ 1 Γ 1 Γ 1	10 10 10	30 30 30 40)4)2)4)8	NS NS NS NS NS	U),2),4),3),8),4),8	•	• • •	•	0	0 0 • •			0 0 0 0 0					00 000 00						0000	o 0	0				
	Leichtmittl. Schruppen		Schnitttiefe (mm)		3 2 1 0	_			2	0. (m			, t	5		N	Gl	J		TF	M.	Г 1 Г 1	10 60	30 40	8 4	NG NG NG	U iU	T W	Neu Neu Neu	JAM, JAM,	C),4),8),4),8		0 0	о 0	0	0000	0	0										C				3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
	Leichtmittl. Schruppen		Schnitttiefe (mm)	2	3 [· v	o,		o,:		0,3 m/		0	14		NI	MU	J		TF TF	M.	Γ1 Γ1	10 60	30 40)8)4	NIV NIV NIV	1U 1U				C),4),8),4),8	0	0000	о 0		0	• • • •			о 0	0000															

T	PM	T/H	000	000	NSF	

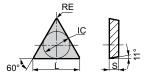
M-7		

										_			_	_	_			_	_		_	_	
• M-Toleranz	_		C8015P	C8020P	C8025P	C6020M	C6030M	C6040M	C4010K	C4015K	C420K	C503U	C5005S	C5025S	C1030U	C530U	1500Z	2500Z	1000A	1500A	10E	H520	
Anwendung Plattenform	ISO KatNr.	RE	¥	Ā.	ă ă	4	Æ	₹ ₹	Z	F	ĕ١	₹ •	٤ ٠	Z Z	Æ	Ā	<u> </u>	- -	È	μÈ	ם פ	ıЩ	エ
Schrüftlige (mm/l)	TPMH 110304 NSF TPMH 110308 NSF	0,4 0,8		•																			
Vorschub (mm/U)	TPMT 160404 NSF TPMT 160408 NSF	0,4 0,8		•) •																		

● = Eurolager ○= Japanlager <u> K</u> (\mathbf{R})

beschichtet

Hartmetall


Hartmetall

S

S

DREIECKIG WENDESCHNEIDPLATTEN

	Abmes	sungen	(mm)	
TP/TB	L	IC	S	D ₁
0601	6,9	3,97	1,59	-
0902	9,6	5,56	2,38	-
1103	11,0	6,35	3,18	-
1603	16,5	9,525	3,18	-
2204	22,0	12,7	4,75	-

Cermet

Hartmetall

unbeschichtet SN

Cermet Hartmetall peschichtet unbesch. unbeschichtet

Cermet Hartmetall sch. unbeschichtet S

S

AC4010K AC4015K AC420K AC503U AC5005S G-Toleranz rechts-/linksschneidende Geometrie Anwendung Plattenform ISO Kat.-Nr. RE **TPGR 090202 LW** 0,2 Schlichten-leichtes Schruppen TPGR 090204 LW 0,4 **TPGR 090208 LW** 0,8 0 Schnittiefe (mm) **TPGR 110302 LW** 0,2 $|\mathbf{o}|$ **TPGR 110304 LW** 0 0 0.4**TPGR 110308 LW** $|\mathbf{o}|$ 0,8 0 0,2 **TPGR 160302 LW** 0 00 0,2 **TPGR 160304 LW** 0,4 0 Vorschub (mm/U) **TPGR 160308 LW** 0 0,8 **TPGR 090202 RW** 0,2 0 Schlichten-leichtes Schruppen **TPGR 090204 RW** 0 0,4 Schnittiefe (mm) **TPGR 090208 RW** 0,8 O **TPGR 110302 RW** 0,2 0 OO R-W **TPGR 110304 RW** 0,4 • **TPGR 160302 RW** 0,2 0 |o|o0,2 0,3 **TPGR 160304 RW** 0,4 0 0 lacksquareVorschub (mm/U) **TPGR 160308 RW** O 0,8

♠ C Toloranz conctigo nos Mondoschnoidalattan

• G-Toleran	z, sonstige pos.	wendescrinelaplatten		ا <u>ښ</u>	<u></u> ω	$\tilde{\mathbf{x}}$	9	360	<u>ي</u> (اي	4	4 4	.55	100 j	يز اير		5	20		81	레틸	5	2	
Anwendung	Plattenform	ISO KatNr.	RE	M	ĕ	¥∣≽	A	A	Z A		$\forall \forall$	Y	ĕ۱	¥∣۵	Z Z	A	⊏∣દ	<u> </u> [2	디	ည်	山口	[[=
leichtes Schr.		TBGN 060104	0,4																	0			
Schlichten-k		TBGR 060104 LW	0,4																C)			

sonstide nos Wendeschneidnlatten

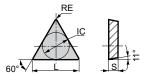
G-1 oler	, , ,	vvendeschneidplatten		8	3	ğ β	26(000	000	181	55	AC50 AC50	2 5	52	20		5 5	1	125
Anwendung	Plattenform	ISO KatNr.	RE	4	∢ -	4	Ä	ĕĕ	A A		44	4 4	¥ Ā	(d i	- -	Η̈́	ا		回工
		TPGN 090202 TPGN 090208	0,2 0,8														0		0
Schruppen		TPGN 110302 TPGN 110304 TPGN 110308	0,2 0,4 0,8									0	O			000	O	,	0
Leichtes	•	TPGN 160302 TPGN 160304 TPGN 160308 TPGN 160312 TPGN 220404	0,2 0,4 0,8 1,2 0,4									0							

 (\mathbf{R})

beschichtet

Hartmetall beschichtet

Hartmetall


beschichtet

K

S

K

	Abmes	sungen	(mm)	
TP	L	IC	S	D_1
0902	9,6	5,56	2,38	-
1103	11,0	6,35	3,18	-
1603	16,5	9,525	3,18	-
2204	22,0	12,7	4,76	-

Cermet

eschichtet unbesch. unbeschichtet

Hartmetall

K S N

/**c**/

<u>/K</u>/

 (\mathbf{R})

S

<u>(w)</u>

unbeschichtet

Hartmetall

unbeschichtet

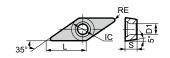
K S N

Cermet

K S N

M-Toleranz			AC8015P	AC8020P	AC8025P	C8035P	AC6020N	AC6030N	AC630M	AC4010K	C4015K	AC420K	AC503U	C5005S	AC5015S AC5025S	C1030I	AC530U	1500Z	2500Z	T3000Z	1000A	1500A	G10E FH510	EH520	_
Anwendung Plattenform	ISO KatNr.	RE	₹	⋖	Ā	Ž	₹ •	<	(4	(4	(∢	Ā	⋖ •	4	Ī	(4	Ė	Ë	Ë		- (שופ	1 Ш	耳
9	TPMR 090204 NFK	0,4																			(0			
Schlichten Schnittiefe (mm)	TPMR 110302 NFK TPMR 110304 NFK	0,2 0,4																				•			
Schlichten Schnittiefe (n. NFK	TPMR 110308 NFK	0,8																				•			
0,1 0,2 0,3	TPMR 160304 NFK TPMR 160308 NFK	0,2 0,4																		0		•			
Vorschub (mm/U)	TPMR 160312 NFK	1,2																			(0			
ueddnuto	TPMR 110304 NSF TPMR 110308 NSF	0,4 0,8		•	• •	•																			
NSF NSF NSF Vorschub (mm/U)	TPMR 160304 NSF TPMR 160308 NSF TPMR 160312 NSF	0,4 0,8 1,2		• • •	• • •	•																			
Leichtes - mittl. Schruppen Schriftere (mm) Schrittere (mm) Schrittere (mm) NOA Norschub (mm/U)	TPMR 110304 NUJ TPMR 110308 NUJ	0,4 0,8			00																				
NUJ Vorschub (mm/U)	TPMR 160304 NUJ TPMR 160308 NUJ	0,4 0,8			00	- 1																			

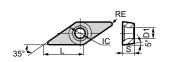
M-Toleranz sonstige pos. Wendeschneidplatten


o ivi roioranz, oc	onolige poo. Wendesonn	Ciapiatteri		∞ ਲ	∞	8 4 5	4 4 15	23	$\frac{1}{2}$	N N I	000	5	일일	
Anwendung Platte	enform ISO Kat	Nr.	RE	¥ ¥		A A		¥	¥ ¥	된다		<u>6</u> 1	山山	$ \Xi $
Mittleres Schruppen	TPMN 1103 TPMN 1103 TPMN 1603 TPMN 1603 TPMN 1603 TPMN 2204 TPMN 2204 TPMN 2204	08 04 08 12 04	0,4 0,8 0,4 0,8 1,2 0,4 0,8 1,2						0000			0 0		

TEGN •••••

E-Toleranz	z, sonstige pos.	Wendeschneidplatten		3801	300	800	208	909	604	¥07	7407	742	500	501	102	533	200	200	000	500	1510	1520	
Anwendung	Plattenform	ISO KatNr.	RE	A	¥.		질	¥	A			4	¥	A	4 4	Z Z		2 E	-	드	山山	山	
Leichtes-mitteres Schr.		TEGN 160308	0,8																	0			

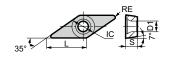
V RHOMBISCH WENDESCHNEIDPLATTEN



	Abmes	sungen	(mm)	
VB	L	IC	S	D ₁
1102	11,0	6,35	2,38	2,38
1103	11,1	6,35	3,18	2,8
1604	16,6	9,525	4,76	4,4

,									Hai	rtm	etall						C	err	net	H	lartn	net	all
Ι,	/BMT/-W ●●●	900 9-22			Р		T	M	bes	chic	htet	Н		S	PM		esch	ichtet	unbes	ich. u	inbesc		tet
				ے	_	یا م			Σ.	<u>√</u>	<u>~</u>	, _	က္က	=									
•	M-Toleranz			AC8015P	AC8020P	AC8025P	AC6020M	AC6030M	AC6040M	AC4010K	AC4015K	AC503U	5005	AC5015S	AC1030U	AC530U	ZOO Z	12500Z	T1000A	00A	310	20	
	nwendung Plattenform	ISO KatNr.	RE	ΑCE	ACE		ACE	ACC		A C	AC/	ACE	AC	ACE	AC S	Y S	T15	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	119	T1500A	温	EH520	Ξ
Schlichten	Ê	VBMT 110302 NFB VBMT 110304 NFB VBMT 110308 NFB VBMT 160404 NFB VBMT 160408 NFB	0,2 0,4 0,8 0,4 0,8															0		0			
Schlichten	(Eu) 1 NFP NFP Orschub (mm/U)	VBMT 110202 NFP VBMT 110204 NFP VBMT 160404 NFP VBMT 160408 NFP	0,2 0,4 0,4 0,8															•		•			
Schlichten	Vorschub (mm/U)	VBMT 110302 NLU VBMT 110304 NLU VBMT 110308 NLU VBMT 160404 NLU VBMT 160408 NLU	0,2 0,4 0,8 0,4 0,8	000	0		•	0															
l eichtes Schriupen	NLB Output O	VBMT 110302 NLB VBMT 110304 NLB VBMT 110308 NLB VBMT 160404 NLB VBMT 160408 NLB VBMT 160412 NLB	0,2 0,4 0,8 0,4 0,8 1,2		000		0000	0												0			
negalithas Sethole I	NSU Output O	VBMT 110204 NSU VBMT 110208 NSU VBMT 110302 NSU VBMT 110304 NSU VBMT 110308 NSU VBMT 160404 NSU VBMT 160408 NSU VBMT 160412 NSU	0,4 0,8 0,2 0,4 0,8 0,4 0,8 1,2	• • • • • •			• • • • •	•			•		0000	•						0			
Laichtee Schringen	0,1 0,2 0,3 Vorschub (mm/U)	VBMT 110204 NSK VBMT 110208 NSK VBMT 160404 NSK VBMT 160406 NSK VBMT 160408 NSK VBMT 160412 NSK	0,4 0,8 0,4 0,6 0,8 1,2	•						•													
l eicht -mittl Schruppen	(E (a) 3 - (b) 4 (a) 6 - (c) 6	VBMT 110304 NGU Neu VBMT 110308 NGU NBMT 160404 NGU NEU VBMT 160408 NGU	0,4 0,8 0,4 0,8				•	• C		•	•			•				•		0			
Leichtes Schrinnen	NMU of the state	VBMT 160408 NMU	0,8	•					•														
l aichtec Schr		VBMW 160404 VBMW 160408	0,4 0,8							0	0												

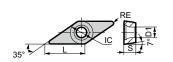
	Abmes	sungen	(mm)	
VB	L	IC	S	D ₁
1103	11,1	6,35	3,18	2,8
1604	16,6	9,525	4,76	4,4


E	VDCT AAAAA										net							Cer			lartn		
	VBGT •••••				Р			M		M	nicht K		Н	s		PM	Desc	chichte	P uno		unbesc		N
	C Talayana			115P	20P	AC8025P	MOC	30M	40M	WO	10K	OK.	300	AC5015S	255		Z0	302	Z	. A	0	0	
_	G-Toleranz Anwendung Plattenform	ISO KatNr.	RE	AC8015P	AC8		AC8035P AC6020M	AC6030M	AC6040M	AC630M	AC4010K AC4015K	AC420K	AC503U	AC50	AC5025S	AC530U	T1500Z	T2500Z	13000Z T1000A	T1500A	G10E EH510	EH52	딛
		VBGT 110301 LFX VBGT 110302 LFX VBGT 110304 LFX VBGT 160402 LFX	0,1 0,2 0,4														0		0	0			
144	Schlichten (mm) author (mm) L/RFX	VBGT 160404 LFX	0,4																0	O			
2	L/RFX Output	VBGT 110301 RFX VBGT 110302 RFX VBGT 110304 RFX	0,1 0,2 0,4														$ \mathbf{c} $		0	0			
		VBGT 160402 RFX VBGT 160404 RFX	0,2																	0			
1.044	L/RFYS	VBGT 1103003 LFYS VBGT 110301 LFYS VBGT 110302 LFYS VBGT 110304 LFYS VBGT 110308 LFYS	0,03 0,1 0,2 0,4 0,8																				
1111	Copyrights (mm/U) L/RFYS L/RFYS 0,2 0,4 Vorschub (mm/U)	VBGT 1103003 RFYS VBGT 110301 RFYS VBGT 110302 RFYS VBGT 110304 RFYS VBGT 110308 RFYS	0,03 0,1 0,2 0,4 0,8											0									
1.4-1.	L/RFY	VBGT 110301 LFY VBGT 110302 LFY VBGT 110304 LFY	0,1 0,2 0,4												0	O	00			000			
2	Upto Complete Complet	VBGT 110301 RFY VBGT 110302 RFY VBGT 110304 RFY	0,1 0,2 0,4												C		0			0			
1	Schruppen Schrup	VBGT 110301M NSI VBGT 110302M NSI VBGT 110304M NSI VBGT 110308M NSI	<0,1 <0,2 <0,4 <0,8											•									
1 1 1 1	9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VBGT 160401M NSI VBGT 160402M NSI VBGT 160404M NSI VBGT 160408M NSI	<0,1 <0,2 <0,4 <0,8											•									
	4 - (mg 3 -	VBGT 110301 LAY VBGT 110302 LAY VBGT 110304 LAY	0,1 0,2 0,4																				000
1	Schnittiefe (mm) 3 L/RAY	VBGT 160402 LAY VBGT 160404 LAY	0,2																				
14 :01	L/RAY 1 0,000 0,0	VBGT 110301 RAY VBGT 110302 RAY VBGT 110304 RAY	0,1 0,2 0,4																			(000
		VBGT 160402 RAY VBGT 160404 RAY	0,2 0,4																				င

 (\mathbf{R})

s

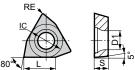
V RHOMBISCH WENDESCHNEIDPLATTEN



	Abmes	sungen	(mm)	
VC	L	IC	S	D ₁
0802	8,3	4,76	2,38	2,3
1103	11,1	6,35	3,18	2,8
1604	16,6	9,525	4,76	4,4
2205	20,2	12,7	5,56	5,5

١	CGT ••••	00 O-HH						be	esch	neta ichte	et				_	Ce	_		. unb	rtme eschio	chtet
					250	35P	20M	_	M N N	75 K	X S H		S S S S S S S S S S S S S S S S S S S	200		7 7	P	44	K	Ī	N
_	G-Toleranz nwendung Plattenform	ISO KatNr.	RE	AC8015P		AC803	AC6020M	AC6040M	AC630M AC4010K	AC4015K	AC420K AC503U	AC5005S	AC50;	AC103	AC53(T1500Z T2500Z	T3000Z	T1000A T1500A	G10E	EH510	되
	3	VCGT 080204M NFC	<0,4										0	0	o						
Schlichten	NFC Septimization of the control of	VCGT 110301M NFC VCGT 110302M NFC VCGT 110304M NFC	<0,1 <0,2 <0,4											•							
Schlichten	3 (mm) 2 2 L/RFX	VCGT 110301 LFX VCGT 110302 LFX VCGT 110304 LFX	0,1 0,2 0,4											•				0			
Schli	L/RFX O O O O O O O O O O O O O	VCGT 110301 RFX VCGT 110302 RFX VCGT 110304 RFX	0,1 0,2 0,4											• • •	•			0			
Schlichten	(mu) 2 (mu) 2 L/RFY	VCGT 110301 LFY VCGT 110302 LFY VCGT 110304 LFY	0,1 0,2 0,4												0						
Schli	0 1 0,1 0,2 0,3 Vorschub (mm/U)	VCGT 110301 RFY VCGT 110302 RFY VCGT 110304 RFY	0,1 0,2 0,4											000	0						
es Schrinben	NAG	VCGT 110302 NAG VCGT 110304 NAG	0,2 0,4																		•
l eichtes Sc	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VCGT 160408 NAG VCGT 160412 NAG VCGT 220530 NAG	0,8 1,2 3,0																		• • •
l eichtes Schrippen	Vorschub (mm/U) NSI Output NSI Output NSI NSI Vorschub (mm/U)	VCGT 110301M NSI VCGT 110302M NSI VCGT 110304M NSI VCGT 110308M NSI VCGT 160401M NSI VCGT 160402M NSI VCGT 160404M NSI VCGT 160408M NSI	<0,1 <0,2 <0,4 <0,8 <0,1 <0,2 <0,4 <0,8						•												

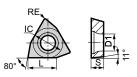
	Abmes	sungen	(mm)	
VC	L	IC	S	D ₁
0802	8,3	4,76	2,38	2,3
1103	11,1	6,35	3,18	2,8
1604	16,6	9,525	4,76	4,4


7		T 00000										met hich						he		erm	et unbesc		artn nbesc		
						Р			M		PM	ŀ	(Н	E	_	PN		3301110	P	IIIOOSC	K	_	_	N
•	M-Tolera	anz			AC8015P	020P	AC8025P	AC8035P AC6020M	AC6030M	AC6040M	AC630M	AC4010K	20K	030	0158	AC5025S	AC1030U	300	700	ZOC	A00	ξ H	10	20	
_	nwendung	Plattenform	ISO KatNr.	RE	AC8	AC8	AC8	AC8	AC6	AC6	AC6	AC4	AC4	AC503U	A CS	ACS	AC1	AC530U T15007	T2500Z	T3000Z	T1000A	G10E	EH510	EHS	Ξ
Schlichten	0,0	NFB 0,1 0,2 0,3 schub (mm/U)	VCMT 080202 NFB VCMT 080204 NFB VCMT 160404 NFB VCMT 160408 NFB	0,2 0,4 0,4 0,8																0		o			
Schlichten	ο ο Γ	NLU	VCMT 160404 NLU VCMT 160408 NLU	0,4	00		0		0		00										0				
Laichtee Schriippen	Schnittlefe (mm) Schnittlefe (mm) Vors	NLB	VCMT 080202 NLB VCMT 080204 NLB VCMT 160404 NLB VCMT 160408 NLB	0,2 0,4 0,4 0,8		0) C		0										0					
Laichtee Schriighen	Schrittle (mm) 3 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NSU NSU 0,1 0,2 0,3 schub (mm/U)	VCMT 080204 NSU VCMT 110302 NSU VCMT 110304 NSU VCMT 110308 NSU VCMT 160404 NSU VCMT 160408 NSU	0,4 0,2 0,4 0,8 0,4 0,8	•	•	0			000	•			((•							
l aichtae Schriinnan	Schnittiefe (mm) 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NSK 0,1 0,2 0,3 schub (mm/U)	VCMT 160404 NSK VCMT 160408 NSK	0,4 0,8												•									
Leicht -mittl Schrimpen	Schrittiefe (mm) 3 2 1 1 0 Vols	NGU 0,2 0,4 0,6 schub (mm/U)	VCMT 160404 NGU Neu VCMT 160408 NGU Neu	0,4	•	•			•	00						00									

/**K**/

 (\mathbf{R})

V TRIGON-TYP WENDESCHNEIDPLATTEN



	Abmes	sungen	(mm)	
WB	L	IC	S	D ₁
0601	3,2	3,97	1,59	2,2
0802	4,6	4,76	2,38	2,4

			80	, L	S	22																	il (€eh	ärtete	er S	tahi	
	V	۸ /	DC.														met							ern	net unbesch.		rtme eschio	etall
	V	V	BG	T 000		U U						Р			M D	P _M	hicht K		1	S		PM	Desci	P		K		N
	• (3 -	-Tolera	nz, rechts-/li	inkssch	neiden	de Geo	metri	e		AC8015P	.8025P	38035P	36020M	AC6030M AC6040M	AC630M	4010K	AC420K	5005S	50158	35025S	710300 2530U	500Z	5002	T1000A T1500A	0E	1510 1520	H1
	An	we	ndung	Plattenform	1	ISO	KatN	r.		RE	8	4 8	¥	¥.	¥ ¥	A	A A	A	₹ ¥	A	A	¥ ¥	F	2 2		ည်	山山	三
		(mr	2	6	7		060104	LFW		0,2 0,4													0) 	O			
	Schlichten	Schnittiefe (mm)	1	L/RF	w	WBGT WBGT				0,2 0,4													0		o			
7	Scl	й	00	,1 0,2 0,3 nub (mm/U)			060102 060104			0,2 0,4													\circ		ဝ			
7						WBGT WBGT	080202 080204			0,2 0,4													0		o			
		(-				WBGT WBGT	060104	LFX		0,2 0,4											0							
	Schlichten	Schnittliefe (mm)	1-	L/RI	FX	WBGT WBGT				0,2 0,4																		
	Sch	Schr	00	,1 0,2 0,3 nub (mm/U)		WBGT WBGT				0,2 0,4												•						
						WBGT WBGT	080202 080204			0,2 0,4																		
						WBGT	060100	3 LFY	,	0,03															ြ			
							060101 060102 060104	LFY		0,1 0,2 0,4															000			
	Schlichten	(mm)	2 -	L/R		WBGT WBGT WBGT	080202	LFY		0,1 0,2 0,4															00			
	Sch	Schnittliefe (mm)	0		r i	WBGT WBGT WBGT	060102	RFY		0,1 0,2 0,4															000			
						WBGT WBGT WBGT	080202	RFY		0,1 0,2 0,4															00			
	Schlichten - leichtes Schruppen	Schnittiefe (mm)	2 -	L/F	N RW	WBGT WBGT				0,2 0,4												•			0			
	Schlichten - le,	Schn	00			WBGT WBGT				0,2 0,4															0			

	Abmes	sungen	(mm)	
WP	L	IC	S	D ₁
1102	4,3	6,35	2,38	2,8
1603	6,5	9,525	3,18	4,4

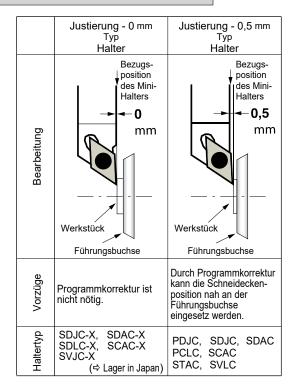
١	WPMT ●●		● NI D								rtm								Ceri			Har unbe			
						Р		T	M	F	м	K	H		S	+-	M			Р		K	S		N
•	M -Toleranz				AC8015P	020P	025P	AC8035P AC6020M	030M	AC6040M	010K	AC4015K	20K	AC5005S	0158	0301	300	Z0C	200	ZOC A	T1500A	ш	10 20	70	
_	nwendung Plattenfo	rm	ISO KatNr.	RE	- AC8	AC8	AC8	AC8 AC6	AC6	AC6	A 25	AC4	AC5	ACS	AC5		ACS	T15(T250	T10	T15(G10E	다 라		=
Pichtes Schrinnen	Schrittlefe (mm)		WPMT 110204 NLB	0,4			0												c						
l pichtes	Worschub (mm/U)	NLB	WPMT 160308 NLB	3,0	3	0	0	20										0							

K (R)

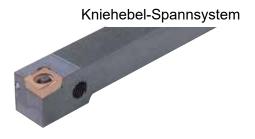
Außendrehhalte

D1-D46

Außendrehhalter



Auswahl	Halter zum Außendrehen	D2-7
ISO	Bezeichnung der Außendrehhalter	D8
	Berechnung der Position der Schneidenecke	D9
Sumi-Turn T-REX	T-REX, Doppelklemmhalter	D10–11
Für Hochleistungszerspanung	D-Typ Doppelklemmhalter	
	DC -Typ Halter	D12
	DD -Typ Halter	
	DS -Typ Halter	
	DT -Typ Halter	D15
	DV -Typ Halter	D16
	DW -Typ Halter	D17
Für allg. Drehbearbeitung	P-Typ Kniehebelhalter und	
r ar ang. Bromboarbonang	M-Typ Klemmhalter mit Stift und Spannpratzen	
	PC -Typ Halter	D18
	PD -Typ Halter	
	PS -Typ Halter	
	PT / MT -Typ Halter	
	PW / MW -Typ Halter	
Für Voll-CBN Schneidplatten	C-Typ Klemmhalter mit Spannpratzen	D25 26
Tul Voll-CBN Schlieldplatteri	X-Typ Halter "Dimple Lock"	
	A-Typ Haller Diffiple Lock	DZI
Auswahl	Serie der Mini-Halter	D28-29
Zum Hinterdrehen	SBT -Typ Mini-Halter	D30
Für allg. Drehbearbeitung	PC / SC -Typ Mini-Halter	D31
	PC / SD -Typ Mini-Halter	D32-33
	PR -Typ Halter	D34
	SR -Typ Halter	D35
	SS -Typ Mini-Halter	D36
	ST -Typ Mini-Halter	D37
	SV -Typ Halter zum Kopieren	D38-39
	Polygonschafthalter	D40
Für Hochleistungszerspanung	D-Typ Doppelklemmhalter	
	PSC**DC -Typ Halter	D41
	PSC**DD -Typ Halter	D41
	PSC**DS -Typ Halter	
	PSC**DT -Typ Halter	D42
	PSC**DW -Typ Halter	D42
Für allg. Drehbearbeitung	S - Typ Schraubenklemmung	
•	PSC**SC -Typ Halter	D43
	PSC**SD -Typ Halter	D43
	DOOST III	D 40


Außendrehen Abstechen Hinterdrehen Kopieren Allgemeines Drehen Einstechen Einstechen & Abstechen SCT-Typ SBT-Typ SV-Typ P / S-Typ GWC-Typ GND-Typ .25~3.00mr SDJC 20~32n Max. Durchm. Ø5 ~ 16mm

Halterwahl für kleine Drehmaschine

Auswahl der Drehhalter

■ Auswahl nach Drehbearbeitung

	Anwei	ndung	Zum allg. l Pland		Zum allg.	Drehen und	Kopieren	Zum allg	. Drehen
	hneidp System	elattentyp	80° rho	mbisch	55° rhor	nbisch	T-REX 55°	90° quad	Iratisch
Schraubspannsystem	S-Typ Mini-Halter		SCLC ⇔ D31	SCAC ⇔ D31	SDJC ⇒ D32 SDHC ⇒ D32	SDAC ⇒ D33	_	_	SSBC ⇒ D36
Schraubsp	S-Typ Mi		_	-	SDNC ⇒ D33	_	_	_	_
oannsystem	ryp Anordnung)		PCLC (°) ⇔ D31	-	PDJC (*) ⇒ D32	_	-	PSBN ⇒ D20	PSDN ⇒ D20
Kniehebel-Spannsystem	P - Typ (* Seitliche Anordnung)		PCBN ⇔ D18	PCLN ⇔ D18	PDJN ⇒ D19	-	-	PSKN ⇒ D21	PSSN ⇔ D21
Klemmhalter mit Spannpratzen	C & M- Typ		CCLN	_	_	_	_	CSBN	CSKN
Doppelklemmung (D) "Dimple Lock" (X)	D & X - Typ	**	⇒ D25 ↑ ↑ DCLN ⇒ D12	XCLN ⇔ D27	DDJN ⇒ D13	_	DTR ⇒ D11	⇒ D25 XSBN ⇒ D27	⇒ D25
ldod ldo"			_	_	DDHN ⇒ D13	DDNN ⇒ D13	_	DSBN ⇒ D14	DSDN ⇒ D14

Außenrehhalte

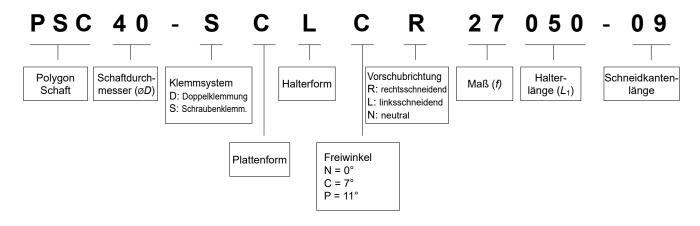
Auswahl der Drehhalter

■ Auswahl nach Drehbearbeitung

	ndung	Zu	m allg. Drehe		Zum allg. D Kopie		Zum allg. Drehen	Zum Kopi	erdrehen
Platte		6	0° dreieckig	ı	35° rhor	nbisch	80° Trigon- Platten	Runde und Schneid	
Schraubspannsystem	S-Typ Mini-Halter	STAC ⇒ D37	STGC ⇒ D37	_	SVJB ⇒ D38 SVLC ⇒ D39	SVVB ⇔ D38	1	SRDC ⇔ D35	SRSC ⇔ D35
Schraubsp	S-Typ Mi	_	-	-	SVPB ⇒ D38 SVPC ⇒ D39	_	ı	SBT ⇒ D30	-
Kniehebel-Spannsystem	Тур	PTGN ⇒ D22	PTFN ⇒ D22	PTTN ⇔ D22	_	-	PWLN ⇔ D24	PRDC ⇒ D34	PRGC ⇔ D34
Kniehebel-S	d	_	_	_	_	_	ı	_	_
Klemmhalter mit Spannpratzen	C & M- Typ	MTJN ⇒ D23	MTXN ⇒ D23	_	-	-	MWLN ⇔ D24	CRDN ⇔ D26	CRSN ⇔ D26
nmung (D) -ock" (X)	- Тур	DTJN ⇒ D15	DTFN ⇒ D15	-	DVJN ⇒ D16	-	DWLN ⇔ D17	-	_
Doppelklemmung (D) "Dimple Lock" (X)	D & X	DTGN ⇒ D15	_	_	DVQN ⇒ D16	DVVN ⇒ D16	_		_

Auswahl der Drehhalter

Polygonschaft - gefertigt nach ISO 26623-1

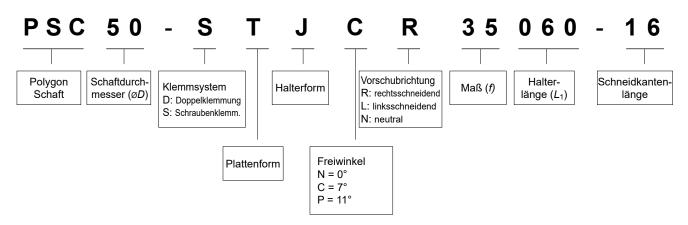


Halter für negative Schneidplatten

■ Auswahl nach Drehbearbeitung

	Anwei	ndung	Zum allg. I Pland		Zum allg.	Drehen und	Kopieren	Zum allg	. Drehen
	hneidp System	plattentyp	80° rhoi	mbisch	55° rhon	nbisch	T-REX 55°	90° quad	dratisch
Schraubspannsystem	S-Typ Mini-Halter		SCLC ⇒ D43	_	SDJC ⇒ D43	_	_	Ι	SSBC ⇒ D43
Schraubsp	S-Typ Mi		_	_	SDHC ⇒ D43	_	_ SRSCR	_	_
Doppelklemmung (D)	Тур		DCLN ⇒ D41	_	DDJN ⇒ D41	_	_	_	_
Doppelkler	·- a		_	_	DDHN ⇒ D41	_	_	DSBN ⇔ D41	_

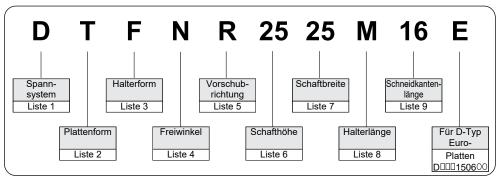
■ Bezeichungsschlüssel für Polygon-Werkzeughalter



Halter für positive Schneidplatten

■ Auswahl nach Drehbearbeitung

Anwe	ndung	Zu	ım allg. Dreh	en		Orehen und eren	Zum allg. Drehen	Zum Kop	ierdrehen
Platte Syst	entyp em	6	60° dreieckiç)	35° rho	mbisch	80° Trigon- Platten	Runde und Schneid	
annsystem	ni-Halter	STJC ⇔ D44	_	_	SVJB ⇒ D44 SVHB ⇒ D44	SVJC ⇒ D45 SVHC ⇒ D45	_	_	_
Schraubspannsystem	S-Typ Mini-Halter	_	_	_	SVVB ⇒ D44	SVVC ⇒ D45	_	_	_
(D) gunmu	Тур	DTJN ⇒ D42	_	_	_	_	DWLN ⇔ D42	_	_
Doppelklemmung (D)	Q	_	_	_	_	_	_	_	_


■ Bezeichungsschlüssel für Polygon-Werkzeughalter

Liste 1

ISO-Halterbezeichnung

■ Bezeichungsschlüssel für Außendrehhalter

Liste 4

В

С

D

F

G

Ν

Freiwinkel Symbol Freiwinkel

5°

-

1 20° Ε

11° 🗸

15° 🗸

Spannsystem										
Symbol	Klemmtyp	Aufbau	Symbol	Klemmtyp	Aufbau					
С	Mit Spannpratzen		М	Mit Stift und Spannpratzen						
D	Doppel- Klemmung		Р	Mit Kniehebel						
Е	Mit Exzenterstift		S	Schraub- spannung						

Liste 5	5
---------	---

Liste 3

	Vorschubrichtung										
Symbol	rechtsschneidend	Symbol	neutral	Symbol	linksschneidend						
R	777777	N	7/////	L	7/////						

Plattenform									
Symbol	Plattentyp	Symbol	Plattentyp						
Α	Parallelogramm 85°	М	Rhombus 86°						
В	Parallelogramm 82°	О	Achteck O						
С	Rhombus 80°	Р	Fünfeck 🖒						
D	Rhombus 55°	R	Rund O						
Е	Rhombus 75°	S	Viereck						
F	Rhombus 50°	Т	Dreieck \triangle						
Н	Sechseck $igoriansian$	٧	Rhombus 35°						
K	Parallelogramm55°	W	Trigon 🔊						
L	Rechteck								

	- 7		L r	lecitleck _		'					г	ı '	1 .	
/	7/17	77777									0		Spe	ezial
	Liste	e 6	Lis	te 7	Li	iste	e 8	L	iste	e 9				
	So	Schafthöhe Schaftbreite				Ha	alterlänge	S	chn	eidkantenlän	ge			
	Symbol	Höhe (m	nm) Symbo	Breite (mm)	Syl	mbol	Länge (mm)	Syı	mbol	Länge (mm	1)			
	12	12	12	12		F	80	Z.	В.	für dreieck	ige	z.B.	für r	unde
	16	16	16	16	ı	Н	100	P	latt	en	_	Plat	ten	
	20	20	20	20		K	125	C)6	6,9		10		10
		0.5	0.5	0.5	١.		450		\ <u>0</u>	2.0		40		40

Ν Р Q S Т

Halterform									
Symbol	Form	Anschlag	Symbol	Form	Anschlag				
Α	7 _{90i}	Nil	L	95 _i	Mit Anschlag				
В	75;	Nil	N	63 _i	Nil				
D	45;	Nil	R	751	Mit Anschlag				
Е	60 _i	Nil	s	45;	Mit Anschlag				
F	90;	Mit Anschlag	Т	60 _i	Mit Anschlag				
G	90 _i	Mit Anschlag	U	93;	Mit Anschlag				
J	93 _i	Mit Anschlag	W	60 _i	Mit Anschlag				
K	75	Mit Anschlag	Υ	85;	Mit Anschlag				

Symbol	Höhe (mm)	Symbol	Breite (mm)			
12	12	12	12			
16	16	16	16			
20	20	20	20			
25	25	25	25			
32	32	32	32			
40	40	40	40			
50	50	50	50			
00	Rundschaft		Durchmesser in mm			
		_				

Liste 2

Doppelter Zahlen-Code beschreibt die Schaftabmessungen (mm)

100	Platten						
125	06	6,9					
150	08	8,2					
160	09	9,6					
170	11	11,0					
180	16	16,5					
250	22	22,0					
300	27	27,5					
350	33	33,0					

"-" steht für unbestimmte Halterlänge

_	Platten							
	10	10						
	12	12						
	16	16						
	20	20						
	25	25						
	32	32						

Position der Schneidenecke

■ Theoretische Position der Schneidenecke

Halter			Abme	messungen (mm) Halter			lalter	Abmessungen (mm)							
Symbol	Form	Schneidkante	RE	X	Υ	Symbol	Form	Schneidkante	RE	Х	Υ				
			0,4	0,291	_				0,4	0,024	0,089				
		M /	0,8	0,581	_			¥ 75° RE	0,8	0,048	0,178				
Α		RE	1,2	0,872	_	K		75°	1,2	0,072	0,268				
		X LF	1,6	1,162	_			> X-	1,6	0,096	0,357				
		90°	2,4	1,743	_			↓	2,4	0,143	0,535				
			0,4	0,089	0,024				0,4	0,040	0,040				
		¥ /	0,8	0,178	0,048			W 05° 7 DE	0,8	0,079	0,079				
В	$ \widetilde{n} $	RE RE	1,2	0,268	0,072	L	60	> 95° RE	1,2	0,119	0,119				
		> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1,6	0,357	0,096			95° LF	1,6	0,159	0,159				
		X — 15 Ei	2,4	0,535	0,143			X ->	2,4	0,238	0,238				
		ш /	0,4	0,164	0,164			<u></u>	0,4	0,463	0,263				
		₩ PE	0,8	0,329	0,329			₩ TRE	0,8	0,925	0,471				
D		1	1,2	0,493	0,493	N		• RE	1,2	1,388	0,707				
		45° LF	1,6		0,658			> 63° LF	1,6	1,850	0,943				
		X 	2,4	0,986	0,986			^ 1	2,4	2,776	1,414				
		- RE 60° LF	0,4	0,396	0,229	S		RE	0,4	0,164	0,164				
			0,8	0,793				₩ RE	0,8		0,329				
Е			1,2	1,190				45°	1,2		0,493				
			1,6	1,587	0,916			X - LF OAL	1,6		0,658				
			2,4	2,381	1,374			<mark>→ UAL</mark>	2,4	-	0,986				
			0,4	_	0,291			L RE	0,4		0,229				
		RE 90°	0,8	_	0,581				0,8	0,793	0,458				
F			1,2	-	0,872	Т			1,2	1,190	0,687				
		LF	1,6	_	1,162		7	> 60° LF	1,6	1,587	0,916				
		<u> </u>	2,4	_	1,743			X > <	2,4	2,381	1,374				
			0,4	0,291	_				0,4	0,253	0,058				
		₩ RE	0,8	0,581	-		(A)	95° RE	0,8	0,506	0,116				
G		† 	1,2	0,872	_	U			1,2		0,175				
		X - 90°	1,6	1,162	-			> LF	1,6		0,233				
			2,4	1,743	-			7 -FII3	2,4		0,350				
			0,4	0,344					0,4	0,002	0,033				
	$\mid \ / \ \mid \ \mid$	₩ SE	0,8	0,687	0,079	.,		¥ 85° RE	0,8		0,066				
J		+	1,2	1,031	0,118	Υ			1,2		0,099				
						` X → -	1,6					> X - LF	1,6	0,011	0,132
		₩ 93.	2,4	2,062	0,236			-	2,4	0,017	0,198				

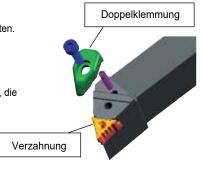
Berechnung von "B"

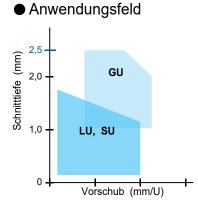
Platte	ntyp	Berechnungsformel
RE ØA	Dreieck	$B = \frac{3}{2}A - RE$
RE ØA	Viereck	$B=(\sqrt{2}-1) \times (\frac{A}{2}-RE)$
ØA RE	Rhombus	$B=\left\{\frac{1}{\sin(\theta/2)}-1\right\}\times\left(\frac{A}{2}-RE\right)$

"A" und "RE"- Maße zur Berechnung von "B"

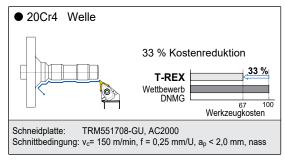
A did the indise an Berconnang von B									
I.C. ((inch)	"øA"-Abmessungen (mm)		"RE"-Symbol	"RE" (inch)	"RE" (mm)			
_	5/32	3,9688		02	(0)	0,203			
_	6/32	4,7625		04	1/64	0,397			
_	7/32	5,5562		08	2/64	0,794			
2/8	8/32	6,3500		12	3/64	1,191			
_	(0)	7,9375		16	4/64	1,588			
3/8	_	9,5250		24	6/64	2,389			
4/8	_	12,7000							
5/8	_	15,8750							
6/8	_	19,0500							
8/8	_	25,4000							

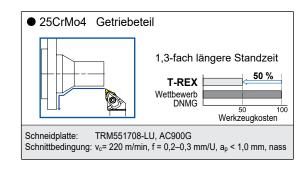
T-REX Klemmhalter

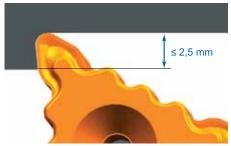

● "T-REX"- Klemmsystem für höchste Zuverlässigkeit 50 % mehr Schneiden als DNMG-Platten



Vorteile


- Maximale Wirtschaftlichkeit der "T-REX"- Platte Mit 6 Schneidecken und 55° Schneidwinkel bietet T-REX eine intelligente Alternative bei der Kopierbearbeitung gegenüber herkömmlichen vierschneidigen DNMG-Schneidplatten.
- Die beißende Kraft der "T-REX"- Zähne


Das Doppelklemmsystem und das stabile Verzahnungsprofil verhindern jegliche Plattenbewegung, verbessern die Standzeit, die Bearbeitungsgenauigkeit und die Schneidkantenstabilität.


Anwendungsbeispiel

■ Einsatzempfehlung

Schnitttiefe

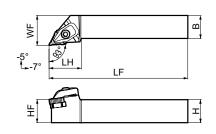
Max. - Schnitttiefe 2,5 mm

Einstellwinkel

Klemmung

= Eurolager ○ = Japanlager

Zum allg. Drehen und Kopieren



Halter

Bezeichnung

DTR 55C-R/L 2020-K17

DTR 55C-R/L 2525-M17

Lager

• 20 20 20

R L Abmessungen (mm)

LF LH WF

125 35

150

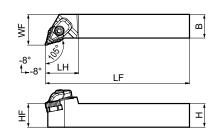
35 32

25

25

Ersatzteile

SumiTurn


Die Zeichnung zeigt Rechtsausführung. Klemm-Zwischen-Befest.-Spann-Feder Schlüssel Schlüssel pratze schraube schraube lage BX0520 BFTX0307N S-SP4-20 TRW5505 TSW040 | TRX10(*) TRCP3

(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

2,0 🗺

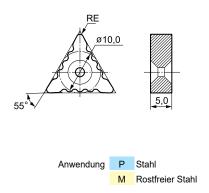
3,5-4,5 €

HF В

25

Н

25


Ersatzteile

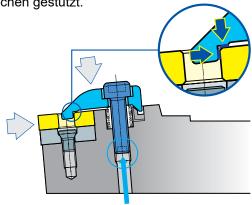
■ Halter				Die Ze	eichnun	g zeigt	Recht	sausfül	nrung.			O Marie				
Bezeichnung	La	ger		Α	bmes	sunge	en (m	m)		Spann-	Feder	Klemm-	Zwischen-	Befest	Schlüssel	Schlüssel
Dezelomiding	R	L	Н	HF	В	LF	LH	WF		pratze	i euei	schraube	lage	schraube	Ociliussei	Ochilussei
DTR 55Q-R/L 2020-K17	•	•	20	20	20	125	35	28,5		TDCD2	S-SP4-20	BX0520	TRW5505	BFTX0307N	TSW040	TDV10(*)
DTR 55Q-R/L 2525-M17	•	•	25	25	25	150	35	32		IRCF3	3-354-20	3,5-4,5 🗺	TKW5505	2,0 🕅	130040	IKAIU
									(-1-)							

Beschichtete Hartmetallsorten Beschicht. Cermet

■ Schneidplatten

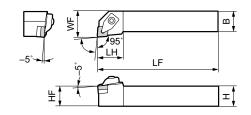
				15P	25P	Mo	Z0
Anwend.	Plattenform	Bezeichnung	RE	AC8015P	AC8025P	AC630M	T3000Z
t- ten	0.010.0	TRM 551704-FL	0,4		O		O
Feinst- schllichten	Albert Ho	551708-FL	0,8		0		O
S T	FL						
		TRM 551704-LU	0,4	•	0		O
_		551708-LU	0,8	•	•		O
) te	🏋 LU	551712-LU	1,2		0		O
Schlichten	El la	TRM 551704-SU	0,4		0	•	O
S	had	551708-SU	0,8		0	•	O
	🍿 su	551712-SU	1,2		•		
ben	10 00 00	TRM 551704-GU	0,4		0	•	
Schruppen	The difference of	551708-GU	0,8		•	•	
Sch	₩ GU	551712-GU	1,2		0	0	

^(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.


D-Typ Doppelklemmhalter

Außendrehhalter

Einspannmechanismus

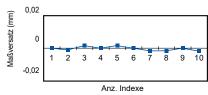

Gesichert in zwei Richtungen und von zwei Auflageflächen gestützt.

Die Spannpratze kann von der Unterseite des Halters gelöst werden.

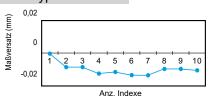
Zum allg. Außen- und Plandrehen

DCLN

■ Halter Die Zeichnung zeigt Rechtsausführ


				DIE ZEI	Chinani	y zoigi	tconto	ausiun	iung.						8 1110		ן מ
Bezeichnung	<u> </u>	ger			bmes		n (mr			Spann-	Feder		Zwischen-		Schlüssel	Schlüssel	□
J J	R	L	H	HF	В	LF	LH	WF		pratze		schraube	lage	schraube			
DCLN R/L 2020 K12	•	•	20	20	20	125	32	25			SCP2		CNS1204	BFTX0409N	TRX15(*)	LH040	
DCLN R/L 2525 M12	•	•	25	25	25	150	32	32			SUFZ	5,0 🕞	CN31204	3,4 №	IKX15°	LH025	0
DCLN R/L 2525 M16	•	•	25	25	25	150	32	32			SCP3		CNS1606	BFTX0509N	TDV00(*)	LH040	
DCLN R/L 3232 P16	•	•	32	32	32	170	32	40			SUFS	5,0 🗺	CN3 1000	5,0 №	TRX20 ^(*)	LH025	0
DCLN R/L 3232 P19	•	•	32	32	32	170	42	40			SCP5		CNS1906	BFTX0511N	TRX20(*)	LH040	
DCLN R/L 4040 S19	•	•	40	40	40	250	42	50			3073	5,0 🕞	CN3 1900	5,0 №	TRX20\	LH025	6
DCLN R/L 4040 S25	O	•	40	40	40	250	53	50			SCP6		CNS2509	BFTX0615N		1.11000	
											3070	6,0 №	CN32309	7,5 🕅	TRD25 ^(*)	LH060	0

(*) Anmerkung: Schlüssel (TRX / TRD) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.


■ Eigenschaften

- Extrem stabile und sichere Klemmung der Wendeschneidplatte
- Hohe Wechselgenauigkeit der Wendeschneidplatte verbessert die Maßhaltigkeit
- Die Spannpratze kann von der Unterseite des Halters gelöst werden
- Geeignet für hocheffiziente Bearbeitungen, unterbrochene Schnitte und als erste Empfehlung für die Bearbeitung von gehärteten Stählen
- Vergleich der Plattenwechselgenauigkeit (in Längsrichtung)

D-Typ Werkzeughalter

Kniehebel-Typ

- 1 CNMG 120408 N-GU
- 2 CNMG 160608 N-GU3 CNMM 190612 N-HG
- € CNMM 250924 N-HU
- Ersatzteile

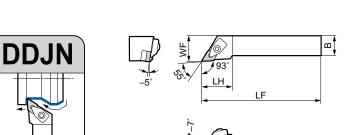
Zum allg. Drehen und Kopieren

Halter

Bezeichnung

DDJN R/L 2020 K15

DDJN R/L 2020 K15E


DDJN R/L 2525 M15

DDJN R/L 2525 M15E

Bezeichnung

DDHN R/L 2020 K15E

DDHN R/L 2525 M15E

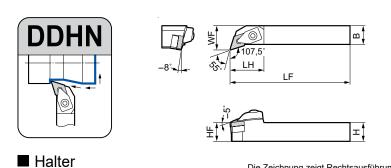
Lager

• 20

> 20 20 20

25 25

R L Н HF


■ Schneidplatten

Ersatzteile

}				=	≖				Ø	€				ρ.
	Die Ze	ichnun	g zeigt l	Rechts	ausfüh	ung.	مسمی	القول						Plattentyp
	Α	bmes	sunge	n (mn	n)		Spann-	Fodor	Klemm-	Zwischen-	Befest	Schlüssel	Cablüagal	颪
	HF	В	LF	LH	WF		pratze	Feder	schraube	lage	schraube	Scriiussei	Schlusser	
	20	20	125	38	25					DNS1504				0
	20	20	125	38	25			SCP2		DNS1506	BFTX0409N	TD\(4.5(*)	111040	0
	25	25	150	38	32			SUPZ		DNS1504	DF I AU4U9IN	TRX15 ^(*)	LH040	0
	25	25	150	38	32				5,0 🕅	DNS1506	3,4 €			0

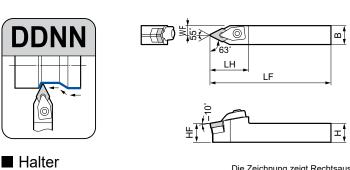
^(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

Lager

20 20 20

25 25

R L Н HF В LF


Schneidplatten

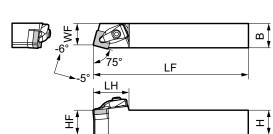
Ersatzteile

					= ‡									lattentyp	
-	Die Z	eichnun	g zeigt	Rechts	ausfüh	rung.								atte	
		Abmes	sunge	n (mr	n)		Spann-	Feder	Klemm-	Zwischen-	Befest schraube	Coblüccol	Coblüccol	룝	
	HF	В	LF	LH	WF		pratze	reuei	schraube	lage	schraube	Scriiussei	Scriiussei		
	20	20	125	35	25			SCP2		DNS1506	BFTX0409N	TD\(4.5(*)	111040		
	25	25	150	35	32			SCPZ	5,0 (N-m)	DIN 3 1300	3,4 🕅	TRX15 ^(*)	LH040	0	

^(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

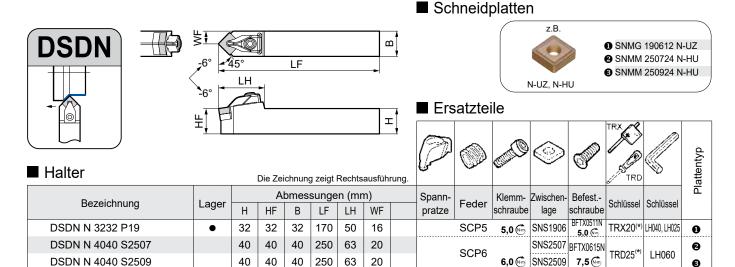
Schneidplatten

ı	— 11-14	± <u>↓</u>						- 		للمسمى							entyp
	Halter			Die Zei	chnung	zeigt l	Rechts	ausfühi	ung.								atte
	Dozajahnung	Logor		Al	bmes	sunge	n (mr	n)		Spann-	Fadar	Klemm-	Zwischen-	Befest	Schlüssel	Cablüanal	砬
	Bezeichnung	Lager	Н	HF	В	LF	LH	WF		pratze	Feder	schraube	lage	schraube	Scriiussei	Scriiussei	
	DDNN N 2020 K15E	•	20	20	20	125	40	10,5			CCD2		DNIC1EOG	BFTX0409N	TD\/45(*)	111040	_
	DDNN N 2525 M15E	•	25	25	25	150	40	13,0			SCP2	5,0 (N-m)	DNS1506	3,4 €	TRX15 ^(*)	LH040	0


^(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

Zum allg. Außen- und Plandrehen

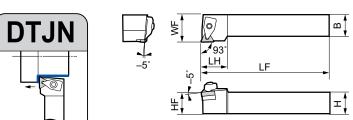
Halter


■ Schneidplatten

● SNMG 190612 N-UZ 2 SNMM 250724 N-HU 3 SNMM 250924 N-HU

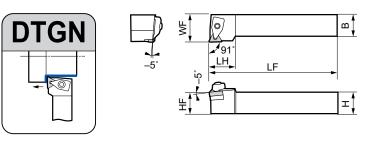
N-UZ, N-HU

Halter			ı	Die Zei	chnung	g zeigt l	Rechts	ausführ	ung.	سمل ا	Carrier .	Cillian		(C)	TRD		Plattent	
Bezeichnung	La	ger		Al	omes	sunge	n (mr	n)		Spann-	Feder	Klemm-	Zwischen-	Befest	Schlüssel	Schlüssel	₫	
Bozolomang	R	L	Н	HF	В	LF	LH	WF		pratze	i cuci	schraube		schraube	OGIIIGSSCI	Odillussoi		
DSBN R/L 2525 M12		0	25	25	25	150	36	22			SCP2	5,0 №	SNS1204		TRX15(*)	LH040, LH025		
DSBN R/L 3232 P19	•	•	32	32	32	170	45	27			SCP5	5,0 €	SNS1906	BFTX0511N 5,0 €	TRX20(*)	LH040, LH025	0	
DSBN R/L 4040 S2507	O	0	40	40	40	250	58	35			SCP6	6,0 (N·m)	SNS2507	BFTX0615N	TDD05(*)	111000	0	
DSBN R/L 4040 S2509	O	O	40	40	40	250	58	35			JUPO	0,0	SNS2509	7,5 🕅	TRD25 ^(*)	LH060	6	


^(*) Anmerkung: Schlüssel (TRX / TRD) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

^(*) Anmerkung: Schlüssel (TRX / TRD) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

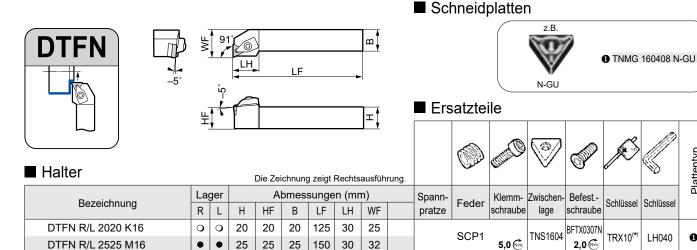
Zum allg. Außen- und Plandrehen


■ Schneidplatten

Ersatzteile

			-1										(a)				typ
■ Halter				Die Zei	ichnunç	g zeigt l	Rechts	ausfüh	rung.	(Jor		Cin		9	6		atten
Bezeichnung	La	ger		A	bmes	sunge	n (mr	n)	,	Spann-	Feder	Klemm-	Zwischen-	Befest	Schlüssel	Schlüssel	颪
Bezeleimang	R	L	Н	HF	В	LF	LH	WF		pratze	i euei	schraube	lage	schraube	OGIIUSSCI	OGIIUSSEI	
DTJN R/L 2020 K16	•		20	20	20	125	31	25			SCP1		TNS1604	BFTX0307N	TDV40(*)	111040	
DTJN R/L 2525 M16	•	•	25	25	25	150	31	32			JOFT	5,0 🕅	11101004	2,0 🕅	TRX10 ^(*)	LH040	0
									(ak))		(TD)() ("]				, ,	

^(**) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.


■ Schneidplatten

Ersatzteile

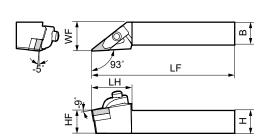
										الملسمي }					/ \$?		ntyp
■ Halter				Die Zei	chnung	g zeigt l	Rechts	ausfüh	rung.							100	atte
Bezeichnung	Lag	ger		Al	bmes	sunge	n (mr	n)		Spann-	Feder	Klemm-	Zwischen-	Befest	Cablüagal	Schlüssel	颪
Bezeichhung	R	L	Н	HF	В	LF	LH	WF		pratze	redei	schraube	lage	schraube	Scriiussei	Scriiussei	
DTGN R/L 2020 K16	O		20	20	20	125	31	25			SCP1		TNS1604	BFTX0307N	TD\(40(*)	111040	
DTGN R/L 2525 M16	•		25	25	25	150	31	32			SCPT	5,0 (N-m)	1110 1004	2,0 €	TRX10 ^(*)	LH040	0

^(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

^(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

Plattentyp

Zum allg. Drehen und Kopieren


Bezeichnung

DVJN R/L 2020 K16

DVJN R/L 2525 M16

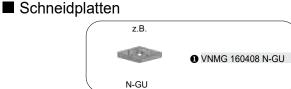
DVQN R/L 2525 M16

Halter

Lager

Н

20


25 25 25 150 35

20 20 20

25

25 25

R

Ersatzteile

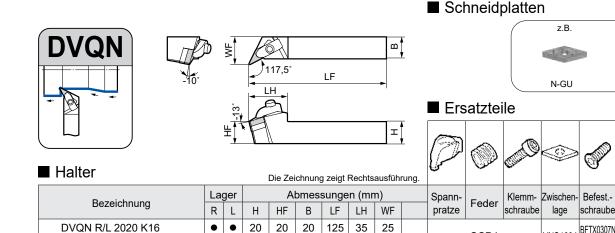
				±	į			(II)	<u> </u>		13	1		
				•		للمسمى				I	J		Plattentyp	
Die Ze	eichnung	g zeigt l	Rechts	austüh	rung.								at	ı
Α	bmes	sunge	n (mr	n)		Spann-	Fadar	Klemm-	Zwischen-	Befest	Cablüagal	Schlüssel	颪│	
HF	В	LF	LH	WF		pratze	Feder	schraube	lage	schraube	Schlüssel	Scriiussei		
20	20	125	35	25			SCP4		V/NIC1604	BFTX0307N	TDV40(*)	LH040		
25	25	150	35	32			3CF4	5,0 🗺	VINO 1004	2,0 (N-m)	TRX10 ^(*)	LH025	0	

^(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

● VNMG 160408 N-GU

Schlüssel

TRX10(*

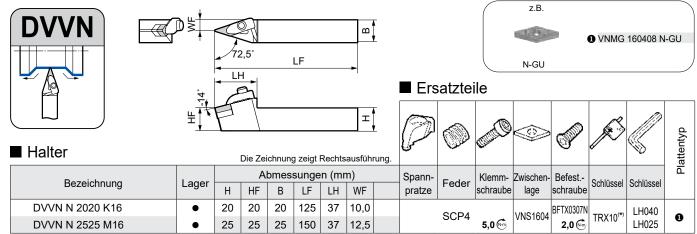

Schlüssel

LH040

LH025

Plattentyp

0

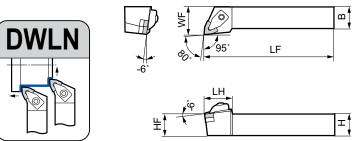

125 35

150 35 32 SCP4

5,0 🕞

BFTX0307N

2,0 (%-

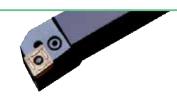

25

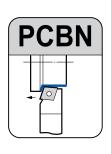
D16

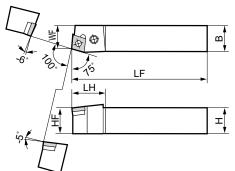
^(**) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

^(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

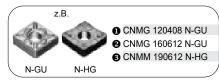
Zum allg. Außen- und Plandrehen

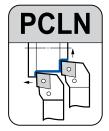


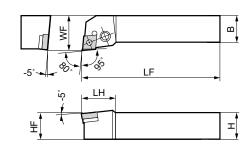


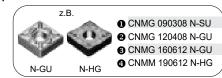

	y			I				⊥ ▼					(3)				typ
Halter				Die Zei	chnung	g zeigt l	Rechts	ausfüh	rung.	(gr	(1) P	Cin		9	6/		atten
Bezeichnung	La	ger		Al	omes	sunge	n (mn	n)		Spann-	Feder	Klemm-	Zwischen-	Befest	Schlüssel	Schlüccol	₫
Bezeichhang	R	L	Н	HF	В	LF	LH	WF		pratze	reuei	schraube	lage	schraube	Scriiussei	Scriiussei	
DWLN R/L 2020 K08	•	•	20	20	20	125	32	25			SCP2		WNS0804	BFTX0409N	TD\(45(*)	LH040	
DWLN R/L 2525 M08	•	•	25	25	25	150	32	32			3CP2	5,0 🕅	WINOU0U4	3,4 🕅	TRX15 ^(*)	LH025	0
									(*	Anmorkuna	Cablüagal	/TDV) für 7u	uiaahanlaaar	achrouha ia	t night im Lie	forumfona o	nthaltan

^(*) Anmerkung: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

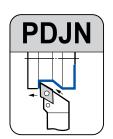

Zum allg. Außen- und Plandrehen

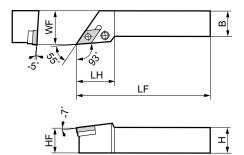


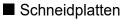

■ Schneidplatten


■ Ersatzteile

■ Halter	_										Millik		(O)	M.	Platten-
■ папеі				Die Zei	ichnun	g zeigt	Rechts	ausfüh	rung.						typ
Dozaiahnung	La	ger		Α	bmes	sunge	en (mn	า)		Knie-	Cahmaniha	Zwischen-	Dahmatit	Cablianal	
Bezeichnung	R	L	Н	HF	В	LF	LH	WF		hebel	Schraube	lage	Rohrstift	Schlüssel	
PCBN R/L 2020 K12	•	0	20	20	20	125	27	17							
PCBN R/L 2525 M12	•	•	25	25	25	150	27,7	22		LCL4SD	LCS42BS-SD	LSC42SD	LSP4SD	LH030	0
PCBN R/L 3225 P12		•	32	32	25	170	27,7	22							
PCBN R/L 2525 M16		•	25	25	25	150	31,7	22		LCL5SD	LCS5B-SD	LSC53SD	LSP5SD	LH030	
PCBN R/L 3225 P16			32	32	25	170	31,7	22		LOLDOD	LCSSB-SD	LSCSSSD	LOFUOD	LHUSU	0
PCBN R/L 3232 P19	•	•	32	32	32	170	37,9	27		LCL6SD	LCS6B-SD	LSC63SD	LSP6SD	LH040	6

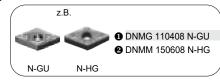



■ Schneidplatten



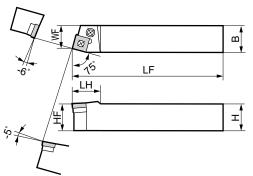
														0.1	M	Platten-
ļ	■ Halter				Die Zei	ichnun	g zeigt	Rechts	ausfüh	rung.)					typ
	Dozeichnung	La	ger		Α	bmes	sunge	n (mn	า)		Knie-	Cahaaaaha	Zwischen-	Dahmatiff	Cablianal	
	Bezeichnung	R	L	Н	HF	В	LF	LH	WF		hebel	Schraube	lage	Rohrstift	Schlüssel	
	PCLN R/L 1616 H09	•	•	16	16	16	100	25,7	20							
	PCLN R/L 2020 K09	•		20	20	20	125	27	25		LCL3SD	LCS3TB-SD	LSC32SD	LSP3SD	LH025	0
	PCLN R/L 2525 M09			25	25	25	150	27	32							
	PCLN R/L 1616 H12	•	•	16	16	16	100	26,1	20			LCS 4CA				
	PCLN R/L 2020 K12	•	0	20	20	20	125	27,4	25		LCL4SD		LSC42SD	LSP4SD	LH030	
	PCLN R/L 2525 M12	•	•	25	25	25	150	28	32		LCL43D	LCS42BS-SD	L30423D	LSF4SD	LHUSU	0
	PCLN R/L 3225 P12	•	•	32	32	25	170	28	32							
	PCLN R/L 2525 M16	•		25	25	25	150	32,6	32							
	PCLN R/L 3225 P16	•		32	32	25	170	32,6	32		LCL5SD	LCS5B-SD	LSC53SD	LSP5SD	LH030	6
	PCLN R/L 3232 P16	•	•	32	32	32	170	32,6	40							
	PCLN R/L 2525 M19	•	•	25	25	25	150	37	32							
	PCLN R/L 3225 P19	0		32	32	32	170	38	32		LCL6SD	LCS6B-SD	LSC63SD	LSP6SD	LH040	a
	PCLN R/L 3232 P19			32	32	32	170	38	40		LOLOSD	LOSUB-SD	LOCUSOD	LOFUOD	LI 1040	8
	PCLN R/L 4040 S19			40	40	40	250	37,8	50							

Zum allg. Außen- und Plandrehen



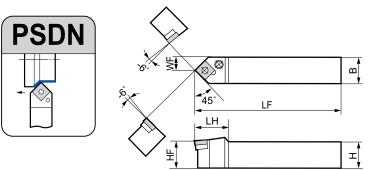
Außendrehhalter

P-Typ (Kniehebel)


	<u> </u>							±				@			Platten-
■ Halter				Die Zei	chnun	g zeigt	Rechts	ausfüh	rung.	_					typ
Bezeichnung	La	ger		A	bmes	sunge	n (mn	n)		Knie-	Schraube	Zwischen-	Rohrstift	Cablüagal	
Bezeichnung	R	L	Η	HF	В	LF	LH	WF		hebel	Schraube	lage	Ronrstiit	Schlussei	
PDJN R/L 1616 H11	•		16	16	16	100	30	20							
PDJN R/L 2020 K11	•	•	20	20	20	125	30	25		LCL3D-SD	LCS3TB-SD	LSD32SD	LSP3SD	LH025	0
PDLN R/L 2525 M11	•	•	25	25	25	150	30	32							
PDJN R/L 2020 K15	•	•	20	20	20	125	34,7	25							
PDJN R/L 2525 M15	•	•	25	25	25	150	34,7	32		LCL4D-SD	LCS5DB-SD	LSD42SD	LSP4SD	LH030	
PDJN R/L 3225 P15	•	•	32	32	25	170	34,7	32							0

P-Typ (Kniehebel)

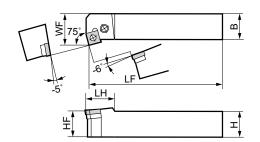
Zum allg. Außen- und Fasendrehen



■ Schneidplatten

Ersatzteile

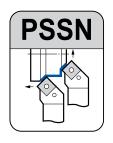
■ Halter]	-	ļ	Die Zei	chnung	g zeigt l	Rechtsa	ausfüh	rung.						Platten- typ
Bezeichnung	La	ger		Al	omes	า)		Knie-	Schraube	Zwischen-	Rohrstift	Schlüssel			
Bezeichhang	L	Н	HF	В	LF	LH	WF		hebel	Scillaube	lage	Konistiit	Scriiussei		
PSBN R/L 2020 K12	•		20	20	20	125	27,5	17		1.01.400	1 CC40DC CD	1004000	LCD4CD	111020	
PSBN R/L 2525 M12	•	•	25	25	25	150	27,5	22		LCL4SD	LCS42BS-SD	LSS42SD	LSP4SD	LH030	0
PSBN R/L 2525 M15		•	25	25	25	150	32	22		LOLEOD	1 00ED CD	1005300	LODEOD	111020	•
PSBN R/L 3225 P15	•	•	32	32	25	170	32	22		LCL5SD	LCS5B-SD	LSS53SD	LSP5SD	LH030	0
PSBN R/L 3232 P19	•	•	32	32	32	170	39,2	27		LCL6SD	LCS6B-SD	LSS63SD	LSP6SD	LH040	6

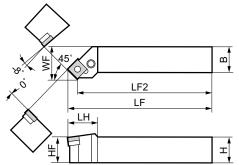

■ Schneidplatten

■ Halter	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													Platten- typ
Bezeichnung	Lagor		Al	omes	sunge	n (mn	n)	,	Knie-	Schraube	Zwischen-	Rohrstift	Schlüssel	
Bezeiciniang	Lager	Н	HF	В	LF	LH	WF		hebel	Scillaube	lage	Nonsuit	Scriiussei	
PSDN N 1616 H09	•	16	16	16	100	21	8,3		LCL3SD	LCS 3TB-SD	LSS32SD	LSP3SD	LH025	0
PSDN N 2020 K12	•	20	20	20	125	27,6	10,3							
PSDN N 2525 M12	•	25	25	25	150	27,6	12,8		LCL4SD	LCS42BS-SD	LSS42SD	LSP4SD	LH030	0
PSDN N 3225 P12	•	32	32	25	170	27,6	12,8							
PSDN N 3225 P19		32	32	25	170	40,6	13		1.01.000	1 0000 00	1 000000	LODCOD	111040	
PSDN N 3232 P19	•	32							LCL6SD	LCS6B-SD	LSS63SD	LSP6SD	LH040	6

Zum allg. Außen- und Plandrehen

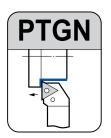
■ Schneidplatten

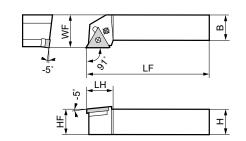

Außendrehhalter


P-Typ (Kniehebel)

Ersatzteile

■ Halter				Dio Zoi	iohnun	a zoiat	Rechts	ouefüh	rung				0.7	M.	Platten- typ
Bezeichnung	La R	ger	Н				en (mr		rung.	Knie-	Schraube	Zwischen- lage	Rohrstift	Schlüssel	тур
PSKN R/L 2020 K12	•	_	20	20	20	125	22,7	17		Hoboi		lugo			
PSKN R/L 2525 M12	•	•	25	25	25	150	22,7	32		LCL4SD	LCS42BS-SD	LSS42SD	LSP4SD	LH030	0
PSKN R/L 2525 M15			25	25	25	150	32	32							
PSKN R/L 3225 P15			32	32	25	170	32	32		LCL5SD	LCS5B-SD	LSS53SD	LSP5SD	LH030	0
PSKN R/L 3232 P19			32	32	32	170	33,7	40		LCL6SD	LCS6B-SD	LSS63SD	LSP6SD	LH040	6

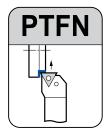

■ Schneidplatten

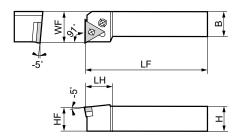


				I +		B					District				
■ Halter				Die Zei	chnun	g zeigt	Rechts	ausfüh	rung.						Platten- typ
Bezeichnung	La	ger		Al	bmes	sunge	n (mn	n)		Knie-	Schraube	Zwischen-	Rohrstift	Schlüssel	
bezeichnung	R			LF2	LH	WF	hebel	Schraube	lage	Romsun	Scriiussei				
PSSN R/L 2020 K12	•	•	20	20	20	125	116,7	29,3	25						
PSSN R/L 2525 M12	•	• • 25	25	25	150	141,7	29,3	32	LCL4SD	LCS42BS-SD	LSS42SD	LSP4SD	LH030	0	
PSSN R/L 3225 P12	•		32	32	25	170	161,7	29,3	32						
PSSN R/L 2525 M15	•	•	25	25	25	150	139,8	32	32						
PSSN R/L 3225 P15			32	32	25	170	159,8	32	32	LCL5SD	LCS5B-SD	LSS53SD	LSP5SD	LH030	0
PSSN R/L 3232 P15	•	• 32 32 32 170 15		159,8	32	40									
PSSN R/L 3232 P19	● ● 32 32 32 170 15		157,5	40,2	40	LCL6SD	LCS6B-SD	LSS63SD	LSP6SD	LH040	6				

Außendrehhalter P-Typ (Kniehebel)

Zum allg. Außen- und Plandrehen

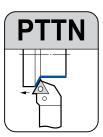

■ Schneidplatten

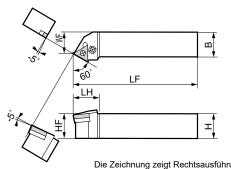


■ Ersatzteile

ung.						Platten- typ
	Knie- hebel	Schraube	Zwischen- lage	Rohrstift	Schlüssel	
	LCL3SD	LCS3TB-SD	LST317SD	LSP3SD	LH025	0

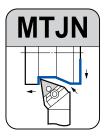
■ Halter Die Zeichnung zeigt Rechtsausführu Lager Abmessungen (mm) Bezeichnung R Н HF LF LH WF PTGN R/L 1616 H16 16 16 16 100 20 20 PTGN R/L 2020 K16 20 20 125 20 25 20 PTGN R/L 2525 M16 25 25 25 150 22,2 32 PTGN R/L 2525 M22 25 150 28,7 32 25 25 • LCS42BS-SD PTGN R/L 3225 P22 32 32 25 170 28,7 32 LCL4SD LST42SD LSP4SD LH030 0 PTGN R/L 3232 P22 32 32 32 170 28,7 32

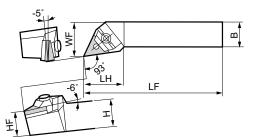


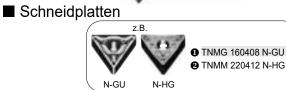

■ Schneidplatten

■ Ersatzteile

	生	<u>, </u>						=		Bo					
■ Halter				Die Zei	chnunç	g zeigt	Rechts	ausfüh	rung.	<u>G</u>	43mm	V		Ø	Platten- typ
Dozajahnung	La	ger		Α	bmes	sunge	n (mn	n)		Knie-	Schraube	Zwischen-	Rohrstift	Schlüssel	
Bezeichnung	R L H HF B						LH	WF		hebel	Schraube	lage	Romsun	Scriiussei	
PTFN R/L 1616 H16			16	16	16	100	19,7	20							
PTFN R/L 2020 K16	•	•	20	20	20	125	20,2	25		LCL3SD	LCS3TB-SD	LST317SD	LSP3SD	LH025	0
PTFN R/L 2525 M16	•	•	25	25	25	150	20,2	32							
PTFN R/L 2525 M22	•		25	25	25	150	25,2	32		1 01 400	LCS42BS-SD	LST42SD	LCD4CD	LH030	
PTFN R/L 3225 P22	•		32	32	25	170	25,2	32		LCL4SD	LC342B3-3D	LS1425D	LSP4SD	LHUSU	0

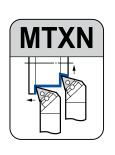


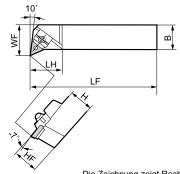

■ Schneidplatten



■ Halter		7		 Die Zei	chnunç	g zeigt	Rechtsa	↓ ausfüh	rung.						Platten- typ
Bezeichnung	La	ger		Al	omes	sunge	า)		Knie-	Schraube	Zwischen-	Rohrstift	Coblüesel		
Bezeichhang	R L H HF				В	LF	LH	WF		hebel	Schlaube	lage	Konsuit	Scriiussei	
PTTN R/L 2020 K16	1.1 - 1.1			20	20	125	25,9	17		LCL3SD	LCS3TB-SD	LST317SD	LSP3SD	LH025	
PTTN R/L 2525 M16	•		25	25	25	150	25,9	22		LCL3SD	LC991B-9D	LSISIISD	LSP3SD	LHUZO	0
PTTN R/L 3225 P22			31	32	25	170	31,9	22		1 CL 4CD	1 CC 40DC CD	LOTAGOD	1 CD4CD	111020	
		01 02 20 110 01,0 22					LCL4SD	LCS42BS-SD	LST42SD	LSP4SD	LH030	0			

Zum allg. Drehen und Kopieren

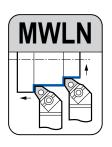


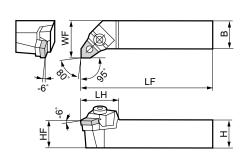


Ersatzteile

										احتت	WILL ST		1			ω	₹
■ Halter				Die Zei	ichnunç	g zeigt l	Rechts	ausfüh	rung.		,11	V	(a)			v	atten
Damaiah muma	La	ger		Α	bmes	sunge	n (mr	n)		Spann-	D-1	Zwischen-	Cabaaaaba	Cabaaaaba	Diam	Cablossal	₫
Bezeichnung	R	L	Н	HF	В	LF	LH	WF		keil	Konrsuit	lage	Schraube	Schraube	Ring	Schlüssel	
MTJN R/L 2020-33 (K16)	•	•	20	20	20	125	37	25		MMW30	MP317	CT/V/202	BHA0525	CPM32N	ER04	LH030	_
MTJN R/L 2525-33 (M16)	•	•	25	25	25	150	37	32		IVIIVIVVSU	MP320	3100323	4,0 №	CFIVIOZIN	ERU4	LHUSU	0
MTJN R/L 2525-43 (M22)	•	•	25	25	25	150	37	32		MMW40	MD420	STW434	BHA0625	CPM43N	ER05	LH030	_
MTJN R/L 3225-43 (P22)	0	0	32	32	25	170	37	32		IVIIVIVV40	WP420	5177434	4,5 🕅	CPIVI43IN	ERUS	LH040	0

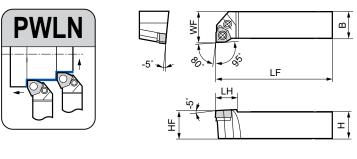
■ Schneidplatten




■ Halter	·	× ×		I	Die Zei	chnunç	g zeigt l	Rechts	ausfüh	rung.		}	V	4				atten
Dozajahnung		Laç	ger		A	bmes	sunge	n (mn	n)		Spann-	Rohrstift	Zwischen-	Schraube	Mutter	Dina	Schlüssel	굡
bezeichnung	Bezeichnung F						LF	LH	WF		keil	Ronisuit	lage	Scriraube	Mutter	Ring	Scriiussei	
MTXN R/L 2020-33 (K	16)	0	O	20	20	20	125	32	25		MMW30	MP317	STW323	BHA0525	CPM32N	ER04	LH030	
MTXN R/L 2525-33 (M	16)	0	0	25	25	25	150	32	32		IVIIVIVVO	MP320		4,0 €			LHUSU	0
MTXN R/L 2525-43 (M	22)			25	25	25	150	38	32		MMW40	MP420	STW434	BHA0625 4,5	CPM43N	ER05	LH030, 040	0

Außendrehhalter M / P-Typ (Spannkeil / Kniehebel)

Zum allg. Außen- und Plandrehen


■ Schneidplatten

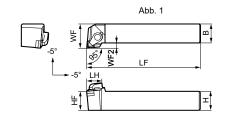
■ Ersatzteile

■ Halter			ı	Die Zei	chnunç	g zeigt l	Rechts	ausfüh	rung.	##TV	OT MILE		OL Manual Property		9		Plattentyp
Bezeichnung	La	ger		Al	omes	sunge	n (mn	n)		Spann-	Stift	Zwischen-	Klemm-	Mutter	Dina	Schlüssel	颪
Bezeichhung	R	L	Н	HF	В	LF	LH	WF		keil	Suit	lage	schraube	wutter	Ring	Scriiussei	
MWLN R/L 2020-43 (K08)	•	•	20	20	20	125	32	25			MP416		BHA0625	CPM43S			
MWLN R/L 2525-43 (M08)	•	•	25	25	25	150	32	32		MWW40	MP420	SWW433		CPM43N	ER04	LH030 LH040	0,0
MWLN R/L 3225-43 (P08)	C	O	32	32	25	170	32	32			IVIF4ZU		4,5 🕅	OF WI43IN		211040	

P - Typ Kniehebel-Halter

■ Schneidplatten

	<u>-</u>			11											Platten-
■ Halter				Die Zei	ichnun	g zeigt	Rechts	ausfüh	rung.			-			typ
Pozoiobnung	La	ger		Α	bmes	sunge	n (mr	n)		Knie-	Cobrauba	Zwischen-	Rohrstift	Schlüssel	
Bezeichnung	R	L	Н	HF	В	LF	LH	WF		hebel	Schraube	lage	Romsun	Schlussei	
PWLN R/L 2020 K06 (PWLN R/L 2020-33)	•	o	20	20	20	125	27	25		LCL3SD	LCS3TB-SD	LSW317	LSP3SD	LH025	0
PWLN R/L 2525 M06	•		25	25	25	150	27	32							

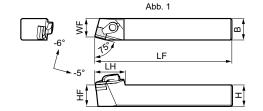

typ

Außendrehhalter für Voll-CBN SUMIBORON

C-Typ Halter mit Spannpratzen

■ Schneidplatten

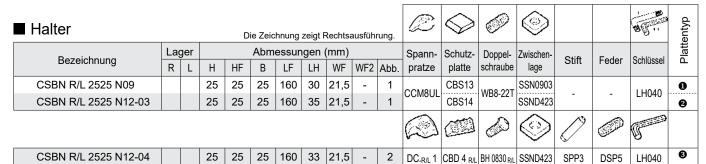
- CNGN0903**CNGN1203**
- **3** CNGN1204**


Ersatzteile

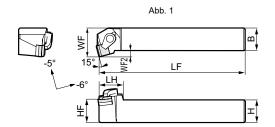
Halter

Die Zeichnung zeigt Rechtsausführung.

Tiaito				D	ie Zeic	hnung	zeigt F	Rechts	ausfühi	ung.		~	~	\	>	0.8	eu
Damaiahanna	Lag	ger			Abm	essur	igen ((mm)			Spann-	Schutz-	Doppel-	Zwischen-	CT: ET	Cabloasal	latt
Bezeichnung	R	L	Н	HF	В	LF	LH	WF	WF2	Abb.	pratze	platte	schraube	lage	Stift	Schlüssel	ш
CCLN R/L 2525 M09			25	25	25	150	25	32	7	1	CCM8UL	CBC0903	MADO OOT	SCN0903	SPP3	LT27	0
CCLN R/L 2525 M12-03			25	25	25	150	30	32	7	1	CCIVIOUL	CBC4	WD0-221	SCND433	3PP3	LIZI	0
CCLN R/L 2525 M12-04			25	25	25	150	30	32	7	2	CCM8-LONG	CBC4	WB8-30	SCND433	SPP3	LH040	6

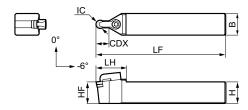


■ Schneidplatten



- SNGN0903**
- 2 SNGN1203**
 3 SNGN1204**

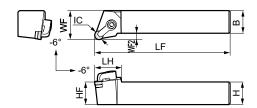
Ersatzteile


- SNGN0903**SNGN1203**
- 3 SNGN1204**

■ Halter				D	ie Zeic	hnung	zeigt F	Rechts	ausfühi	rung.	2	\Leftrightarrow		②				Plattentyp
Bezeichnung	Lag	ger				essur		`	1		1 '	Schutz-		Zwischen-	Stift	Feder	Schlüssel	Platt
3	R	L	Н	HF	В	LF	LH	WF	WF2	Abb.	pratze	platte	schraube	lage				
CSKN R/L 2525 N09			25	25	25	160	25	32	7	1	CCM8UL	CBS13	WB8-22T	SSN0903	_		LH040	0
CSKN R/L 2525 N12-03			25	25	25	160	25	32	7	1	CCIVIOUL	CBS14	WD0-221	SSND423	_	_	LI 1040	0
																		
CSKN R/L 2525 N12-04			25	25	25	160	21	32	7	2	DC _{-R/L} 1	CBD 4 _{R/L}	BH 0830 _{R/L}	SSND423	SPP3	DSP5	LH040	6

C-Typ Halter mit Spannpratzen

■ Schneidplatten

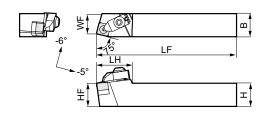


- RNGN0903**RNGN1203**
- 3 RNGN1204**

■ Ersatzteile

■ Halter									,,,			✓	AN AND AND AND AND AND AND AND AND AND A	Platten-
Dozeishnung	Lagar		Α	bmes	sunge	n (mn	n)		Spann-	Doppel-	Zwischen-	Rohrstift	Schlüssel	typ
Bezeichnung	Lager	Н	HF	В	LF	LH	WF	CDX	pratze	schraube	lage	Ronisuit	Scriiussei	
CRDNN 2525 M09	•	25	25	25	150	35	-	15			SRND32			0
CRDNN 2525 M12-03		25	25	25	150	35	-	20	CCM8-LONG	WB8-22T		SPP3	LT27	0
CRDNN 2525 M12-04	•	25	25	25	150	35	_	20	1		SRND42			B

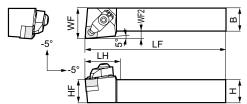
■ Schneidplatten


- RNGN0903**
 RNGN1203**
- 2 RNGN1203***

■ Halter				Die Zei	ichnung	g zeigt l	Rechts	ausfüh	rung.	4		◎		ST. ST.	Platten-	
Dozeishnung	La	ger		Α	bmes	sunge	n (mr	n)		Spann-	Doppel-	Zwischen-	Dahastift	Schlüssel	typ	
Bezeichnung	R	L	Н	HF	В	LF	LH	WF	WF2	pratze	schraube	lage	Rohrstift	Schlussei		
CRSN R/L 2525 M09	•	•	25	25	25	150	30	32	7			SRND32			0	
CRSN R/L 2525 M12-03			25	25	25	150	30	32	7	CCM8-LONG	WB8-22T		SPP3	LT27	0	
CRSN R/L 2525 M12-04	•	•	25	25	25	150	30	32	7			SRND42			6	

typ

X-Typ Halter "Dimple Lock"



■ Ersatzteile

■ Halter

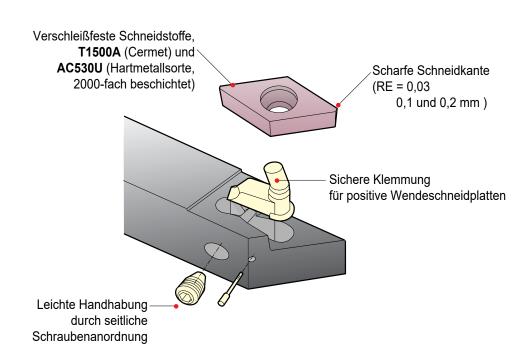
■ Halter				Die Zei	ichnun	g zeigt l	Rechts	ausfüh	rung.			()				entyp
Bezeichnung	La ₍	ger L	Н	A HF	bmes B	sunge LF	n (mr LH	n) WF		Spann- pratze	Klemm- schraube	Zwischen- lage	Stift	Feder	Schlüssel	Platt
XSBN R/L 2525 N12			25	25	25	160	38	21,5		DSLX8	BH0825	SSND423	SPP3	GSP10	LH050	0

■ Ersatzteile

Halter

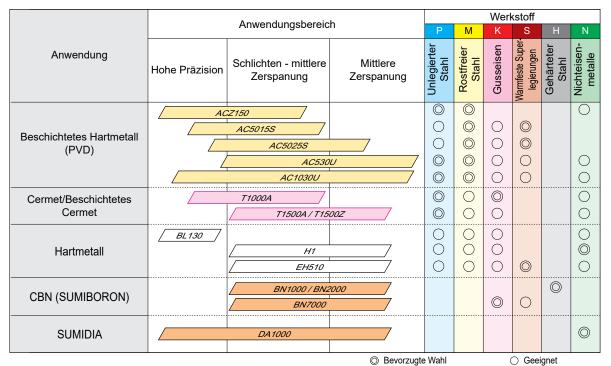
,	- Haitei				Die Zei	ichnung	g zeigt l	Rechts	ausfüh	rung.		Circ	•	w.	(1) C	v	en	
	Bezeichnung	La	ger		Al	bmes	sunge	n (mr	n)		Spann-	Klemm-	Zwischen-	Stift	Fodor	Cablüanal	Platt	
	Bezeichhung	R	L	Н	HF	В	LF	LH	WF	WF2	pratze	schraube	lage	Suit	Feder	Schlüssel	ш.	
	XCLN R/L 2525 N12			25	25	25	150	33	32	7	DSLX8	BH0825	SCND433	SPP3	GSP10	LH050	0	

Mini-Halter zum Außendrehen


Abstechwerkzeug-Halter SCT-Typ Einfacher Schneidplattenwechsel durch Lösen der seitlichen Klemmschraube. Max. Abstech-Durchmesser: Ø 5 mm, Ø 12 mm, Ø 16 mm

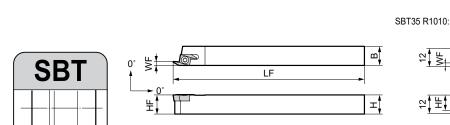
SBT-Typ Werkzeughalter zum Hinterdrehen Scharfe Schneide für eine hohe Oberflächengüte. Max. Schneidenlänge 3,5 mm und Schneidenbreite 2,5 mm.

PDJCR - Typ Halter mit Kniehebel


Externe Mini-Halter

1984 wurde von Sumitomo Electric Hardmetal erstmalig die Mini-Werkzeughalter-Serie für die Bearbeitung kleiner Komponenten in kleinen NC-Bearbeitungsautomaten eingeführt.

Ein kompletter Bereich von Schneidstoffen, darunter Cermet T1500A, SUMIBORON BN2000, SUMIDIA DA1000 und speziell AC530U, wurde ebenfalls eingeführt, um einen weiten Bereich von Bearbeitungsanforderungen abzudecken.


■ Schneidstoff-Auswahl

■ Empfohlene Schnittbedingungen

Werk- stoff	P Autor	matenstahl	P Kohle	enstoffstahl	M Rost	freier Stahl	C	feste Super- ierungen	H Gehä	rteter Stahl	N Alu	uminium	N M	lessing
Schneidstoff	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)	v _c (m/min)	f (mm/U)
ACZ150	50–200	0,02-0,10	50-150	0,01–0,08	50–150	0,01-0,05					70–300	0,05-0,20	70–300	0,05–0,20
AC5015S	50–200	0,02-0,15	50-200	0,02-0,10	*50–200	*0,02–0,10							70–300	0,05–0,20
AC5025S	50–200	0,02-0,15	50-200	0,02-0,10	*50–200	*0,02–0,10	30–100	0,02-0,10					70–300	0,05–0,20
AC530U	50-200	0,02-0,15	50-200	0,02-0,10	*50–200	*0,02–0,10	30–100	0,02-0,10					70–300	0,05–0,20
AC1030U	50–200	0,02-0,15	50–200	0,02-0,10	*50–200	*0,02–0,10							70–300	0,05–0,20
T1000A	50–200	0,02–0,15	50–200	0,02-0,10	*50–150	*0,02–0,10					70–300	0,05–0,20	70–300	0,05–0,20
T1500A	50–200	0,02-0,15	50-200	0,02-0,10	*50–150	*0,02–0,10					70–300	0,05-0,20	70–300	0,05–0,20
T1500Z	50–200	0,02-0,15	50-200	0,02-0,10	*50–150	*0,02–0,10					70–300	0,05-0,20	70–300	0,05–0,20
BN1000									120-300	0,03–0,15				
BN2000									50-200	0,03-0,20				
BN7000							50–200	0,05–0,20						
DA1000											70–300	0,02-0,10	70–300	0,02-0,10

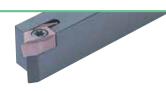
^{*} Bitte verwenden Sie den größtmöglichen Wert von C/Geschw.

Lager

Н

10 | 10

12


16 | 16

HF B LF WF

12 | 12 | 120 | 9,5

10 | 120 | 7,5

16

■ Ersatzteile

Halter

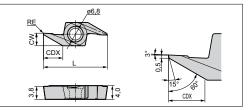
Bezeichnung

SBT 35-R 1010

SBT 35-R 1212

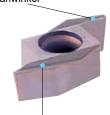
SBT 35-R 1616

Die Zeichnung zeigt Rechtsausführung.


Abmessungen (mm)

120 | 13,5

ıg.				Platten-
	Schraube	(N·m)	Schlüssel	typ
	DETV0307N	2.0	TDV10	DTD 35


Schneid	platten

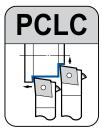
DTD			Lager					
BTR	Bezeichnung	AC1030U	AC530U	1500A	Abm	nessur	ngen ((mm)
		A	ĕ	⊢	L	CDX	CW	RE
	BTR 3505	0	0	0	15	3,5	2,5	0,05
	BTR 3515	0	0	0	15	3,5	2,5	0,15


Hartmetall, beschichtet Cermet, unbeschichtet

breite Spanleitstufe zur problemlosen Spanabfuhr

• Oberflächengüte im Vergleich

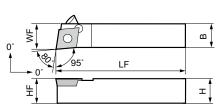
 $\label{eq:werkstückstoff} \begin{tabular}{ll} Werkstückstoff : C45 \\ Schneidplatte : BTR3505 (ACZ310) \\ Schnittdaten : v_c = 80 m/min, f = 0,04 mm/U \\ a_p = 3,0 mm, nass \end{tabular}$


■ Empfohlene Schnittdaten (SBT-Typ Halter)

Werkstückstoff	Bearbeitungen	v _c (m/min)	f (mm/U)
	Einstechen	50–150	0,02-0,05
Kohlenstoffstahl	Hinterdrehen	30-130	0,02-0,10
	Einstechen	50–150	0,02-0,10
Automatenstahl	Hinterdrehen	30-130	0,02–0,15
	Einstechen	50–150	0,02-0,04
Rostfreier Stahl	Hinterdrehen	30-150	0,02-0,06

D30

P - Typ Kniehebel-Halter


Bezeichnung

PCLC R/L 0810 K06

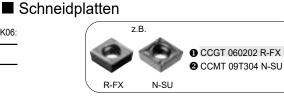
PCLC R/L 1010 K06

PCLC R/L 1212 K09

PCLC R/L 1616 K09

Lager

 \mathbf{c} 10 10


> 12 12 12

16 16

R L Н HF

PCLC R/L0810-K06:

17

Ersatzteile

Halter

Die Zeichnung	zeiat R	Rechtsaus	sführuna

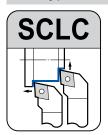
Abmessungen (mm)

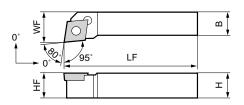
125 10,5

150 12,5

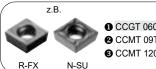
125 10,5

150 16,5


В LF WF

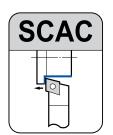

10

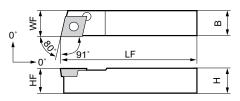
16


führung.					Platten- typ
	Kniehebel	Schraube	Stift	Schlüssel	тур
	LCL 06	BTT 0407	LP 07	TH 020	0
	LCL 09	BTT 0411	LP 06	111 020	0

S - Typ Klemmhalter mit Schraube

■ Schneidplatten

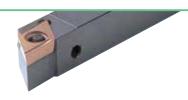

- CCGT 060202 R-FX 2 CCMT 09T304 N-SU
- **3** CCMT 120408 N-SU

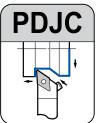

Ersatzteile

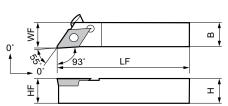
Halter

Die Zeichnung	zeiat	Rechtsausführung.
DIE ZEIGHHUNG	2 C IQ1	ixecinoausiuniung.

■ Haiter				Die Ze	ichnun	g zeigt	Recht	saustür	irung.			<i>(/</i>	Platten-
Dozeichnung	La	ger		Α	bmes	sunge	n (mr	n)		Cabaaaba	(N·m)	Cabloanal	typ
Bezeichnung	R	L	Н	HF	В	LF	WF			Schraube	(N-III)	Schlüssel	
SCLC R/L 0808 D06			8	8	8	60	10			BFTX02506N	1,5	TRX08	
SCLC R/L 1010 E06	•	•	10	10	10	70	12			DF I XUZOUUN	1,0	IRAUO	0
SCLC R/L 1212 F09	•	•	12	12	12	80	16						
SCLC R/L 1616 H09	•	•	16	16	16	100	20			BFTX0409N	2.4	TRX15	
SCLC R/L 2020 H09	•		20	20	20	100	25			BF I XU4U9IN	3,4	IKAIS	2
SCLC R/L 2020 K09	•	•	20	20	20	125	25						
SCLC R/L 2020 K12	•	•	20	20	20	125	25			BFTX0511N	5.0	TRX20	
SCLC R/L 2525 M12	•	•	20	25	25	150	32			DEIVOSIIN	5,0	I IRAZU	€




■ Schneidplatten



ļ	■ Halter				Die Ze	ichnun	g zeigt	Rechts	sausführi	ung.				Platten-
	Dozajahnung	La	ger		Α	bmess	sunge	en (mn	n)		Cahaaaha	(N-m)	Cabloanal	typ
	Bezeichnung	R	L	Н	HF	В	LF	WF			Schraube	(N4II)	Schlüssel	
	SCAC R/L 0808 D06			8	8	8	60	8,5			BFTX02506N	1 5	TRX08	_
	SCAC R/L 1010 E06	•		10	10	10	70	10,5			BE I VOS 2001	1,5	I KAUO	0
	SCAC R/L 1212 F09	•		12	12	12	80	12.5			BFTX0409N	3.4	TRX15	a

P - Typ Kniehebel-Halter

8 8

10 | 10

12

20

25

20 20

25 | 25

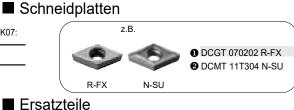
o | 16 | 16 | 16

12 | 12 | 150 | 12,5

Lager

R L H HF B LF WF

PDJC R/L0810-K07:


A

LCL 09

BFTX0409N

3,4

TRX15

■ Halter

Bezeichnung

PDJC R/L 0810 K07

PDJC R/L 1010 K07

PDJC R/L 1212 M11

PDJC R/L 1616 M11

Die Zeichnung zeigt Rechtsausführung.

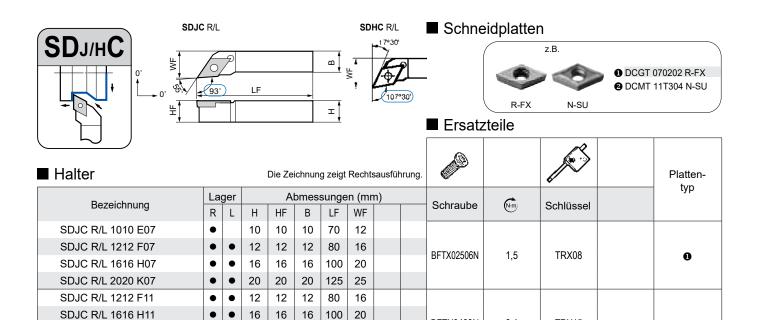
150 16,5

Abmessungen (mm)

10 | 125 | 10,5

10 | 125 | 10,5

				Platten-
Kniehebel	Schraube	Stift	Schlüssel	typ
LCL 06	BTT 0407	LP 04	TH 020	0
			111020	


LP 07

BTT 0411

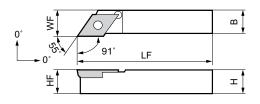
a

0

S - Typ Klemmhalter mit Schraube

SDHC R/L 1616 H11	•	•	16	16	16	100	20					
SDHC R/L 2020 K11	•	•	20	20	20	125	25		BFTX0409N	3,4	TRX15	0
SDHC R/L 2525 M11	•	•	25	25	25	150	32					

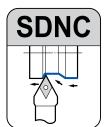
25

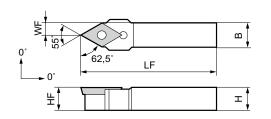

125

150 32

SDJC R/L 2020 K11

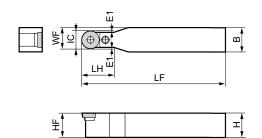
SDJC R/L 2525 M11




■ Schneidplatten

■ Ersatzteile

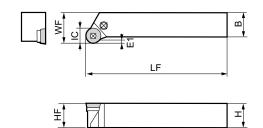
■ Halter				Die Ze	ichnun	g zeigt	Rechts	sausführung.				Platten-
Dozajahnung	La	ger		Α	bmes	sunge	en (mn	n)	0-6	(N-m)	Schlüssel	typ
Bezeichnung	R	L	Н	HF	В	LF	WF		Schraube	(N)	Schlusser	
SDAC R/L 0808 D07			8	8	8	60	8,5		BFTX02506N	1.5	TRX08	
SDAC R/L 1010 E07	•		10	10	10	70	10,5		DI IAUZJUON	1,5	INAUG	0
SDAC R/L 1212 F11	•	•	12	12	12	80	12,5		BFTX0409N	3,4	TRX15	0


■ Schneidplatten

I	■ Halter								Platten-				
	Bezeichnung	Logor		A	bmes	sunge	n (mn	n)	Schraube	(N·m)	Cablüagal	typ	
	Bezeichnung	Lager	Н	HF	В	LF	WF		Schraube	(VIII)	Schlüssel		
	SDNCN 0808 D07	•	8	8	8	60	4,2						
	SDNCN 1010 E07	•	10	10	10	70	5,2						
	SDNCN 1212 F07	•	12	12	12	80	6,2		BFTX02506N	1,5	TRX08	0	
	SDNCN 1616 H07		16	16	16	100	8,2						
	SDNCN 2020 K07	•	20	20	20	125	10,2						
	SDNCN 1212 F11	•	12	12	12	80	6,5						
	SDNCN 1616 H11	•	16	16	16	100	8,5		BFTX0409N	3,4	TRX15		
	SDNCN 2020 K11	•	20	20	20	125	10,5		DF I AU4U9IN	3,4	IKAIS	0	
	SDNCN 2525 M11	•	25	25	25	150	13						

P - Typ Kniehebel-Halter

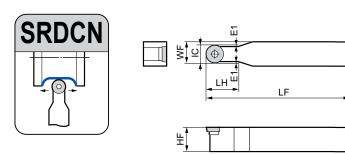
■ Schneidplatten



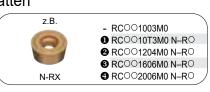
- **1** RCOO1003M0 N-RO **2** RCOO1204M0 N-RO
- **3** RCOO1606M0 N-RO **4** RCOO2006M0 N-RO
- 4 RC002

■ Ersatzteile

■ Halter	± <u>↓</u>											(0)			Platten- typ
Bezeichnung	Logor			Abm	essur	ngen (mm)			Knie-	Schraube	Zwischen-	Rohrstift	Schlüssel	
Dezeicillung	Lager	Н	HF	В	LF	LH	WF	E1	IC	hebel	Scrifaube	lage	Konsuit	Scriiussei	
PRDC N 2020 M10	•	20	20	20	150	22	15,0	1,0	10	LCL10	LCS10	LSR10	LSP10	LH020	
PRDC N 2525 M10	•	25	25	25	150	22	17,5	1,0	10	LCLIU	LCS10	LOKIU	LOFIU	LHUZU	0
PRDC N 2525 M12	•	25	25	25	150	24	18,5	1,2	12	LCL12	LCS12	LSR12	LSP10	LH025	
PRDC N 3225 Q12	•	32	32	25	180	24	18,5	1,2	12	LOLIZ	LUSIZ	LSKIZ	LSP10	LHUZS	0
PRDC N 3225 Q16	•	32	32	25	180	28	20,5	1,5	16	LCL16	LCS16	LSR16	LSP16	LH025	6
PRDC N 3232 Q20	•	32	32	32	180	32	26,5	1,7	20	LCL20	LCS20	LSR20	LSP20	LH030	4



■ Schneidplatten



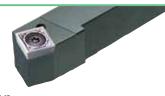
- RC○○ 1003M0 N-R○
- **2** RCOO 1204M0 N-RO **3** RCOO 1606M0 N-RO
- 4 RCOO 2006M0 N-RO

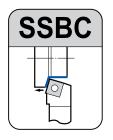
	<u> </u>	(11							B.				100	
■ Halter				Die Zei	ichnun	g zeigt l	Rechts	ausfüh	rung.			9			Platten- typ
Dozeichnung	La	ger		Α	bmes	sunge	n (mr	n)		Knie-	Cabrauba	Zwischen-	Rohrstift	Schlüssel	
Bezeichnung	R	L	Н	HF	В	LF	WF	E1	IC	hebel	Schraube	lage	Ronisuit	Scriiussei	
PRGC R/L 2020 K10	•		20	20	20	125	25	1,5	10	LCL10	LCS10	LSR10	LSP10	LH020	
PRGC R/L 2525 M10	•	•	25	25	25	150	32	1,5	10	LOLIU	LUSTU	LOKIU	LOFIU	LHUZU	0
PRGC R/L 2020 K12			20	20	20	125	25	2,5	12						
PRGC R/L 2525 M12	0	•	25	25	25	150	32	2,5	12	LCL12	LCS12	LSR12	LSP10	LH025	0
PRGC R/L 3225 P12			32	32	25	170	32	2,5	12						
PRGC R/L 2525 M16	•		25	25	25	150	32	3,0	16	LCL16	LCS16	LSR16	LSP16	LH025	
PRGC R/L 3225 P16	•		32	32	25	170	32	3,0	16	LOLIO	10010	LOKIO	LSP10	LH023	8
PRGC R/L 3232 P20	•		32	32	32	170	40	4.0	20	LCL20	LCS20	LSR20	LSP20	LH030	A

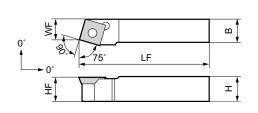
■ Ersatzteile

■ Halter											_		⟨	(M)	typ
Dozajahnung				Α	bmes	sunge	en (mn	n)		C = b == b =	Zwischen-	Cabaaaaba	Cablinasal	Cabloasal	
Bezeichnung		ager H	HF	В	LF	LH	WF	E1	IC	Schraube	lage	Schraube	Schlussei	Schlussei	
SRDC N 2020 K10T3	•	20	20	20	125	25	15,0	1,0	10	BFTX03510-SD	SRNS 103-SD				•
SRDC N 2525 M10T3	•	25	25	25	150	25	17,5	1,0	10	2,0 €	JUS-501	DIN VEVOE OD	TRX 15 IP-35	LH 035	0
SRDC N 2525 M12	•	25	25	25	150	28	18,5	1,2	12	BFTX03512-SD	SRNS 123-SD	DW 03001-3D	IKA 13 IF-33	LH 033	
SRDC N 3225 P12	•	32	32	25	170	28	18,5	1,2	12	2,0 €	300 123-30				0
SRDC N 2525 M16		25	25	25	150	35	20,5	1,5	16	BFTX0517-SD	CDNC 164 CD	BW 0810F-SD	LT 20 IP	LH 050	
SRDC N 3225 P16	•	32	32	25	170	35	20,5	1,5	16	5,0 🗺	JAN 104-3D	DW 00101-9D	LI ZUIF	LH 030	6
SRDC N 3232 P20	•	32	32	32	170	40	26,0	1,7	20	BFTX0618-SD 7,5 €	SRNS 204-SD	BW 0912F-SD	LT 25 IP	LH 060	4

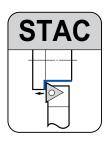
æ

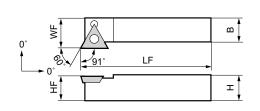

Ŧ




■ Schneidplatten

I	Halter												**	🍇 цт		typ
	Domaichanna	La	ger		Al	bmes	sunge	n (mn	n)		C-b	Zwischen-	C = b == b =	Cabloanal	Cabloasal	
	Bezeichnung	R	L	Н	HF	В	LF	WF	E1	IC	Schraube	lage	Schraube	Schlussei	Schlüssel	
	SRSC R/L 2020 K10T3	•	•	20	20	20	125	25	1,5	10	BFTX 03510-SD	SRNS 103-SD				0
	SRSC R/L 2525 M10T3	•	•	25	25	25	150	32	1,5	10	2,0 🗺		BW 0508F-SD	TRX 15 IP-35	LH 035	U
	SRSC R/L 2525 M12	•		25	25	25	150	32	2,5	12	BFTX 03512-SD	SRNS 123-SD	DW 00001-9D	1KX 151F-55	LH 033	•
	SRSC R/L 3225 P12	•	•	32	32	25	170	32	2,5	12	2,0 €	3KN3 123-3D				0
	SRSC R/L 3225 P16	•	•	32	32	25	170	32	3,0	16	3,0 🕾	SRNS 164-SD	BW 0810F-SD	LT 20 IP	LH 050	6
	SRSC R/L 3232 P20	•	•	32	32	32	170	40	4,0	20	BFTX 0618-SD 7,5	SRNS 204-SD	BW 0912F-SD	LT 25 IP	LH 060	4





■ Schneidplatten



										(B)		23	
■ Halter				Die Ze	ichnun	g zeigt	Rechts	sausfül	hrung.				Platten-
Damaiahanna	La	ger		Α	bmes	sunge	n (mr	n)		0.1	Č	0.1.181	typ
Bezeichnung	R	L	Н	HF	В	LF	WF			Schraube	(N·m)	Schlüssel	
SSBC R/L 1010 E07			10	10	10	70	9			BFTX0307N	2,0	TRX10	0
SSBC R/L 1212 F09			12	12	12	80	11			BFTX0409N	2.4	TRX15	
SSBC R/L 1616 H09	•	•	16	16	16	100	13			BF I AU4U9IN	3,4	IKAIS	0
SSBC R/L 2020 K12			20	20	20	125	17			DETVOCAM	Γ.0	TDV00	_
SSBC R/L 2525 M12			25	25	25	150	22			BFTX0511N	5,0	TRX20	€

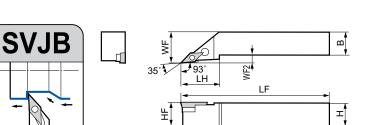
■ Schneidplatten

■ Ersatzteile

Die Zeichnung	zeigt Rechtsausführung
Die Zeichhang	Zeigi Neonisausiuniung.

	■ Halter				Die Ze	ichnun	g zeigt	Rechts	sausfül	nrung.				Platten-
	Bezeichnung	La _!	ger L	Н	A HF	bmes B	sunge LF	en (mn WF	n)		Schraube	(N·m)	Schlüssel	typ
Ì	STAC R/L 0808 D09			8	8	8	60	8,5			BFTX02205N	1,1	TRX06	0
	STAC R/L 1212 F11	•		12	12	12	80	12,5			BFTX02506N	1,5	TRX08	0

■ Schneidplatten

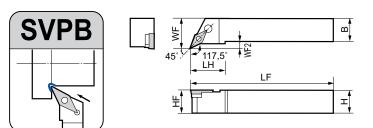


■ Halter				Die Ze	ichnun	g zeigt	Rechts	sausführung.				Platten-
D disharan	La	ger		A	bmes	sunge	n (mr	n)		~	0.11	typ
Bezeichnung	R	L	Н	HF	В	LF	WF		Schraube	(N·m)	Schlüssel	
STGC R/L 0808 D09			8	8	8	60	10		BFTX02205N	1.1	TRX06	
STGC R/L 1010 E09	•		10	10	10	70	12		BF1AU22U3IN	1,1	IRAU	0
STGC R/L 1212 F11	•		12	12	12	80	16		BFTX02506N	1.5	TRX08	
STGC R/L 1616 H11	•	•	16	16	16	100	20		BF I AU2000N	1,5	I RAU0	2
STGC R/L 1616 H16	•	•	16	16	16	100	20					
STGC R/L 2020 K16	•	•	20	20	20	125	25		BFTX0409N	3,4	TRX15	6
STGC R/L 2525 M16			25	25	25	150	32					

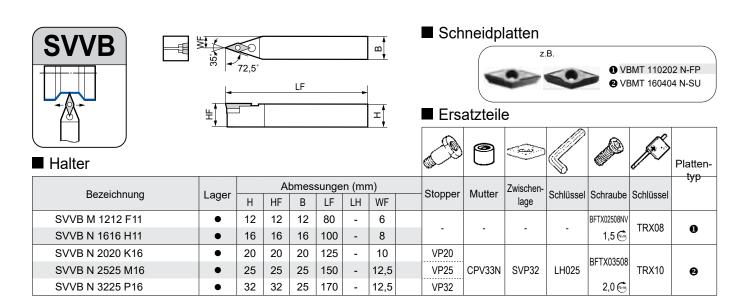
SV - Typ

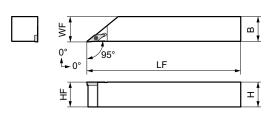
Außendrehhalter

S - Typ Klemmhalter mit Schraube

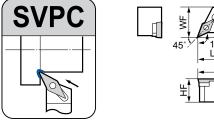


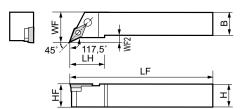
Ersatzteile


Halter			ļ	Die Zei	ichnun	g zeigt	Rechts	sausfül	nrung.			\	S			Platten-
Dozajahnung	La	ger		Al	bmes	sunge	n (mn	n)		Stopper	Mutter	Zwischen-	Cablüagal	Cabrauba	Cablüagal	typ
Bezeichnung	R	L	Н	HF	В	LF	LH	WF	WF2	Stopper	Muller	lage	Scriiussei	Schraube	Scriiussei	
SVJB R/L 1212 F11	•	•	12	12	12	80	25	16	4,5					BFTX02508NV	TRX08	
SVJB R/L 1616 H11	•	•	16	16	16	100	25	20	4,5	-	-	-	-	1,5 🗺	TRAUG	0
SVJB R/L 2020 K16	•	•	20	20	20	125	41	25	5,0	VP20				BFTX03508		
SVJB R/L 2525 M16	•	•	25	25	25	150	41	32	7,0	VP25	CPV33N	SVP32	LH025	DF1703300	TRX10	0
SVJB R/L 3225 P16	•	•	32	32	25	170	41	32	7,0	VP32				2,0 €		


■ Schneidplatten

■ Halter				Die Ze	ichnun	g zeigt	Rechts	sausfül	nrung.							Platten-
Damaiahanna	La	ger		Α	bmes	sunge	n (mr	n)		Ctonnor	Mutter	Zwischen-	Cabloasal	Cabaaaaba	Cabloasal	typ
Bezeichnung	R	L	Н	HF	В	LF	LH	WF	WF2	Stopper	Muller	lage	Schlussei	Schraube	Schlüssel	
SVPB R/L 1212 F11	•		12	12	12	80	25	16	4,5					BFTX02508NV	TRX08	•
SVPB R/L 1616 H11	•	•	16	16	16	100	25	20	4,5	-	-	-	-	1,5 🕞	IKAUO	0
SVPB R/L 2020 K16	•	•	20	20	20	125	36	25	5,0	VP20				BFTX03508		
SVPB R/L 2525 M16	•	•	25	25	25	150	36	32	7,0	VP25	CPV33N	SVP32	LH025	DF1X03300	TRX10	0
SVPB R/L 3225 P16	•	•	32	32	25	170	36	32	7,0	VP32				2,0 €		


■ Schneidplatten



■ Ersatzteile

Die Zeichnung	zeigt Rech	tsausführung.

I Halter				Die Ze	ichnun	g zeigt	Rechts	sausfüh	nrung.				Platten-
Bezeichnung	La	ger		Α	bmes	sunge	en (mn	n)		Schraube	(N-m)	Schlüssel	typ
Bezeichnung	R	L	Н	HF	В	LF	WF			Schraube	(N·m)	Scriiussei	
SVLC R/L 1010 H11	•	•	10	10	10	100	10,5						
SVLC R/L 1212 H11	•	•	12	12	12	100	12,5						
SVLC R/L 1616 H11	•	•	16	16	16	100	16,5			BFTX02508NV	1,5	TRX08	0
SVLC R/L 2020 K11	O	0	20	20	20	125	20,5						
SVLC R/L 2525 M11	•	O	25	25	25	150	25,5						

Halter

ı	■ Halter				Die Ze	ichnun	g zeigt	Rechts	sausfül	nrung.				Platten-
	Bezeichnung	La	ger		Α	bmes	sunge	n (mr			Schraube	(N-m)	Schlüssel	typ
		R	L	Н	HF	В	LF	LH	WF	WF2	Comaabo		Comaccon	
	SVPC R/L 1010 H11	0	O	10	10	10	100	-	14,5	4,5				
	SVPC R/L 1212 H11	•	•	12	12	12	100	-	16,5	4,5	BFTX02508NV	1,5	TRX08	0
	SVPC R/L 1616 H11	•	•	16	16	16	100	-	20,5	4,5				

Polygonschafthalter

Beschreibung

Die Sumitomo Polygon-Werkzeughalter erzeugen eine äußerst steife Verbindung zwischen Maschine und Werkzeug. Das konische Polygon kann durch seine extrem gute Verbindung zur Maschinenspindel sehr hohe Biege- und Torsionskräfte übertragen.

Die selbstzentrierende Kupplung bietet hohe Präzision bei Wiederholgenauigkeiten von ± 2 µm in der x-, y- und z-Achse.

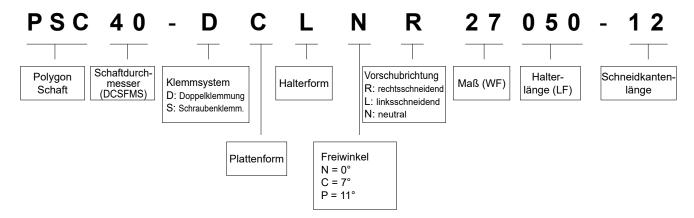
Durch Verwendung der schnell wechselbaren Polygonschafthalter werden höhere Maschinenauslastungen möglich, da sich die Rüst- und Werkzeugwechselzeiten reduzieren.

Die kompakte Bauweise und die steife Verbindung zur Spindel ermöglichen den vielfältigen Einsatz z.B. auf Multi-Task-Maschinen, Bearbeitungszentren und Dreh-Fräszentren.

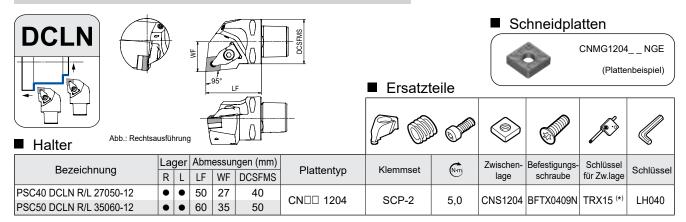
Merkmale

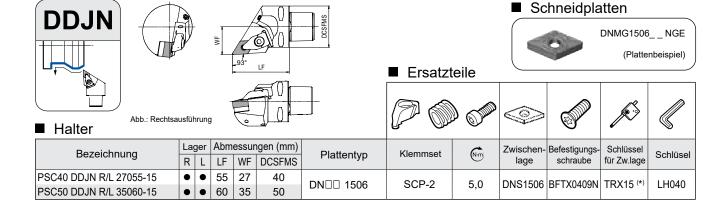
- Original SUMITOMO D-Typ Doppelklemmsystem
- kompakte Bauweise
- stabile Ausführung keine zusätzlichen Schnittstellen
- genaue Positionierung; selbstzentrierend mit hoher Wiederholgenauigkeit
- hohe Biegefestigkeit unterstützt durch Plananlage
- HM-Zwischenlage zum Schutz der Halter vor Beschädigung
- einfacher Werkzeugwechsel und wartungsarme Handhabung
- Interne Kühlmittelzufuhr direkt zur Schneide
- Polygonschaft und Plattensitz gehärtet für hohe Lebensdauer

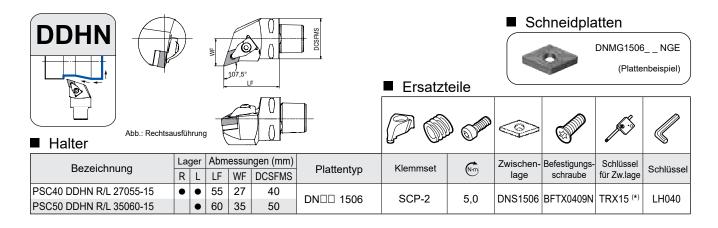
Polygonschaft - gefertigt nach ISO 26623-1

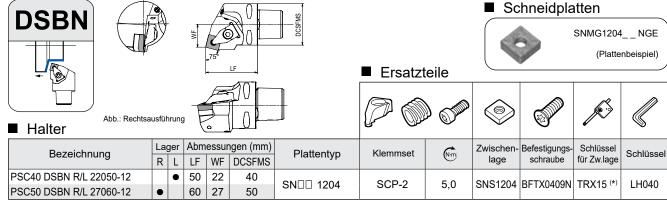

Halter für negative Schneidplatten

Halter für positive Schneidplatten

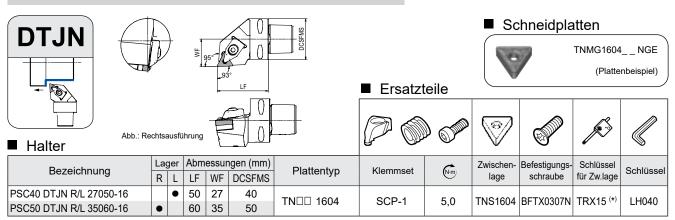



Bezeichungssystem für Polygon-Werkzeughalter



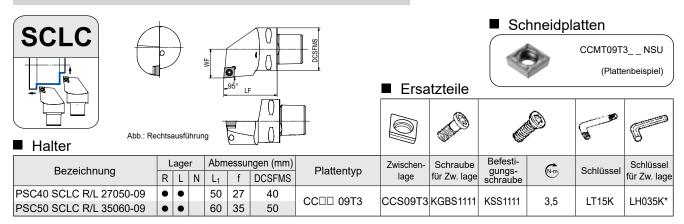

Außendrehhalter Polygonschafthalter

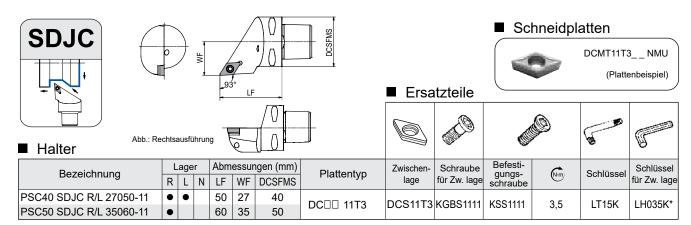
Zum allgemeinen Drehen, Kopieren und Plandrehen

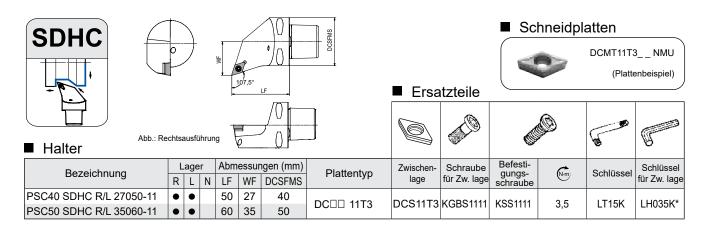


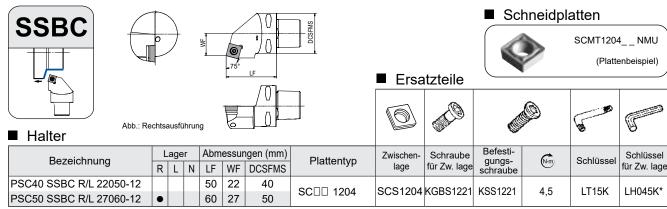
Außendrehhalter Polygonschafthalter

Zum allgemeinen Drehen und Plandrehen

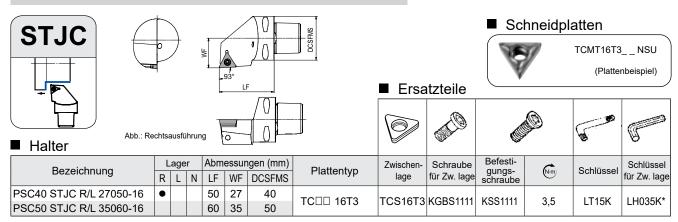


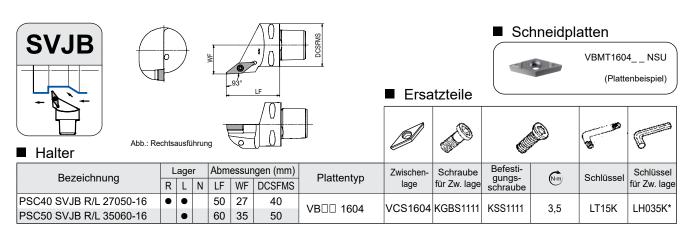


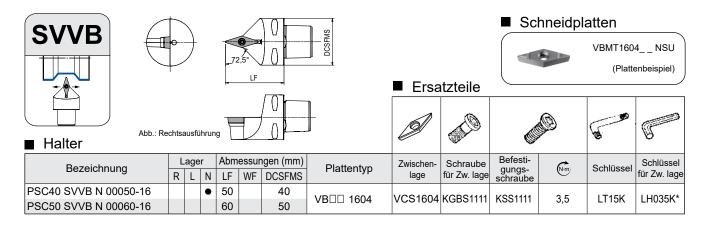

(*) Artikel ist nicht im Lieferumfang enthalten.

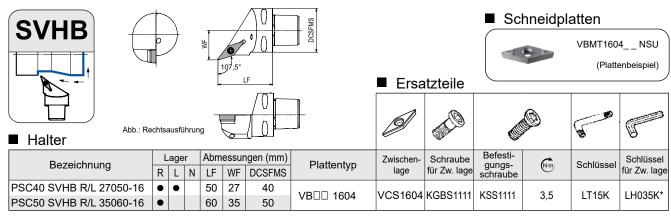

Außendrehhalter Polygonschafthalter

Zum allgemeinen Drehen, Kopieren und Plandrehen

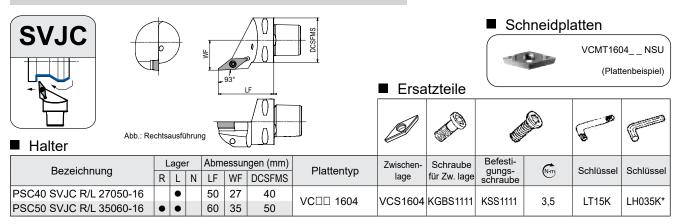


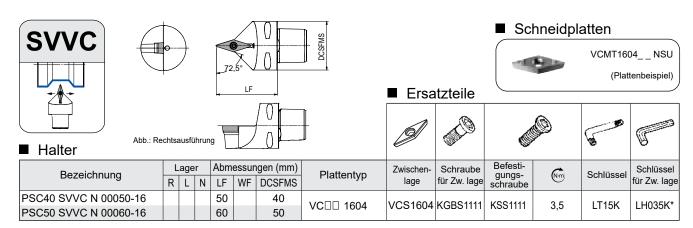


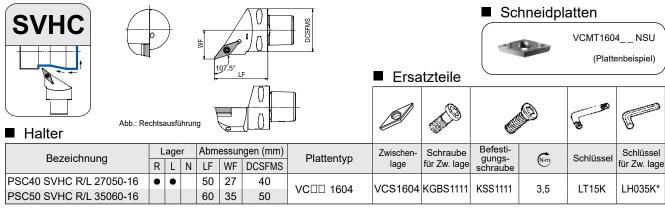



Außendrehhalter Polygonschafthalter

Zum allgemeinen Drehen, Kopieren und Plandrehen






(*) Artikel ist nicht im Lieferumfang enthalten.

Außendrehhalter Polygonschafthalter

Zum allgemeinen Drehen, Kopieren und Plandrehen

(*) Artikel ist nicht im Lieferumfang enthalten.

ohrstangen

Bohrstangen

E1-E24

Für sehr kl. Bohrungen

Auswahl	Auswahl einer Bohrstange	E2-4
ISO	Bezeichnung von Bohrstangen	E5
Vorteile	SumiTurn X-Bar	E6-7
5		
Bohrstangen für negativen Wendeschneidplatten	D. DOLM / O. DOLM	F 0
CN:	DDCLN / SPCLN	
DN:	DDDUN / SPDUN	
SN:	SPSKN	
SumiTurn T-Rex	SDTR	
TN:	DDTFN / SPTFN	
WN:	DDWLN / SWMLN	E13
Bohrstangen für positiven Wendeschneidplatten		
X-Bar für CC :	B/DSCLC	E14
CC :	S SCLC	
CP :	S/CSCLP	
X-Bar für DC :	B/DSDUC / SDQC	E16-17
DC :	S SDQC / SDUC	
SP :	S/CSSKP	E18
TC :	S STFC	E19
X-Bar für TP :	B/DSTUP	E20
TP :	S/CSTUP	E20
X-Bar für VB :	D SVUB / SVZB	E21
 VB :	S SVQB / SVUB / SVZB	E22
 WB :		
		

Bohrstange (Übersicht)

Nach Anwendung / Bohrungsdurchmesser

■ Auswahl Bohrstange

Die farbigen Flächen entsprechen den lieferbaren Größen.

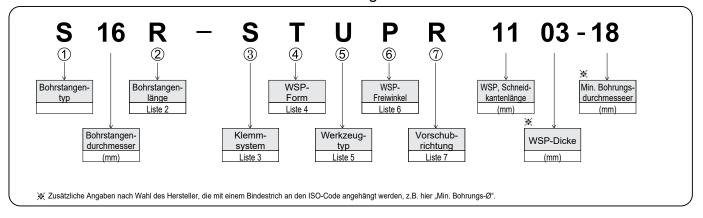
	Die farbigen Flächen entsprechen den lieferbaren Größen.																											
Anwendung		Тур		rungs (L/D) Scha	ft X-Bar	Geeignete Wende- schneidplatten	Bearbeitung		ÌП	zzg	jl. au	igefü	hrte	n We	erte s	sind a	aktu	elle i	min.	øD,	falls	sie a	abwe	iche	r (n	der T	Γabel	le.)
Sohrungen	BXBR	⇒ E2		metall -5	(Stahl)	Spezielle Schneideinsätze					0		t		' '	0	10	12	13	14	10	10 2	20 2.	2 2 .	520	33	44.	74 /
Für sehr kl. Bohrungen	DABB	⇒M5		-2		Sumidia-gelöteter Typ				•		•	•		•													
	BSME	⇒M48–M5	0	-4		Sumiboron-gelöteter Typ	1 1 1 1 1 1 1 1 1 1		•	•	•	•		•														
	SEXC	\$M48,49,5	1	-3		Sumiboron- WSP	65 5					•	•	•	•													
	BNBB	\$M5		-5		Sumiboron-gelöteter Typ					3,5	4	,5 5	5 6,	5	8,5												
	BNB	\$M5	3	-4		Sumiboron- WSP											•	•		•		•	•					
Ę,	S/C-SWUB	⇒ E2	3 -3	-8		Trigon- Typ 5° pos. WSP							5,	5														
Sacklochdrehen	S-STFC	⇒ E19	9 -3																•		•	•	•	•	•	32	40	
cklock	B/D-STUP	⇒ E2	0		-6	0											•	•		•		•	•		•		40	
Sa	S-STUP(B)	⇒ E2	0 -3			Dreieckige WSP 5° & 11° pos. Typ										•	•	•			•	•	•	•	•			
	C-STUP	⇒ E2		-8												•	•	•		•	•	•	•	•	•			
	CTFP		-3			Dreieckig, 11° pos. Typ															0	(c	C	>	32		
	D-DTFN	⇒ E1:	,		-6		+																			• 32	• 40	50
	S-PTFN	⇒ E1:	2			Dreieckig, neg. Typ																				• 32	• 40	50
	BNZ	⇒M5	3	-5		Sumiboron- WSP	÷6								•		9	11	•			•	•					
	S-SCLP	⇒ E1:	5 -3															•			•	•	•	•	•			
	B-SCLP	⇒ Lager in Japa	n		-6	OO & showshingh														0		\mathbf{c}	C					
len	C-SCLP	⇒ E1:	5	-8		80 ° rhombisch, 11° pos. Typ												•			•	•	•					
Längs- und Plandrehen	B/D-SCLC	\$ E1-	4		-6		11.11										•	•		•		•	•	•		32		
nd Pla	S-SCLC	⇒ E1-	4 -3			90 ° rhambiash													•		•	•	•	•	,	32	40	50
n -sɓc	C-SCLC	⇒ Lager in Japa	n	-8		80 ° rhombisch, 7° pos. Typ	1222A						C	O	o	O	o	0	0	0	0	(c	C	>			
Lär	D-DCLN	⇒ E	8		-6	10																					• 40	
	S-PCLN	⇔ E	8 -3			80 ° rhombisch, neg. Typ																		•	30		•	50 6
	D-DWLN	⇔ E1:	3		-6	OP-10						T	T									1				• 32	40	• 50
	S-MWLN	⇒ E1:	-3			Trigon, neg. Typ																				• 32	• 40	• 50
		5 E1	<u>ی</u>	1		<u> </u>	<u> </u>	2	2,5	3	3,5	4 4	,5 5	5 6	7	8	10	12	13	14	16	18 2	20 2	2 2	5 28			

Bohrstange (Übersicht)

■ Auswahl Bohrstange

Die farbigen Flächen entsprechen den lieferbaren	Größen.

								Die tarbigen Flächen entsprechen den lieferbaren Größen.													<u></u>		
Anwendung	7	Гур		rungs (L/D) Schaf		Geeignete Wende- schneidplatten	Bearbeitung		lini	ma	ale	r B	ohi	run	ngs	sdu	rc	hr	ne	SS	er (mn	ו)
An			Stahl	Hart-	X-Bar (Stahl)	scrineiopiailen		6	8 1	10 1	2 13	14	16 18	3 20	22	25 2	8 3	32 3	4 35	40	44 5	50 54	70
	B/D-SDUC	⇒ E16		metali	-6						•	П	•	•		•	†	•		•			
	S-SDUC	⇒ E16	-3								•		•	•		•		•		•			
	C-SDUC	⇒ Lager in Japan		-8		9	<i>V</i>				0		Э	0		О							
	B/D-SDQC	⇒ E17			-6	55 ° rhombisch, 7° pos. Typ					•		•	•		•		•		•		_	
	S-SDQC	\$E17	-3								•		•	•		•		•				1	
ehen	D-SVUB	⇒ E21			-6										•	2	27		•	•		1	
Kopierdrehen	S-SVUB	♦ E22	-3												•	2	27		•	•		1	
Ko	S-SVQB	♦ E22	-3												•	2	27		•	•		1	
	B/C-SVQB	⇒ Lager in Japan		-8	-6	35 ° rhombische								0		0							
	D-SVZB	⇒ E21			-6	5° & 7° pos. Typ									•	2	27		•	•		1	
	S-SVZB	⇒ E22													•	2	27		•	•		1	
	D-DDUN	⇔ E9			-6													•		•		╧	
	S-PDUN	⇒ E9	-3			55 ° rhombisch, neg. Typ												•		•	•	•	O 63
	S-SSKP	⇒ E18	-3			©							•	•		•	•					1	
ien	C-SSKP	Ø ⇒ E18		-8		55 ° rhombisch, neg. Typ							•	•								\perp	
Ausdrehen	SSKC	□ Lager in Japan	-3			Quadratisch, 7° pos. Typ								0		0	(Э		0		\perp	
Ā	CSKP	□ Lager in Japan	-3			Quadratisch, 11° pos. Typ								0)						╧	
	S-PSKN	⇒ E10	-3			Quadratisch, neg. Typ											,	•		•	L (•	• 63
Einstechen	GNDI	⇒ F12/F38																•		•		•	
Einst	GNDIS	⇒ F12/F40					,					0		ာ		0						\perp	
								6	8 1	10 1	2 13	14	16 18	3 20	22	25 2	8 3	32 3	4 35	40	44 5	50 54	70


Auswahl einer Bohrstange

■ Auswahl nach Innendrehbearbeitung

Anwe	ndung	Sack bohr		Zum Innend		Ausdrehen		Kopieren	
Platte	entyp em	60° dreieckig	80° Trigon	80 rhom		90° quadratisch	55° T-REX	55° rhombisch	35° rhombisch
	Stahlschaft	S-STFC ⇒E19 S-STUP(B)⇒E20	S-SWUB ⇔ E23	S-SCLC ⇒ E14	S-SCLP ⇒ E15	S-SSKP ⇔ E18	-	S-SDUC ⇒E16 S-SDQC ⇒E17	S-SVUB (\$-SVQB) ⇒ E22
lub- /stem	Anti-Vibration B-Typ	B-STUP ⇒ E20	-	B-SCLC ⇒ E14	-		-	B-SDUC ⇒E16 B-SDQC ⇒E17	_
Schraub- spannsystem	Anti-Vibration D-Typ m.Kühlkanal	D-STUP ⇒ E20	-	D-SCLC ⇒ E14			-	D-SDUC ⇒E16 D-SDQC ⇒E17	D-SVUB ⇔E21 D-SVZB ⇔E21
	Hartmetallschaft	C-STUP (c-STUB) ⇔ E20	C-SWUB ⇒ E23	_	C-SCLP ⇔ E15	C-SSKP ⇔ E18	_	_	_
Kniehebel- spannsystem	Stahlschaft	S-PTFN ⇒ E12	-	S-PCLN ⇒ E8	-	S-PSKN ⇔ E10	-	S-PDUN ⇔ E9	_
oannpratze	Anti-Vibration D-Typ m.Kühlkanal	D-DTFN ⇔ E12	D-DWLN ⇔E13	D-DCLN ⇔ E8			_	D-DDUN ⇒E9	_
Mit Stift / Spannpratze	Stahlschaft	_	S-MWLN ⇔ E13	_	-	_	S-DTR ⇒ E11	_	_
CBN	Hartmetallschaft	BNB ⇒ M53	BNBB ⇒ M52	BNZ	Hartmetall-schaft	BXBR ⇒ E24			
CE	Hartmet	BSME ⇒ M48	SEXC ⇒ M51						

ISO Bohrstangen-Bez.

■ Identifikation der ISO Standard-Ausdrehwerkzeuge

1 Liste 1

Bohrstangentyp							
S	Stahlschaft						
В	Stahlschaft mit Anti-Vibrationsystem						
С	Hartmetallschaft						
D	Stahlschaft mit Anti-Vibrationsystem und Innenkühlung						
Е	Hartmetallschaft mit Innenkühlung						

7 Liste 7

Vo	Vorschubrichtung						
Symbol	Symbol Vorschubrichtung						
R	R rechtsschneidend						
L	linksschneidend						
N	neutral						

2 Liste 2

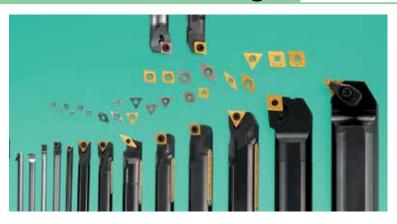
Bohrstangenlänge									
Symbol	Länge (mm)	Symbol	Länge (mm)						
F	80	Р	170						
G	90	Q	180						
Η	100	R	200						
7	110	S	250						
Κ	125	Т	300						
L	140	U	350						
М	150	٧	400						
Ν	160	W	450						

③ Liste 3

		Klemm	syste	m	
Symbol	System	Aufbau	Symbol	System	Aufbau
С	Mit Spannpratzen		M	Mit Stift und Spannpratzen	
D	Doppel- Klemmung		Р	Mit Kniehebel	
E	Mit Exzenterstift	M	S	Schraub- spannung	

4 Liste 4

	WSP-Form									
Symbol	Plattenform	Symbol	Platten	form						
A	Parallelogramm 55°	M	Rhombus 86°							
В	Parallelogramm 82°	0	Achteck	0						
С	Rhombus 80°	Р	Fünfeck							
D	Rhombus 55°	R	Rund	0						
E	Rhombus 75°	S	Viereck							
F	Rhombus 50°	Т	Dreieck	Δ						
Н	Sechseck \bigcirc	٧	Rhombus 35°	(35 ₁)						
K	Parallellogramm 555°	W	Trigon	(80 _i)						
L	Rechteck									

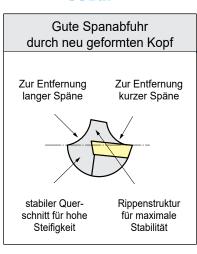

⑤ Liste 5

Werkzeugtyp									
Symbol	Form	Anschlag	Symbol	Form	Anschlag				
A	J _{90i}	Nil	N	-63 _i	Nil				
В	751	Nil	Q	107,5°	Mit Anschlag				
D	45 _i	Nil	R	751	Mit Anschlag				
E	60 _i	Nil	s	45;	Mit Anschlag				
F	90;	Mit Anschlag	Т	60 _i	Mit Anschlag				
G	90 _i	Mit Anschlag	U	93;	Mit Anschlag				
J	2 93 _i	Mit Anschlag	w	60 _i	Mit Anschlag				
K	75 _j	Mit Anschlag	Y	85;	Mit Anschlag				
L	95 _i	Mit Anschlag	Z	93°	Mit Anschlag				

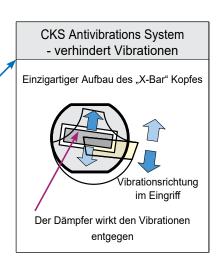
6 Liste 6

W:	SP-Freiwinkel									
Symbol	Fre	Freiwinkel								
Α	3°	1								
В	5°									
С	7°									
D	15°									
E	20°									
F	25°									
G	30°									
N	0°	*								
P	11°									
0	Sonstige Freiwinkel									

Ausdrehwerkzeuge

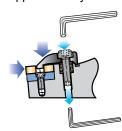


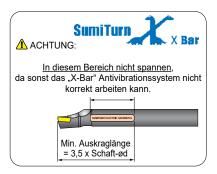
■ Eigenschaften


1976 wurde von Sumitomo die erste auswechselbare Bohrstange ins Programm genommen. Seitdem wurde das Bohrstangensystem stetig und umfassend ausgebaut. Zur Zeit umfasst die Bohrstangenserie Kleinstbohrstangen, hochfeste Bohrstangen mit Hartmetall sowie die neueste Antivibrationsbohrstange vom Typ "X-Bar". Zusammen mit einer großen Vielfalt an Schneidstoffen kann so der gesamte Anwendungsbereich abgedeckt werden.

- Vorteile
- Große Auswahl für verschiedene Ausdrehoperationen
- Kleinste Bohrdurchmesser von 5,5 mm aufwärts
- Neue Anti-Vibrationsbohrstangen "SumiTurn X-Bar"
- Neues Kopfdesign mit hoher Steifigkeit auch bei kleinen Bohrstangen
- Große Auswahl an Schneidstoffen und Spanformgeometrie für vielfältige Operationen und Werkstoffe

■ Serie SumiTurn X Bar

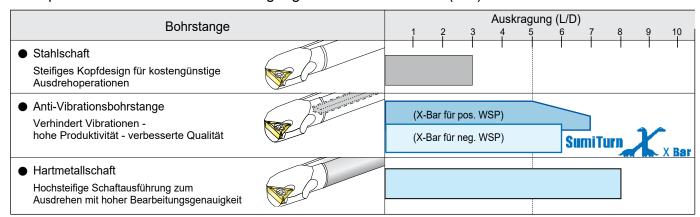


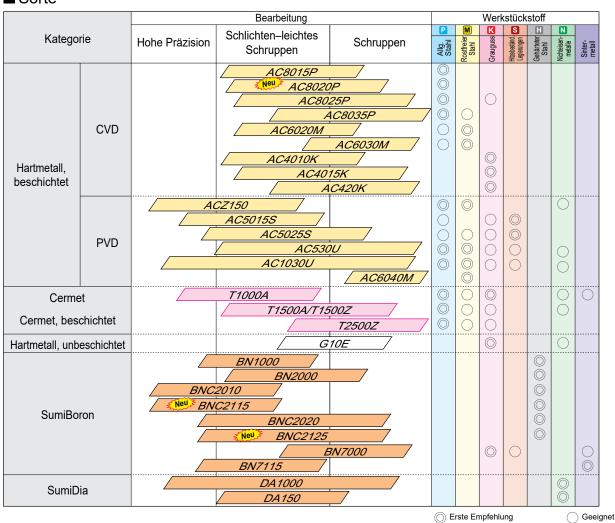


 Neue "X Bar" für negative Wendeschneidplatten mit Hochleistungsdoppelklemmsystem

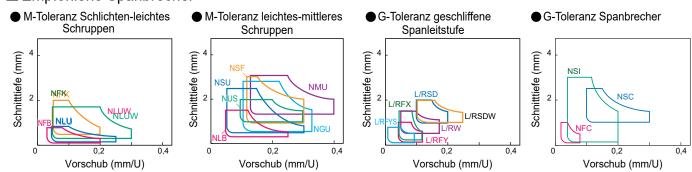
■ Anwendungsbereich

 Schwingungsgedämpfter Stahlschaft Günstige Lösung für tiefe Präzisionsbohrungen Hartmetallschaft - verhindert Vibrationen - verbesserte Hochsteifige Schaftausführung Produktivität und Oberflächengüten zum Ausdrehen mit hoher Bearbeitungsgenauigkeit 8 Auskraglänge (L/d) 6 **Sumi Turn** 5 (X-Bar für pos. WSP) (X-Bar für neg. WSP) 4 Stahlschaft 3 2 0 8 10 12 Schaftdurchmesser ød (mm)



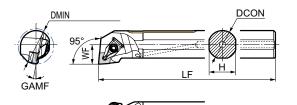

Neue Serie

Ausdrehwerkzeuge


■ Empfohlenes Verhältnis von Auskragung / Schaftdurchmesser (L/D)

Sorte

■ Empfohlene Spanbrecher



D...DCLN / S...PCLN - Typ

Plattenbeispiel

Ersatzteile

Antivibrations D-Typ mit Innenkühlung

■ Halter

Die Zeichnung zeigt Rechtsausführung.

D i-h	La	ger)	Α	bme	essun	gen	(mn	າ)	DI - # #	S
Bezeichnung	R	L	øD _{min}	ød	h	ℓ_1	ℓ_2	f	γ	Plattentyp	ŗ
D25T - DCLN R/L 1204-32	•	•	32	25	23	300	26	17	-12°		
D32T - DCLN R/L 1204-40	•	•	40	32	30	300	26	22	-10°	CN□□1204○○	
D40U - DCLN R/L 1204-50	•	•	50	40	37	350	26	27	-10°		

Zwischen Befest.-Klemm-Feder Schlüssel Schlüssel praze schraube schraube lage BFTX0307N CNS1203B TRX10* SCP-2 LH040 LH025 BFTX0409N CNS1204E TRX15 € 3,4

> (*) Hinweis: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

Rechte Halter werden mit linken oder neutralen Wendeschneidplatten bestückt. Linke Halter werden mit rechten oder neutralen Wendeschneidplatten bestückt.

■ Halter

	P- Halter mit Kniehebel-Spannsystem	Bezeichnung	Lag		øD _{min}		mes:	sunge	en (m	nm)	γ	0
		S20S - PCLN R/L09	•	•	25	20	18	250	29	13	-11°	011 0000
S - PCLN R/L	∮D min ∮d	S25T - PCLN R/L09	•		30	25	23	300	33	17	-10°	CN0903
	<u> </u>											
		S25T - PCLN R/L12	•	•	32	25	23	300	42	17	-10°	
		S32U - PCLN R/L12	•	•	40	32	30	350	49	22	-11°	CN1204
	4 h	S40V - PCLN R/L12	•	•	50	40	37	400	56	27	-10°	
	° ° °											
1///14		S32U - PCLN R/L16			40	32	30	350	56	22	-11°	
	`	S40V - PCLN R/L16	•	•	50	40	37	400	56	27	-10°	CN1606
	<u> </u>	S50W - PCLN R/L16			63	50	47	450	56	35	-11°	
		S50W - PCLN R/L19			63	50	47	450	63	35	-11°	CN1906
										_		

Alle Zeichnungen zeigen Rechtsausführung.

■ Wendeschneidplatten

	Hartmetall	e, Cermets							
Halter	Doppelseitig	Einseitig	CBN, PKD	Kniehebel	Schraube	Zwischenlage	Rohrstift	Schlüssel	
S-PCLN R/L			0						
S09	CNMG 0903 NGU	-	-	LCL3C-SD	LCS3B-SD	-	-	LH020	
S25T12	CNMG 1204 NGU	CNMM 1204_ NMP	CNGA 1204	LCL4C-SD	LCS4B-SD	-	-	LH025	
S32U12	CNMG 1204 NGU	CNMM 1204_ NMP	CNGA 1204	LCL4T-SD	LCS41BS-SD	LSC42SD	LSP4SD	LH030	
S40V12	CNMG 1204 NGU	CNMM 1204_ NMP	CNGA 1204	LCL4SD	LCS42BS-SD	LSC42SD	LSP4SD	LH030	
S16	CNMG 1606 NGU	CNMM 1606 NMP	-	LCL5SD	LCS5B-SD	LSC53SD	LSP5SD	LH030	
S19	CNMG 1906 NGU	CNMM 1906_ NMP	-	LCL5C-SD	LCS6B-SD	LSC63SD	LSP6SD	LH040	

Lager

0 40

50 40 37

R

Antivibrations D -Typ mit Innenkühlung

Bezeichnung

D32T - DDUN R/L 1104-40

D32T - DDUN R/L 1506-40

D40U - DDUN R/L 1506-50

■ Halter

Plattenbeispiel

N-GU

■ Ersatzteile

		Die 2	Zeichr	nung	zeigt	: Recl	ntsausführung.					8			
$\emptyset D_{min}$	A ød	bme h	essun ℓ ₁	gen ℓ2	(mn	η)	Plattentyp	Spann- praze	Feder	Klemm- schraube	Zwischen- lage	Befest schraube	Schlüssel	Schli	üssel
40	32	30	300	26	22	-10°	DN□□1104○○		SCP-1		DNS1104B	BFTX0307N	TRX10(*)		
40	32	30	300	26	22	-12°					D.10.1500D	BFTX0409N		LH040	LH025

SCP-2

(*) Hinweis: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

DNS1506B

Rechte Halter werden mit linken oder neutralen Wendeschneidplatten bestückt. Hinweis: Linke Halter werden mit rechten oder neutralen Wendeschneidplatten bestückt.

350 26

Halter

	P - Halter mit Kniehebel-Spannsystem	Bezeichnung	Lag		øD _{min}	Ab	mess	sunge	en (m	nm)	γ	6	
		S25T - PDUN R/L 11	•	•	32	25	23	300	35	17	-11°	DN_	_ 1104
S - PDUN R/L	<u>∳ D min</u>											<u> </u>	
		S32U - PDUN R/L 15 04	•	•	40	32	30	350	40	22	-11°	DN_	_ 1504
		S40V - PDUN R/L 15	•	•	50	40	37	400	56	27	-11°	DN	1506
		S50W - PDUN R/L 15			63	50	47	450	63	35	-10°	DIN_	_ 1300
	11 12												

DN□□1506○○

Alle Zeichnungen zeigen Rechtsausführung.

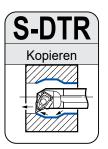
■ Wendeschneidplatten

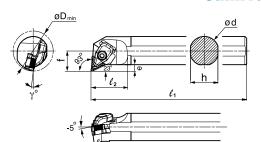
	oi ii i o i a pi a ti o	• •							
	Hartmetall	e, Cermets	ODN DIAD				.		
Halter	Doppelseitig	Einseitig	CBN, PKD	Kniehebel	Schraube	Zwischenlage	Rohrstift	Schlüssel	
S - PDUN R/L	300		0						
S25T11	DNMG 1104 NGU	-	DNGA 1104	LCL3DB-SD	LCS3DB-SD	-	-	LH020	
S32U15 04	DNMG 1504NGU	DNMM 1504_ NMP	DNGA 1504	LCL4D-SD	LCS5DB-SD	LSD42SD	LSP4SD	LH030	
S40V15	DNMG 1506 NGU	DNMM 1506 NMP	DNGA 1506	LCL4D-SD	LCS5DB-SD	LSD42SD	LSP4SD	LH030	
S50W15	DNMG 1506 NGU	DNMM 1506 NMP	DNGA 1506	LCL4D-SD	LCS5DB-SD	LSD42SD	LSP4SD	LH030	

S...PSKN - Typ

■ Halter

	P - Halter mit Kniehebel-Spannsystem	Bezeichnung	La	ger		Ab	mess	sunge	en (m	ım)		† O d d †
(1111) XA			R	L	$\emptyset D_{min}$	d	h	l ₁	I_2	f	γ	- - - s
		S25T - PSKN R/L 12	•		32	25	23	300	42	17	-11°	
S - PSKN R/L	<u>∮ D min</u> ∮ d	S32U - PSKN R/L 12	•		40	32	30	350	45	22	-10°	SN1204
		S40V - PSKN R/L 12	•	•	50	40	37	400	50	27	-10°	
- ا												
		S40V - PSKN R/L 15	•		63	40	47	400	60	35	-10°	SN 1506
	Y .\	S50W - PSKN R/L 15			63	50	47	450	60	35	-10°	3111300
	7	S50W - PSKN R/L 19			63	50	47	450	60	35	-9°	SN1906


Alle Zeichnungen zeigen Rechtsausführung.


■ Wendeschneidplatten

	Hartmetall	e, Cermets							
Halter	Doppelseitig	Einseitig	CBN	Kniehebel	Schraube	Zwischenlage	Rohrstift	Schlüssel	
S - PSKN R/L			•						
S25T12	SNMG 0903 NGU	-	-	LCL4C-SD	LCS4B-SD	-	-	LH025	
S32U12	SNMG 1204 NGU	SNMM 1204 NMP	SNGA 1204	LCL4T-SD	LCS41BS-SD	LSS42SD	LSP4SD	LH030	
S40V12	SNMG 1204 NGU	SNMM 1204 NMP	SNGA 1204	LCL4SD	LCS42BS-SD	LSS42SD	LSP4SD	LH030	
S15	SNMG 1506 NGU	SNMM 1506 NMP	-	LCL5SD	LCS5B-SD	LSS53SD	LSP5SD	LH030	
S19	SNMG 1906NGU	SNMM 1906NMP	-	LCL5C-SD	LCS6B-SD	LSS63SD	LSP6SD	LH040	·

Zum allg. Drehen und Kopieren

■ Ersatzteile

-	\sim		
-		_	
- 1			ı

Halter

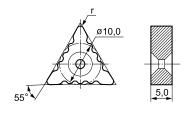
Die Zeichnung	zeigt	Rechtsausführung
---------------	-------	------------------

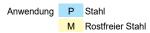
				Die Ze	eichnu	ıng zei	gt Re	cntsat	ıstunrı	ıng.						_	
Pozeichnung	Lag	ger		Α	bme	essun	gen	(mm)			Spann-	F-4	Klemm-	Zwischen-	Befest	Cablossal	Cablossal
Bezeichnung	R	L	\&D_{min}	ød	h	ℓ_1	ℓ_2	f	γ	е	pratze	Feder	schraube	lage	schraube	Schlüssel	Schlüssel
S32S-DTR55C R/L-17	•		44	32	30	250	40		-12°	- 1	TDODO	0.004.00	D)/0500	TDIMESOS	BFTX0307N	T014/040	TD\(40(*)
S40T-DTR55C R/L-17	•	О	50	40	37	300	40		-10°		TRCP3	S-SP4-20	BX0520	TRW5505	2,0	TSW040	TRX10 ^(*)

(*) Hinweis: Torxschlüssel (TRX10) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

■ Vorteile

Maximale Wirtschaftlichkeit der "T-REX"- Platte


Mit 6 Schneidecken und 55° Schneidwinkel bietet T-REX eine intelligente Alternative bei der Kopierbearbeitung gegenüber herkömmlichen vierschneidigen DNMG-Schneidplatten.


Beschichtete Hartmetallsorten

■ Schneidplatten

					AC8015P	AC8025P	AC630M	T3000Z
Anwend.	Plattenform	В	ezeichnung	r	AC8	AC8	AC6	T30
t- ten	00000	TRM	551704-FL	0,4		0		O
Feinst- schllichten	Though the		551708-FL	0,8		O		0
sch	FL							
		TRM	551704-LU	0,4	•	O		O
			551708-LU	0,8	•	O		O
hte	W LU		551712-LU	1,2		O		O
Schlichten	1211 1121	TRM	551704-SU	0,4		0	•	O
\ \ \ \ \	hard		551708-SU	0,8		0	•	0
	W SU		551712-SU	1,2		O		
ben	11 4 4 21	TRM	551704-GU	0,4		0	•	
Schruppen	The sales		551708-GU	0,8		O	•	
Sch	₩ GU		551712-GU	1,2		O		

Beschicht. Cermet

D...DTFN / S...PTFN - Typ

Lager

L

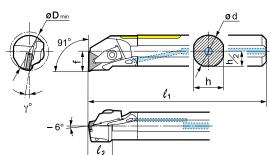
R

 $\emptyset D_{min}$

32 25

40

50 40 37


Antivibrations D -Typ mit Innenkühlung

Bezeichnung

D25T - DTFN R/L 1604-32

D32T - DTFN R/L 1604-40

D40U - DTFN R/L 1604-50

Plattenbeispiel

■ Ersatzteile

350 26 27 -10°

■ Halter

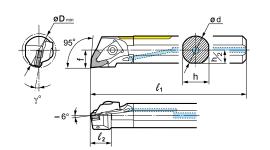
Die Zeichnung	zeiat	Rechtsausführung.
Dio Loioimang	20.91	r tooritoaaorarii arig.

-1	Die 2	Zeichr	nung	zeigt	t Recl	ntsausführung.					P			
A ød	bme h	essun ℓ ₁	gen ℓ_2	(mn	η)	Plattentyp	Spann- praze	Feder	Klemm- schraube	Zwischen- lage	Befest schraube	Schlüssel	Schli	üssel
25 32	23 30	300 300			-12° -10°			000.4		TNS1603B	BFTX0307N	TDV40.**	111040	
-		300	-			11100100		SCP-1		TNS1604B	€ 2,0	TRX10®	LH040	LH025

(*) Hinweis: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

■ Halter

	P- Halter mit Kniehebel-Spannsystem	Bezeichnung	Lag		$øD_{min}$		mess h	sunge	en (m	ım) f	γ	7	
S - PTFN R/L		S20S - PTFN R/L 11			25	20	18	250	30	13	-12°	TN	1103
O-111N1VE	<u>≱ D min</u> <u>≯ d</u>	S25T - PTFN R/L 16	•	•	32	25	23	300	43,3	17	-13°		
		S32U - PTFN R/L 16	•	•	40	32	30	350	49,6	27	-12°		
		S40V - PTFN R/L 16	•		50	40	37	_	49,5		-11°	TN	1604
	I ₁ h	S50W - PTFN R/L 16	Н		63	50	47	450	56	35	-10°		
		S40V - PTFN R/L 22	•		50	40	37	400	59	27	-11°		
	` <u> </u>	S50W - PTFN R/L 22			63	50	47	450	66	35	-10°	IN	2204
													


Alle Zeichnungen zeigen Rechtsausführung.

■ Wendeschneidplatten

	Hartmetall	e, Cermets							
Halter	Doppelseitig	Einseitig	CBN	Kniehebel	Schraube	Zwischenlage	Rohrstift	Schlüssel	
S-PTFN R/L			0						
S11	-	-	-	LCL3T-SD	LCS3B-SD	-	-	LH020	
S16	TNMG 1604 NGU	TNMM 1604 NMP	TNGA 1604	LCL3SD	LCS3TB-SD	LST317SD	LSP3SD	LH025	
S22	TNMG 2204 NGU	TNMM 2204 NMP	TNGA 2204	LCL4SD	LCS42BS-SD	LST42SD	LSP4SD	LH030	

Plattenbeispiel

N-GU

Antivibrations D -Typ mit Innenkühlung

■ Ersatzteile

■ Halter

Die Zeichnung zeigt Rechtsausführung

Пацеі					Die 2	Zeichr	nung	zeigt	Rech	ntsausführung.			_		340		_	
Damaiah muma	La	ger		Α	bme	ssun	gen	(mr	1)	Diettentus	Spann-	Cada:	Klemm-	Zwischen-	Befest	Cabloanal	C-FI	
Bezeichnung	R	L	øD _{min}	ød	h	ℓ_1	ℓ_2	f	γ	Plattentyp	praze	Feder	schraube	lage	schraube	Schlüssel	Schlü	ussei
D25T - DWLN R/L 0804-32	•	•	32	25	23	300	26	17	-12°					WNS0803B	BFTX0307N	TRX10(*)		
D32T - DWLN R/L 0804-40	•	•	40	32	30	300	26	22	-10°	WN□□0804○○		SCP-2	!	14/41000045	BFTX0409N	TD\/45	LH040	LH025
D40U - DWLN R/L 0804-50	•	•	50	40	37	350	26	27	-10°					WNS0804B	€ 3,4	TRX15(*)		

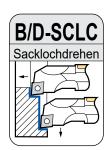
(*) Hinweis: Schlüssel (TRX) für Zwischenlagenschraube ist nicht im Lieferumfang enthalten.

■ Halter

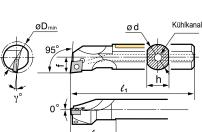
	M- Halter mit Spannpratzen	Bezeichnung	Laç		$ ot\!\!\!/ \!\!\!\!/ D_{min} $		mess	sunge	en (m	nm)	γ	
S - MWLN R/L	# D min	S25R - MWLN R/L 08 S32S - MWLN R/L 08 S40T - MWLN R/L 08	•	•	40	25 32 40	23 30 37	200 250 300	28 28 28	17 22 27	-15° -14° -12°	WNMG 0804
1	12											

Alle Zeichnungen zeigen Rechtsausführung.

■ Wendeschneidplatten


	Hartmetall	e, Cermets	_					
Halter	Doppelseitig	Einseitig	Spannpratze	Schraube	Stift	Zwischenlage	Schlüssel	
S-MWLN R/L	6	0				9		
S08	WNMG 0804 NGU	WNMM 0804 NMP	HE060011W	WB 6-16	HE060011P	HE060011E	LH025, LH030	

B/D/S...SCLC -Typ


D32T - SCLC R/L 1204-40

B-Typ (Abb. 1) Min. Bohrungs-ø

D-Typ (Abb. 2)

Plattenbeispiel

■ Ersatzteile

	■ Halter							4	ℓ_2	-					
	Stahlschaft	Bezeichnung	La	ger	~D		Abm	essur	ngen	(mm))	Abb.	Diettentun	Schraube	Schlüssel
	Stariistriait	Bezeichhung	R	L	øD _{min}	ød	h	ℓ_1	f	ℓ_2	γ	ADD.	Plattentyp	Schlaube	Scriiussei
	Antivibrations	B08H - SCLC R/L 0602-10	•	•	10	8	7	100	5,5	19	-13°			BFTX02505N	
	В-Тур	B10K - SCLC R/L 0602-12	•	•	12	10	9	125	6	21	-12°	1.	CC□T 0602○○	€ 1,1	TRX08
		D12M - SCLC R/L 0602-14	•	•	14	12	11	150	7	25	-10°			BFTX02506N	
	Antivibrations	D16R - SCLC R/L 09T3-18	•	•	18	16	15	200	11	30	-8°			BFTX0407N	TD\/45
	D-Typ	D20S - SCLC R/L 09T3-22	•	•	22	20	18	250	13	30	-7°	2.	CC□T 09T3○○	BFTX0409N	TRX15
	mit Innenkühlung	D25T - SCLC R/L 1204-32	•	•	32	25	23	300	17	38	-6°			BFTX0511N	
ı	milicinamung	DOOT COLO D/L 4004 40			40		00	000	-00		-00	l	CC□T 1204○	C 50	TRX20

30 300 20 53

Alle Zeichnungen zeigen Rechtsausführung.

TRX20

CC□T 1204○○

Hinweis: Halter in Rechtsausführung müssen mit linken Wendeschneidplatten, Halter in Linksausführung mit rechten Wendeschneidplatten bestückt werden.

■ Halter

	S - Halter mit Schraubspannsystem	Bezeichnung	Lager	øD _{min}	Abı	mess	sunge	en (m	ım) f	γ	80° 1	2
		S10K - SCLC R/L 06		13	10	9	125	9	7	-12°		
S - SCLC R/L	_	S12M - SCLC R/L 06		16	12	11	150	11	9	-10°	CC_	_ 0602
	<u> </u>	S16R - SCLC R/L 06	• •	20	16	15	200	15	11	-8°		
1 1												
***		S16R - SCLC R/L 09		20	16	15	200	15	11	-8°	cc	_09T3_
		S20S - SCLC R/L 09		25	20	18	250	20	13	-7°		
	- 11											
771	<u>: </u>	S25T - SCLC R/L 12		32	25	23	300	20	17	-6°		
122224	\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S32U - SCLC R/L 12	• •	40	32	30	350	25	22	-10°	CC_	_ 1204
	<u>- 12 </u>	S40V - SCLC R/L 12	• •	50	40	37	400	25	27	-8°		

Alle Zeichnungen zeigen Rechtsausführung.

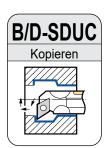
■ Wendeschneidplatten

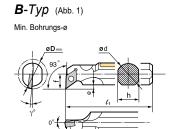
	•							
Halter	Hartmetalle	e, Cermets		Schraube	(N·m)	Schlüssel		
S - SCLC R/L	6	0						
S06	CCMT 0602_ NFP	CCGW 0602	-	BFTX02505N	1,1	TRX08		
S16R09	CCMT 09T3NFP	CCGW 09T3	-	BFTX0407N	3,0	TRX15		
S20S09	CCMT 09T3_ NFP	CCGW 09T3	-	BFTX0409N	3,4	TRX15		
S12	CCMT 1204 NFP	CCGW 1204	-	BFTX0511N	5,0	TRX20		

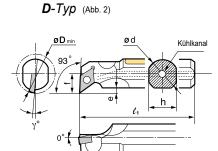
Bohrstangen

■ Halter

	S - Halter mit Schraubspannsystem	Bezeichnung	Lag		_			sunge		1		c 34	1
<u> </u>			R		ØD _{min}		h	I ₁	l ₂	f	γ		
S - SCLP R/L		S10K - SCLP R/L 08	\rightarrow	_	12	10	9	125	_	6	-5°	CP_T 0802	
3-3CLP R/L	<u>≯Dmin</u> ≉d	S12M - SCLP R/L 08	•	_	16	12	11	150		8	-3°		
Stahlschaft	950	S16R - SCLP R/L 09	-		20	16	15	200		10	-3°	CP_T 0903	
		S20S - SCLP R/L 09	•	_	25	20	18	250		12,5			
	5° 12	S25T - SCLP R/L 12	0	3	28	25	22	300	17,4	14	-3°	CP_T 1204	
		C10Q - SCLP R/L 08	•		12	10	9	180	_	6	-5°	- CP_T 0802	
C - SCLP R/L		C12R - SCLP R/L 08		_	16	12	11	200		8	-2°		
Hartmetallschaft	<u>≠Dmin</u> <u>≠d</u>	C16S - SCLP R/L 09	•		20	16	15	250	15	10	-2°	CP_T 0903	
Haltimetaiscriant	5° (1/2)												


Alle Zeichnungen zeigen Rechtsausführung.


■ Wendeschneidplatten


Halter	Hartmetalle, Cermets	CBN	Schraube	(N·m)	Schlüssel		
S/C-SCLP R/L		9					
S/C 1008	CPGT 0802 NSD	CPMW 0802	BFTX 0305 A	-	TRX 10		
S/C 1208	CPGT 0802 NSD	CPMW 0802	BFTX 0305 A	-	TRX 10		
S/C 1609	CPGT 0903 NSD	CPMW 0903	BFTX 0407 A	3,4	TRX 15		
S 2009	CPGT 0903 NSD	CPMW 0903	BFTX 0407 A	3,4	TRX 15		
S 2512	CPGT 1204 NSD	-	BFTX 0509 A	5,0	TRX 20		

■ Ersatzteile

■ Halter

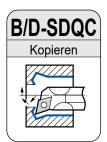
Ctablashaft	Daneish www.	La	ger	_		Abme	essun	igen	(mm)		A I. I.	District	Cabaaaba	Cablossal
Stahlschaft	Bezeichnung	R	L	øD _{min}	ød	h	ℓ_1	f	е	γ	Abb.	Plattentyp	Schraube	Schlüssel
Antivibrations B-Typ	B10M - SDUC R/L 0702-13	•	•	13	10	9	150	7	2,5	-8°	1.		BFTX02506N	TDV00
	D12M - SDUC R/L 0702-16	•	•	16	12	11	150	9	3,5	-8°		DC□T 0702○○	1,5 🗺	TRX08
Antivibrations	D16R - SDUC R/L 0702-20	•	•	20	16	15	200	11	4,0	-6°				
D-Typ	D20S - SDUC R/L 11T3-25	•	•	25	20	18	250	13	4,5	-6°	2.			
mit Innenkühlung	D25S - SDUC R/L 11T3-32	•	•	32	25	22	250	17	7,0	-6°		DC□T 11T3○○	BFTX0409N 3,4 (№m)	TRX15
Innenkaniang	D32T - SDUC R/L 11T3-40	•	•	40	32	30	300	22	8,0	-6°		202	3,4 №	

Alle Zeichnungen zeigen Rechtsausführung.

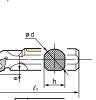
Hinweis: Halter in Rechtsausführung müssen mit linken Wendeschneidplatten, Halter in Linksausführung mit rechten Wendeschneidplatten bestückt werden.

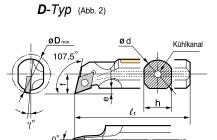
■ Halter

	S - Halter mit Schraubspannsystem	Bezeichnung	Lage	er L øD		bmes	sunge	en (m	nm)	γ	i d	7/ 1/ s
		S10K - SDUC R/L 07	• (1;	3 10	9	125	7	2,5	-8°		
S - SDUC R/L	∲Dmin ∳d	S12M - SDUC R/L 07	•	• 10	3 12	11	150	9	3,5	-8°	DC_	_ 0702
	93° 4	S16R - SDUC R/L 07	•	2 () 16	15	200	11	4	-6°		
<u> </u>												
	74-1-1	S20S - SDUC R/L 11	•	● 2:	5 20	18	250	13	4,5	-6°		
	- - - - -	S25T - SDUC R/L 11	•	● 3	2 25	22	300	17	7,5	-6°	DC_	_ 11T3
	Y COL	S32U - SDUC R/L 11	•	• 4	32	30	350	22	11	-6°		


Alle Zeichnungen zeigen Rechtsausführung.

■ Wendeschneidplatten


Halter	Hartmetall	e, Cermets	CBN, PKD	Schraube (N-m)		Schlüssel		
S - SDUC R/L S - SDQC R/L		C	9					
S10K07	DCMT 0702_ NFP	DCMT 0702 NSK	DCGW 0702	BFTX02506N	1,5	TRX08		
S12M07	DCMT 0702_ NFP	DCMT 0702 NSK	DCGW 0702	BFTX02506N	1,5	TRX08		
S16R07	DCMT 0702_ NFP	DCMT 0702 NSK	DCGW 0702	BFTX02506N	1,5	TRX08		
S11	DCMT 11T3NFP	DCMT 11T3NSK	DCGW 11T3	BFTX0409N	3,4	TRX15		



B-Typ (Abb. 1) Min. Bohrungs-ø

Plattenbeispiel

■ Ersatzteile

Halter

- Hallel														•
Chablashaft	Danaisha	La	ger			Abm	essur	igen	(mm)		A I. I.	Dietterstein	Cabaaaaba	Cabloanal
Stahlschaft	Bezeichnung	R	L	øD _{min}	ød	h	ℓ_1	f	Ф	γ	Abb.	Plattentyp	Schraube	Schlüssel
Antivibrations B-Typ	B10M - SDQC R/L 0702-13	•	•	13	10	9	150	7	2,5	-8°	1.	DOCT	BFTX02506N	TD\/00
	D12M - SDQC R/L 0702-16	•	•	16	12	11	150	9	3,5	-8°		DC□T 0702○○	1,5 🕅	TRX08
Antivibrations	D16R - SDQC R/L 0702-20	•	•	20	16	15	200	11	4,0	-6°				
D-Typ	D20S - SDQC R/L 11T3-25	•	•	25	20	18	250	13	4,5	-6°	2.			
mit Innenkühlung	D25S - SDQC R/L 11T3-32	•	•	32	25	22	250	17	7,0	-6°		DC□T 11T3○	BFTX0409N	TRX15
Innomaniang	D32T - SDQC R/L 11T3-40	•	•	40	32	30	300	22	7,0	-10°	0°	202000	3,4 € →	

Alle Zeichnungen zeigen Rechtsausführung.

Hinweis: Halter in Rechtsausführung müssen mit linken Wendeschneidplatten, Halter in Linksausführung mit rechten Wendeschneidplatten bestückt werden.

■ Halter

	S - Halter mit Schraubspannsystem	Bezeichnung		ger				sunge	en (m	, 		d 0	7° - 1 s
<u> </u>			R		$\emptyset D_{min}$	d	h	I ₁	Ť	е	γ		
		S10K - SDQC R/L-07	•	•	13	10	9	125	7	2,5	-8°		
S - SDQC R/L		S12M - SDQC R/L-07	•	•	16	12	11	150	9	3,5	-8°	DC_	_ 0702
	<u>∳ D min</u> ±√ 107.5° 1 √	S16R - SDQC R/L-07	lacksquare	•	20	16	15	200	11	4	-6°		
1													
		S20S - SDQC R/L-11	•	•	25	20	18	250	13	4,5	-6°	DC	11T3
	' h	S25T - SDQC R/L-11	•	•	32	25	22	300	17	7	-6°	00_	_ 1113
	0°												

Alle Zeichnungen zeigen Rechtsausführung.

■ Wendeschneidplatten

Halter	Hartmetall	e, Cermets	CBN, PKD	Schraube	(N·m)	Schlüssel		
S - SDUC R/L S - SDQC R/L			9					
S10K07	DCMT 0702_ NFP	DCMT 0702 NSK	DCGW 0702	BFTX02506N	1,5	TRX08		
S12M07	DCMT 0702_ NFP	DCMT 0702 NSK	DCGW 0702	BFTX02506N	1,5	TRX08		
S16R07	DCMT 0702_ NFP	DCMT 0702 NSK	DCGW 0702	BFTX02506N	1,5	TRX08		
S11	DCMT 11T3NFP	DCMT 11T3NSK	DCGW 11T3	BFTX0409N	3,4	TRX15		

S/C...SSKP -Typ

■ Halter

S - Halter mit Schraubspannsystem S - Halter mit Schraubspannsystem Bezeichnung Lager Abmessungen (mm) Abmessungen (- \$ -
S12M - SSKP R/L 09	
S - SSKP R/L S16R - SSKP R/L 09 ● 20 16 15 200 6,8 10 -4°	
Stablechaft S205 - SSRP R/L 09 0 25 20 18 250 8,5 12,5 -2	
S25T - SSKP R/L 09	
5°	
C12R - SSKP R/L 09	
SP T 0903	
Hartmetallschaft Solution	
Alla Zeichnungen zeigen Rechtsausfü	

Alle Zeichnungen zeigen Rechtsausführung.

Hinweis: Halter in Rechtsausführung müssen mit linken Wendeschneidplatten, Halter in Linksausführung mit rechten Wendeschneidplatten bestückt werden. SPGT-Platte zeigt Linksausführung.

■ Wendeschneidplatten

Halter	Hartmetalle, Cermets	CBN	Schraube	N·m)	Schlüssel		
S/C-SSKP R/L		0					
S/C 1209							
S/C 1609	SPGT 0903L/R-SD	SPGW 0903	BFTX 0307 A	2,0	TRX 10		
S 2009	01 01 0302 TK-2D	01 044 0900	DI 17 0007 A	۷,0	1100 10		
S 2509							

Bohrstangen

S...STFC -Typ

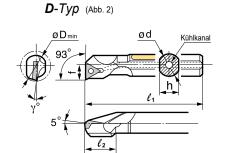
■ Halter

Tailer	S - Halter mit Schraubspannsystem	Bezeichnung	Lag	ger		Ab	mess	sunge	en (m	nm)		60°-	\$ 1 dd
			R	L	$ \emptyset D_{min} $	d	h	I ₁	l ₂	f	γ	-	s —
S - STFC R/L		S10K - STFC R/L 09	•	•	13	10	9	125	-	10,5	-12°	TC_	0902
	<u>≱ D min</u> ≱ d	S12M - STFC R/L 11	•	•	16	12	11	150	10	9	-10°		
1 ; 1		S16R - STFC R/L 11	•		20	16	15	200	12	11	-6°	TC_	1102
		S20S - STFC R/L 11	•	•	25	20	18	250	14	13	-3°		
	1, l+n+	S25T - STFC R/L 16	•		32	25	23	300	18	17	-6°		
		S32U - STFC R/L 16	•		40	32	30	350	20		-10°	TC_	16T3
	12	S40V - STFC R/L 16			50	40	37	400	25	27	-8°		
													htsausführung

Alle Zeichnungen zeigen Rechtsausführung.

■ Wendeschneidplatten

Halter	Hartmetall	e, Cermets	CBN, PKD	Schraube	(N·m)	Schlüssel		
S - STFC R/L	V		0					
S09	TCMT 0902 NFP	-	TCGW 0902	BFTX02205N	0,5	TRX06		
S11	TCMT 1102 NFP	TCMT 1102 NSK	TCGW 1102	BFTX02506N	1,5	TRX08		
S16	TCMT 16T3NFP	TCMT 16T3NSK	TCGW 16T3	BFTX0409N	3,4	TRX15		


B/D/S/C...STUP(B) - Typ

B-Typ (Abb. 1) Min. Bohrungs-ø

Ersatzteile

Halter

Ctablashaft	Damaiaha uma	La	ger	_		Abm	essur	ngen	(mm)		Λ h- h-	Dietteratus	Cabaaaba	Cablossal
Stahlschaft	Bezeichnung	R	L	øD _{min}	ød	h	ℓ_1	f	ℓ_2	γ	Abb.	Plattentyp	Schraube	Schlüssel
Antivibrations	B08H - STUP R/L 0802-10	•	•	10	8	7	100	5	13	-10°	4	TP□T 0802○○	BFTX0204A €0,5	TRX06
В-Тур	B10K - STUP R/L 1103-12	•	•	12	10	9	125	6	15	-8°	1.			
	D12M - STUP R/L 1103-14	•	•	14	12	11	150	7	17	-7°			BFTX0306A	TD\/.40
Antivibrations	D16R - STUP R/L 1103-18	•	•	18	16	15	200	9	18	-4°		TP□T 1103 ○	2,0	TRX10
D-Typ	D20S - STUP R/L 1103-22	•	•	22	20	18	250	11	18	-3°	2.		BFTX0307A €2,0	
mit Innenkühlung	D25T - STUP R/L 1604-28	•	•	28	25	22	300	14	18	-2°			BFTX0410A	
Innenkühlung	D32T - STUP R/L 1604-40	•	•	40	32	30	300	20	13	-2°		TP□T 1604 ○	₹ 3,4	TRX15

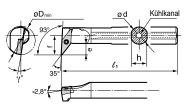
Alle Zeichnungen zeigen Rechtsausführung.

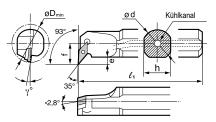
Hinweis: Halter in Rechtsausführung müssen mit linken Wendeschneidplatten, Halter in Linksausführung mit rechten Wendeschneidplatten bestückt werden.

■ Halter

	S - Halter mit Schraubspannsystem	Bezeichnung	Lag		$\emptyset D_{min}$	Ab	mess	sunge	en (m	nm)	γ	60° -1. 2 150° 0. 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		S08H - STUB R/L 06-01	•	•	8	8	7	100	30	4	-12°	TB_T 0601
S - STUP/B R/L	# D min # 23°	S08H - STUP R/L 08-02	•	•	10	8	7	100	13	5	-10°	TP_T 0802
Stahlschaft		S10K - STUP R/L 11-03	•		12	10	9	125	15	6	-8°	
Statilistrialit		S12M - STUP R/L 11-03	•	•	16	12	11	150	17	8	-6°	TP_T 1103
<u> </u>	Y 11 1	S16R - STUP R/L 11-03			20	16	15	200	18	10	-2°	
	5° {- - 	S20S - STUP R/L 16			25	20	18	250	18	12,5	-3°	TP T 1604
	12_	S25T - STUP R/L 16		•	28	25	22	300	18	14	-2°	17_1 1004
(//////	11											
		C08M - STUB R/L 06	•	•	8	8	7	150	50	4	-12°	TB_T 0601
C - STUP/в R/L	# D min # d	C08M - STUP R/L 08	•	•	10	8	7	150	18	5	-10°	TP_T 0802
Hartmetallschaft		C10Q - STUP R/L 11	•	•	12	10	9	180	19	6	-8°	
1 1 1		C12R - STUP R/L 11		•	16	12	11	200	25	8	-6°	TP_T 1103
 	1, 1 	C16S - STUP R/L 11	•		20	16	15	250	30	10	-4°	
	5° - 12_											

■ Wendeschneidplatten


Halter	Hartmetalle, Cermets	CBN, PKD	Schraube	(N·m)	Schlüssel		
S/C-STU_ R/L	0	0					
S/C 0806-01	TBGT 0601L/R-W	-	BFTX 0204 A	0,5	TRX 06		
S/C 0808-02	TPGT 0802L/R-W	TPMW 0802	BFTX 0204 A	0,5	TRX 06		
S/C 1011-03	TPGT 1103L/R-W	TPGW 1103	BFTX 0306 A	2,0	TRX 10		
S/C 12/1611-03	TPGT 1103L/R-W	TPGW 1103	BFTX 0307 A	2,0	TRX 10		
S 20/2516	TPGT 1604L/R-W	TPGW 1604	BFTX 0410 A	3,4	TRX 15		



Ersatzteile

■ Haltar

Die Zeichnung ze	igt Rechtsausführur
------------------	---------------------

пацег							Die Ze	eichr	nung 2	zeigt Re	chtsausführung.					•	V
Pozoichnung			Lager		\bm	essur	ngen ((mm	1)	۸hh	Diettentus	Ctit	Cabrauba	Zwischen-	Cabrauba	Cablüasal	Cabloasal
Бегеісппипу	R	L	ØD _{min}	ød	h	ℓ_1	f	е	γ	ADD.	Platterityp	Suit	Schraube	lage	Scriraube	Schlusser	Schlussei
D16R - SVUB R/L 1103-22	•	•	22	16	15	200	13	5	-7°							TD \(0.0	
D20S - SVUB R/L 1103-27	•	•	27	20	18	250	15	5	-5°	1.	VB∐∐ 1103⊖⊖	_	_	_	BF1X02508NV	TRX08	_
D25T - SVUB R/L 1604-35	•	•	35	25	23	300	20,5	9	-7,5°	_					BFTX03508		
D32T - SVUB R/L 1604-40	•	•	40	32	30	300	22	9	-7,5°	2.	VB∟L 1604○○	VP32B	BH03504		€ 2,0	IRX10	LH020
	Bezeichnung D16R - SVUB R/L 1103-22 D20S - SVUB R/L 1103-27 D25T - SVUB R/L 1604-35	Bezeichnung	Bezeichnung	Bezeichnung Lager ØDmin	Bezeichnung Lager R L øDmin Ød ød D16R - SVUB R/L 1103-22 ● ● 22 16 16 D20S - SVUB R/L 1103-27 ● ● 27 20 20 D25T - SVUB R/L 1604-35 ● ● 35 25	Bezeichnung Lager R L ØDmin Abmed dd h D16R - SVUB R/L 1103-22 ● ● 22 16 15 D20S - SVUB R/L 1103-27 ● ● 27 20 18 D25T - SVUB R/L 1604-35 ● 35 25 23	Bezeichnung Lager R L øDmin Abmessur ød h ℓ₁ D16R - SVUB R/L 1103-22 ● ● 22 16 15 200 D20S - SVUB R/L 1103-27 ● ● 27 20 18 250 D25T - SVUB R/L 1604-35 ● ■ 35 25 23 300	Bezeichnung Lager R L ØDmin Abmessungen Ød Abmessungen Ød D16R - SVUB R/L 1103-22 ● ● 22 16 15 200 13 D20S - SVUB R/L 1103-27 ● ● 27 20 18 250 15 D25T - SVUB R/L 1604-35 ● ● 35 25 23 300 20,5	Lager Abmessungen (mm R L øDmin Abmessungen (mm ød h ℓ₁ f e D16R - SVUB R/L 1103-22 ● • 22 16 15 200 13 5 D20S - SVUB R/L 1103-27 • • 27 20 18 250 15 5 D25T - SVUB R/L 1604-35 • • 35 25 23 300 20,5 9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bezeichnung Lager R L ØDmin Abmessungen (mm) Abb. Plattentyp D16R - SVUB R/L 1103-22 Φ Φ 22 16 15 200 13 5 -7° 1. VB□ 1103○ D20S - SVUB R/L 1103-27 Φ 27 20 18 250 15 5 -5° 1. VB□ 1103○ D25T - SVUB R/L 1604-35 Φ 35 25 23 300 20,5 9 -7,5° 2 VB□□ 1604○	Bezeichnung Lager R L ØDmin Abmessungen (mm) Abb. Plattentyp Stift D16R - SVUB R/L 1103-22 Φ Φ 22 16 15 200 13 5 -7° 1. VB□ 1103☉ _ D20S - SVUB R/L 1103-27 Φ 27 20 18 250 15 5 -5° 1. VB□ 1103☉ _ D25T - SVUB R/L 1604-35 Φ 35 25 23 300 20,5 9 -7,5° 2 VB□ 1604☉	Bezeichnung Lager R L ØDmin Abmessungen (mm) Abb. Plattentyp Stift Schraube D16R - SVUB R/L 1103-22 Φ Φ 22 16 15 200 13 5 -7° 1. VB□ 1103□	Bezeichnung Lager R L ØDmin Abmessungen (mm) Abb. Plattentyp Stift Schraube Zwischenlage	Bezeichnung Lager R L ØDmin Ød h ℓ1 f e γ Abb. Plattentyp Stift Schraube Zwischen-lage Schraube Schraube D16R - SVUB R/L 1103-22 Φ Φ 22 16 15 200 13 5 -7° 1. VB□□ 1103○○ — — — BFTX02508NV D25T - SVUB R/L 1604-35 Φ Φ 35 25 23 300 20,5 9 -7,5° 2 VB□□ 1504○○ BFTX02508NV BFTX0250	Bezeichnung Lager R L ØDmin Abmessungen (mm) Ød h ℓ₁ f e γ Abb. Plattentyp Stift Schraube Zwischen-lage Schraube Schlüssel

Hinweis: Halter in Rechtsausführung müssen mit linken Wendeschneidplatten, Halter in Linksausführung mit rechten Wendeschneidplatten bestückt werden.

Bezeichnung D16R - SVZB R/L 1103-22 D20S - SVZB R/L 1103-27 D25T - SVZB R/L 1604-35 D32T - SVZB R/L 1604-40

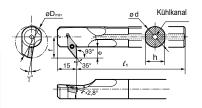


Abb. 1

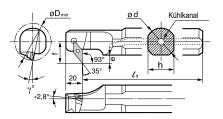


Abb. 2

■ Ersatzteile

Halter

Die Zeichnung zeigt Rechtsausführung.

Die Zeichhauf Zeigt Nechtsausfahlt										critsausiumung.					•	•
La	ger		F	\bm	essur	ngen ((mn	1)	Λ h h	Diettentus	04:51	0.1	Zwischen-	0 - 1 1	0.1.181	0.1.181
R	L	øD _{min}	ød	h	ℓ_1	f	е	γ	Abb. Plattentyp		Stift	Schraube	lage	Schraube	Schlussei	Schlüssel
•	•	22	16	15	200	13	5	-7	_	VID				DETVOOROOM	TDV00	
•	•	27	20	18	250	15	5	-5	1.	VB□□ 1103○○	_	_	_	BFTX02508NV	TRX08	_
•	•	35	25	23	300	20,5	9	-7,5	•					BFTX03508	>//	
•	•	40	32	30	300	22	9	-7,5		VB□□ 1604○○	VP32B	BH03504		(№ 2,0	TRX10	LH020

S...SVQB / SVUB, SVZB -Typ

■ Halter

	S - Halter mit Schraubspannsystem	Bezeichnung	Lag		_			sunge	`			355	Men of 2 -
1/1=1///			R		$øD_{min}$	d	h	I ₁	f	γ	е		
0 01/05 5/1		S16R - SVQB R/L 11	•		22	16	15	200	13	-6,5°		VB	_1102
S-SVQB R/L	∱ D min	S20S - SVQB R/L 11	•	•	27	20	18	250	15	-6,5°			
	107,58												
		S25T - SVQB R/L 16	•	_	35	25	23			-6,5°		-	
		S32U - SVQB R/L 16	•	•	40	32	30	350	-	-6,5°		VB_	_ 1604
	350	S40V - SVQB R/L 16	Ш	_	50	40	37	400	27	-6,5°			
	-4°30'												
		S16R - SVUB R/L 11	•	•	22	16	15	200	13	-7,5°			
S-SVUB R/L	<u>∮D min</u> <u>∮d</u>	S20S - SVUB R/L 11	•	•	27	20	18	250		-7,5°		- VB	_1102
	93°4 — -									,,,,			
		S25T - SVUB R/L 16	•	•	35	25	23	300	20.5	-7,5°			
		S32U - SVUB R/L 16	•	•	40	32	30	350		-7,5°		VB	1604
+ 36	1, -1-	S40V - SVUB R/L 16			50	40	37	400		-7,5°			
	γ 35° (-2°)							I					
		S16R - SVZB R/L 11	•	•	22	16	15	200	13	-7,5°	5	\/D	1100
S - SVZB R/L	. ∮D min	S20S - SVZB R/L 11	•	•	27	20	18	250		-7,5°		1 VB	_1102
i I		S25T - SVZB R/L 16	•	•	35	25	23	300	20,5	-7,5°	9	\/5	1001
		S32U - SVZB R/L 16	•	•	40	32	30	350	22	-7,5°	9	VB	_ 1604
	0°(•	•	•			

Alle Zeichnungen zeigen Rechtsausführung.

■ Wendeschneidplatten

Halter	Hartmetall	e, Cermets	CBN	Stift	Schlüssel	Zwischenlage	Schraube	Schlüssel	Schlüssel
	0	(•						
S16R	VBMT 1102_ NFP	VBMT 1102 NSK	-	-	-	-	BFTX02506N	TRX08	-
S20S	VBMT 1102 NFP	VBMT 1102 NSK	-	-	-	-	€ 1,5	TRX08	-
S25T	VBMT 1604 NFP	VBMT 1604 NSK	VBGW 1604	-	-	-	DET\/00500	TRX10	-
S32U	VBMT 1604_ NFP	VBMT 1604 NSK	VBGW 1604	VP32B	BH03504	SVP32	BFTX03508 € 2,0	TRX10	LH020
S40V	VBMT 1604NFP VBMT 1604NSK		VBGW 1604	VP40B	BH03504	BH03504 SVP32		TRX10	LH020

■ Halter

	S - Halter mit Schraubspannsystem	Bezeichnung	Lag	jer		Ab	mes	sung	en (m	nm)		d d d d d		
			R	L øl	D _{min}	d	h	I ₁	l ₂	f	γ		-lsl-	
S - SWUB R/L Stahlschaft	d d d d d d d d d d d d d d d d d d d	S08H - SWUB R/L 06-01	•	• !	5,5	8	7	100	18	3	-12°	WBGT	0601	
C - SWUB R/L Hartmetallschaft	<u>* D min</u>	C08K - SWUB R/L 06		• (5,5	8	7	125	30	3	-12°	WBG1	0601	
+ 6														

Alle Zeichnungen zeigen Rechtsausführung.

Hinweis: Halter in Rechtsausführung müssen mit linken Wendeschneidplatten, Halter in Linksausführung mit rechten Wendeschneidplatten bestückt werden.

■ Wendeschneidplatten

Halter	Hartmetalle, Cermets	CBN	Schraube	N·m	Schlüssel		
S/C-SWUBR/L	O						
S/C 08R 06	WBGT 0601LW	-	BFTX 0203 N	0,5	TRX 06		
S/C 08L 06	WBGT 0601RW	-	BFTX 0203 N	0,5	TRX 06		

■ Eigenschaften

Sumi Småll

- Wirtschaftliches zweischneidiges Ausdrehwerkzeug.
- Maximale Bohrtiefe 5D (das 5-Fache des Schaftdurchmessers)
- Verwendbar mit jeder gewünschten Auskragung.
- Schaftgröße = min. Bohrdurchmesser zur leichten Auswahl. (Erhältlich von ø 2 mm bis ø 5 mm in Abstufungen zu 0,5 mm.)
- Nutzt KBMX-Typ-Schneidkante, Versionen ohne Spanbrecher ebenfalls ab Lager erhältlich.

Schlichten von kleinen Bohrungen

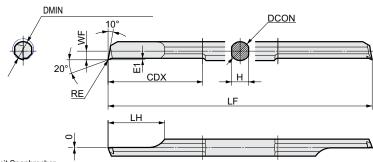
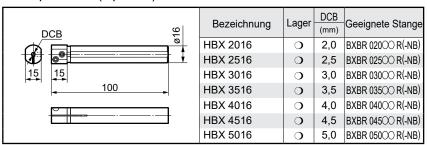



Abbildung zeigt Werkzeug mit Spanbreche

■ Vollhartmetall-Stange

		La	ger				А	bmessur	ngen (mr	n)			
	Bezeichnung		AC530U	DMIN	DCON	Н	LF	WF	LH	CDX	E1	RE	Geeignete Hülse
	BXBR 02005 R	0		2,0	2,0	1,8	50	0,80	6,0	10,0	0,20	0,05	HBX 2016
ı	02020 R	0		2,0	2,0	1,8	50	0,80	6,0	10,0	0,20	0,20	HBX 2016
İ	BXBR 02505 R	0		2,5	2,5	2,2	50	1,05	7,5	12,5	0,20	0,05	HBX 2516
	02520 R	0		2,5	2,5	2,2	50	1,05	7,5	12,5	0,20	0,20	HBX 2516
ē	BXBR 03005 R	0		3,0	3,0	2,7	50	1,30	9,0	15,0	0,25	0,05	HBX 3016
Spanbrecher	03020 R	0		3,0	3,0	2,7	50	1,30	9,0	15,0	0,25	0,20	HBX 3016
ا ۾	BXBR 03505 R	0		3,5	3,5	3,1	60	1,55	10,5	17,5	0,25	0,05	HBX 3516
par	03520 R	0		3,5	3,5	3,1	60	1,55	10,5	17,5	0,25	0,20	HBX 3516
i S	BXBR 04005 R	0		4,0	4,0	3,6	60	1,80	12,0	20,0	0,35	0,05	HBX 4016
Μ̈́	04020 R	0		4,0	4,0	3,6	60	1,80	12,0	20,0	0,35	0,20	HBX 4016
	BXBR 04505 R	0		4,5	4,5	4,1	70	2,05	13,5	22,5	0,35	0,05	HBX 4516
	04520 R	0		4,5	4,5	4,1	70	2,05	13,5	22,5	0,35	0,20	HBX 4516
	BXBR 05005 R	0		5,0	5,0	4,5	70	2,30	15,0	25,0	0,40	0,05	HBX 5016
	05020 R	0		5,0	5,0	4,5	70	2,30	15,0	25,0	0,40	0,20	HBX 5016
	BXBR 02005 R-NB			2,0	2,0	1,8	50	0,80	6,0	10,0	0,20	0,05	HBX 2016
	02020 R-NB	0		2,0	2,0	1,8	50	0,80	6,0	10,0	0,20	0,20	HBX 2016
	BXBR 02505 R-NB			2,5	2,5	2,2	50	1,05	7,5	12,5	0,20	0,05	HBX 2516
۱.	02520 R-NB	0		2,5	2,5	2,2	50	1,05	7,5	12,5	0,20	0,20	HBX 2516
je j	BXBR 03005 R-NB	0		3,0	3,0	2,7	50	1,30	9,0	15,0	0,25	0,05	HBX 3016
Spanbrecher	03020 R-NB	0		3,0	3,0	2,7	50	1,30	9,0	15,0	0,25	0,20	HBX 3016
문	BXBR 03505 R-NB			3,5	3,5	3,1	60	1,55	10,5	17,5	0,25	0,05	HBX 3516
Sg	03520 R-NB	0		3,5	3,5	3,1	60	1,55	10,5	17,5	0,25	0,20	HBX 3516
Ohne	BXBR 04005 R-NB	0		4,0	4,0	3,6	60	1,80	12,0	20,0	0,35	0,05	HBX 4016
18	04020 R-NB	0		4,0	4,0	3,6	60	1,80	12,0	20,0	0,35	0,20	HBX 4016
	BXBR 04505 R-NB	0		4,5	4,5	4,1	70	2,05	13,5	22,5	0,35	0,05	HBX 4516
	04520 R-NB	0		4,5	4,5	4,1	70	2,05	13,5	22,5	0,35	0,20	HBX 4516
	BXBR 05005 R-NB	0		5,0	5,0	4,5	70	2,30	15,0	25,0	0,40	0,05	HBX 5016
	05020 R-NB	0		5,0	5,0	4,5	70	2,30	15,0	25,0	0,40	0,20	HBX 5016

Adapterhülse (Optional)

^{*} BXBR-Stangen können mit Hülsen des HBB-Typs verwendet werden. Es können auch handelsübliche

■ Ersatzteile (Für Hülse)

Schraube	(N·m)	Einstell- schraube	Schlüssel
BFTX 0409 N	3,4	BT 06035 T	TRD 15

Zum Abstechen ß Gewindedrehen

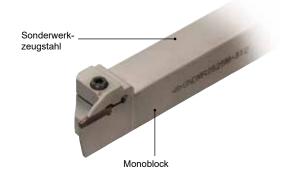
Werkzeuge zum Ab-/Nutenstechen u. Gewindedrehen

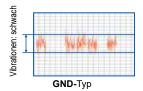
F1-F70

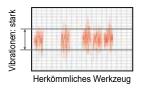
Auswahl GND-Serie Stechwerkzeuge	GND	F 2-17
Außenbearbeitung/ Radialstechen, Abstechen (Kleinteilfertigung)	GNDM / GNDL	F18
Innenbearbeitung/ Radialstechen, Abstechen (Kleinteilfertigung)	GNDM-J / GNDL-J	F20
Außenbearbeitung flacher Nuten (Kleinteilfertigung)	GNDS	F22
Universelle Außenbearbeitung/abgewinkelter Halter	GNDM / GNDMS	F24
Universelle Außenbearbeitung/Innenkühlung	GNDM JE	F26
Radial-Tiefstechen und Abstechen/abgewinkelter Halter	GNDL / GNDLS	F28
Radial-Tiefstechen und Abstechen/Innenkühlung	GNDL JE	F30
Innenbearbeitung Innenbearbeitung	GNDN	F32
Freistechen/abgewinkelter Halter	GNDF / GNDFS	F34
Axialstechen/abgewinkelter Halter [≝] weite	GNDI / GNDIS	F38
	- J. W. S.	
Stechsystem	SSH-Series Neu	F42-4
ICO DOC Delever Medeler OND Charles and Emple	ning.	E40
ISO-PSC Polygon Modular GND Stechsystem	PSC-GNDCM	
"O:T D. O" Ota-al-la-lika	PSC-GNDCF	
"SumiTurn B-Groove" Stechhalter	GWC / GWCS	
ISO-PSC Polygon Modular/"SumiTurn B-Groove" Stechhalter/Stechplatten	PSC /GWCI /TGA-BF	
"SumiTurn B-Groove" Stechplatten	TGA R/L (E)	
"SumiTurn B-Groove" Stechplatten	TGA R/L R, TGA R/L T	F53
Abstechwerkzeuge	SCT	. F54
"Sumi-Grip"		. F55
"Sumi-Grip Jr." Stahlschaft-Typ"	STFH / STFS R/L	F56
"Sumi-Grip"Jr - Schneideinsätze zum Abstechen	WCF (NTL)	F57
"Sumi-Grip" Abstechschwert aus VHM	WCFH / WCFS R/L	F58
"Sumi-Grip" - Schneideinsätze zum Abstechen	WCF (NTL)	F60
Gewindeschneidwerkzeuge	SSTE / SSTI Neu	
Gewindeschneidplatten, Außengewindedrehen	SSTE	F64
Gewindeschneidplatten, Innengewindedrehen	SSTI	F65

Stechsystem

GND-Serie




Neue Serie von Haltern mit Innenkühlung für kleine Drehmaschinen

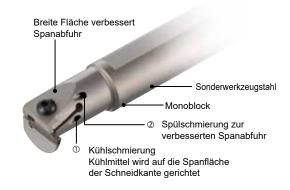

Schnittleistung

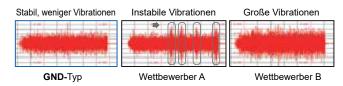
Reduziert Vibrationen

Durch das sehr stabile Design werden Vibrationen um mehr als 30 % gegenüber herkömmlichen Werkzeugen reduziert.

Werkstückstoff: 15CrMo5
Halter: GNDL R2525M 220
Plattentyp: GCM N2002 GG

Schnittdaten: $v_c = 100 \text{ m/min}, f = 0,10 \text{ mm/U}, a_p = 20 \text{ mm}, \text{ nass}$


■ Eigenschaften

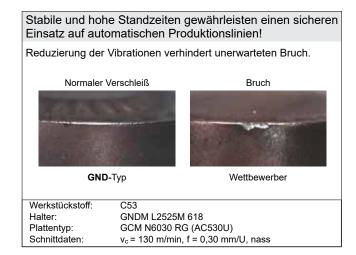

- Größere Bandbreite von Anwendungsprozessen Neben dem Radialstechen und Axialstechen sind jetzt auch Halter für die Innenbearbeitung verfügbar.
- Stabilere Standzeiten auch beim Abstechen Erweiterung auf sieben Spanbrecher. Der GF-Spanbrecher wurde speziell zur Schnittkraftreduzierung entwickelt. Verbesserte, gleichmäßige Spankontrolle und sehr geringe Fehlerquote.
- Prozesssichere Bearbeitung mit starker Leistungsfähigkeit Die Stechhalter sind aus Sonderwerkzeugstahl gefertigte Monoblockkörper, die Vibrationen um mehr als 30 % im Vergleich zu herkömmlichen Haltern reduzieren.
- Gesinterte, kostengünstige Stechplatten mit sehr hoher Präzision.

Die Toleranz der Einstechbreite liegt bei nur ±0,03 mm.

Hohe Steifigkeit und eine gute Spanabfuhr

Innenbearbeitung



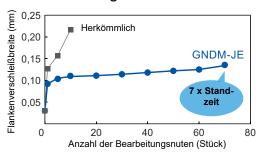


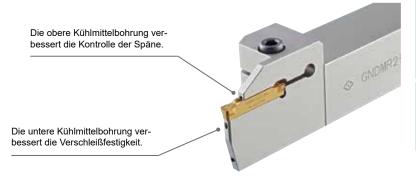
Werkstückstoff: 15CrMo5
Halter: GNDI R2532 T306
Plattentyp: GCM N3002 GG

Schnittdaten: $v_c = 100 \text{ m/min}, f = 0.05 \text{ mm/U}, a_p = 3.0 \text{ mm}, \text{ nass}$

Anwendungsbeispiele

Stechsystem


GND-Serie


■ Einstechwerkzeug mit Innenkühlung GNDM-J(E) / GNDL-J(E) und Sortenerweiterung

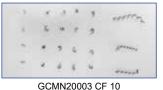
- Das neu entwickelte 2-Loch-Kühlmitteldesign optimiert die Kühlung des Spanbrechers, verbessert die Spanabfuhr, verlängert die Standzeit und ermöglicht höhere Geschwindigkeiten und Vorschübe bei der Bearbeitung.
- Einstechbreite von 2,0 mm bis 6,0 mm
- Einführung neuer Halter für kleine Drehmaschinen mit einer Einstechbreite von 2,0 bis 3,0 mm
- Erreicht sowohl eine hohe Effizienz bei der Hochgeschwindigkeitsbearbeitung als auch längere Standzeiten durch die interne Kühlmittelzufuhr zur Schneidkante.
- Durch das direkte Auftragen des Kühlmittels von der Schneidekantenseite aus, wird die Spankontrolle verbessert.
- 4 weitere Sorten in AC8025P, AC8035P, AC5015S und AC5025S verfügbar.
- Die neuen Sorten erweitern die Anwendung in Stahlwerkstoffen in Richtung Hochgeschwindigkeitsbearbeitung mit der Sorte AC8025P und für mehr Zähigkeit mit der Sorte AC8035P.
- Im Bereich für die Bearbeitung von hitzebeständigen und exotischen Legierungen, wie Inconel und Hastelloy, empfehlen wir als 1. Wahl die Sorte AC5025S und für die Hochgeschwindigkeitsbearbeitung im Vollschnitt die Sorte AC5015S.

Verschleißfestigkeit

Spankontrolle

Kühlmitteldruck: 7 MPA

Kühlmitteldruck: 1 MPA


Externes Kühlmittel

Werkstückstoff: Halter: Plattentvp: Schnittdaten:

Ti-6AI-4V GNDM R2525K 312JE GCM N3002 GG (AC530U) $v_c = 60 \text{ m/min, } f = 0.1 \text{ mm/U}, a_p = 5.0 \text{ mm, nass}$

■ Spanbrecher zum Abstechen vom Typ CF

- Stirnwinkel von 10°/15° für verbesserte Abstechschärfe.
- Das asymmetrische Spanbrecherdesign sorgt für eine hervorragende Spankontrolle auch unter schwierigen Bearbeitungsbedingungen.

GCMN20003 CF 15

Wettbewerber

Werkstückstoff: Halter: Plattentyp: Schnittdaten:

St42-3 GNDM R2525M 220 GCM N3002 CF-10,15 (AC1030U) $n = 2000 \text{ min}^{-1}$, f = 0.08 mm/U, nass

Stechsystem

GND-Serie

■ Platten - Spanbrecher

Hohe Stabilität und längere Standzeiten. Eine große Auswahl an Spanbrechern sorgt für eine hervorragende Spankontrolle in den verschiedenen Anwendungsbereichen.

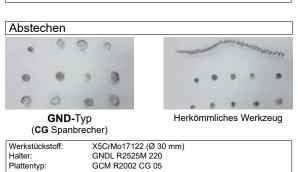
Einstecher	n / Drehen	Einste	chen / Abst	echen	Abste	chen	Profildrehen	Freistechen	Nichteisen- metalle		
Standardplatte	Reduzierter Vorschub	Standardplatte	Reduzierter Vorschub	Reduzierte Schnittkraft	Für Abstechbe- arbeitung	Reduzierte Schnittkraft	Standardplatte	Standardplatte	Standardplatte		
MG	ML	GG	GL	GF	CG	CF	RG	RN	GA		
					CA	34	00				
Spanwinkel der Spanbrecher	Spanwinkel der Spanbrecher	Spanwinkel der Spanbrecher	Spanwinkel der Spanbrecher	Spanwinkel der Spanbrecher	Spanwinkel der Spanbrecher	Spanwinkel der Spanbrecher	Spanwinkel der Spanbrecher	Spanwinkel der Spanbrecher	Spanwinkel der Spanbrecher		
→	→ (4 0,05	→	→		Vorderer Schnei- denwinkel 5°	Vorderer Schnei- denwinkel 10°/15°	→ (< 0.05	→ I< 0.05			
15°	20°	20°	20°	30°	25°	25°	25°	25°	20°		
Einstechbreite (mm)	Einstechbreite (mm)	Einstechbreite (mm)	Einstechbreite (mm)	Einstechbreite (mm)	Einstechbreite (mm)	Einstechbreite (mm)	Einstechbreite (mm)	Einstechbreite (mm)	Einstechbreite (mm)		
1,25 1,5 2,0	1,25 1,5 2,0	1,25 1,5 2,0	1,25 1,5 2,0	1,25 1,5 2,0	1,25 1,5 2,0	1,25 1,5 2,0	1,25 1,5 2,0	1,25 1,5 2,0	1,25 1,5 2,0		
3,0 4,0 5,0	3,0 4,0 5,0	3,0 4,0 5,0	3,0 4,0 5,0	3,0 4,0 5,0	3,0 4,0 5,0	3,0 4,0 5,0	3,0 4,0 5,0	3,0 4,0 5,0	3,0 4,0 5,0		
6,0 7,0 8,0	6,0 7,0 8,0	6,0 7,0 8,0	6,0 7,0 8,0	6,0 7,0 8,0	6,0 7,0 8,0	6,0 7,0 8,0	6,0 7,0 8,0	6,0 7,0 8,0	6,0 7,0 8,0		
Sorte	Sorte	Sorte	Sorte	Sorte	Sorte	Sorte	Sorte	Sorte	Sorte		
	AC8025P AC8035P	AC8025P AC8035P	AC8025P AC8035P	AC8025P AC8035P	AC8025P AC8035P						
	AC830P AC425K		AC830P AC425K	AC830P AC425K	AC830P AC425K	AC830P AC425K	AC830P AC425K	AC830P AC425K	AC830P AC425K		
AC5015S AC5025S	AC5015S AC5025S		AC5015S AC5025S	AC5015S AC5025S	AC5015S AC5025S		AC5015S AC5025S	AC5015S AC5025S	AC5015S AC5025S		
		AC520U AC530U	AC520U AC530U		AC520U AC530U	AC520U AC530U	AC520U AC530U	AC520U AC530U	AC520U AC530U		
AC1030U T2500A	*AC1030U T2500A	AC1030U T2500A	AC1030U T2500A	*AC1030U T2500A	AC1030U T2500A	AC1030U T2500A	AC1030U T2500A	AC1030U T2500A	AC1030U T2500A		
H10	H10	H10	H10	H10	H10	H10	H10	H10	H10		
Lager	* Nur m	nit GNDIS verwende	n								

■ Empfohlene Schnittgeschwindigkeit

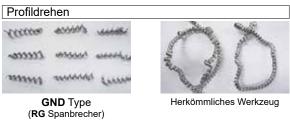
Werkstückstoff	P	P Kohlenstoffstahl / Legierter Stahl				Rostfreier S	Stahl	K	Guss			Hitzebeständige Legierungen				
	AC830P AC8025P AC8035P	AC520U	AC530U AC1030U	T2500A	AC830P	AC520U AC5015S AC5025S	AC530U AC1030U	AC425K	AC520U	AC530U AC1030U	AC520U AC5015S AC5025S	AC530U AC1030U	H10			
Schnittgeschwin- digkeit (m/min)	80–200	80–200	50–200	50–200	70–150	70–150	50–150	80–200	60–200	50–200	20–80	20–60	150–300			

Siehe Schnittdaten Seite 13

■ Exzellente Spankontrolle

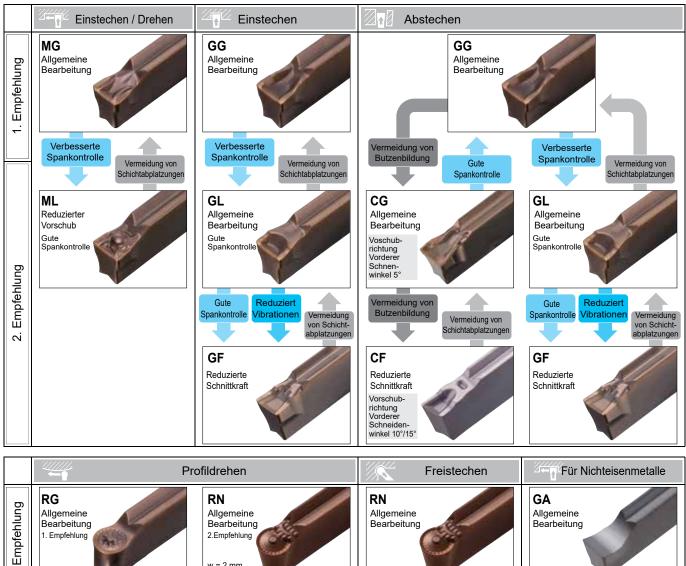

(**GG** Spanbrecher)

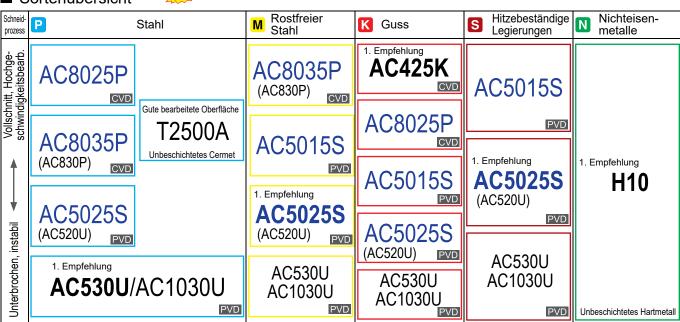
Werkstückstoff:


Halter:

15CrMo5 GNDL R2525M 320 GCM N3002 GG

Plattentyp: GCM N3002 GG Schnittdaten: $v_c = 100 \text{ m/min}, f = 0,15 \text{ mm/U}, a_p = 12,0 \text{ mm}, \text{ nass}$

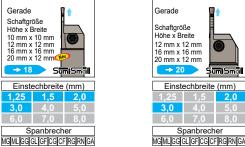




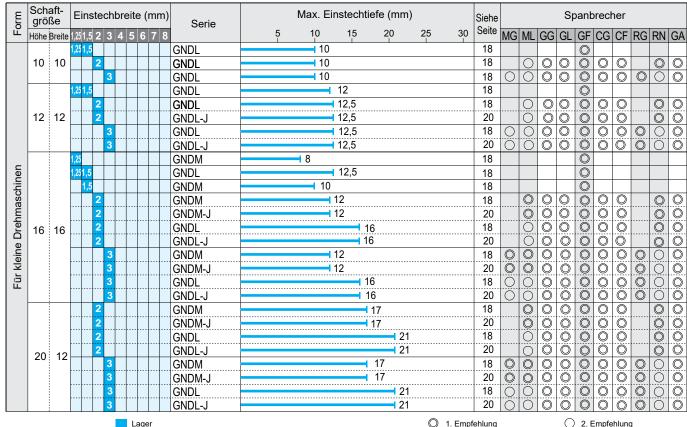
Stechsystem GND-Serie

Spanbrecherauswahl

w = 2 mm


Radialstechen (für kleine Drehmaschinen)

Drehen / Profildrehen

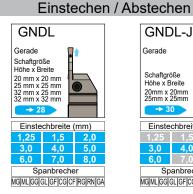

GNDL Gerade Schaftgröße Höhe x Breite 10 mm x 10 mm 12 mm x 12 mm 16 mm x 16 mm 20 mm x 12 mm Einstechbreite (mm)

Einstechen / Abstechen

GNDL-J Neu

Halter zur Außenbearbeitung für kleine Drehmaschinen


Stechsystem GND-Serie


Radialstechen (gerade)

Drehen / Profildrehen

GNDS Gerade Schaftgröße Höhe x Breite 20 mm x 20 mm 25 mm x 25 mm **→** 22 Einstechbreite (mm) 2,0 5,0 3,0 4,0 Spanbrecher MG|ML|GG|GL|GF|CG|CF|RG|RN|GA

■ Radialstechen (gerade)

Form	Sch	aft- ße	Einst	ech	brei	te (m	m)	Serie	ľ	Иах. Еі	nstech	tiefe (mm))		Siehe	Spanbrecher MG ML GG GL GF CG CF RG RN GA									
ĭ	Höhe	Breite	1,251,5	2 3	4	5 6 7	7 8		5	10	15	20	25	30	Seite	MG	ML	GG	GL	GF	CG	CF	RG	RN	G/
			1,25 1,5		П	Ш	П	GNDM		10		<u> </u>	<u> </u>		24					0					
			1,251,5					GNDL	 		1	16			28					0					
				2				GNDS	6						22		0	0	0	0	0	0		0	0
				2				GNDM	 	1 10					24		0	0	0	0	0	0		0	0
				2				GNDM-JE	 	1 0					26		0	0	0	0	0	0		0	0
				2				GNDL	 			20			28		$\tilde{\bigcirc}$	Ö	0	00000	0000	Ö		Ö	ĬÕ
				2				GNDL-JE	 			20			30		$\tilde{\bigcirc}$	0	0	0	0	0		0	ĪĈ
				3				GNDS	6						22	0	Õ						0	_	
				3				GNDM	 		12				24	<u></u>	<u>.</u>	0	Ö	0	Ö	0	Ö	Ŏ	ľ
				3				GNDM-JE	 		12				26	0000	0	Õ	Ö	0	Õ	Ö	Ö	0000	0000
	20	20		3				GNDL	 			20			28	Ŏ	$\tilde{\bigcirc}$	0	0	0	0	0	0	Ŏ	
	20	20		3				GNDL-JE	 			20			30	Ŏ	$\tilde{\bigcirc}$	0000	0000		0000	0000	0000	Ŏ	ľĈ
	25	25			4			GNDS		10					22	Õ	Ŏ				Õ			Ŏ	Č
					4			GNDM	 			- 18			24		0	00000	000	0000	0000		0 0 0	Ŏ	Č
•					4			GNDM-JE	 			- 18			26	Ö	0	0	0	0	Ō		0	Ô	C
Gerade					4			GNDL	 				25		28	Ŏ	Õ	0	0	Õ	0		0	Ŏ	
,er					4			GNDL-JE	 				25		30	Ö	Ō	Õ	Õ	0	Ô		Ö	0	C
פ						5 6		GNDS		10					22		0			0			Õ	Ō	C
						5 6		GNDM	 			- 18			24	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$	0	00000	0000	0			0	Ô	C
						5 6		GNDM-JE	 			- 18			26	Õ	<u> </u>	Ô	Õ	0			0	Ŏ	C
						5 6		GNDL	 				25		28	Ŏ	0	0	0	0			0	Ö	
						5 6		GNDL-JE	 				25		30	Ö	Ō	0	0	0			Ō		C
						7		GNDM				- 18			24	Ō	0	Ō	O	0			0		Ĕ
						7		GNDL	 				25		28	0	Ō	0	0	0			0		
				3				GNDM			12				24	O	0	0	0	0	0	0		\bigcirc	0
				3				GNDL	 			20			28	Ŏ	Õ	0	0	0	0	0	0	0	0
	00	05*			4			GNDM				1 8			24	Ŏ	0	0	Ô	0	0			\bigcirc	Č
		25*			4			GNDL	 				25		28	0	0	0	0	0	0		0	Ŏ	0
	32	32				5 6		GNDM				 18			24			0	Õ	0			Ō	\circ	C
						5 6		GNDL	 				25		28	Ŏ	0	Ō	0	0			0	Ŏ	C
						7		GNDM	 			- 18			24	0	0	0	Õ	0			0	· · · · · ·	1
						7		GNDL	 				25		28	Õ	$\tilde{\bigcirc}$	Õ	<u> </u>	Ö			0		1

GND-Serie

Radialstechen (abgewinkelt)

Drehen / Profildrehen

Einstechen / Abstechen

■ Radialstechen (abgewinkelt)

Jr.m	Schaft- größe Einstechbreite (mm)					Serie			Max.	Einste	echti	iefe (mn	n)			Siehe															
l r	Hö	he Breite	1,2	1,5	2	3	4 5	5 6	7	8			5	10	1	5	20	25	3	0	Seite	MG	ML	GG	GL	GF	CG	CF	RG	RN	GA
	Г		2					T	Г		GNDLS					1 10	6				F28		0	0	0	0	0	0		0	0
	3					GNDMS	10							F24	0	0	0	0	0	0	0	0	0	0							
	2	0 20				3					GNDLS					- 1	6				F28	0	0	0	0	0	0	0	0	0	\bigcirc
۱						-	4				GNDMS				- 12						F24	0	0	0	0	0	0		0	0	\bigcirc
<u>é</u>								5			GNDMS				- 12						F24	0	0	0	0	0			0	\circ	\bigcirc
Abgewinkelt					2						GNDLS						- 18				F28		0	0	0	0	0	0			\bigcirc
ge						3					GNDMS	12							F24	0	0	0	0	0	0	0	0	0	\bigcirc		
ap						3					GNDLS						<mark>-</mark> 18				F28	0	0	0	0	0	0	0	0	0	\bigcirc
	2	5 25				-	4				GNDMS				1	14					F24	0	0	0	0	0	0		0	0	\bigcirc
						-	4				GNDLS							-1 23			F28	0	0	0	0	0	0		0	0	\bigcirc
								GNDMS	14							F24	0	0	0	0	0			0	0	\bigcirc					
						Ī	į	5 6			GNDLS	23							F28	0	O	0	0	0			0	0	\bigcirc		
Lager													1. E	Empfehlu	ng				$\overline{\bigcirc}$	2. Eı	npfeh	nlung									

Kassetten zum Radialstechen

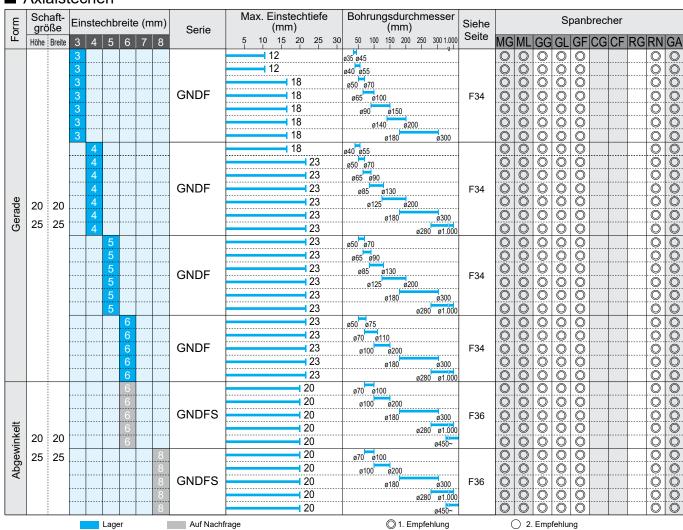
Einstechen

■ Kassetten zum Radialstechen

	lasso	Alch Zum Naula	BICCHCH														
orm	Halter	Einstechbreite (mm)	Serie		Siehe												
ŭ		1.25 1.5 2 3 4 5 6 7 8		5	10 1	5 20	25	30	Seite	MG MI	GG	GL	GF C	3 CF	RG	RN	GΑ
υ		2	GNDCM		12						0	0	0 0		0	0	0
Kassette	GND00	3	GNDCM		12				F46	00	0	0	O C		0	\bigcirc	0
ass	GND90	4	GNDCM			18			1 40	00	0	0	O C) 0		0	0
조		5 6	GNDCM			18				00	0	0	0 0)		\bigcirc	\bigcirc
		Lager					1. Empf	fehlung				2. Em	pfehlun	g			

Ab- und Nutenstechwerkzeuge

Stechsystem GND-Serie

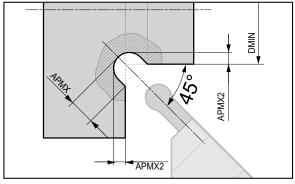

Axialstechen

Einstechen / Drehen / Profildrehen

Axialstechen

Freistechen

■ Freistechen

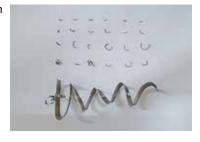

Form	Sch grö	naft- bße	Eins	stech	nbrei	ite (r	nm)	Serie	Max. Ein	stechtiefe (mm)	Willi. Doniturigadurchi-	Siehe				Sp	anb	rech	er		
Ľ			2	3	4	5	6		5 10	15 20 25 30	messer (mm)	Seite	MG	ML	GG	GL	GF	CG	CF F	RG R	N GA
			2						-1 2,0	Min.	ø20 I									(
e B	20	20		3					-1 2,5	Bohrungs	ø20 I										
Gerade	0.5	0.5			4			GNDN	3 ,0	\$ \$	ø30 I	F32								(
g	25	25				5			─ 1 3,5		ø30									(
							6		4,0	Max. Einstechtiefe	ø30									(
				La	ager																

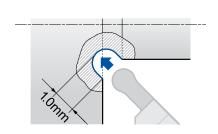
Tipps für Eckeinstiche

Hinweise zum Freistechen

Empfohlener Spanbrecher: RN

Werkzeugkorrektur und Stechtiefe APMX



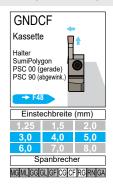

Schneidenbreite CW (mm)	Stechtiefe APMX (mm)	Radiale bzw. axiale Einstechtiefe im Werkstück APMX2 (mm)
2,0	1,50	0,64
3,0	2,00	0,79
4,0	3,00	1,29
5,0	3,50	1,44
6,0	4,00	1,59

Die empfohlenen Schnittbedingungen für das Eckeneinstechen entsprechen denen des Einstechens mit einem RN-Typ-Spanbrecher gleicher Stechbreite.

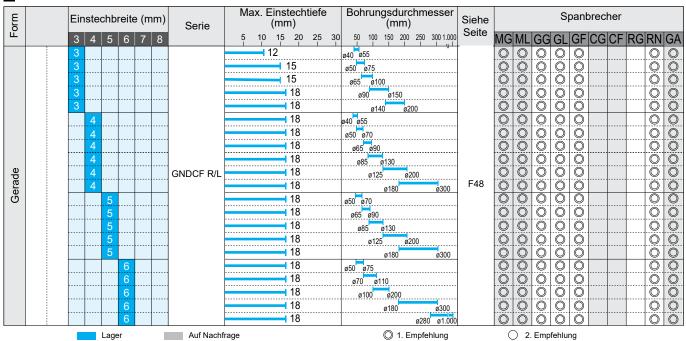
Verwenden Sie den Halter nicht für geringere Durchmesser als den für Halter des Typs GNGN angegebenen minimalen Arbeitsdurchmessers (DMIN), um Kollision zu vermeiden.

Spanform

Werkstückstoff: 34CrMo4


Halter: GNDN R2020K 325-020 Stechplatte: GCM N3015 RN

Schnittbedingungen: $v_c = 100 \text{ m/min, } f = 0,1 \text{ mm/U}$ Einstechtiefe = 1,0 mm, Emulsion


Stechsystem GND - Serie

Kassetten zum Axialstechen

Axialstechen / Drehen / Profildrehen

Axialstechen mit Kassette

GND-Serie

Innenbearbeitung (≥ Ø 14 mm)

Innenbearbeitung (≥ Ø 32 mm)

Einstechen / Drehen / Profildrehen

Einstechen / Drehen / Profildrehen

■ Innenbearbeitung (≥ Ø 14 mm)

						•				
Form	Schaft- größe	Einste	chbreite	e (mm)	Serie	Max. Einstechtiefe (mm)	Min. Bohrungsdurch-	Siehe	Spanb	recher
L.	ØD _s (mm)	1,5	2	3		5 10 15 20 25 30	messer (mm)	Seite	ML	GF
		1,5				-1 2,6	ø14			0
	ø12	1,5			GNDIS	─ 3,6	ø14			0
	012		2	3	GINDIS	-1 2,6	ø14		0	0
			2	3		─ 3,6	ø14		0	0
Gerade		1,5				3 ,6	ø16 I	F40		0
Ser	ø16	1,5			GNDIS	4,6	ø20	F40		0
0	טוש		2	3	GINDIS	─ 3,6	ø16			0
			2	3		4,6	ø20		0	0
	ø20	1,5			GNDIS	6,6	ø25			0
	020		2	3	GINDIO	6,6	ø25		0	0
	Lag	jer	GN	NDIS-Typ:	Kleinere GMX F	Platten verwenden	1. Empfehlung			

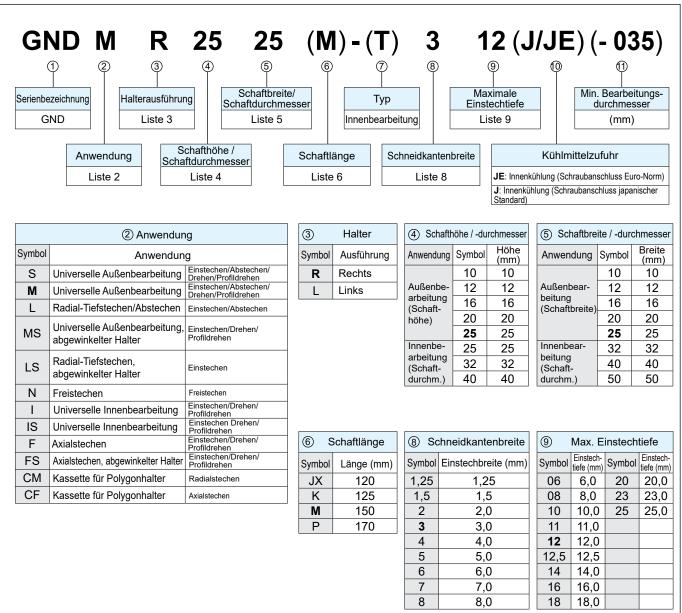
■ Innenbearbeitung (≥ Ø 32 mm)

orm	Schaft- größe	Eins	stech	nbrei	ite (n	nm)	Serie	Max. Einstechtiefe (mm)	Will i. Dornangsauren-	Siehe			Sp	anb	rech	er		
Ľ	ØD _s (mm)	2	3	4	5	6		5 10 15 20 25 30	messer (mm)	Seite	MGML	GG	GL	GF	CG	CF	RG RN	IGA
	ø25	2						6	ø32				0	0			0	
<u>e</u>	023		3	4	5			6	ø32		00		\bigcirc	0			0	0
Gerade	ø32	2					GNDI	6	ø32	F38			\bigcirc	0			0	
e	032		3	4	5			10	ø40		00		0	0			0	0
	ø40		3	4	5	6		11	ø50 				0	0				
	Lac	ner										2 Fm	nnfehl	una				

Ab- und Nut

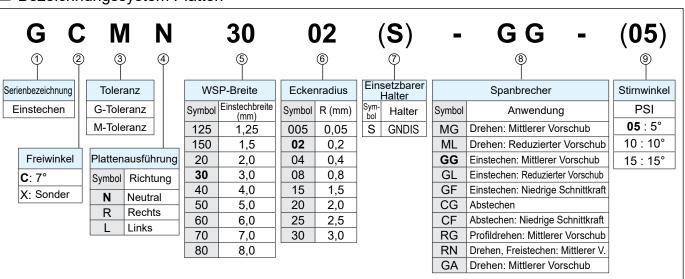
Stechsystem GND-Serie

■ Spanbrecher - Auswahlhilfe


Einstech-	Empfohlene Sch	nittbedingungen	Ecken-	0 1 1
breite (mm)	Einstechen	Drehen	radius (mm)	Spanbrecher
1,25	GF 0 0,1 0,2 0,3 0,4 0,5 0,6 Vorschub (mm/U)		0,05	MGMLGGGL <mark>GF</mark> CGCFRGRNGA
1,5	GF 0 0,1 0,2 0,3 0,4 0,5 0,6 Vorschub (mm/U)		0,05	MGMLGGGL <mark>GF</mark> CGCFRGRNGA
2,0	ML GG GG GL GG GG GG GG GG GG GG GG GG GG	4,0 3,0 2,0 1,0 ML RN 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 Vorschub (mm/U)	0,03 0,2 0,4 1,0	MCMLEGGLEFEG <mark>CF</mark> RGRNGA MGMLEG <mark>GL</mark> GFEGEFRGRNGA MGMLEGGLEFEGEFRGRNGA
3,0	MG ML GG GG GG GG GG GG GG GG GG GG GG GG GG	4.0 3.0 MI MG RG/RN 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Vorschub (mm/U)	0,03 0,2 0,4 1,5	MGMLGGGLGFDGCFRGRNGA MGMLGGGLGFDGCFRGRNGA MGMLGGGLGFDGCFRGRNGA
4,0	MG ML GG GG GG GG GG GG GG GG GG GG GG GG GG	3,0 MI MG RG/RN 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 Vorschub (mm/U)	0,2 0,4 0,8 2,0	MGMLGGGLGFCGCFRGRNGA MGMLGGGLGFCGCFRGRNGA MGMLGGGLGFCGCFRGRNGA
5,0	MG ML GG GG GL GF RG RN GA 0,1 0,2 0,3 0,4 0,5 0,6 Vorschub (mm/U)	1,0 GA RG/RN O 0,1 0,2 0,3 0,4 0,5 0,6 0,7 Vorschub (mm/U)	0,2 0,4 0,8 2,5	MCMLBGGLGFDGCFRORNGA MCMLBGGLGFDGCFRORNGA MCMLBGGLGFDGCFRORNGA
6,0	MG ML HOW ML ML ML ML ML ML ML ML ML ML ML ML ML	4.0 3.0 ML MG RG/RN 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Vorschub (mm/U)	0,2 0,4 0,8 3,0	MCMLGGGLGFDGDFRGRNGA MCMLGGGLGFDGDFRGRNGA MCMLGGGLGFDGDFRGRNGA
7,0	MG ML	1,0 RG RG RG RG RG RG RG RG RG RG RG RG RG	0,2 0,4 0,8 3,5	MCMLGGGLGFCGCFRCRNGA MCMLGGGLGFCGCFRCRNGA MCMLGGGLGFCGCFRCRNGA MCMLGGGLGFCGCFRCRNGA
8,0	MG ML ML ML ML ML ML ML ML ML ML ML ML ML	3,0 1,0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 Vorschub (mm/U)	0,2 0,4 0,8	MGMLGGGLGFOGCFRGRNGA MGMLGGGLGFOGCFRGRNGA MGMLGGGLGFOGCFRGRNGA

■ Empfohlene Schnittgeschwindigkeit

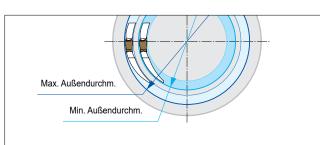
•			0		_										
Werkstückstoff	<u> </u>	Kohlens	toffstahl / L	egierter St	tahl	M	Rostfreier	Stahl	K		Guss		8 .	ebeständige gierungen	N
Sorte		AC8035P AC830P	AC52011		T2500A	AC8035P AC830P	AC5015S	: A('5'3(1))	AC8025P	AC425K	: NCEN1EC	AC5025S AC530U AC1030U	AC:5015S	AC5025S AC530U AC1030U	H10
Schnittgeschwin- digkeit (m/min)	80–250	80–200	80–200	50–200	50–200	70–150	70–150	50–150	80–200	80–200	60–200	50–200	20–80	20–60	150–300


Stechsystem GND - Serie

Bezeichnungssystem Halter

Um die höchste Stabilität zu erreichen, nutzen Sie den Halter mit der kleinstmöglichen Auskragung.

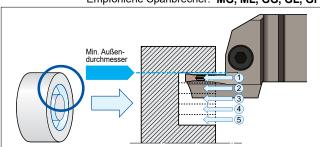
Bezeichnungssystem Platten



Stechsystem

GND-Serie

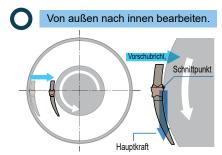
Hinweise zur Axialbearbeitung

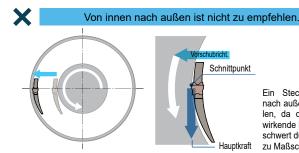

Halterauswahl

Auswahl des Halters:

Der Außendurchmesser der zu stechenden Nut muss in dem Durchmesserbereich liegen, der vom eingesetzten Halter abgedeckt wird.

■ Beim Mehrfachstechen zu beachten: Empfohlene Spanbrecher: MG, ML, GG, GL, GF


Beim Mehrfachstechen von tiefen Axialnuten muss der erste Schnitt am größten Durchmesser erfolgen. Bei diesem Schnitt ist der Vorschub zu reduzieren, da es in der ersten Nut schwer ist, den Spanbruch zu kontrollieren. Bei den folgenden Schnitten kann der Vorschub wegen der besseren Spankontrolle erhöht werden.


■ Beim Drehen zu beachten:

Empfohlene Spanbrecher:

MG, ML

Unter Berücksichtigung der Steifigkeit des Halters empfehlen wir eine Bearbeitung von außen nach innen.

Ein Stechdrehen von innen nach außen wird nicht empfohlen, da die in Schnittrichtung wirkende Hauptkraft das Stechschwert durchbiegen kann, was zu Maßschwankungen führt.

- Beim Stechdrehen von breiten Axialnuten muss der erste Schnitt am größten Durchmesser gewählt werden. Die folgenden Schnitte sollten auch von außen nach innen geführt werden, da es dann keine Probleme mit der Stabilität des Halters gibt.
- Wählen Sie einen Spanbrecher mit niedrigen Schnittkräften und kurzem Spanbruch. (Beim Planstechen können Späne sehr leicht in der Nut stecken bleiben, was zu Problemen führen kann.)
- Sollte kein akzeptabler Spanbruch möglich sein, wählen Sie Schrittvorschub.

Hinweise zur Innenbearbeitung

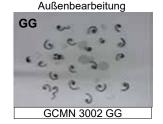
■ Bei der Innenbearbeitung zu beachten:

Empfohlene Spanbrecher:

ML, GL

Bei kleinen Durchmessern sind die Spanbrecher ML oder GL mit reduziertem Vorschub einzusetzen, damit kleinere Späne entstehen und eine ausreichende Spanabfuhr gewährleistet ist.

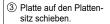
 Werkstückstoff:
 15CrMo5 (Ø 25 mm)


 Halter:
 GNDI R2532 T306

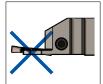
 Plattentyp:
 GCM N300□-□□

Schnittdaten: v_c=100 m/min, f=0,10 mm/U, a_p=3,0 mm, nass

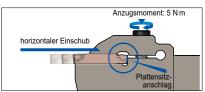
Innenbearbeitung

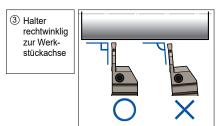


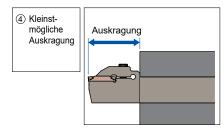
Bei der Innen- und Außenbearbeitung unterscheiden sich die Spanformen, selbst bei gleichen Schnittbedingungen.

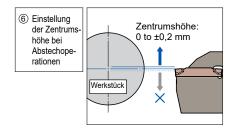

Sicherheitshinweise für das Stechsystem der GND-Serie

■ Hinweise zum Einbau der Platten


- ① Entfernen Sie vor dem Einsetzen der Platten alle Fremdpartikel oder Ölrückstände vom Plattensitz.
- ② Versichern Sie sich, dass die Aufnahmefläche sauber und frei von Beschädigungen ist.
- 3 Schieben Sie die Platte auf die Aufnahmefläche.
- ④ Drücken Sie das hintere Ende der Platte gegen den Plattensitzanschlag.
- ⑤ Das empfohlene Anzugsmoment beträgt 5 N·m. Ein höheres Anzugsmoment könnte die Platte oder den Halter beschädigen, was zu Verletzungen oder Unfällen führen könnte.

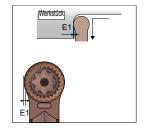



4 Platte vollständig in die Aufnahmefläche drücken



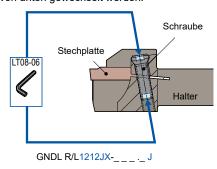
■ Hinweise zum Einbau der Halter

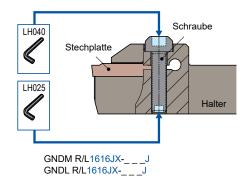
- ① Entfernen Sie alle Fremdpartikel oder andere Ölrückstände von der Werkzeugaufnahme.
- ② Versichern Sie sich, dass die Aufnahmefläche sauber und frei von Beschädigungen ist.
- 3 Richten Sie den Halter rechtwinklig zur Werkstückachse aus.
- 4 Befestigen Sie den Halter mit der kleinstmöglichen Auskragung.
- ⑤ Beim Nutenstechen und Stechdrehen sollte die Ausrichtung der Schneide möglichst nahe ±0 mm zum Zentrum sein. Abweichungen von ±0,1 mm sind akzeptabel.
- ® Bei Abstechoperationen sollte die Schneide bis zu 0,2 mm über der Werkstückachse liegen. Ist diese Höhe zu gering oder unter 0,0 führt dies zur Butzenbildung am Werkstück.


■ Hinweise zur Kühlmittelzufuhr

Die Kühlmitteldüse ist so einzustellen, dass das Kühlmittel der Schneide von oben zugeführt wird. (siehe Bild unten)

■ Maximale Schnitttiefe

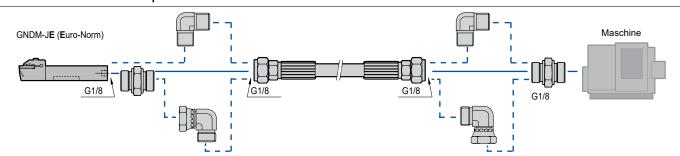

Maximale Schnitttiefe beim ziehenden Schnitt mit dem RG - Spanbrecher



Einstech- breite (mm)	Max. Schnitttiefe (mm)
CW	E1
3,0	0,15
4,0	0,20
5,0	0,25
6,0	0,30
7,0	0,35
8,0	0,40

Hinweise für Halter mit Innenkühlung für kleine Drehmaschinen

Die Stechplatten für die Halter mit Innenkühlung in den Abmessungen 12 mm und 16 mm für kleine Drehmaschinen können sowohl von oben als auch von unten gewechselt werden.

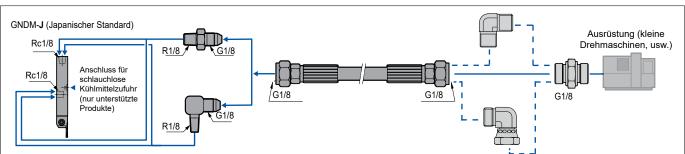


Ab- und Nute stechwerkzeu

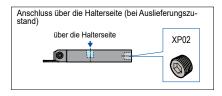
Stechsystem GND-Serie

Hinweise für den Anschluss von Adatern und Kühlmttelschläuchen

■ Anschluss von Adaptern und Kühlmittelschläuchen

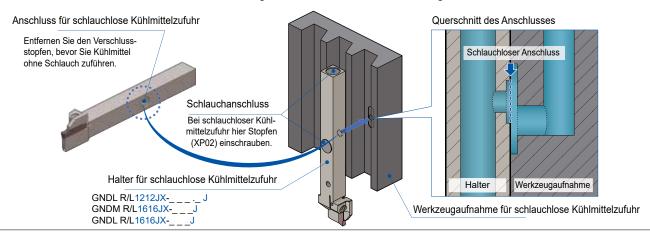


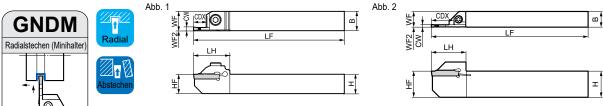
Verwenden Sie handelsübliches Dichtungsband zum Abdichten der Schraubenverbindungen an Adaptern und Kühlmittelschläuchen. GNDM-JE sind vom Werk aus am Halterende mit dem Verschlussstopfen XP02-E verschlossen. (Abb.1) Bei Anschluss der Kühlmittelzuführung über das Halterende nutzen Sie die Madenschraube BT0505-E, um die untere Kühlmittelzufuhr in der Nut an der Halterunterseite zu verschließen. (Abb. 2)



■ Anschluss von Adaptern und Kühlmittelschläuchen (für kleine Drehmaschinen)

Verwenden Sie handelsübliches Dichtungsband zum Abdichten der Schraubenverbindungen an Adaptern und Kühlmittelschläuchen. Siehe untenstehende Abbildung zur Montage des Verschlussstopfens.


Der Verschlussstopfen ragt bei seitlicher Montage einige Millimeter heraus.

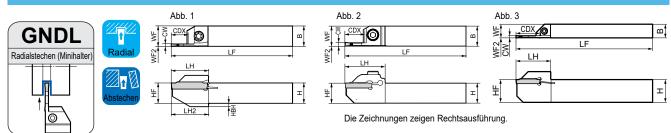

- 1 Der Verschlussstopfen ragt bei seitlicher Montage einige Millimeter heraus.
- * 2 Bei der Auslieferung ist ein Verschlußstopfen angebracht. Entfernen Sie diesen Stopfen, bevor Sie Kühlmittel ohne Schlauch zuführen.

Halter mit schlauchloser Kühlmittelzufuhr

Eine direkte Kühlmittelzufuhr von der Werkzeugaufnahme ist ohne Schlauch möglich.

Außenbearbeitung für kleine Drehmaschinen (Einstechen, Drehen, Profildrehen)

Für Drehoperationen (z.B. für breite Nuten) sind universelle Stechplatten einzusetzen.


Ersatzteile Die Zeichnungen zeigen Rechtsausführung.

Halter

															_		-
Bezeichnung	La	ger		Ab	mess	sunge	en (m	ım)		Einstech- breite (mm)	Max. Ein- stechtiefe (mm)	Max. Ab- stech-Ø	Abb.	Einsetzbare Platten	Klemm- schraube	(N·m)	Schlüssel
	R	L	Н	В	LF	WF	HF	LH	WF2	CW	CDX	(mm)		Platteri	Scriffaube		
GNDM R/L 1616 JX 1.2508	•	•	16	16	120	(16)	16	26	0	1,25	8,0	16		GCM N125005 GF			
GNDM R/L 1616 JX 1.510	•	•	16	16	120	(16)	16	26	0	1,50	10,0	20	,	GCM N150005 GF	DVOC4E	۱,	
GNDM R/L 1616 JX 212	•	•	16	16	120	(16)	16	30	0	2,00	12,0	24		GCM □2000-□□	BX0515	4,0	LH040
GNDM R/L 1616 JX 312		•	16	16	120	(16)	16	30	0	3,00	12,0	24		GCM □3000-□□			
GNDM R/L 2012 JX 217 Neu	0	0	20	12	120	(12)	20	26,5	0	2,00	17,0	34	2	GCM □2000-□□	BFTX0414	2 0	LT15 10
GNDM R/L 2012 JX 317 Neu	O	O	20	12	120	(12)	20	26,5	0	3,00	17,0	34		GCM □3000-□□	DF1AU414	3,0	LI 13-10

Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

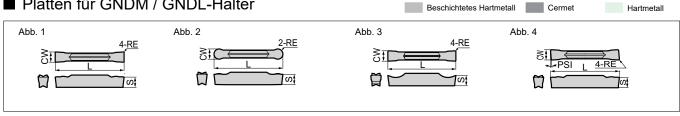
Radialstechen / Abstechen für kleine Drehmaschinen

■ Ersatzteile

Halter

_ rianei																		BX0515	LH040
Bezeichnung	La	ger			Abn	ness	unge	en (n	nm)			Einstech- breite (mm)	-Max. Ein- stechtiefe (mm)	Max. Ab- stech-Ø	Abb	Einsetzbare Platten	Klemm- schraube	(N·m)	Schlüssel
	R	L	Н	В	LF	WF	HF	НВН	LH	LH2	WF2	CW	CDX	(mm)		Flattell	Scriffactor		
GNDL R/L 1010 JX 1.2510	•	•	10	10	120	(10)	10	2,0	18	18,3	0	1,25	10,0	20		GCM N125005 GF			
GNDL R/L 1010 JX 1.510	•	•	10	10	120	(10)	10	2,0	18	18,3	0	1,50	10,0	20		GCM N150005 GF	BFTX0412N	3.0	LT15-10
GNDL R/L 1010 JX 210		•	10	10	120	(10)	10	2,0	22	22,3	0	2,00	10,0	20	1	GCM □2000-□□	DF I AU4 IZIN	3,0	LI 13-10
GNDL R/L 1010 JX 310	•	•	10	10	120	(10)	10	2,0	22	22,3	0	3,00	10,0	20		GCM □3000-□□			
GNDL R/L 1212 JX 1.2512	•	•	12	12	120	(12)	12	2,0	19	19,3	0	1,25	12,0	24		GCM N125005 GF			
GNDL R/L 1212 JX 1.512	•	•	12	12	120	(12)	12	2,0	19	19,3	0	1,50	12,0	24	4	GCM N150005 GF	BFTX0412N	3.0	LT15-10
GNDL R/L 1212 JX 212.5	•	•	12	12	120	(12)	12	2,0	22	22,3	0	2,00	12,5	25	'	GCM □2000-□□	DE I AU4 IZIN	3,0	LI 13-10
GNDL R/L 1212 JX 312.5	•	•	12	12	120	(12)	12	2,0	22	22,3	0	3,00	12,5	25		GCM □3000-□□			
GNDL R/L 1616 JX 1.2512.5	0	•	16	16	120	(16)	16	_	28	_	0	1,25	12,5	25		GCM N125005 GF			
GNDL R/L 1616 JX 1.512.5	•	•	16	16	120	(16)	16	_	28	_	0	1,50	12,5	25	2	GCM N150005 GF	BFTX0515	4,0	LH040
GNDL R/L 1616 JX 216	•	•	16	16	120	(16)	16	_	32	_	0	2,00	16,0	32	_	GCM □2000-□□	ום ואסטוס	4,0	LI 1040
GNDL R/L 1616 JX 316	•	•	16	16	120	(16)	16	_	32	_	0	3,00	16,0	32		GCM □3000-□□			
GNDL R/L 2012 JX 221 🙌	O	0	20	12	120	(12)	20	_	30,5	_	0	2,00	21,0	42	2	GCM □2000-□□	BFTX0414	3,0	LT15-10
GNDL R/L 2012 JX 321 (Nev	O	O	20	12	120	(12)	20	_	30,5	_	0	3,00	21,0	42	3	GCM □3000-□□	DE 1 A 04 14	3,0	LI 13-10

Abmessungen (mm)


Abmessungen (mm)

Erweiterung

GNDM/GNDL-Serie

Stechsystem

■ Platten für GNDM / GNDL-Halter

Einstechen / Drehen

Linstcontri	′ •	٠,٠	J 1	U11						,	Abmess	sunge	en (mm)	ونا
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	C Einstech- breite	W Toleranz	RE	L	S	Abb.
GCM N3002 MG N3004 MG	•	•	•	•	•	•	0	•	<u>-</u>	3,0	±0,03 ±0,03			3,8 3,8	1
N3002 ML N3002 ML N3004 MI	-	- •	•	<u>-</u>	•	•	0	•	- 0	2,0 3,0	±0,03 ±0,03	0,2 0,2		3,6 3,8	1

Profildrehen

Property	ofildrehe	n									,	Abmess	unge	n (mm) [4	
Beze	eichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	Einstech- breite	W Toleranz	RE	L	S	Abb.
GCM N	N3015 RG	•	•	•	•	•	•	0	•	0	3,0	±0,03	1,5	21,1	3,8	2

•	Prollidrene	n /	Γſ	eis	ste	CI	ler	1		F	Abmess	ungen	(mm)			Ż
		25P	35P	OP.	뜻	58	555	9	9	Ϋ́	C	W				
	Bezeichnung	AC802	AC803	AC83	AC42	AC501	AC502	AC52	AC53	T250	Einstech- breite	Toleranz	RE	L	S	Abb.
ľ	GCM N2010 RN	_	_	_	_	•	•	0	0	_	2,0	±0,03	1,0	21,7	3,6	2
	N3015 RN	•	•	•	O	•	•	0	O		3,0	±0,03	1,5	22,6	3,8	_

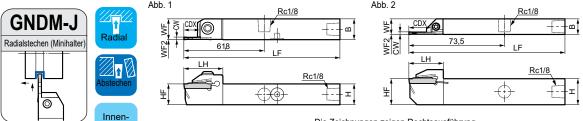
Nichteisenmetalle

Nichteisenr	ne	tal	le				,	Abmess	sunge	en (mm) 24	
Bezeichnung	Ŧ						C' Einstech- breite	Toleranz	RE	L		Abb.
GCG N2002 GA N3002 GA	0					 	2,0 3,0	±0,025 ±0,025	0,2 0,2	21,1 21,1	3,6 3,8	3

Einstechen / Abstechen

Bezeichnung	AC8035P	AC830P	AC5015S	AC5025S	AC520U	AC530U	T2500A	E	instach.	W Toleranz	RE	L	SA	Abb.
GCM N2002 GG	•	•	•	•	•	•	-		2,0	±0,03	0,2	21,1	3,6	
N3002 GG	•	•	•	•	0	•	-		3.0	±0,03	0,2	21,1	3,8	1
N3004 GG	•	•	•	•	0	•	_		3,0	±0,03	0,4	21,1	3,8	
GCM N2002 GL	•	•	•	•	0	•	-		2,0	±0,03	0,2	21,1	3,6	
N2004 GL	•	l	•	•	l	0	_	 l	2,0	±0,03	0,4	21,1	3,6	1
N3002 GL	•	•	•	•	0	•	-		3,0	±0,03	0,2	21,1	3,8	Ι'
N3004 GL	•		•	•		0	_		3,0	±0,03	0,4	21,1	3,8	
GCM N125005 GF	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	•	_	 	1,25	±0,03	0,05	17,4	3,2	1
N150005 GF	_	_	_	_	_	•	_		1,5	±0,03	0,05	17,4	3,7	ı '
GCM N2002 GF	-	-	•	•		•	0		2,0	±0,03	0,2	21,1	3,6	
N2004 GF	<u> </u>	<u> </u>	•	•	l	0	0	 l	2,0	±0,03	0,4	21,1	3,6	1
N3002 GF	•	•	•	•	•	•	O		3,0	±0,03	0,2	21,1	3,8	l '
N3004 GF	•		•	•		•	0		3,0	±0,03	0,4	21,1	3,8	

Abstechen


WIII 72L

	35P	OP	55	55	0	0	000		С	W				
Bezeichnung	AC8035F	AC830F	AC5015S	AC5025S	AC5201	AC530L	AC1030	PSI	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM R2002 CG 05	•	•	•	•	0	•	_	5°	2,0	±0,03	0,2	21,1	3,6	
L2002 CG 05	•	•	•	•	0	•	-	5°	2,0	±0,03	0,2	21,1	3,6	
GCM R3002 CG 05	•	•	•	•	O	•	_	 5°	3,0	±0,03	0,2	21,3	3,8	4
L3002 CG 05	•	•	•	•	0	•	-	 5°	3,0	±0,03	0,2	21,3	3,8	4
GCM R4002 CG 05	•	•	•	•	O	•	_	 5°	4,0	±0,04	0,2	26,7	4,0	
L4002 CG 05	•	•	•	•	0	•	_	5°	4,0	±0,04	0,2	26,7	4,0	
GCM R20003 CF 10	 –	_	•	•	_	_	•	10°	2,0	±0,08	0,03	22,4	3,6	
L20003 CF 10	<u> </u> –	<u> </u>	•	•	<u> </u>	<u> </u>	•	 10°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 10	—	_	•	•	_	_	•	10°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 10	<u> </u>	_	•	•	<u> </u>	-	•	 10°	3,0	±0,08	0,03	22,4	3,8	4
GCM R20003 CF 15	j –	_	•	•	_	_	•	15°	2,0	±0,08	0,03	22,4	3,6	_
L20003 CF 15	-	-	•	•	-	-	•	15°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 15	<u> </u>	_	•	•	_	_	•	15°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 15	-	_	•	•	_	_	•	15°	3,0	±0,08	0,03	22,4	3,8	

GCM R: Rechte Ausführung Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

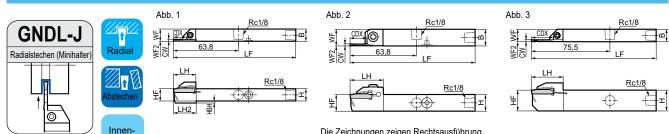
GCM L: Linke Ausführung

Außenbearbeitung für kleine Drehmaschinen (Einstechen, Drehen, Profildrehen)

Für Drehoperationen (z.B. für breite Nuten) sind universelle Stechplatten einzusetzen.

Die Zeichnungen zeigen Rechtsausführung.

Ersatzteile


■ Halter															CP-M5			LH040	
Bezeichnung	La	ger		Abm	ness	ung	en (mm)			Max. Ein- stechtiefe (mm)	IVIαλ.	Abb.	Lincotzhara	Schraube / Klemm-	(N·m)	Ver- schluss-	sel für	Schlüs- sel für untere
	R	L	Н	В	LF	WF	HF	LH	WF2	CW	CDX	(mm)		i idileii	schraube)	stopfen	seite	Fläche
GNDM R/L 1616 JX 212 J	0	0	16	16	120	(16)	16	30,0	0	2,0	12,0	24	1	GC□ □2000-□□	CP-M5-20-1	5.0	VD02	1 11040	1 4025
GNDM R/L 1616 JX 312 J	0	0	16	16	120	(16)	16	30,0	0	3,0	12,0	24	ı	GC□ □3000-□□	OF -1VIJ-20-1	5,0	AFUZ	LI 1040	LI 1023
GNDM R/L 2012 JX 217 J	O	O	20	12	120	(12)	20	26,5	0	2,0	17,0	34	2	GC□ □2000-□□	BFTX0414	2 0	VD00	1 T 1 E 10	
GNDM R/L 2012 JX 317 J	O	\circ	20	12	120	(12)	20	26,5	0	3,0	17,0	34		GC□ □3000-□□	DF 1 AU4 14	3,0	AP02	LI 13-10	

Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

kühlung

kühlung

Radialstechen / Abstechen für kleine Drehmaschinen

Die Zeichnungen zeigen Rechtsausführung.

Ersatzteile

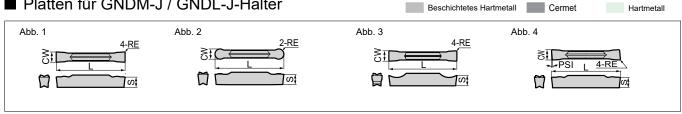
Halter

																	CP-M5	-20-1		LH040	7
Bezeichnung	La	ger			Abm	ess	unge	en (r	mm)			Einstech- breite (mm)	Max. Ein- stechtiefe (mm)		Abb.	Einsetzbare	Schraube / Klemm-	(N·m)	ver- schluss-	()her_	Schlüs- sel für untere
	R	L	Н	В	LF	WF	HF	HBH	LH	LH2	WF2	CW	CDX	(mm)		i iditori	schraube		stopfen	-	Fläche
GNDL R/L 1212 JX 212.5 J	0	0	12	12	120	(12)	12	2,0	22,0	22,3	0	2,0	12,5	25	1	GCM □2000-□□	BFTX0415T8R	1 5	VD03	1 TOO OG	
GNDL R/L 1212 JX 312.5 J	0	O	12	12	120	(12)	12	2,0	22,0	22,3	0	3,0	12,5	25		GC□ □3000-□□	DF1AU41310K	1,5	AFU2	L100-00	
GNDL R/L 1616 JX 216 J	0	0	16	16	120	(16)	16	-	32,0	-	0	2,0	16,0	32	2	GC□ □2000-□□	CP-M5-20-1	5.0	VD02	I HU40	1 11025
GNDL R/L 1616 JX 316 J	0	O	16	16	120	(16)	16	_	32,0	_	0	3,0	16,0	32	-	GC□ □3000-□□	OF-IVIO-20-1	3,0	AF UZ	LI 1040	11023
GNDL R/L 2012 JX 221 J	0	0	20	12	120	(12)	20	_	30,5	_	0	2,0	21,0	42	3	GCM □2000-□□	BFTX0414	3 0	VD02	LT15 10	
GNDL R/L 2012 JX 321 J	O	\circ	20	12	120	(12)	20	_	30,5	-	0	3,0	21,0	42	٥	GCM □3000-□□	DE 170414	3,0	ΛF'02	L1 13-10	

Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

■ Zubehörteile (Kühlmittelschläuche und Adapter)

Siehe Seite 21


Stechsystem

GNDM-J/GNDL-J

Abmessungen (mm)

Abmessungen (mm)

■ Platten für GNDM-J / GNDL-J-Halter

Finstechen / Drehen

	/ [יוכ	5116	511						,	Abmess	sunge	n (mm)	Ţ
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	C Einstech- breite	W Toleranz	RE	L	S	Abb.
GCM N3002 MG N3004 MG	•	•	•	•	•	•	O	•	<u>-</u>	3,0	±0,03 ±0,03			3,8 3,8	1
GCM N2002 ML N3002 ML N3004 MI	- •	- •	- •	- •	•	•	0	•	- •	2,0 3,0	±0,03 ±0,03 +0,03		21,1	3,6 3,8 3,8	1

Profildrehen

•	. omarono	• •									,	ADITIC S	unge	11 (11111)	
		25P	35P	OP	55	58	555	8	8	A	C	W				
Be	zeichnung	AC802	AC803	AC83	AC42	AC501	AC502	AC52	AC53	T250	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM	1 N3015 RG	•	•	•	•	•	•	0	•	0	3.0	±0,03	1.5	21,1	3.8	2

Profildrehen / Freistechen

(
	Abb.
	6 8 2
_	68

• Michtelsenmetall		Nichteisenmetalle	Э
--------------------	--	-------------------	---

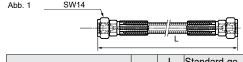
• Michielsein	IIC	lai	ıC				,	Abmess	sunge	en (mm)	ح ت
							С	W				
Bezeichnung	Ħ						Einstech- breite	Toleranz	RE	L	S	Abb.
GCG N2002 GA	0						2,0	±0,025	0,2	21,1	3,6	3
N3002 GA	O			 	 	 	3,0	±0,025	0,2	21,1	3,8	3

Einstechen / Abstechen

Bezeichnung	AC8035P	AC830P	AC5015S	AC5025S	AC520U	AC530U	T2500A		Einstech- breite	W Toleranz	RE	L	S	Abb.
GCM N2002 GG	•	•	•	•	•	•	_	 	2,0	±0,03	0,2	21,1	3,6	
N3002 GG	•	•	•	•	O	•	_		3.0	±0,03	0,2	21,1	3,8	1
N3004 GG	•	•	•	•	0	•	_		3,0	±0,03	0,4	21,1	3,8	
GCM N2002 GL	•	•	•	•	0	•	-		2.0	±0,03	0,2	21,1	3,6	
N2004 GL	•	<u> </u>	•	•	l	0	_	l	2,0	±0,03	0,4	21,1	3,6	1
N3002 GL	•	•	•	•	0	•	_		3.0	±0,03	0,2	21,1	3,8	'
N3004 GL	•		•	•		0	_		3,0	±0,03	0,4	21,1	3,8	
GCM N125005 GF	= -	-	<u> </u>	<u> </u>	<u> </u>	•	_		1,25	±0,03	0,05	17,4	3,2	1
N150005 GI	= -	-	-	-	-	•	-		1,5	±0,03	0,05	17,4	3,7	'
GCM N2002 GF	-	-	•	•		•	0		2,0	±0,03	0,2	21,1	3,6	
N2004 GF	-	-	•	•		0	0		2,0	±0,03	0,4	21,1	3,6	1
N3002 GF	•	•	•	•	•	•	O		3,0	±0,03	0,2	21,1	3,8	'
N3004 GF	•		•	•		•	O		3,0	±0,03	0,4	21,1	3,8	

Abstechen

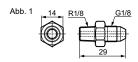
		35P	OP	55	555	00	9	30N		С	W				
Bezei	chnung	AC8035F	AC830F	AC5015S	AC5025S	AC5201	AC530L	AC103	PSI	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM R2	2002 CG 05	•	•	•	•	0	•	_	5°	2,0	±0,03	0,2	21,1	3,6	
L2	002 CG 05	•	•	•	•	0	•	-	5°	2,0	±0,03	0,2	21,1	3,6	
GCM R3	3002 CG 05	•	•	•	•	O	•	-	5°	3,0	±0,03	0,2	21,3	3,8	4
L3	002 CG 05	•	•	•	•	0	•	-	 5°	3,0	±0,03	0,2	21,3	3,8	+
GCM R4	1002 CG 05	•	•	•	•	O	•	-	5°	4,0	±0,04	0,2	26,7	4,0	
L4	002 CG 05	•	•	•	•	0	•	-	5°	4,0	±0,04	0,2	26,7	4,0	
GCM R2	20003 CF 10	_	_	•	•	_	-	•	10°	2,0	±0,08	0,03	22,4	3,6	
L2	0003 CF 10	_	-	•	•	-	-		 10°	2,0	±0,08	0,03	22,4	3,6	
GCM R3	30003 CF 10	-	_	•	•	-	_	lacksquare	10°	3,0	±0,08	0,03	22,4	3,8	
L3	0003 CF 10	_	_	•	•	_	 	lacktriangle	10°	3,0	±0,08	0,03	22,4	3,8	4
GCM R2	20003 CF 15	_	_	•	•	_	_	•	 15°	2,0	±0,08	0,03	22,4	3,6	4
L2	0003 CF 15	_	_	•	•	-	-		15°	2,0	±0,08	0,03	22,4	3,6	
GCM R3	30003 CF 15	-	-	•	•	-	-	•	15°	3,0	±0,08	0,03	22,4	3,8	
L3	0003 CF 15	_	_	•	•	_	_	•	15°	3,0	±0,08	0,03	22,4	3,8	

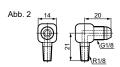

GCM R: Rechte Ausführung

GCM L: Linke Ausführung

Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

■ Zubehörteile (Kühlmittelschläuche und Adapter)

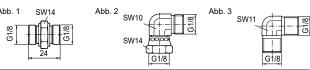

Kühlmittelschläuche



Bezeichnung	Lager	L (mm)	Standard-ge- winde	Standard-ge- winde	Abb.
J-HOSE-G1/8-G1/8-200-E	•	200	G1/8	G1/8	1
J-HOSE-G1/8-G1/8-300-E	•	300	G1/8	G1/8	1

Kühlmittelschläuche müssen gesondert bestellt werden.

Adapter (Halterseite)

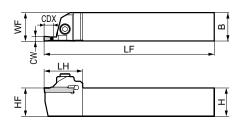


Bezeichnung	Lager	Standard-ge- winde	Standard-ge- winde	Abb.
J-G1/8-R1/8-00	0	G1/8	R1/8	1
J-G1/8-R1/8-90	0	G1/8	R1/8	2

Adapter müssen gesondert bestellt werden.

Adapter (Maschinenseite)

Bezeichnung	Lager	Standard-ge- winde	Standard-ge- winde	Abb.
J-G1/8-G1/8-00-E	•	G1/8	G1/8	1
J-G1/8-G1/8F-90-E	•	G1/8	G1/8	2
J-G1/8-G1/8-90-E	•	G1/8	G1/8	3


Adapter müssen gesondert bestellt werden.

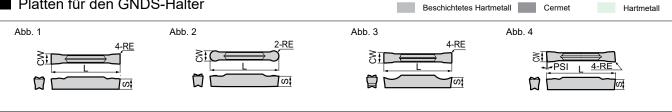
Stechsystem GNDS

Außenbearbeitung flacher Nuten (Einstechen, Drehen, Profildrehen)

Die Zeichnungen zeigen Rechtsausführung.

■ Ersatzteile

Halter


Bezeichnung	La	ger		Abmessungen (mm)					Einstech- breite (mm)	Max. Ein- stechtiefe (mm)	Einsetzbare Platten	Klemm- schraube	(N·m)	Schlüssel
	R	L	Н	В	LF	WF	HF	LH	CW	CDX	1 latteri		Ŭ	
GNDS R/L 2020 K 206	•	•	20	20	125	20	20	30	2,0	6	GCM □2000-□□			
GNDS R/L 2020 K 306	•	•	20	20	125	20	20	30	3,0	6	GCM □3000-□□			
GNDS R/L 2020 K 410	•	•	20	20	125	20	20	34	4,0	10	GCM □4000-□□			
GNDS R/L 2020 K 510	•	•	20	20	125	20	20	34	5,0	10	GCM N5000-□□			
GNDS R/L 2020 K 610	•	•	20	20	125	20	20	34	6,0	10	GCM N6000-□□	BX0520	5.0	LH040
GNDS R/L 2525 M 206	•	•	25	25	150	25	25	30	2,0	6	GCM □2000-□□	DAU520	5,0	LH040
GNDS R/L 2525 M 306	•	•	25	25	150	25	25	30	3,0	6	GCM □3000-□□			
GNDS R/L 2525 M 410	•	•	25	25	150	25	25	34	4,0	10	GCM □4000-□□			
GNDS R/L 2525 M 510	•	•	25	25	150	25	25	34	5,0	10	GCM N5000-□□			
GNDS R/L 2525 M 610	•	•	25	25	150	25	25	34	6,0	10	GCM N6000-□□			

Abmessungen (mm)

Stechsystem GNDS

■ Platten für den GNDS-Halter

Einstechen	/ I	Dre	eh	en							Abmess	sunge	en (mm		i t
	25P	35P	용	沃	158	255	9	9	OA	С	W				
Bezeichnung	AC8025F	AC8035P	AC830F	AC425K	AC5015S	AC5025S	AC520L	AC530U	T2500A	Einstech- breite	Toleranz	RE	L	S	Abb
GCM N3002 MG	•	•		0	•	•	_	•	-	3,0	±0,03		21,1	3,8	
N3004 MG	•	•	•	•	•	•	0	•	ļ.—.		±0,03		21,1	3,8	ļ
N4002 MG	•	•		0	•	•		•	_		±0,03		26,4	4,0	
N4004 MG	•	•		0	•	•		•	-	4,0	±0,03	0,4	26,4	4,0	
N4008 MG	•	•	•	•	•	•	0	•		ļ	±0,03		26,4	4,0	1
N5004 MG	•	•		0	•	•		•	-	5,0	±0,03		-,		
N5008 MG	•	•	•	•	•	•	0	•	_		±0,03		26,4	4,1	
N6004 MG	•	•		0	•	•		•	-	6.0	±0,03		26,4	4,5	
N6008 MG	•	•	•	•	•	•	0	•	_		±0,03	0,8	26,4	4,5	
GCM N2002 ML	-	_	-	-	•	•	0	•	-	2,0	±0,03	0,2	21,1	3,6	
N3002 ML	•	•	•	•	•	•	0	•	0	3,0	±0,03		21,1	3,8	
N3004 ML	•	•	ļ	0	•	•	ļ	•	0	0,0	±0,03	0,4	21,1	3,8	
N4002 ML	•	•		0	•	•		•	0		±0,03	0,2	26,4	4,0	
N4004 ML	•	•	•	•	•		0		0	4,0	±0,03	0,4	26,4	4,0	1
N4008 ML	•	•		0	•	•		0	0		±0,03	0,8	26,4	4,0	'
N5004 ML	•	•	•	•	•	•	0	•	-	5,0	±0,03	0,4	26,4	4,1	
N5008 ML	•	•		0	•	•		0	-	3,0	±0,03	0,8	26,4	4,1	
N6004 ML	•	•	•	•	•	•	O	•	-	6,0	±0,03	0,4	26,4	4,5	
N6008 ML	•	•		0	•	•		0	_	0,0	±0,03	0,8	26,4	4,5	

Dre	ehe	en						,	Abmess	unge	n (mm		1
35P	용	뜻	58	55	9	9	Υ	C	W				
● AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520L	AC530L	T2500A	Einstech- breite	Toleranz	RE	L	S	Abb.
•	•	•	•	•	0	•	=	3,0	±0,03 ±0,03			3,8 3,8	
•		0	•	•		•	-	4.0	±0,03				
•	•	•	•	•	0	•	_	4,0	±0,03 ±0,03			4,0 4,0	1
•		0	•	•	0	•	-	5,0	±0,03 ±0,03	0,4	26,4		
•		0	•	•		•	=	6,0	±0,03	0,4	26,4	4,5	
_	_	_	•	•	0	•	_	2,0	±0,03 ±0,03			4,5 3,6	
•	•	•	•	•	Ö	•	Ö	3,0	±0,03			3,8	
•		0	•	•		•	O	3,0	±0,03		21,1	3,8	
	•	•	•	•	0	•	0	4,0	±0,03 ±0,03		26,4 26,4	4,0	
•		o	•	•		o	o	.,,	±0,03		26,4	4,0	1
•	•	•	•	•	O	•	-	5,0	±0,03	,	26,4	4,1	
•	•	•	•	•	0	•	<u>-</u>		±0,03		26,4 26,4	4,1	
•		O	•	•		o	-	6,0	±0,03		26,4		

Profildrehen Abmessungen (mm)

Bezeichnung	AC8025	AC8035	AC830F	AC425k	AC5015	AC5025	AC5201	AC5301	T2500/	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM N3015 RG	•	•	•	•	•	•	0	•	0	3,0	±0,03	1,5	21,1	3,8	
N4020 RG	•	•	•	•	•	•	0	•	0	4,0	±0,03	2,0	26,4	4,0	2
N5025 RG	•	•	•	•	•	•	О	•	_	5,0	±0,03	2,5	27,2	4,1	-
N6030 RG	•	•	•	•	•	•	O	•	-	6,0	±0,03	3,0	27,5	4,5	

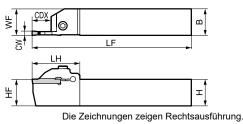
Profildrehe	Profildrehen / Freistechen										ungen	(mm)			K
	25P	35P	PO.	兴	158	258	520U	00	OA	С	W				
Bezeichnung	AC8025	AC80351	AC830F	AC42	\C501	\C502	AC52	AC530	T250	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM N2010 RN	_	_			•	•	0	0		2.0	±0.03	1 0	21.7	3.6	
N3015 RN	•	•	•	0	•	•	0	0		3.0	+0.03	1,5		3.8	
N4020 RN	•	•	•	O	•	•	O	O	-	4.0	±0.03		28.2	4.0	2
N5025 RN	•	•	•	O	•	•	0	0	-	5,0	±0,03	2,5	28,3	4,1	1
N6030 RN	•	•	•	O	•	•	Ö	Ö	_	6,0	±0,03	3,0	28,3	4,5	

Nichteisenr	ne	tal	le				,	Abmess	sunge	en (mm) 2	1
							C'					
Bezeichnung	도						Einstech-	Toleranz	RE	L	S	Abb.
							breite	TOIGIUITZ				
GCG N2002 GA	0			 	 	 	2,0	±0,025	0,2	21,1	3,6	
N3002 GA	0						3,0	±0,025	0,2	21,1	3,8	
N4004 GA	O			 			4,0	±0,025	0,4	26,4	4,0	3
N5004 GA	0						5,0	±0,025	0,4	26,4	4,1	
N6004 GA	O						6,0	±0,025	0,4	26,4	4,5	

● Einstechen	//	٩b	ste	ech	ner	1			,	Abmess	unge	en (mm)	//// †
	5P	Б	55	55	\supseteq	\supset	⋖		С	W				
Bezeichnung	AC8035F	AC830P	AC5015S	AC5025S	AC520	AC530	T2500A		Einstech- breite	Toleranz	RE	L	S	Abb
GCM N2002 GG	•	•	•	•	•	•	_		2,0	±0,03	0,2	21,1	3,6	
N3002 GG	•	•	•	•	O	•	_	 	3,0	±0,03	0,2	21,1	3,8	
N3004 GG	•	•	•	•	0	•	-		3,0	±0,03	0,4	21,1	3,8	
N4002 GG	•	•	•	•	0	•	-	 	4,0	±0,03	0,2	26,4	4,0	
N4004 GG	•	•	•	•	O	•	_		4,0	±0,03				1
N5002 GG	•	•	•	•	O	•	-		5,0	±0,03	0,2	26,4	4,1	
N5004 GG	•	•	•	•	0	•	_	 	3,0	±0,03	0,4	26,4	4,1	
N6002 GG	•	•	•	•	O	•	-		6,0	±0,03	0,2	26,4	4,5	
N6004 GG	•	•	•	•	0	•	_		0,0	±0,03		26,4	4,5	
GCM N2002 GL	•	•	•	•	O	•	_		2,0	±0,03	0,2	21,1	3,6	
N2004 GL	•		•	•		0	_	 	2,0	±0,03		21,1		
N3002 GL	•	•	•	•	O	•	_		3,0	±0,03				
N3004 GL	•		•	•		0	_	 	3,0	±0,03			3,8	
N4002 GL	•	•	•	•	O	•	_		4,0	±0,03	0,2	26,4	4,0	1
N4004 GL	•		•	•		0	_	 	.,,	±0,03			4,0	
N5002 GL	•	•	•	•	0	•	_		5.0	±0,03				
N5004 GL	•		•	•		0	_	 	0,0	±0,03		26,4		
N6002 GL	•	•	•	•	0	•	_		6,0	±0,03				
N6004 GL	•		•	•		0	_		0,0	±0,03		26,4		
GCM N2002 GF	-	-	•	•		•	0		2,0	±0,03		21,1		
N2004 GF	_		•	•		0	0	 	,	±0,03		21,1		ļ
N3002 GF	•	•	•	•	•	•	0		3,0	±0,03				
N3004 GF	•		•	•		•	0	 		±0,03		21,1	3,8	ļ
N4002 GF	•	•	•	•	•	•	0		4,0	±0,03		26,4		1
N4004 GF	•		•	•		•	0	 		±0,03				
N5002 GF	•	•	•	•	•	•	_		5,0	±0,03				
N5004 GF	•	l	•	•		•		 		±0,03		26,4		
N6002 GF	•	•	•	•	•	•	_		6,0	±0,03		26,4		
N6004 GF	•		•	•		•	_			±0,03	0,4	26,4	4,5	

													_=	_
	35P	Ю	158	25S	0	9	300		_	W				
Bezeichnung	AC8035F	AC830P	AC5015S	AC50258	C5201	C530L	C1030	PSI	Einstech-	Toleranz	RE	L	S	Abb.
	A	¥	A	8	¥	¥	AC		breite	TOICIUIL				
GCM R2002 CG 05	•	•	•	•	0	•	_	5°	2,0	±0,03	0,2	21,1	3,6	
L2002 CG 05	•	•	•	•	0	•	_	 5°	2,0	±0,03	0,2	21,1	3,6	
GCM R3002 CG 05	•	•	•	•	0	•	_	5°	3,0	±0,03	0,2	21,3	3,8	4
L3002 CG 05	•	•	•	•	0	•	_	5°	3,0	±0,03	0,2	21,3	3,8	-
GCM R4002 CG 05	•	•	•	•	0	•	_	5°	4,0	±0,04	0,2	26,7	4,0	
L4002 CG 05	•	•	•	•	0	•	_	5°	4,0	±0,04	0,2	26,7	4,0	
GCM R20003 CF 10	—	_	•	•	_	_	•	10°	2,0	±0,08	0,03	22,4	3,6	
L20003 CF 10	l –	<u> </u>	•	•	<u> </u>	<u> </u>	•	 10°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 10	-	_	•	•	-	_	•	10°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 10	-	_	•	•	_	_	•	 10°	3,0	±0,08	0,03	22,4	3,8	4
GCM R20003 CF 15	<u> </u>	_	•	•	_	_	•	15°	2,0	±0,08	0,03	22,4	3,6	~
L20003 CF 15	<u> </u> –	<u> </u>	•	•	<u> </u>	<u> </u>	•	 15°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 15	i –	_	•	•	-	_	•	15°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 15	-	_	•	•	_	_	•	15°	3,0	±0,08	0,03	22,4	3,8	

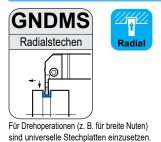
L30003 CF 15 GCM R: Rechte Ausführung

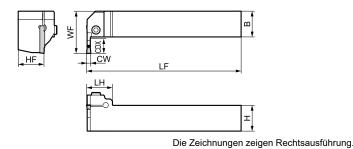

Abstechen

GCM L: Linke Ausführung

Für Drehoperationen (z.B. für breite Nuten) sind universelle Stechplatten einzusetzen.

Ersatzteile


)ie	Zeicl	hnu	nge	en

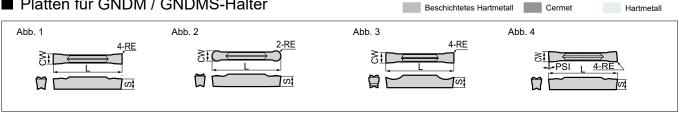

Halter

Tiditoi															
Bezeichnung	La	ger		Abm	nessur	ngen (mm)		Einstech- breite (mm)	Max. Ein- stechtiefe (mm)		Einsetzbare Platten	Klemm-	(N·m)	Schlüssel
	R	L	Н	В	LF	WF	HF	LH	CW	CDX		Platten	schraube	Ŭ	
GNDM R/L 2020 K 1.2510	•	•	20	20	125	20	20	34,0	1,25	10	20	GCM N125005 GF			
GNDM R/L 2020 K 1.510	•	•	20	20	125	20	20	34,0	1,50	10	20	GCM N150005 GF			
GNDM R/L 2020 K 210	•	•	20	20	125	20	20	33,6	2,00	10	20	GCM □2000-□□			
GNDM R/L 2020 K 312		•	20	20	125	20	20	36,6	3,00	12	24	GCM □3000-□□			
GNDM R/L 2020 K 418	•	•	20	20	125	20	20	45,0	4,00	18	36	GCM □4000-□□			
GNDM R/L 2020 K 518	•	•	20	20	125	20	20	45,0	5,00	18	36	GCM N50OO-□□			
GNDM R/L 2020 K 618	•	•	20	20	125	20	20	45,0	6,00	18	36	GCM N60OO-□□			
GNDM R/L 2525 M 1.2510	•	•	25	25	150	25	25	36,0	1,25	10	20	GCM N125005 GF			
GNDM R/L 2525 M 1.510	•	•	25	25	150	25	25	36,0	1,50	10	20	GCM N150005 GF	BX0520	5,0	LH040
GNDM R/L 2525 M 210	•	•	25	25	150	25	25	33,6	2,00	10	20	GCM N20OO-□□			
GNDM R/L 2525 M 312	•	•	25	25	150	25	25	36,6	3,00	12	24	GCM □3000-□□			
GNDM R/L 2525 M 418	•	•	25	25	150	25	25	45,0	4,00	18	36	GCM □4000-□□			
GNDM R/L 2525 M 518	•	•	25	25	150	25	25	45,0	5,00	18	36	GCM N50OO-□□			
GNDM R/L 2525 M 618	•	•	25	25	150	25	25	45,0	6,00	18	36	GCM N60OO-□□			
GNDM R/L 3225 P 312			32	25	170	25	32	36,6	3,00	12	24	GCM □3000-□□			
GNDM R/L 3225 P 418			32	25	170	25	32	45,0	4,00	18	36	GCM □4000-□□			
GNDM R/L 3225 P 518			32	25	170	25	32	45,0	5,00	18	36	GCM N50OO-□□			
GNDM R/L 3225 P 618			32	25	170	25	32	45,0	6,00	18	36	GCM N60OO-□□			
GNDM R/L 3225 P 718			32	25	170	25	32	50,0	7,00	18	36	GCM N70OO-□□	BX0620	6.0	LH050
GNDM R/L 3225 P 818			32	25	170	25	32	50,0	8,00	18	36	GCM N80OO-□□	DAUUZU	0,0	LI 1030
GNDM R/L 3232 P 312	•	•	32	32	170	32	32	36,6	3,00	12	24	GCM □3000-□□			
GNDM R/L 3232 P 418	•	•	32	32	170	32	32	45,0	4,00	18	36	GCM □4000-□□			
GNDM R/L 3232 P 518	•	•	32	32	170	32	32	45,0	5,00	18	36	GCM N50OO-□□	BX0620	6.0	LH050
GNDM R/L 3232 P 618	•	•	32	32	170	32	32	45,0	6,00	18	36	GCM N60OO-□□	טאטטעט	0,0	LI 1030
GNDM R/L 3232 P 718	•	•	32	32	170	32	32	50,0	7,00	18	36	GCM N70OO-□□			
GNDM R/L 3232 P 818	•	•	32	32	170	32	32	50,0	8,00	18	36	GCM N80OO-□□			

Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

Universelle Außenbearbeitung, abgewinkelter Halter (Einstechen, Drehen, Profildrehen)

Ersatzteile


Halter

- Hallel														•
Bezeichnung	La	ger		Abm	nessur	ngen (mm)		Einstech- breite (mm)	Max. Ein- stechtiefe (mm)	Einsetzbare Platten	Klemm-	N·m)	Schlüssel
	R	L	Н	В	LF	WF	HF	LH	CW	CDX	Flattell	Comaabo		
GNDMS R/L 2020 K 310	•	0	20	20	125	32	20	25	3,0	10	GCM □3000-□□			
GNDMS R/L 2020 K 412	•	•	20	20	125	34	20	25	4,0	12	GCM □4000-□□			
GNDMS R/L 2020 K 512	•	O	20	20	125	34	20	25	5,0	12	GCM N50OO-□□			
GNDMS R/L 2525 M 312	•	•	25	25	150	39	25	25	3,0	12	GCM □3000-□□	BX0520	5,0	LH040
GNDMS R/L 2525 M 414	•	•	25	25	150	41	25	25	4,0	14	GCM □4000-□□			
GNDMS R/L 2525 M 514	•	•	25	25	150	41	25	25	5,0	14	GCM N50OO-□□			
GNDMS R/L 2525 M 614			25	25	150	41	25	25	6.0	14				

Stechsystem GNDM/GNDMS

■ Platten für GNDM / GNDMS-Halter

● Einstechen	ı / I	Dre	eh	en						,	Abmess	sunge	n (mm) %	1
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	C Einstech- breite	W Toleranz	RE	L	s	Abb.
GCM N3002 MG	A	A	_	0	A	A	1	_		DIGILO	10.00	0.0	24.4	2.0	
N3004 MG	•	•	•				0		ΙΞ	3,0	±0,03		21,1 21,1	3,8	
N4002 MG	•		•	0	•	•	9	•	-		±0,03			4,0	
N4004 MG	•	•		0	•	•		•	_	4,0	±0,03			4,0	
N4008 MG	•	•	•	•	•	•	0	•	-	.,,	±0,03			4,0	
N5004 MG	•	•		0	•	•		•	_	E 0	±0,03				İ
N5008 MG	•	•	•	•	•	•	0	•	-	5,0	±0,03			4,1	1
N6004 MG	•	•		0	•	•		•	_	6,0	±0,03	0,4	26,4	4,5	
N6008 MG	•	•	•	•	•	•	0	•	_	0,0	±0,03	0,8	26,4	4,5	
N7004 MG	•	•		0	•	•		0	-	7,0	±0,04				
N7008 MG	•	•	•	•	•	•	0	•	_	,,,	±0,04				ļ
N8004 MG	•	•		0	•	•		0	-	8,0	±0,04				
N8008 MG	•	•	•	•	•	•	0	•	_		±0,04				
GCM N2002 ML	<u> </u>	_		_	•	•	Ö	•	_	2,0	±0,03		21,1	3,6	ļ
N3002 ML		•	•		•	•	0	•	0	3,0	±0,03		21,1	3,8	
N3004 ML	_	_		O	_			_	O		±0,03		21,1	3,8	
N4002 ML N4004 ML		•		0	_	_	0	_	0	4,0	±0,03		26,4	4,0	
N4004 ML			_	0			0	0	0	4,0	±0,03 ±0.03	- /	26,4 26.4	4,0	
N5004 ML	_		•	-	-	-	0		_		±0,03	. indian	26,4		
N5004 ML			_	0	-	-		0	_	5,0	±0,03		26,4	4,1 4,1	1
N6004 ML	•	•	•	•	•	•	0	•	-		±0,03			4,5	
N6004 ML	•	•		o	•	•		o	_	6,0	±0,03		26,4	4,5	
N7004 ML	•	•	•	O	•	•	0	•	-		±0,04		28.8		
N7008 ML	•	•		o	•	•		o	_	7,0	±0,04				
N8004 ML	•	•	•	o	•	•	0	•	-	0.0	±0,04				1
N8008 ML	•	•		0	•	•		0	-	8,0	±0,04				

Profildrehe	n									,	Abmess	sunge	en (mm) 💯	
	8025P	8035P	30P	C425K	50158	50258	520U	5300	500A	С	W				
Bezeichnung	AC80	AC80	AC830P	AC42	AC50	AC50	AC52	AC53	T250	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM N3015 RG	•	•	•	•	•	•	0	•	0	3,0	±0,03	1,5	21,1	3,8	
N4020 RG	•	•	•	•	•	•	0	•	0	4,0	±0,03	2,0	26,4	4,0	
N5025 RG	•	•	•	•	•	•	0	•	<u> </u>	5,0	±0,03	2,5	27,2	4,1	2
N6030 RG	•	•	•	•	•	•	0	•	_	6,0	±0,03	3,0	27,5	4,5	_
N7035 RG	•	•	•	•	•	•	0	•	-	7,0	±0,04	3,5	29,1	5,5	
N8040 RG							0		_	8.0	+0 04	40	29 3	6.0	1

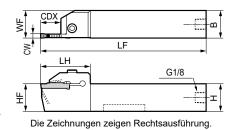
Profildrehe	n/	Fr	ei	ste	ch	er	1		A	Abmess	ungen	(mm)			K
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	C Einstech- breite		RE	L	s	Abb.
GCM N2010 RN N3015 RN N4020 RN N5025 RN N6030 RN	- • •	- • •	- • •	- 0 0	•	•	000	000	<u>-</u> - -	2,0 3,0 4,0 5,0 6,0	±0,03 ±0,03 ±0,03 ±0,03	1,5 2,0 2,5	21,7 22,6 28,2 28,3 28,3	3,6 3,8 4,0 4,1 4,5	2

Nichteisen	ne	tall	е					Abmess	sunge	en (mm) %	111/2
							С	W				
Bezeichnung	三						Einstech-	Toleranz	RE	L	S	Abb.
							breite					
GCG N2002 GA	0	ll		 		 		±0,025			3,6	
N3002 GA	0						3,0	±0,025	0,2	21,1	3,8	
N4004 GA	O			 				±0,025			4,0	3
N5004 GA	0						5,0	±0,025	0,4	26,4	4,1	
N6004 GA	O			 	 	 	6,0	±0,025	0,4	26,4	4,5	

	35P	OP	58	528	0	0	OA		С	W				
Bezeichnung	AC8035F	AC830P	AC5015S	AC5025S	AC520	AC5301	T2500A		Einstech- breite	Toleranz	RE	L	S	Abb
GCM N2002 GG	•	•	•	•	•	•	=		2,0	±0,03 ±0,03	0,2	21,1	3,6	
N3002 GG	•	•	•	•	O	•	-		3,0	±0,03	0,2	21,1	3,8	
N3004 GG	•	•	•	•	0	•	_	 	0,0	±0,03 ±0,03	0,4	21,1	3,8	
N4002 GG	•	•	•	•	O	•	-		4,0	±0,03	0,2	26,4		
N4004 GG	•	•	•	•	0	•	_	 		±0,03			4,0	
N5002 GG	•	•	•	•	O	•	-		5,0	±0,03				1
N5004 GG	•	•	•	•	O	•		 	ļ	±0,03				
N6002 GG	•	•	•	•	0	•	-		6,0	±0,03				
N6004 GG	•	•	•	•	0			 	7,0			26,4	4,5	1
N7004 GG N8004 GG	•	0	•	•	0	•	-	 	8,0	±0,04				
GCM N2002 GL	•	•	•	•	0	•	=		0,0	±0,04 ±0,03			2.6	
N2004 GL	•		•	•	0	0			2,0	±0,03			3,6	
N3002 GL	•	•	•	•	0	•	<u>-</u> -	 		±0,03		21,1	3,8	1
N3002 GL N3004 GL	•		•	•	9	o			3,0	±0,03			3,8	
N4002 GL	•	•	•	•	0	•	_	 		±0,03				1
N4004 GL	•		•	•		o	 -		4,0	±0,03			4,0	١.
N5002 GL	•	•	•	•	0	•	-	 		±0,03	0.2	26.4	4 1	1
N5004 GL	•		•	•	-	0	_		5,0	±0,03	0,4		4,1	
N6002 GL	•	•	•	•	0	•	-	 		±0,03	0.2	26.4	4.5	1
N6004 GL	•		•	•		0	-		6,0	±0,03	0,4		4,5	
N7004 GL	•	0	•	•	0	•	-	 	7,0	±0,04	0.4	28.8	5.5	1
N8004 GL	•	O	•	•	O	•	-	 	8,0	±0,04	0,4	28,8	6,0	
GCM N125005 GF	<u> </u>	<u> </u>	<u> </u>	<u> -</u>	<u> -</u>	•	<u> -</u>		1,25	±0,03	0,05	17,4	3,2	1
N150005 GF	_	_	_	_	_	•	_		1,5	±0,03				_ '
GCM N2002 GF	_	_	•	•		•	O		2,0	±0,03	0,2	21,1	3,6	
N2004 GF			•	•		0	0	 	_,0	±0,03 ±0,03	0,4	21,1	3,6	
N3002 GF	•	•	•	•	•	•	O		3,0	±0,03	0,2	21,1	3,8	
N3004 GF	•		•	•		•	0	 				21,1	3,8	
N4002 GF	•	•	•	•	•	•	0		4,0	±0,03				
N4004 GF	•		•	•		•	0	 					4,0	
N5002 GF	•	•	•	•	•	•	-		5,0	±0,03			4,1	1
N5004 GF	•		•	•		•		 		±0,03			4,1	
N6002 GF	•	_			_	•	-		6,0	±0,03			4,5	
N6004 GF N7002 GF	•	•	•	•	0	•	<u>-</u>	 		±0,03	0,4	26,4	4,5	ł
N7002 GF N7004 GF	•	•		•	0	•			7,0	±0,04				
N8002 GF	-	-	-	-	0	•	ΙΞ.	 		±0,04 ±0,04	0,4	20,0 28 8	6.0	1
N8002 GF N8004 GF	_	_	_	_	0	_	-		8.0	±0,04				

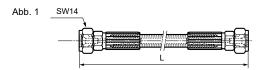
Absteche	en								,	Abmess	sunge	n (mm) Z	1
	35P	OP 0	158	258	00:	00	300			W				
Bezeichnun	AC8035F	AC830P	AC5015S	AC5025S	AC520	AC5301	AC1030	PSI	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM R2002 CG	05	•	•	•	0	•	_	5°	2,0	±0,03	0,2	21,1	3,6	
L2002 CG	05	•	•	•	0	•	-	 5°	2,0	±0,03	0,2	21,1	3,6	
GCM R3002 CG	05	•	•	•	0	•	-	5°	3,0	±0,03	0,2	21,3	3,8	4
L3002 CG	05	•	•	•	0	•	-	5°	3,0	±0,03	0,2	21,3	3,8] +
GCM R4002 CG	05	•	•	•	0	•	-	5°	4,0	±0,04	0,2	26,7	4,0	
L4002 CG	05	•	•	•	0	•	_	5°	4,0	±0,04	0,2	26,7	4,0	
GCM R20003 CI		-	•	•	_	-	•	10°	2,0	±0,08	0,03	22,4	3,6	
L20003 CF	10 -	-	•	•	 –	<u> </u>		 10°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CI	10 —	-	•	•	_	_	•	10°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF	10 -	-	•	•	_	_	lacksquare	10°	3,0	±0,08	0,03	22,4	3,8	4
GCM R20003 CI	15 —	-	•	•	_	_	•	15°	2,0	±0,08	0,03	22,4	3,6	+
L20003 CF	15 -	-	•	•	_	_	•	15°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CI	15 -	-	•	•	_	_	lacksquare	15°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF	15 –	-	•	•	_	_		15°	3,0	±0,08	0,03	22,4	3,8	

GCM R: Rechte Ausführung GCM L: Linke Ausführung Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.


Universelle Außenbearbeitung (Einstechen, Drehen, Profildrehen)

Ersatzteile

9	



Halter

Bezeichnung	_	1 1011101															•		
GNDM R/L 2020 X 210 JE ■ 20 20 100 20 20 33,6 2,00 10 20 GC□ □20○○□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		Bezeichnung		ger					` ′	1	breite (mm)	stechtiefe (mm)	stech-Ø	Einsetzbare		N·m	schluss- stopfen und	schraube*	Schlüssel
GNDM R/L 2020 X 312 JE	(CNDM D/I 2020 V 210 IE			20	20	100	20	20	33.6	2.00	10	20				Biointaing		
GNDM R/L 2020 X 418 JE ● ■ 20 20 110 20 20 45,0 4,00 18 36 GC□ □40○○-□□				•	20	20		20	-	, .			20						
	(GNDM R/L 2020 X 312 JE	•	•	20	20	100	20	20	36,6	3,00	12	24	GC□ □3000-□□					
	(GNDM R/L 2020 X 418 JE	•	•	20	20	110	20	20	45,0	4,00	18	36	GC□ □4000-□□					
GNDM R/L 2020 X 518 JE ● ● 20 20 110 20 20 45,0 5,00 18 36 GC□ N50○○-□□	(GNDM R/L 2020 X 518 JE	•	•	20	20	110	20	20	45,0	5,00	18	36	GC□ N50OO-□□					
GNDM R/L 2020 X 618 JE ● 20 20 110 20 20 45,0 6,00 18 36 GC□ N60OO-□□ BX0520 6.0 XP02-E BT0505-E	(GNDM R/L 2020 X 618 JE	•	•	20	20	110	20	20	45,0	6,00	18	36	GC□ N60OO-□□	DV0E00	6.0	VD02 F	DTOFOE F	LH040
GNDM R/L 2525 X 210 JE ● 0 25 25 100 25 25 33,6 2,00 10 20 GC□□20○○□□□ BAU520 6,0 AF02-E B10505-E	(GNDM R/L 2525 X 210 JE	•	•	25	25	100	25	25	33,6	2,00	10	20	GC□ □2000-□□	BAUGZU	6,0	APUZ-E	B10000-E	LH040
GNDM R/L 2525 X 312 JE ● ● 25 25 100 25 25 36,6 3,00 12 24 GC□ □30○○-□□	(GNDM R/L 2525 X 312 JE	•	•	25	25	100	25	25	36,6	3,00	12	24	GC□ □3000-□□					
GNDM R/L 2525 X 418 JE ● ● 25 25 110 25 25 45,0 4,00 18 36 GC□ □40○○-□□	(GNDM R/L 2525 X 418 JE	•	•	25	25	110	25	25	45,0	4,00	18	36	GC□ □4000-□□					
GNDM R/L 2525 X 518 JE ● ● 25 25 110 25 25 45,0 5,00 18 36 GC□ N50○○-□□	(GNDM R/L 2525 X 518 JE	•	•	25	25	110	25	25	45,0	5,00	18	36	GC□ N50OO-□□					
GNDM R/L 2525 X 618 JE ● ● 25 25 110 25 25 45,0 6,00 18 36 GC□ N60OO-□□	(GNDM R/L 2525 X 618 JE	•	•	25	25	110	25	25	45,0	6,00	18	36	GC□ N6000-□□					

Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

■ Zubehörteile (Kühlmittelschlauch)

Bezeichnung	Lager	L (mm)	Standard- gewinde	Standard- gewinde	Abb.
J-HOSE-G1/8-G1/8-200-E	•	200	G1/8	G1/8	1
J-HOSE-G1/8-G1/8-300-E	•	300	G1/8	G1/8	1

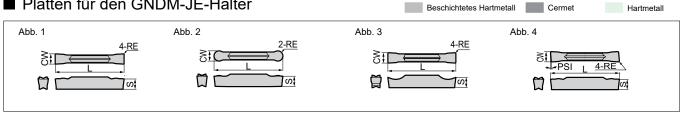
Kühlmittelschläuche müssen gesondert bestellt werden.

■ Zubehörteile (Adapter)

Lager	Standard- gewinde	Standard- gewinde	Abb.
•	G1/8	G1/8	1
•	G1/8	G1/8	2
•	G1/8	G1/8	3
	Lager • •	● G1/8 ● G1/8	Lager gewinde gewinde ● G1/8 G1/8 ● G1/8 G1/8

Adapter müssen gesondert bestellt werden.

^{*} Madenschrauben müssen gesondert bestellt werden. (M5x5).


Abmessungen (mm)

Stechsystem GNDM-JE

Einstechen / Abstechen

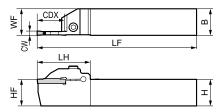
■ Platten für den GNDM-JE-Halter

Einstechen	/ I	Dre	eh	en						,	Abmess	sunge	en (mm) %	1
	5P	5P	டி	뚰	58	58	\geq	\geq	Α	С	W				
Bezeichnung	AC8025P	AC8035P	AC830F	AC425K	AC5015S	AC5025S	AC520U	AC530L	T2500A	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM N3002 MG	•	•		0	•	•		•	_	3,0	±0,03		21,1	3,8	
N3004 MG	•	•	•	•	•	•	0	•	-	0,0	±0,03	0,4	21,1	3,8	
N4002 MG	•	•		0	•	•		•	_		±0,03		26,4	4,0	
N4004 MG		•		0	•	•		•	-	4,0	±0,03	0,4	26,4	4,0	
N4008 MG	•	•	•	•	•	•	0	•	<u> </u>		±0,03		26,4	4,0	1
N5004 MG	•	•		0	•	•		•	-	5.0	±0,03	0,4	26,4	4,1	
N5008 MG	•	•	•	•	•	•	0	•	_	0,0	±0,03	0,8	26,4	4,1	
N6004 MG	•	•		0	•	•		•	-	6,0	±0,03	0,4	26,4	4,5	
N6008 MG	•	•	•	•	•	•	0	•	_	_ ′	±0,03	0,8	26,4	4,5	
GCM N2002 ML	-	-	-	-	•	•	0	•	-	2,0	±0,03		21,1	3,6	
N3002 ML	•	•	•	•	•	•	0	•	0	3,0	±0,03	0,2	21,1	3,8	
N3004 ML		•	ļ	0	•	•		•	0	0,0	±0,03	0,4	21,1	3,8	
N4002 ML	•	•		0	•	•		•	0		±0,03	0,2	26,4	4,0	
N4004 ML	•	•	•	•	•	•	0	•	0	4,0	±0,03	0,4	26,4	4,0	1
N4008 ML	•	•	ļ	0	•	•		0	0		±0,03	0,8	26,4	4,0	•
N5004 ML	•	•	•	•	•	•	0	•	-	5.0	±0,03	0,4	26,4	4,1	
N5008 ML	•	•	ļ	0	•	•		0	<u> </u>	3,0	±0,03	0,8	26,4	4,1	
N6004 ML	•	•	•	•	•	•	0	•	-	6,0	±0,03	0,4	26,4	4,5	
N6008 ML	•	•		0	•	•		0	-	0,0	±0,03	0,8	26,4	4,5	

		5P	P	58	55	0	13	A	C	W				
	Bezeichnung	AC8035P	AC830P	AC5015S	AC5025S	AC520U	AC530U	T2500A	Einstech- breite	Toleranz	RE	L	S	Abb.
1	GCM N2002 GG	•	•	•	•	•	•	_	 2,0	±0,03	0,2	21,1	3,6	
l	N3002 GG	•	•	•	•	O	•	_	3,0	±0,03			3,8	
	N3004 GG	•	•	•	•	0	•	_	 3,0	±0,03	0,4	21,1	3,8	
	N4002 GG	•	•	•	•	O	•	_	4,0	±0,03				
ļ	N4004 GG	•	•	•	•	0	•	_	 7,0	±0,03				1
	N5002 GG	•	•	•	•	O	•	_	5,0	±0,03			4,1	
	N5004 GG	•	•	•	•	0	•	_	 0,0	±0,03			4,1	
	N6002 GG	•	•	•	•	O	•	_	6,0	±0,03				
ļ	N6004 GG	•	•	•	•	0	•	_	0,0	±0,03				
	GCM N2002 GL	•	•	•	•	O	•	_	2,0	±0,03			3,6	
	N2004 GL	•		•	•		0	_	 ,	±0,03			3,6	
	N3002 GL	•	•	•	•	0	•	_	3,0	±0,03			3,8	
	N3004 GL	•		•	•		0		 0,0	±0,03		21,1	3,8	
	N4002 GL	•	•	•	•	O	•	-	4,0	±0,03		26,4	4,0	1
	N4004 GL	•		•	•		0	_	 	±0,03				
	N5002 GL	•	•	•	•	0	•	_	5,0	±0,03				
	N5004 GL	•		•	•		0	_	 	±0,03				
	N6002 GL	•	•	•	•	0	•	_	6,0	±0,03				
J	N6004 GL	•		•	•		0	_	1 -,-	±0,03				
	GCM N2002 GF	-	_	•	•		•	0	2,0	±0,03	0,2	21,1	3,6	
	N2004 GF	_	_	•	•		0	O	 ļ	±0,03			3,6	
ı	N3002 GF	•	•	•	•	•	•	0	3,0	±0,03			3,8	
i	N3004 GF	_					-	O	 	±0,03			3,8	
	N4002 GF	•	•	•	•	•	•	0	4,0	±0,03		26,4		1
l	N4004 GF			•	•		•	0	 ļ	±0,03				
	N5002 GF	•	•	•	•	•	•	_	5,0	±0,03				
l	N5004 GF	•	_	•	•		•		 ļ	±0,03			4,1	
	N6002 GF		•			•		_	6,0	±0,03	0,2	26,4	4,5	

Profildrehen Abmessungen (mm) CW Bezeichnung RE L Toleranz GCM N3015 RG N4020 RG N5025 RG N6030 RG • O ● O 3.0 ±0.03 1.5 21.1 3.8 O ● O 4.0 ±0.03 2.0 26.4 4.0 O ● O ±0.03 2.5 27.2 4.1 O ● O ±0.03 3.0 27.5 4.5 • • •

Profildrehe	n/	Fr	eis	ste	ch	er	1		P	Abmess	ungen	(mm)	<u> </u>		K
	25P	8035P	830P	425K	158	258	00	000	OA O	C	W				
Bezeichnung	C8025	080	1083	1C42	C501	C20	AC520	AC53(T250	Einstech-	Toleranz	RE	L	S	Abb.
	⋖	⋖	_	_	⋖	⋖	_	_		breite					
GCM N2010 RN	-	—	—	—	•	•	0	0	 	2,0	±0,03	1,0	21,7	3,6	
N3015 RN	•	•	•	0	•	•	O	O	-	3,0	±0,03	1,5	22,6	3,8	
N4020 RN	•	•	•	0	•	•	O	O	-	4,0	±0,03	2,0	28,2	4,0	2
N5025 RN	•	•	•	O	•	•	O	O	-	5,0	±0,03	2,5	28,3	4,1	1
N6030 RN	•	•	•	O	•	•	O	O	_	6,0	±0,03	3,0	28,3	4,5	


Nichteisenr	ne	tall	le				,	Abmess	sunge	n (mm) %	1
Dozeichnung	Ŧ						C'		RE	_	S	۸hh
Bezeichnung	I						Einstech- breite	Toleranz	IXL	_	5	Abb.
GCG N2002 GA	0						2,0	±0,025	0,2	21,1	3,6	
N3002 GA	O						3,0	±0,025	0,2	21,1	3,8	
N4004 GA	0						4,0	±0,025	0,4	26,4	4,0	3
N5004 GA	O						5,0	±0,025	0,4	26,4	4,1	
N6004 GA	О						6,0	±0,025	0,4	26,4	4,5	

Abstechen										,	Abmess	unge	en (mm) Z	t Z
	35P	Р	158	255	00	00	30N			_	W				
Bezeichnung	28035P	AC830F	AC5015S	AC5025S	C5201	C5301	C103		PSI	Einstech-	Toleranz	RE	L	S	Abb
	Ă	Þ	¥	¥	₹	∢	¥			breite					
GCM R2002 CG 05	•	•	•	•	0	•	_		5°	2,0	±0,03	0,2	21,1	3,6	
L2002 CG 05	•	•	•	•	0	•	-		5°	2,0	±0,03	0,2	21,1	3,6	
GCM R3002 CG 05	•	•	•	•	0	•	-		5°	3,0	±0,03	0,2	21,3	3,8	4
L3002 CG 05	•	•	•	•	0	•	-		5°	3,0	±0,03	0,2	21,3	3,8	7
GCM R4002 CG 05	•	•	•	•	0	•	-		5°	4,0	±0,04	0,2	26,7	4,0	
L4002 CG 05	•	•	•	•	0	•	_		5°	4,0	±0,04	0,2	26,7	4,0	
GCM R20003 CF 10) –	-	•	•	-	_	•		10°	2,0	±0,08	0,03	22,4	3,6	
L20003 CF 10	-	<u> </u>	•	•	<u> </u>	<u> </u>	•	l	10°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 10) —	-	•	•	-	—	•		10°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 10	–	-	•	•	_	–	•		10°	3,0	±0,08	0,03	22,4	3,8	4
GCM R20003 CF 15	5 -	_	•	•	-	_	•		15°	2,0	±0,08	0,03	22,4	3,6	+
L20003 CF 15	-	-	•	•	_	_	•		15°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 15	5 –	-	•	•	-	_	•		15°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 15	-	_	•	•	_	_	•		15°	3,0	±0,08	0,03	22,4	3,8	

GCM R: Rechte Ausführung GCM L: Linke Ausführung Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

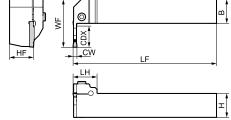
Radial-Tiefstechen und Abstechen

Ersatzteile

Die Zeichnungen zeigen Rechtsausführung.

Halter

- Haltoi															-
Bezeichnung	La	ger		Abn	nessur	ngen ((mm)		Einstech- breite (mm)	Max. Ein- stechtiefe (mm)		Einsetzbare	Klemm-	N·m	Schlüssel
	R	L	Н	В	LF	WF	HF	LH	CW	CDX		Platten	schraube		Comaccon
GNDL R/L 2020 K 1.2516	•	•	20	20	125	20	20	38,0	1,25	16	32	GCM N125005 GF			
GNDL R/L 2020 K 1.516	•	•	20	20	125	20	20	38,0	1,50	16	32	GCM N150005 GF			
GNDL R/L 2020 K 220	•	•	20	20	125	20	20	44,5	2,00	20	40	GCM □2000-□□			
GNDL R/L 2020 K 320	•	•	20	20	125	20	20	44,5	3,00	20(18)	40	GCM □3000-□□			
GNDL R/L 2020 K 425	•	•	20	20	125	20	20	50,0	4,00	25(23)	50	GCM □4000-□□			
GNDL R/L 2020 K 525	•	•	20	20	125	20	20	50,0	5,00	25(23)	50	GCM N50OO-□□			
GNDL R/L 2020 K 625	•	•	20	20	125	20	20	50,0	6,00	25(23)	50	GCM N60OO-□□			
GNDL R/L 2525 M 1.2516	•	•	25	25	150	25	25	40,0	1,25	16	32	GCM N125005 GF			
GNDL R/L 2525 M 1.516	•	•	25	25	150	25	25	40,0	1,50	16	32	GCM N150005 GF	BX0520	5,0	LH040
GNDL R/L 2525 M 220	•	•	25	25	150	25	25	44,5	2,00	20	40	GCM □2000-□□			
GNDL R/L 2525 M 320	•	•	25	25	150	25	25	44,5	3,00	20(18)	40	GCM □3000-□□			
GNDL R/L 2525 M 425		•	25	25	150	25	25	50,0	4,00	25(23)	50	GCM □4000-□□			
GNDL R/L 2525 M 525	•	•	25	25	150	25	25	50,0	5,00	25(23)	50	GCM N50OO-□□			
GNDL R/L 2525 M 625	•	•	25	25	150	25	25	50,0	6,00	25(23)	50	GCM N60OO-□□			
GNDL R/L 3225 P 320			32	25	170	25	32	44,5	3,00	20(18)	40	GCM □3000-□□			
GNDL R/L 3225 P 425			32	25	170	25	32	50,0	4,00	25(23)	50	GCM □4000-□□			
GNDL R/L 3225 P 525			32	25	170	25	32	50,0	5,00	25(23)	50	GCM N50OO-□□			
GNDL R/L 3225 P 625			32	25	170	25	32	50,0	6,00	25(23)	50	GCM N60OO-□□			
GNDL R/L 3225 P 725			32	25	170	25	32	50,0	7,00	25(23)	50	GCM N7000-□□	BX0520	6.0	LH050
GNDL R/L 3225 P 825			32	25	170	25	32	50,0	8,00	25(23)	50	GCM N80OO-□□	DAUGZU	0,0	LI 1030
GNDL R/L 3232 P 320	•	•	32	32	170	32	32	44,5	3,00	20(18)	40	GCM □3000-□□			
GNDL R/L 3232 P 425	•	•	32	32	170	32	32	50,0	4,00	25(23)	50	GCM □4000-□□			
GNDL R/L 3232 P 525	•	•	32	32	170	32	32	50,0	5,00	25(23)	50	GCM N50OO-□□	BX0620	6.0	LH050
GNDL R/L 3232 P 625	•	•	32	32	170	32	32	50,0	6,00	25(23)	50	GCM N60OO-□□	DA0020	0,0	LI 1030
GNDL R/L 3232 P 725	•	•	32	32	170	32	32	50,0	7,00	25(23)	50	GCM N70OO-□□			
GNDL R/L 3232 P 825	•	•	32	32	170	32	32	50,0	8,00	25(23)	50	GCM N80OO-□□			


Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten. Die Werte in den Klammern beziehen sich auf den Einsatz von Platten (RG-Spanbrecher) beim Profildrehen.

Radial-Tiefstechen, abgewinkelter Halter

Halter

Die Zeichnungen zeigen Rechtsausführung.

Ersatzteile

Bezeichnung	La	ger		Abm	essur	ngen (mm)		Einstech- breite (mm)	Max. Ein- stechtiefe (mm)	Einsetzbare Platten	Klemm- schraube	(N·m)	Schlüssel
	R	L	Н	В	LF	WF	HF	LH	CW	CDX	Fiatteri	Scillaube		
GNDLS R/L 2020 K 216	•	•	20	20	125	38	20	25	2,0	16	GCM □2000-□□			
GNDLS R/L 2020 K 316	0	•	20	20	125	38	20	25	3,0	16	GCM □3000-□□			
GNDLS R/L 2525 M 218	•	•	25	25	150	45	25	25	2,0	18	GCM □2000-□□			
GNDLS R/L 2525 M 318	•	•	25	25	150	45	25	25	3,0	18	GCM □3000-□□	BX0520	5,0	LH040
GNDLS R/L 2525 M 423	•	•	25	25	150	50	25	25	4.0	23	GCM □4000-□□			

25

25

25

5,0

6,0

23

23

GNDLS R/L 2525 M 623 25 25 Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

GNDLS R/L 2525 M 523

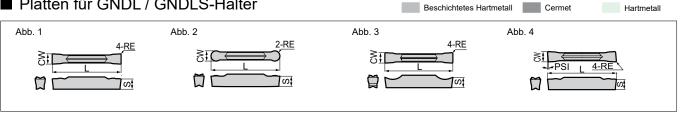
0

0

25

25

150 50


150 50 GCM N50OO-□□

GCM N60OO-□□

Stechsystem GNDL/GNDLS

■ Platten für GNDL / GNDLS-Halter

Einstechen	/ I	Dre	eh	en						,	Abmess	sunge	n (mm) %	1
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	Einstech-	W Toleranz	RE	L	s	Abb.
	A	¥	A	Ā	¥	¥	Ā	Ā	—	breite					
GCM N3002 MG	•	•		0	•	•		•	-	3,0	±0,03	0,2	21,1	3,8	
N3004 MG	•	•	•	•	•	•	0	•	-	0,0	±0,03		21,1	3,8	
N4002 MG	•	•		0	•	•		•	_		±0,03		26,4	4,0	
N4004 MG	•	•		0	•	•		•	-	4,0	±0,03	0,4		4,0	
N4008 MG	•	•	•	•	•	•	0	•	_	ļ	±0,03			4,0	
N5004 MG	•	•		0	•	•		•	-	5,0	±0,03		26,4	4,1	
N5008 MG	•	•	•	•	•	•	0	•	_	0,0	±0,03	0,8	26,4	4,1	1
N6004 MG	•	•		0	•	•		•	-	6,0	±0,03	0,4	26,4	4,5	
N6008 MG	•	•	•	•	•	•	0	•	_	0,0	±0,03	taidei.	26,4	4,5	
N7004 MG	•	•		O	•	•		0	-	7,0	±0,04	0,4	28,8		
N7008 MG	•	•	•	•	•	•	0	•	_		±0,04		28,8		ļ
N8004 MG	•	•		0	•	•		0	-	8,0	±0,04		28,8		
N8008 MG	•	•	•	•	•	•	0	•	_		±0,04				
GCM N2002 ML	-	<u> </u>	_	-	•	•	0	•	ļ.—.	2,0	±0,03		21,1	3,6	ļ
N3002 ML	•	•	•	•	•	•	0	•	0	3,0	±0,03	0,2	21,1	3,8	
N3004 ML	•	•		0	•	•		•	0	0,0	±0,03	0,4	21,1	3,8	
N4002 ML	•	•		0	•	•		•	0		±0,03	- /	26,4	4,0	
N4004 ML	•	•	•	•	•	•	0	•	0	4,0	±0,03	0,4	26,4	4,0	
N4008 ML	•	•		0	•	•		0	0	ļ	±0,03	0,8	26,4	4,0	
N5004 ML	•	•	•	•	•	•	0	•	-	5,0	±0,03	0,4	26,4	4,1	1
N5008 ML	•	•	ļ	0	•	•		0	<u> </u>	0,0	±0,03	0,8	26,4	4,1] '
N6004 ML	•	•	•	•	•	•	0	•	-	6,0	±0,03			4,5	
N6008 ML	•	•	l	0	•	•		0	<u> </u>	0,0	±0,03	0,8	26,4	4,5]
N7004 ML	•	•	•	0	•	•	0	•	-	7,0	±0,04	0,4	28,8	5,5	
N7008 ML	•	•	l	0	•	•		0	<u> </u> –	' ,0	±0,04	0,8	28,8		
N8004 ML	•	•	•	0	•	•	0	•	-	8.0	±0,04	0,4			
N8008 ML	•	•		0	•	•		0	-	0,0	±0,04	0,8	28,8	6,0	

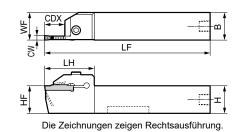
Profildrehe	n									,	Abmess	sunge	n (mm) 💯	
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	C Einstech- breite	W Toleranz	RE	L	s	Abb.
GCM N3015 RG	•	•	•	•	•	•	0	•	0	3,0	±0,03	1,5	21,1	3,8	
N4020 RG	•	•	•	•	•	•	0	•	0	4,0	±0,03	2,0	26,4	4,0	
N5025 RG	•	•	•	•	•	•	0	•	-	5,0	±0,03	2,5	27,2	4,1	2
N6030 RG	•	•	•	•	•	•	0	•	-	6,0	±0,03	3,0	27,5	4,5	-
N7035 RG	•	•	•	•	•	•	0	•	-	7,0	±0,04	3,5	29,1	5,5]
N8040 RG	•	•	•	•	•	•	0	•	-	8,0	±0,04	4,0	29,3	6,0	

Profildrehe	n/	Fr	eis	ste	ch	er	1		A	Abmess	ungen	(mm)			Ŕ
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	C' Einstech- breite	W Toleranz	RE	L	S	Abb.
GCM N2010 RN	_	_	_	-	•	•	O	0	=	2,0	±0,03		21,7	3,6	
N3015 RN		•	•	O			O	O	_	3,0	±0,03	1,5	22,6	3,8]
N4020 RN	•	•	•	0	•	•	0	0	_	4,0	±0,03	2,0	28,2	4,0	2
N5025 RN	•	•	•	0	•	•	0	0	-	5,0	±0,03	2,5	28,3	4,1]
N6030 RN	•	•	•	O	•	•	O	O	_	6,0	±0,03	3,0	28,3	4,5	

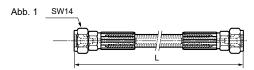
Nichteisenr	ne	tall	е					Abmess	sunge	n (mm) %	
							С	W				
Bezeichnung	王						Einstech-	T-1	RE	L	S	Abb.
							breite	Toleranz				
GCG N2002 GA	0						2,0	±0,025	0,2	21,1	3,6	
N3002 GA	O						 3,0	±0,025	0,2	21,1	3,8	
N4004 GA	0			 	 		 4,0	±0,025	0,4	26,4	4,0	3
N5004 GA	0			 			 5,0	±0,025	0,4	26,4	4,1	
N6004 GA	O			 	 		 6,0	±0,025	0,4	26,4	4,5	
							-					

		5P	OP	58	58	2	2	Υ		С	W				
Bez	eichnung	AC8035P	AC830	AC5015S	AC5025S	AC5201	AC5301	T2500A		Einstech- breite	Toleranz	RE	L	S	Abb
	N2002 GG	•	•	•	•	•	•	_	 	2,0	±0,03		21,1		
	N3002 GG	•	•	•	•	O	•	-		3,0	±0,03	0,2	21,1	3,8	
	N3004 GG	•	•	•	•	0	•	_	 	0,0	±0,03	0,4	21,1 26,4	3,8	
	N4002 GG	•	•	•	•	O	•	-		4,0	±0,03		26,4	4,0	
	N4004 GG	•	•	•	•	0	•	_	 		±0,03				
	N5002 GG	•	•	•	•	0	•	-		5,0	±0,03				1
	N5004 GG	•	•	•	•	0	•	_	 		±0,03		26,4		
	N6002 GG	•	•	•	•	0	•	-		6,0	±0,03		26,4		
	N6004 GG	•	•	•	•	0	•		 	l	±0,03		26,4		l
	N7004 GG	•	O	•	•	0	•		 	7,0	±0,04		28,8		ļ
	N8004 GG	•	•	•	•		-	_		8,0	±0,04				
	N2002 GL	•	•	-	•	O	•	-		2,0	±0,03		21,1	3,6	
	N2004 GL	•		_			0	_	 	ļ	±0,03				1
	N3002 GL	•	•	•	•	O		_		3,0	±0,03				
	N3004 GL N4002 GL	•		_	•	0	•	- -	 	ļ	±0,03 ±0,03				ł
	N4002 GL N4004 GL	•	•	_		J	0			4,0	±0,03		26,4		
	N5002 GL	•	•	•	•	0	•		 	ļ	±0,03				1
	N5002 GL N5004 GL	•		•	•	9	0	- -		5,0	±0,03		26,4		
	N6002 GL			_	•	0	•	_	 	ļ	±0,03				ł
	N6002 GL N6004 GL	•		•	•	0	0			6,0	±0,03			4,5 4,5	
	N7004 GL	•	0	•	•	\circ	•		 	7,0	±0,03		28.8		ł
	N8004 GL	•	0	•	•	0	•	_	 	8,0	±0,04				1
	N125005 GF	Ĭ.	_	Ĭ.	_	_	•	-		1,25	±0,04				١.
	N150005 GF	-	-		-	-	•	-	 	1,5	±0,03				1
	N2002 GF	_	_	•	•		•	0			±0,03			3,6	
	N2004 GF	_	_	•	•		0	ō		2,0	±0,03		21,1	3,6	
	N3002 GF	•	•	•	•	•	•	0	 		±0,03			3,8	1
	N3004 GF	•		•	•		•	o		3,0	±0,03			3,8	
	N4002 GF	•	•	•	•	•	•	0	 	4.0	±0.03		26,4		1
	N4004 GF	•		•	•		•	0		4,0	±0,03				
i	N5002 GF	•	•	•	•	•	•	_	 	50	±0,03	0,2	26,4	4,1	1
	N5004 GF	•		•	•		•	-		5,0	±0,03	0,4	26,4	4,1	'
	N6002 GF	•	•	•	•	•	•	-		6,0	±0,03				1
	N6004 GF	•		•	•		•	-		0,0	±0,03	0,4	26,4	4,5	
	N7002 GF	•	•	•	•	0	•	-		7,0	±0,04	0,2	28,8	5,5	1
	N7004 GF	•	•	•	•	0	•	<u> </u>		1,0	±0,04]
	N8002 GF	•	•	•	•	O	•	-	 	8,0	±0,04	0,2	28,8	6,0	
	N8004 GF	•	•	•	•	O	•	_		0,0	±0,04	0,4	28,8	6,0	

Abstecher	า								,	Abmess	sunge	en (mm) Z	10
_	35P	30P	158	258	200	300	300		_	W			_	
Bezeichnung	AC8035P	AC830P	AC5015S	AC5025S	AC520L	AC5301	AC1030	PSI	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM R2002 CG 0	5	•	•	•	0	•	_	5°	2,0	±0,03	0,2	21,1	3,6	
L2002 CG 0	5 🗨	•	•	•	0	•	-	 5°	2,0	±0,03	0,2	21,1	3,6	
GCM R3002 CG 0	5 •	•	•	•	0	•	-	5°	3,0	±0,03	0,2	21,3	3,8	4
L3002 CG 0	5	•	•	•	O	•	-	5°	3,0	±0,03	0,2	21,3	3,8	7
GCM R4002 CG 0	5 •	•	•	•	0	•	-	5°	4,0	±0,04	0,2	26,7	4,0	
L4002 CG 0	5 •	•	•	•	0	•	_	5°	4,0	±0,04	0,2	26,7	4,0	
GCM R20003 CF	10 -	-	•	•	-	-	•	10°	2,0	±0,08	0,03	22,4	3,6	
L20003 CF 1	10 -	<u> </u>	•	•	-	<u> </u>		 10°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF	10 -	_	•	•	-	-		10°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 1	10 -	-	•	•	-	_	•	10°	3,0	±0,08	0,03	22,4	3,8	4
GCM R20003 CF	15 –	_	•	•	_	_	•	 15°	2,0	±0,08	0,03	22,4	3,6	+
L20003 CF 1	15 -	-	•	•	-	_	•	 15°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF	15 -	-	•	•	-	-	•	 15°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 1	15 –	_	•	•	-	-	•	15°	3,0	±0,08	0,03	22,4	3,8	


GCM R: Rechte Ausführung GCM L: Linke Ausführung Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

Radial-Tiefstechen und Abstechen


■ Ersatzteile

■ Halter

															9		
Bezeichnung	La	ger	Н	Abm	essur	ngen	(mm)	LH	Einstech- breite (mm)		Max. Abstech-Ø (mm)	Einsetzbare	Klemm- schraube	N·m	Ver- schluss- stopfen und	scnraube*	Schlüssel
	Г		П	Ь	LF	VVF	ПГ	LII	CVV	CDV					Dichtung		
GNDL R/L 2020 X 220 JE	•	•	20	20	110	20	20	44,5	2,00	20	40	GC□ □2000-□□					
GNDL R/L 2020 X 320 JE	•	•	20	20	110	20	20	44,5	3,00	20	40	GC□ □3000-□□					
GNDL R/L 2020 X 425 JE	•	•	20	20	115	20	20	50,0	4,00	25	50	GC□ □4000-□□					
GNDL R/L 2020 X 525 JE	•	•	20	20	115	20	20	50,0	5,00	25	50	GC□ N5000-□□					
GNDL R/L 2020 X 625 JE	•	•	20	20	115	20	20	50,0	6,00	25	50	GC□ N60OO-□□	BX0520	6.0	XP02-E	BT0505-E	LH040
GNDL R/L 2525 X 220 JE	•	•	25	25	110	25	25	44,5	2,00	20	40	GC□ □2000-□□	DA0020	0,0	AFUZ-E	D10303-E	LHU40
GNDL R/L 2525 X 320 JE	•	•	25	25	110	25	25	44,5	3,00	20	40	GC□ □3000-□□					
GNDL R/L 2525 X 425 JE	•	•	25	25	115	25	25	50,0	4,00	25	50	GC□ □4000-□□					
GNDL R/L 2525 X 525 JE	•	•	25	25	115	25	25	50,0	5,00	25	50	GC□ N50OO-□□					
GNDL R/L 2525 X 625 JE	•	•	25	25	115	25	25	50,0	6,00	25	50	GC□ N6000-□□					
								· · ·	· ·								

Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

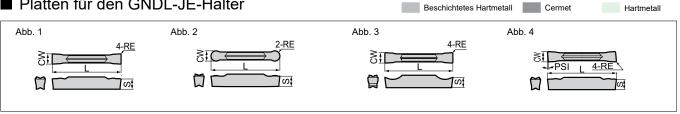
■ Zubehörteile (Kühlmittelschlauch)

Bezeichnung	Lager	L (mm)	Standard- gewinde	Standard- gewinde	Abb.
J-HOSE-G1/8-G1/8-200-E	•	200	G1/8	G1/8	1
J-HOSE-G1/8-G1/8-300-E	•	300	G1/8	G1/8	1

Kühlmittelschläuche müssen gesondert bestellt werden.

■ Zubehörteile (Adapter)

Bezeichnung	Lager	Standard- gewinde	Standard- gewinde	Abb.
J-G1/8-G1/8-00-E	•	G1/8	G1/8	1
J-G1/8-G1/8F-90-E	•	G1/8	G1/8	2
J-G1/8-G1/8-90-E	•	G1/8	G1/8	3


Adapter müssen gesondert bestellt werden.

^{*} Madenschrauben müssen gesondert bestellt werden. (M5x5).

Stechsystem GNDL-JE-Serie

■ Platten für den GNDL-JE-Halter

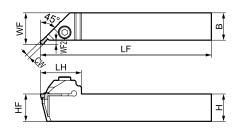
Einstechen	/ I	Dre	eh	en							Abmess	sunge	en (mm) %	1
	25P	35P	Ю	沃	58	55	00	9	AC.	С	W				
Bezeichnung	AC8025F	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM N3002 MG	•	•		0	•	•		•	-	3,0	±0,03		21,1	3,8	
N3004 MG	•	•	•	•	•	•	0	•	-		±0,03	+		3,8	
N4002 MG	•	•		0	•	•		•	-		±0,03				
N4004 MG	•	•		0	•	•		•	-	4,0	±0,03	- /	26,4		
N4008 MG	•	•	•	•	•	•	O	•	_		±0,03				1
N5004 MG	•	•		0	•	•		•	-	5,0	±0,03				
N5008 MG	•	•	•	•	•	•	0	•			±0,03				
N6004 MG	•	•		0	•	•		•	-	6,0	±0,03				
N6008 MG	•	•	•	•	•	•	0	•	_	_ ′	±0,03			4,5	
GCM N2002 ML	-	_	_	-	•	•	0	•	-	2,0	±0,03			3,6	
N3002 ML	•	•	•	•	•	•	0	•	0	3,0	±0,03			3,8	
N3004 ML	•	•		0	•	•	ļ	•	0		±0,03		21,1	3,8	
N4002 ML	•	•		0	•	•		•	0		±0,03				
N4004 ML	•	•	•	•	•	•	0	•	0	4,0	±0,03	, ,	26,4	4,0	1
N4008 ML	•	•		0	•	•		0	0	ļ	±0,03	0,8	26,4		١.
N5004 ML	•	•	•	•	•	•	0	•	-	5.0	±0,03	0,4	26,4		
N5008 ML	•	•		0	•	•		0	_	0,0	±0,03	0,8	26,4	4,1	
N6004 ML	•	•	•	•	•	•	0	•	-	6,0	±0,03		26,4		
N6008 ML		•		0	•	•		0	-	0,0	±0,03	0,8	26,4	4,5	

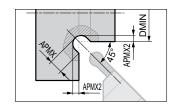
	Einstechen	//	٩b	ste	ech	ner	1			,	Abmess	unge	n (mm	ı) Z	#/// t
		5P	P	55	55	\supset	\supseteq	٨		С	W				
	Bezeichnung	AC8035P	AC830P	AC5015S	AC5025S	AC520	AC5301	T2500A		Einstech- breite	Toleranz	RE	L	S	Abb.
	GCM N2002 GG	•	•	•	•	•	•	_		2,0	±0,03	0,2	21,1	3,6	
	N3002 GG	•	•	•	•	O	•	-		3,0	±0,03	0,2	21,1	3,8	
	N3004 GG	•	•	•	•	0	•	<u> </u>	 	3,0	±0,03	0,4	21,1	3,8	
	N4002 GG	•	•	•	•	O	•	_		4,0	±0,03	0,2	26,4	4,0	
	N4004 GG	•	•	•	•	0	•	_	 	7,0	±0,03		26,4	4,0	1
	N5002 GG	•	•	•	•	O	•	_		5,0	±0,03			4,1	
	N5004 GG	•	•	•	•	0	•	_	 		±0,03		26,4	4,1	
	N6002 GG	•	•	•	•	O	•	_		6.0	±0,03			4,5	
	N6004 GG	•	•	•	•	0	•	_		0,0	±0,03		26,4	4,5	
	GCM N2002 GL	•	•	•	•	O	•	_		2,0	±0,03			3,6	
	N2004 GL	•		•	•		0	_	 	_,-,-	±0,03			3,6	
	N3002 GL	•	•	•	•	0	•	_		3,0	±0,03			3,8	
	N3004 GL	•		•	•		Ö		 		±0,03			3,8	
	N4002 GL	•	•	•	•	0		_		4,0	±0,03			4,0	1
	N4004 GL	•		•	•		0		 		±0,03		26,4		
	N5002 GL	•	•	•	•	0	•	-		5,0	±0,03				
	N5004 GL	-		-	_	0	_		 	ļ	±0,03			4,1	
	N6002 GL	•	_	-	-	J	0	-		6,0	±0,03			4,5	
	N6004 GL	_		-	-		9	<u> </u>			±0,03		26,4		
	GCM N2002 GF N2004 GF	-	_	_	_		0	0		2,0	±0,03		21,1	3,6	
١	N3002 GF	_	_	_	_		_	0	 		±0,03		21,1	3,6	
	N3002 GF N3004 GF			-	-	_		0		3,0	±0,03 ±0,03		21,1	3,8	
	N4002 GF	•		-	_	•	•	0	 		±0,03			4.0	
	N4002 GF		_	•	•			0		4,0	±0,03			4,0	1
	N5002 GF	•			-				 		±0,03		26,4	4,1	
	N5002 GF N5004 GF	•		•	•		•	<u>-</u>		5,0	±0.03		26,4	4,1	
	N6002 GF	•	•	•	•	•	•		 		±0,03			4,5	
	N6004 GF	•		•	•		•	_		6,0	+0.03				

Profildrehen Abmessungen (mm) CW Bezeichnung RE L Toleranz GCM N3015 RG • N4020 RG • N5025 RG • N6030 RG • O • O 3.0 ±0.03 1.5 21.1 3.8 O • O 4.0 ±0.03 2.0 26.4 4.0 O • - 5.0 ±0.03 2.5 27.2 4.1 O • - 6.0 ±0.03 3.0 27.5 4.5 • • • •

Profildrehe	n/	Fı	ei	ste	ch	er	1		Å	Abmess	ungen	(mm)			K
	25P	35P	Р	쏬	158	258	9	00	OA O	С	W				
Bezeichnung	C8025	C8035I	\C830F	\C42	C501	C502	\C5201	\C530	L250	Einstech-	Toleranz	RE	L	S	Abb.
	⋖	⋖	_	_	⋖	⋖	⋖	٩		breite					
GCM N2010 RN	-	-	-	-	•	•	0	0	-	2,0	±0,03	1,0	21,7	3,6	
N3015 RN	•	•	•	0	•	•	O	O	-	3,0	±0,03	1,5	22,6	3,8	
N4020 RN	•	•	•	O	•	•	0	O	-	4,0	±0,03	2,0	28,2	4,0	2
N5025 RN	•	•	•	O	•	•	O	O	-	5,0	±0,03	2,5	28,3	4,1	1
N6030 RN	•	•	•	O	•	•	O	O	_	6,0	±0,03	3,0	28,3	4,5	

Nichteisenr	ne	talle)				,	Abmess	sunge	en (mm		1
							C	W				
Bezeichnung	Ŧ						Einstech- breite	Toleranz	RE	L	S	Abb.
GCG N2002 GA	0						2,0	±0,025	0,2	21,1	3,6	
N3002 GA	О							±0,025			3,8	1
N4004 GA	O		1			 	4,0	±0,025	0,4	26,4	4,0	3
N5004 GA	O			I			5,0	±0,025	0,4	26,4	4,1	
N6004 GA	О						6,0	±0,025	0,4	26,4	4,5	

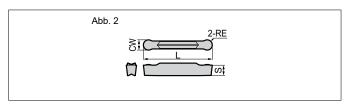

Abstechen									,	Abmess	sunge	n (mm) Z	10
	35P	P	158	255	00	00	30U		_	W				
Bezeichnung	AC8035F	AC830P	AC5015S	AC5025S	AC5201	AC530L	AC10;	PSI	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM R2002 CG 05	•	•	•	•	0	•	_	5°	2,0	±0,03	0,2	21,1	3,6	
L2002 CG 05	•	•	•	•	0	•	<u> </u>	 5°	2,0	±0,03	0,2	21,1	3,6	
GCM R3002 CG 05	•	•	•	•	0	•	-	5°	3,0	±0,03	0,2	21,3	3,8	4
L3002 CG 05	•	•	•	•	0	•	_	 5°	3,0	±0,03	0,2	21,3	3,8	_
GCM R4002 CG 05	•	•	•	•	0	•	-	5°	4,0	±0,04	0,2	26,7	4,0	
L4002 CG 05	•	•	•	•	0	•	_	5°	4,0	±0,04	0,2	26,7	4,0	
GCM R20003 CF 1) —	-	•	•	-	-	•	10°	2,0	±0,08	0,03	22,4	3,6	
L20003 CF 10) —	-	•	•	<u> </u> –	-	•	 10°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 1) –	_	•	•	-	-	•	 10°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 10) -	-	•	•	-	-	•	10°	3,0	±0,08	0,03	22,4	3,8	4
GCM R20003 CF 1	5 –	-	•	•	-	 –	•	 15°	2,0	±0,08	0,03	22,4	3,6	+
L20003 CF 15	5 -	_	•	•	_	_	•	15°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 1	5 –	_	•	•	_	_	•	15°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 15	5 -	_	•	•	_	_	•	15°	3,0	±0,08	0,03	22,4	3,8	


GCM R: Rechte Ausführung GCM L: Linke Ausführung Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

Freistechen

Die Zeichnungen zeigen Rechtsausführung.

■ Ersatzteile


Halter

Bezeichnung	La	ger		Ab	mess	sunge	en (m	nm)		Minimaler Ø (mm)	breite	APMX	APMX2	Einsetzbare Platten	Klemm- schraube	(N·m	Schlüssel
	R	L	Н	В	LF	WF	HF	LH	WF2	DMIN	CW						
GNDN R/L2020 K 215-020	0	0	20	20	125	23	20	30	3,0	20	2,0	1,5	0,64	GCM N2010 RN			
GNDN R/L2020 K 320-020	0	0	20	20	125	23	20	30	3,0	20	3,0	2,0	0,79	GCM N3015 RN			
GNDN R/L2020 K 430-030	0	O	20	20	125	24	20	32	4,0	30	4,0	3,0	1,29	GCM N4020 RN	BX0520	5,0	LH040
GNDN R/L2020 K 535-030	0	0	20	20	125	25	20	35	5,0	30	5,0	3,5	1,44	GCM N5025 RN			
GNDN R/L2020 K 640-030	0	O	20	20	125	25	20	35	5,0	30	6,0	4,0	1,59	GCM N6030 RN			
GNDN R/L2525 M 215-020	0	O	25	25	150	28	25	30	3,0	20	2,0	1,5	0,64	GCM N2010 RN			
GNDN R/L2525 M 320-020	0	0	25	25	150	28	25	30	3,0	20	3,0	2,0	0,79	GCM N3015 RN			
GNDN R/L2525 M 430-030	0	0	25	25	150	29	25	32	4,0	30	4,0	3,0	1,29	GCM N4020 RN	BX0520	5,0	LH040
GNDN R/L2525 M 535-030	0	0	25	25	150	30	25	35	5,0	30	5,0	3,5	1,44	GCM N5025 RN			
GNDN R/L2525 M 640-030	0	C	25	25	150	30	25	35	5,0	30	6,0	4,0	1,59	GCM N6030 RN			

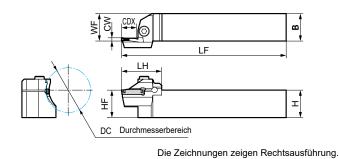
Verwenden Sie die gleiche Einstechbreite (CW) für Platten und Halter.

Beschichtetes Hartmetall Cermet

■ Platten für den GNDN-Halter

Profildrehen	/ Fraistacher
Promarenen	/ Freistecher

Profildrehe	n /	Fr	eis	ste	ch	er	1		P	Abmess	ungen	(mm)			K
Б	25P	8035P	3830P)0A	С	W									
Bezeichnung	AC8025F	AC80	AC8	AC42	AC53	T250	Einstech- breite	Toleranz	RE	L	S	Abb.			
GCM N2010 RN	Ι-	_	-	_	•	•	0	0	_	2,0	±0,03	1,0	21,7	3,6	П
N3015 RN	•	•	•	O	•	•	O	O	-	3,0	±0,03	1,5	22,6	3,8	1
N4020 RN	•	•	•	0	•	•	0	0	_	4,0	±0,03	2,0	28,2	4,0] 2
N5025 RN	•	•	•	0	•	•	0	•	_	5,0	±0,03	2,5	28,3	4,1]
N6030 RN	•	•	•	0	•	•	0	•	-	6,0	±0,03	3,0	28,3	4,5	

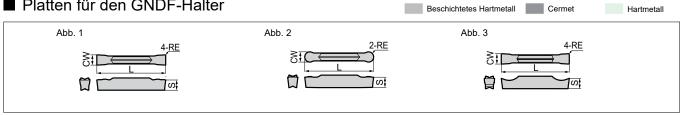

Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

F33

Axialstechen

Ersatzteile

🐨


Halter

															🔍
Bezeichnung	La	ger		Abı	messu	ngen	(mm)	Durchmesser- bereich	breite	stechtiefe	Einsetzbare	Klemm-	~	Schlüssel
bezeichnung	R	L	Н	В	LF	WF	HF	LH	(mm)	(mm)	(mm)	Platten	schraube	(N·m)	Comasser
GNDF R/L 2020 K 312-035	•	•	20	20	125	20	20	35,6	35–45	3,0	12				
GNDF R/L 2020 K 312-040		•	20	20	125	20	20	35,6	40–55	3,0	12				
GNDF R/L 2020 K 318-050	•	•	20	20	125	20	20	41,6	50-70	3,0	18				
GNDF R/L 2020 K 318-065			20	20	125	20	20	41,6	65–100	3,0	18		BX0520	5.0	LH040
GNDF R/L 2020 K 318-090			20	20	125	20	20	41,6	90–150	3,0	18		DAOSZO	3,0	LI 1040
GNDF R/L 2020 K 318-140			20	20	125	20	20	41,6	140–200	3,0	18				
GNDF R/L 2020 K 318-180			20	20	125	20	20	41,6	180–300	3,0	18				
GNDF R/L 2020 K 418-040	•	•	20	20	125	20	20	41,6	40–55	4,0	18				
GNDF R/L 2020 K 423-050			20	20	125	20	20	46.6	50-70	4,0	23				
GNDF R/L 2020 K 423-065	•		20	20	125	20	20	46,6	65–90	4,0	23				
GNDF R/L 2020 K 423-085		0	20	20	125	20	20	46.6	85–130	4,0	23	GCM N40OO-□□	BX0520	5.0	LH040
GNDF R/L 2020 K 423-125	0	•	20	20	125	20	20	46.6	125–200	4,0	23	0011114000-00	DAOOZO	0,0	L110-10
GNDF R/L 2020 K 423-180	0	0	20	20	125	20	20	46,6	180–300	4,0	23				
GNDF R/L 2020 K 423-280	0	0	20	20	125	20	20	46.6	280–1000	4,0	23				
GNDF R/L 2020 K 523-050	0	0	20	20	125	20	20	46,6	50-70	5,0	23				
GNDF R/L 2020 K 523-065	0	•	20	20	125	20	20	46,6	65–90	5,0	23				
GNDF R/L 2020 K 523-085		0	20	20	125	20	20	46.6	85–130	5,0	23				
GNDF R/L 2020 K 523-125		•	20	20	125	20	20	46,6	125–200	5,0	23	GCM N50OO-□□	BX0520	5,0	LH040
GNDF R/L 2020 K 523-180	0	0	20	20	125	20	20	46.6	180–300	5,0	23				
GNDF R/L 2020 K 523-180	0	0	20	20	125	20	20	46,6	280–1000	5,0	23				
GNDF R/L 2020 K 623-050	0	0	20	20	125	20	20	46,6	50-75	6,0	23				
GNDF R/L 2020 K 623-070	0	0	20	20	125	20	20	46,6	70–110	6,0	23				
GNDF R/L 2020 K 623-070	0		20	20	125	20	20	46,6	100–110	6,0	23		BX0520	5.0	LH040
GNDF R/L 2020 K 623-180	0	0	20	20	125	20	20	46,6	180–300	6,0	23		DAUJZU	3,0	LI 1040
GNDF R/L 2020 K 623-280	0	0	20	20	125	20	20	46,6	280–1000	6,0	23				
GNDF R/L 2525 M 312-035	•		25	25	150	25	25	35.6	35–45	3,0	12				
GNDF R/L 2525 M 312-040			25	25	150	25	25	35.6	40–55	3,0	12				
GNDF R/L 2525 M 318-050		•	25	25	150	25	25	41,6	50–70	3,0	18				
GNDF R/L 2525 M 318-065			25	25	150	25	25	41,6	65–100	3,0	18	GCM N30OO-□□	BX0520	5,0	LH040
GNDF R/L 2525 M 318-090			25	25	150	25	25	41,6	90–150	3,0	18		DAOSZO	0,0	L11040
GNDF R/L 2525 M 318-140			25	25	150	25	25	41,6	140–200	3,0	18				
GNDF R/L 2525 M 318-180			25	25	150	25	25	41,6	180–300	3,0	18				
GNDF R/L 2525 M 418-040	•		25	25	150	25	25	41,6	40–55	4,0	18				
GNDF R/L 2525 M 423-050			25	25	150	25	25	46.6	50–70	4,0	23				
GNDF R/L 2525 M 423-065			25	25	150	25	25	46.6	65–90	4,0	23				
GNDF R/L 2525 M 423-085		•	25	25	150	25	25	46,6	85–130	4,0	23	GCM N40OO-□□	BX0520	5.0	LH040
GNDF R/L 2525 M 423-125			25	25	150	25	25	46.6	125–200	4,0	23		DAUJZU	3,0	LI 1040
GNDF R/L 2525 M 423-180			25	25	150	25	25	46.6	180–300	4,0	23				
GNDF R/L 2525 M 423-280			25	25	150	25	25	46.6	280–1000	4,0	23				
GNDF R/L 2525 M 523-050	•		25	25	150	25	25	46,6	50-70	5,0	23				
GNDF R/L 2525 M 523-065			25	25	150	25	25	46,6	65–90	5,0	23				
GNDF R/L 2525 M 523-085			25	25	150	25	25	46,6	85–130	5,0	23				
GNDF R/L 2525 M 523-065			25	25	150	25	25	46,6	125–200	5,0	23	GCM N50OO-□□	BX0520	5,0	LH040
GNDF R/L 2525 M 523-120			25	25	150	25	25	46,6	180–300	5,0	23				
GNDF R/L 2525 M 523-180			25	25	150	25	25	46,6	280–1000	5,0	23				
GNDF R/L 2525 M 623-050	•	0	25	25	150	25	25	46,6	50-75	6,0	23				
GNDF R/L 2525 M 623-050			25	25	150	25	25	46,6	70–110	6,0					
GNDF R/L 2525 M 623-100			25	25	150	25	25	46,6	100–110	6,0	23	23 GCM N60○O-□□	BX0520	5.0	LH040
GNDF R/L 2525 M 623-100 GNDF R/L 2525 M 623-180			25	25	150	25	25	46,6	180–300	6,0	23		DA0020	3,0	LI 1040
GNDF R/L 2525 M 623-280			25	25	150	25	25	46,6	280–1000	6,0	23				
ONDI 17/L 2020 IVI 020-200			20	25	100	25	20	40,0	200-1000	0,0	23		1		1

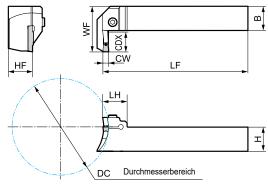
Stechsystem GNDF

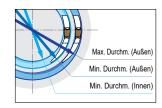
■ Platten für den GNDF-Halter

● Einstechen	/	Dre	eh	en							Abmess	unge	en (mm) %	t
	5P	5P	P	쏬	58	52	2	2	A	С	W				
Bezeichnung	AC8025F	AC8035F	AC830P	AC425K	AC5015S	AC5025S	AC5201	AC5301	T2500A	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM N3002 MG	•	•		0	•	•		•	_	3,0	±0,03	0,2	21,1	3,8	
N3004 MG	•	•	•	•	•	•	0	•	-	0,0	±0,03		21,1	3,8	
N4002 MG	•	•		0	•	•		•	-	l	±0,03		26,4	4,0	
N4004 MG	•	•		0	•	•		•	-	4,0	±0,03	,	26,4		١.
N4008 MG	•	•	•	•	•	•	0	•	_		±0,03				1
N5004 MG	•	•		0	•	•		•	-	5,0	±0,03		26,4		
N5008 MG	•	•	•	•	•	•	0	•	_		±0,03		26,4	4,1	
N6004 MG	•	•		0	•	•		•	-	6,0	±0,03		26,4		
N6008 MG	•	•	•	•	•	•	0	•	_	_ ′	±0,03		26,4	4,5	
GCM N2002 ML	ļ. <u> </u>	ļ. <u> </u>	ļ. <u> </u>	ļ. <u></u> .	•	•	0	•	_	2,0	±0,03	0,2	21,1	3,6	ļ
N3002 ML	•	•	•	•	•	•	0	•	0	3,0	±0,03		21,1	3,8	
N3004 ML	•	•		O	•	•		•	0		±0,03	0,4	21,1	3,8	
N4002 ML	•	•		0	•	•		•	0	4.0	±0,03		26,4	4,0	
N4004 ML	•	•	•	•	•	•	0	•	0	4,0	±0,03	0,4	26,4	4,0	1
N4008 ML	•	•		0	•	•		0	0		±0,03		26,4		
N5004 ML	•	•	•	•	•	•	0	•	-	5,0	±0,03		26,4		
N5008 ML	•	•		0	•	•		0			±0,03	0,8	26,4	4,1	
N6004 ML	•	•	•		•	•	0		-	6,0	±0,03		26,4		
N6008 ML	•	•		J	•	•		0	-	<u></u>	±0,03	0,8	26,4	4,5	

Profildrehe	n/	Fı	ei	ste	ch	er	1		A	Abmess	ungen	(mm)			Ŕ
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	C Einstech- breite	W Toleranz	RE	L	S	Abb.
GCM N3015 RG N4020 RG	•	•	•	•	•	•	0	•	0	3,0 4,0	±0,03 ±0,03	2,0	21,1 26,4	3,8 4,0	2
N5025 RG N6030 RG	•	•	•	•	•	•	0	•	=	6,0	±0,03	2,5 3,0	27,2 27,5	4,1 4,5	

Nichteisenr				Abmess	sunge	en (mm) Z	1			
Bezeichnung	H.					C Einstech- breite	Toleranz	RE	L	S	Abb.
GCG N3002 GA N4004 GA	0	 		 	 	 3,0	±0,025 ±0.025	0,2	21,1 26.4	3,8 4.0	
N5004 GA N6004 GA	о О	 		 	 	 5,0 6,0	±0,025 ±0,025	0,4 0,4	26,4 26,4	4,1 4,5	3

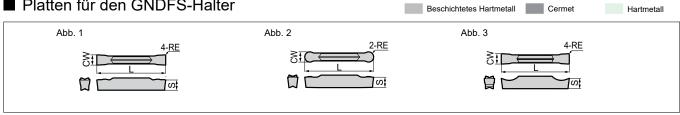

● Einstecher	1 / <i>I</i>	Αb	ste	ech	ner	า				Abmess	sunge	en (mm	1)	
	35P	P	158	258	00	0	8 O		С	W				
Bezeichnung	AC8035F	AC830P	AC5015S	AC5025S	AC5201	AC530L	T2500A		Einstech- breite	Toleranz	RE	L	S	Abb.
GCM N3002 GG	•	•	•	•	0	•	_		20	±0,03	0.2	21,1	3,8	
N3004 GG	•	•	•	•	0	•	_		3,0	±0,03				
N4002 GG	•	•	•	•	O	•	_	 	4,0	±0,03				
N4004 GG	•	•	•	•	0	•	_		4,0	±0,03				
N5002 GG	•	•	•	•	Ö	•	_	 	E 0	±0,03	0,2	26,4	4,1	1
N5004 GG	•	•	•	•	0	•	_		5,0	±0,03				
N6002 GG	•	•	•	•	O	•	_	 	6.0	±0,03				1 1
N6004 GG	•	•	•	•	0	•	_		6,0	±0,03				
GCM N3002 GL	•	•	•	•	0	•	-		3,0	±0,03				
N3004 GL	•		•	•		0	_		3,0	±0.03				
N4002 GL	•	•	•	•	Ö	•	_	 	4.0	±0,03				1
N4004 GL	•		•	•		0	_		4,0	±0,03				Ιİ
N5002 GL	•	•	•	•	O	•	_	 	5,0	±0,03				1
N5004 GL	•		•	•		0	_		5,0	±0,03				
N6002 GL	•	•	•	•	O	•	_	 		±0,03				1
N6004 GL	•		•	•		0	_		6,0	±0,03				
GCM N3002 GF	•	•	•	•	•	•	0		2.0	±0,03				
N3004 GF	•		•	•		•	0		3,0	±0,03				
N4002 GF	•	•	•	•	•	•	O	 	4,0	±0,03				1 1
N4004 GF	•		•	•		•	0		4,0	±0,03				
N5002 GF	•	•	•	•	•	•	_	 	- A	±0,03			4,1	1
N5004 GF	•		•	•		•	-		5,0	±0,03				
N6002 GF	•	•	•	•	•	•	_	 	6.0	±0,03				
N6004 GF	•		•	•		•	_		6,0	±0.03				


Axialstechen, abgewinkelter Typ

Für Drehoperationen (z.B. für breite Nuten) sind universelle Stechplatten einzusetzen.

■ Ersatzteile

Die Zeichnungen zeigen Rechtsausführung.


Halter

Bezeichnung	lung R			Abm	essun	gen (mm)		Durchmesser- bereich (mm)	Min. Durchm. Innen	Einstech- breite (mm)	Max. Ein- stechtiefe (mm)	Einsetzbare Platten	Klemm- schraube	(N·m)	Schlüssel
	R	L	Н	В	LF	WF	HF	LH	DC	(mm)	CW	CDX				
GNDFS R/L2525M 620 070			25	25	150	47	25	25	70–100	58	6,0	20				
GNDFS R/L2525M 620 100			25	25	150	47	25	25	100–200	88	6,0	20				
GNDFS R/L2525M 620 180			25	25	150	47	25	25	180–300	168	6,0	20	GC□ N6000-□□	BX0520	5,0	LH040
GNDFS R/L2525M 620 280			25	25	150	47	25	25	280–1000	268	6,0	20				
GNDFS R/L2525M 620 450			25	25	150	47	25	25	>450	438	6,0	20				
GNDFS R/L3232P 620 070			32	32	170	54	32	25	70–100	58	6,0	0 20 0 20 GC N6000-				
GNDFS R/L3232P 620 100			32	32	170	54	32	25	100–200	88	6,0					
GNDFS R/L3232P 620 180			32	32	170	54	32	25	180–300	168	6,0		GC□ N6000-□□	BX0620	6,0	LH050
GNDFS R/L3232P 620 280			32	32	170	54	32	25	280–1000	268	6,0	20				
GNDFS R/L3232P 620 450			32	32	170	54	32	25	>450	438	6,0	20				
GNDFS R/L2525M 820 070			25	25	150	47	25	30	70–100	54	8,0	20				
GNDFS R/L2525M 820 100			25	25	150	47	25	30	100–200	84	8,0	20				
GNDFS R/L2525M 820 180			25	25	150	47	25	30	180–300	164	8,0	20	GCM N80OO-□□	BX0620	6,0	LH050
GNDFS R/L2525M 820 280			25	25	150	47	25	30	280–1000	264	8,0	20				
GNDFS R/L2525M 820 450			25	25	150	47	25	30	>450	434	8,0	20				
GNDFS R/L3232P 820 070			32	32	170	54	32	30	70–100	54	8,0	20				
GNDFS R/L3232P 820 100			32	32	170	54	32	30	100–200	84	8,0	0 20 GCM N8000-				
GNDFS R/L3232P 820 180			32	32	170	54	32	30	180–300	164	8,0		GCM N80OO-□□	BX0620	6,0	LH050
GNDFS R/L3232P 820 280			32	32	170	54	32	30	280–1000	264	8,0					
GNDFS R/L3232P 820 450			32	32	170	54	32	30	>450	434	8,0	20				

Stechsystem GNDFS

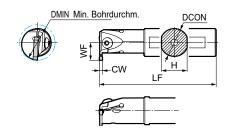
■ Platten für den GNDFS-Halter

Einstecher	า / เ	Dre	eh	en						А	bmessı	ınger	n (mm)	%	1
Rezeichnung	025P	28035P	30P	C425K	0158	50258	520U	530U	500A	C Einstech-	W	RE		s	Abb.
Bozolormang	\(\begin{align*} \delta &										Toleranz	_	-		ADD.
GCM N6004 MG	GCM N6004 MG • • •											0,4	26,4	4,5	
N6008 MG	•	•	•	•	•	•	0	•	-	6,0	±0,03	0,8	26,4	4,5	1
N8004 MG	•	•		O	•	•		O	-	8,0	±0,04	0,4	28,8	6,0	'
N8008 MG	•	•	•	•	•	•	0	•	-	0,0	±0,04	0,8	28,8	6,0	
GCM N6004 ML	•	•	•	•	•	•	0	•	-	6,0	±0,03	0,4	26,4	4,5	
N6008 ML	•	•		0	•	•		0	-	0,0	±0,03	0,8	26,4	4,5	1
N8004 ML	•	•	•	O	•	•	O	•	-	8,0	±0,04	0,4	28,8	6,0	' '
N8008 ML	•	•		O	•	•		0	-	0,0	±0,04	0,8	28,8	6,0	

	Einstechen	//	٩b	ste	ech	ner	1			,	Abmess	unge	n (mm)		
).	Bezeichnung	AC8035P	AC830P	AC5015S	AC5025S	AC520U	AC530U	T2500A		C Einstech- breite	W Toleranz	RE	L	S	Abb.	
	GCM N6002 GG N6004 GG N8004 GG	<u>-</u>	 	6,0 8,0	±0,03 ±0,03 ±0.04	0,2 0,4 0.4	26,4 26,4 28.8	4,5	1							
	GCM N6002 GL N6004 GL N8004 GL	•	•	•	•	0	0	_ 	 	6,0	±0,03 ±0,03 ±0,04	0,2 0,4		4,5 4,5	1	
	GCM N6002 GF N6004 GF	•	•	•	•	•	•	_ _		6,0	±0,04 ±0,03 ±0,03	0,4 0,2 0,4	26,4 26,4	4,5 4,5	1	
	N8002 GF N8004 GF	•	•	•	•	0	•	— —		8,0	±0,04 ±0,04	0,2	28,8 28,8	6,0 6,0	L.	


	P	rofildrehe	n /	Fr	eis	ste		P	Abmess	ungen	(mm)			\mathcal{C}			
	AC8035P AC8035P AC8035P AC8035P AC8025S AC8025S AC8025S											C' Einstech- breite	W Toleranz	RE	L	S	Abb.
G	CM	N6030 RN	•	•	•	•	•	•	0	•	_	6,0	±0,03	3,0	28,3	4,5	2
			ļ														

● Ni	ichteisenr	ne	tal	le				,	Abmess	sunge	en (mm		1
Bez	zeichnung	Ŧ						Einstech- breite	Toleranz	RE	L	S	Abb.
GCG	N6004 GA	0			 	 	 	6,0	±0,025	0,4	26,4	4,5	3
		l			 	 	 	l	l	l	l		


Stechsystem GNDI

Innenbearbeitung

Halter

Die Zeichnungen zeigen Rechtsausführung.

Ersatzteile

BH0616 6,0 LH040

ı	
ı	
ı	////
ı	////
ı	11/1/
ı	
ı	11117
ı	

Bezeichnung	La	ger	Abr	nessu	ngen (mm)	Minimaler Ø (mm)	Einstech- breite (mm)	Max. Ein- stechtiefe (mm)	Einsetzbare Platten	Klemm- schraube	(N·m)	Schlüssel
	R	L	DCON	Н	LF	WF	DMIN	CW	CDX		001111111111111111111111111111111111111		
GNDI R/L 2532 T 206	•	•	25	23	200	16	32	2,0	6	GCM N2000-□□	BH0516	5,0	LH030
GNDI R/L 3240 T 210	•	•	32	30	250	26	40	2,0	10	GCM N2000-□□	BH0616	6,0	LH040
GNDI R/L 2532 T 306	•	•	25	23	200	16	32	3,0	6	GCM N30OO-□□	BH0516	5,0	LH030
GNDI R/L 3240 T 310	•	•	32	30	250	26	40	3,0	10	GCM N3000-□□	BH0616	6.0	LH040
GNDI R/L 4050 T 311	•	•	40	38	300	31	50	3,0	11	GCM N3000-□□	БПООТО	0,0	LH040
GNDI R/L 2532 T 406	•	•	25	23	200	19	32	4,0	6	GCM N40OO-□□	BH0516	5,0	LH030
GNDI R/L 3240 T 410	•	•	32	30	250	26	40	4,0	10	GCM N40OO-□□	BH0616	6.0	LH040
GNDI R/L 4050 T 411	•	•	40	38	300	31	50	4,0	11	GCM N40OO-□□	DI 100 10	0,0	LI 1040
GNDI R/L 2532 T 506	•	0	25	23	200	19	32	5,0	6	GCM N50OO-□□	BH0516	5,0	LH030
GNDI R/L 3240 T 510	•	•	32	30	250	26	40	5,0	10	GCM N50OO-□□	BH0616	6.0	LH040
GNDI R/L 4050 T 511		•	40	38	300	31	50	5.0	11	GCM N50OO-□□	DI 100 10	0,0	LI 1040

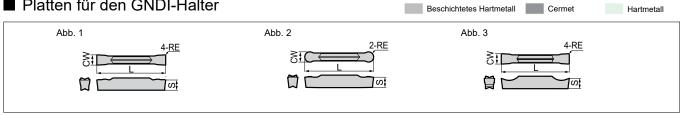
50

6,0

GCM N60OO-□□

GNDI R/L 4050 T 611 38 Verwenden Sie die gleiche Einstechbreite (CW) für Platten und Halter.

40


300

31

Stechsystem GNDI

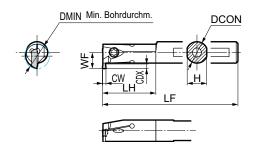
■ Platten für den GNDI-Halter

Einstechen	/ I	Dre	eh	en						,	Abmess	unge	n (mm) 2	
	5P	5P	٩	X	58	58	\geq	\geq	Α	С	W				
Bezeichnung	AC8025F	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC5201	AC530L	T2500A	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM N3002 MG	•	•		0	•	•		•	-	3.0	±0,03	0,2	21,1	3,8	
N3004 MG	•	•	•	•	•	•	0	•	-	0,0	±0,03	0,4	21,1	3,8	
N4002 MG	•	•		0	•	•		•	-		±0,03	0,2	26,4	4,0	
N4004 MG	•	•		0	•	•		•	-	4,0	±0,03		26,4		
N4008 MG	•	•	•	•	•	•	0	•	-	l	±0,03	0,8	26,4	4,0	1
N5004 MG	•	•		0	•	•		•	-	5,0	±0,03		26,4		
N5008 MG	•	•	•	•	•	•	0	•	_		±0,03		26,4		
N6004 MG	•	•		0	•	•		•	-	6,0	±0,03	0,4	26,4	4,5	
N6008 MG	•	•	•	•	•	•	0	•	_		±0,03		26,4	4,5	
GCM N2002 ML	-	<u> </u>	<u> </u>	<u> </u>	•	•	0	•	-	2,0	±0,03	0,2	21,1	3,6	
N3002 ML	•	•	•	•	•	•	0	•	0	3,0	±0,03	0,2	21,1	3,8	
N3004 ML	•	•	ļ	0	•	•		•	0		±0,03	0,4	21,1	3,8	
N4002 ML	•	•		O	•	•		•	O		±0,03	0,2	26,4	4,0	
N4004 ML	•	•	•	•	•	•	0	•	0	4,0	±0,03	0,4	26,4	4,0	1
N4008 ML	•	•	l	0	•	•	l	0	0	l	±0,03	0,8	26,4	4,0	
N5004 ML	•	•	•	•	•	•	O	•	-	5,0	±0,03		26,4		
N5008 ML	•	•	l	0	•	•	<u> </u>	0	-	0,0	±0,03	0,8	26,4	4,1	
N6004 ML	•	•	•	•	•	•	O	•	-	6,0	±0,03	0,4	26,4	4,5	
N6008 ML	•	•		0	•	•		0	_	0,0	±0,03	0,8	26,4	4,5	

Profildrehe	n									,	Abmess	sunge	n (mm		
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	Einstech- breite		RE	L	S	Abb.
GCM N3015 RG	•	•	•	•	•	•	0	•	0	3,0	±0,03	1,5	21,1	3,8	
N4020 RG	•	•	•	•	•	•	0	•	0	4,0	±0,03	2,0	26,4	4,0	2
N5025 RG	•	•	•	•	•	•	0	•	-	5,0	±0,03	2,5	27,2	4,1	-
NEO20 DC							0		_	60	TU U3	20	27 5	1 5	

											_0,00				
Profildrehe	n /	Fr	eis	ste	ch	er	1		A	Abmess	ungen	(mm)			
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	C Einstech- breite	W Toleranz	RE	L	S	Abb.
GCM N2010 RN N3015 RN N4020 RN N5025 RN N6030 RN	- • •	- • •	- • •	- 0 0	•	•	0000	000	_ _ _	2,0 3,0 4,0 5,0 6,0	±0,03 ±0,03 ±0,03 ±0,03		22,6 28,2		2

Nichteisenr	ne	tal	le				,	Abmess	sunge	en (mm		
							C	W				
Bezeichnung	王						Einstech- breite	Toleranz	RE	L	S	Abb.
GCG N2002 GA	0						2,0	±0,025	0,2	21,1	3,6	
N3002 GA	0						3,0	±0,025	0,2	21,1	3,8]
N4004 GA	0						4,0	±0,025	0,4	26,4	4,0	3
N5004 GA	0						5,0	±0,025	0,4	26,4	4,1	
N6004 GA	О						6,0	±0,025	0,4	26,4	4,5	


● Einstechen	//	٩b	ste	ech	ner	1			,	Abmess	unge	n (mm) Z	1
Bezeichnung	AC8035P	AC830P	AC5015S	AC5025S	AC520U	AC530U	T2500A		C Einstech- breite	W Toleranz	RE	L	S	Abb.
GCM N2002 GG	•	•	•	•	•	•	_		2,0	±0,03	0,2	21,1	3,6	
N3002 GG	•	•	•	•	O	•	-		3,0	±0,03	0,2	21,1	3,8	
N3004 GG	•	•	•	•	0	•	-		3,0	±0,03	0,4	21,1	3,8	
N4002 GG	•	•	•	•	O	•	-		4,0	±0,03	0,2	26,4	4,0	
N4004 GG	•	•	•	•	O	•	_		4,0	±0,03	0,4	26,4	4,0	1
N5002 GG	•	•	•	•	0	•	-		5,0	±0,03				
N5004 GG	•	•	•	•	0	•	_		3,0	±0,03			4,1	
N6002 GG	•	•	•	•	O	•	-		6,0	±0,03	0,2	26,4	4,5	
N6004 GG	•	•	•	•	0	•	_		0,0	±0,03	0,4	26,4	4,5	
GCM N2002 GL	•	•	•	•	O	•	_		2,0	±0,03	0,2	21,1	3,6	
N2004 GL	•		•	•	ļ	0	_	 	2,0	±0,03				
N3002 GL	•	•	•	•	O	•	_		3,0	±0,03	0,2	21,1	3,8	
N3004 GL	•		•	•		0	_	 	0,0	±0,03		21,1	3,8	
N4002 GL	•	•	•	•	0	•	_		4,0	±0,03			4,0	1
N4004 GL	•		•	•		0	_	 	7,0	±0,03	0,4	26,4	4,0	∫ '
N5002 GL	•	•	•	•	O	•	_		5.0	±0,03		26,4		
N5004 GL	•		•	•		0	_	 	0,0	±0,03		26,4		
N6002 GL	•	•	•	•	0	•	_		6,0	±0,03		26,4	4,5	
N6004 GL	•		•	•		0	_		0,0	±0,03				
GCM N2002 GF	-	_	•	•		•	0		2,0	±0,03				
N2004 GF	<u> </u>	_	•	•		0	0	 	_,	±0,03			3,6	ļ
N3002 GF	•	•	•	•	•	•	0		3,0	±0,03				
N3004 GF	•		•	•		•	0	 		±0,03			3,8	
N4002 GF	•	•	•	•	•	•	O		4,0	±0,03			4,0	1
N4004 GF	•		•	•		•	0	 		±0,03		26,4		•
N5002 GF	•	•	•	•	•	•	_		5,0	±0,03		26,4		
N5004 GF	•	ļ	•	•	ļ. <u>.</u>	•		 		±0,03		26,4		
N6002 GF	•	•	•	•	•	•	_		6,0	±0,03			4,5	
N6004 GF							-		-,,	±0,03	0,4	26,4	4,5	

Stechsystem GNDIS

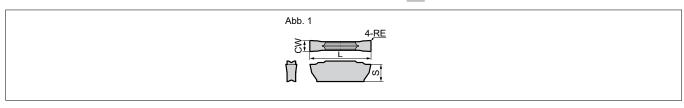
Innenbearbeitung

Die Zeichnungen zeigen Rechtsausführung.

■ Ersatzteile

Halter

														L120
Bezeichnung	La	ger	Al	bmes	sunge	n (mr	n)	Minimaler Ø (mm)	Einstech- breite (mm)	Max. Ein- stechtiefe (mm)	Einsetzbare Platten	Klemm- schraube	(N·m)	Schlüssel
	R	L	DCON	Н	LF	LH	WF	DMIN	CW	CDX				
GNDIS R/L 1214 T 1526	0	0	12	11	150	30	9,0	14	1,5	2,6	GXM N150005S GF			
GNDIS R/L 1214 T 1536	0	0	12	11	150	30	10,0	14	1,5	3,6	GXM N150005S GF	BFTX0409N	3,4	LT15
GNDIS R/L 1616 T 1536	0	0	16	15	160	35	11,5	16	1,5	3,6	GXM N150005S GF			
GNDIS R/L 1620 T 1546	0	0	16	15	160	40	14,5	20	1,5	4,6	GXM N150005S GF	BFTX0511N	5.0	LT20
GNDIS R/L 2025 T 1566	0	0	20	19	180	40	19,0	25	1,5	6,6	GXM N150005S GF	DEIVOSIIN	5,0	LIZU
GNDIS R/L 1214 T 2026	0	0	12	11	150	30	9,0	14	2,0	2,6	GXM N2002S-□□			
GNDIS R/L 1214 T 2036	0	0	12	11	150	30	10,0	14	2,0	3,6	GXM N2002S-□□	BFTX0409N	3,4	LT15
GNDIS R/L 1616 T 2036	0	0	16	15	160	35	11,5	16	2,0	3,6	GXM N2002S-□□			
GNDIS R/L 1620 T 2046	0	0	16	15	160	40	14,5	20	2,0	4,6	GXM N2002S-□□	BFTX0511N	5,0	LT20
GNDIS R/L 2025 T 2066	0	0	20	19	180	40	19,0	25	2,0	6,6	GXM N2002S-□□	DI IXOSTIN	3,0	LIZU
GNDIS R/L 1214 T 3026	0	0	12	11	150	30	9,0	14	3,0	2,6	GXM N3002S-□□			
GNDIS R/L 1214 T 3036	0	0	12	11	150	30	10,0	14	3,0	3,6	GXM N3002S-□□	BFTX0409N	3,4	LT15
GNDIS R/L 1616 T 3036	0	0	16	15	160	35	11,5	16	3,0	3,6	GXM N3002S-□□			
GNDIS R/L 1620 T 3046	0	0	16	15	160	40	14,5	20	3,0	4,6	GXM N3002S-□□	BFTX0511N	5,0	LT20
GNDIS R/L 2025 T 3066	0	0	20	19	180	40	19,0	25	3,0	6,6	GXM N3002S-□□	ווונטאוומ	3,0	LIZU


Verwenden Sie die gleiche Einstechbreite (CW) für Platten und Halter.

Es können nur GXM-Platten verwendet werden.

Stechsystem GNDIS

■ Platten für den GNDIS-Halter

Beschichtetes Hartmetall

Einstechen	/ I	Dre	ehe	en			,	Abmess	unge	n (mm) %	1
Bezeichnung	AC520U	AC1030U					C Einstech- breite	W Toleranz	RE	L	S	Abb.
GXM N2002S ML N3002S ML	0	0					 2,0 3,0	±0,03 ±0,03	0,2	11,1 11,1	3,1 3,1	1

Verwenden Sie die gleiche Einstechbreite (CW) für Platten und Halter.

Einstechen	/ /	٩b	ste	ch	er	1				,	Abmess	unge	n (mm)	1
	00	300								C	W				
Bezeichnung	C52	C103								Einstech-	Toleranz	RE	L	S	Abb.
CVM NI1500059 CE	⋖	A									TU U3	0.2	21.1	2.6	
										2.0	±0,03	0,2	21,1	ა,o ი	1
		0								3.0	+0.03	0,2	21 1	3,0	'
	Bezeichnung GXM N150005S GF N2002S GF	20	Bezeichnung	Bezeichnung	Bezeichnung	Bezeichnung	Bezeichnung	Bezeichnung	Bezeichnung	Bezeichnung	C Einstechnung C	CW Einstech Toleranz GXM N150005S GF - 0 1,5 ±0,03 1,000 ±0	CW Einstech Toleranz RE	CW Einstech Toleranz RE L	CW Einstechnung CD CW Einstechnung Toleranz Toleranz RE L S CM S CM Toleranz Toleranz S CM Toleranz Toleranz Toleranz Toleranz CM CM Toleranz Tolera

GCM- und GCG-Platten sind nicht kompatibel.

■ Empfohlene Schnittgeschwindigkeit

Werkstückstoff	P Kohlenstoffst	ahl / Legierter Stahl	M Rostfrei	ier Stahl	K Gu	ISS		ständige rungen
Beschichtetes Hartmetall	AC520U	AC1030U	AC520U	AC1030U	AC520U	AC1030U	AC520U	AC1030U
Schnittgeschwindig- keit (m/min)	80–200	50–200	70–150	50–150	60–200	50–200	20–80	20–60

0,05-0,15

■ Einstechen / Abstechen / Freistechen

CW (mm)

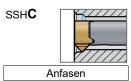
		Vorschul	o (mm/U)
Spanbre	cher	ML	GF
	1,5	_	0,02-0,10
Schnittbreite	2,0	0,03-0,12	0,03-0,12

0,05-0,15

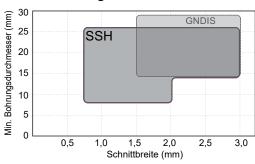
■ Drehen

		ML							
Spanbre	cher	Vorschub (mm/U)	Schnitttiefe (mm)						
Schnittbreite	2,0	0,03–0,12	0,2-0,8						
CW (mm)	3,0	0,05-0,15	0,3–1,2						

Stechsystem SSH-Serie



Merkmale

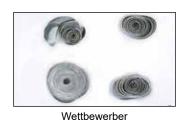

Zäher Hartmetallkörper für eine stabile Bearbeitung. Innenkühlung für eine ausgezeichnete Spanabfuhr. Einsatz von AC1030U für eine hervorragende Oberflächenbearbeitung. Zusätzlich zu den Einstechanwendungen umfasst unser Programm 12 Werkzeuge für die Bearbeitung von Sicherungsringnuten.

Anwendungsbereich

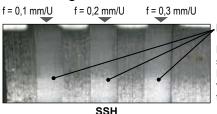
Schnittbreite: 0,74 mm - 3,00 mm

Min. Bohrungsdurchm: Ø 8,0 mm Max. Stechtiefe: bis 4,0 mm

Hartmetallkörper (innere Kühlmittelzufuhr) Halter:


Platten: Sorte AC1030U

Spankontrolle



Stabile und gleichmäßige Abfuhr von eingerollten Spänen auch bei kleinen Durchmessern.

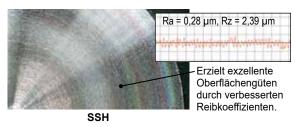
Die Entfernung der Späne aus den Nuten ist schwierig und führt damit

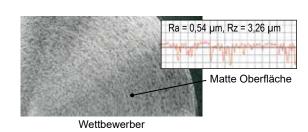
 $v_c = 50 \text{ m/min, } f = 0.02 \text{ mm/U, } a_p = 1.0 \text{ mm, nass (auf Ölbasis)}$ Werkstückstoff: C45 Schnittdaten: Schnittdurchmesser: Ø 13 mm

Ratterfestigkeit

Keine Rattermarken Die hohe Schnittschärfe und der Hartmetallschaft verhindern Vibrationen.

f = 0.3 mm/Uf = 0,1 mm/Uf = 0.2 mm/UWetthewerber

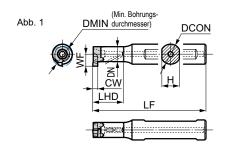

Auftreten von Rattermarken

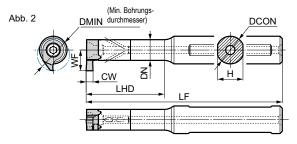

Werkstückstoff: C45 Schnittdurchmesser: Ø 13 mm

Schnittdaten:

 $v_c = 100 \text{ m/min}, f = 0.01, 0.02, 0.03 \text{ mm/U}, a_p = 0.2 \text{ mm}, \text{ nass (auf Ölbasis)}$

Qualität der bearbeiteten Oberfläche





42CrMo4 $v_c = 180 \text{ m/min}, f = 0.02 \text{ mm/U}, a_p = 0.2 \text{ mm}, \text{ nass (auf \"Olbasis)}$ Werkstückstoff: Schnittdaten: Schnittdurchmesser: Ø 30 mm

Stechsystem SSH-Serie

Halter

Abmessungen (mm) Ersatzteile

											Flachschraube		Schlüssel	
Bezeichnung	Lager	DCON	DN	Н	LF*	LHD	DMIN	CW	Abb.	Geeignete Platte		(N-m)	TRX08IP	
E08D SSHM N125 08	0	8	6	7	60	12,5	8	0,74–2,00	1		BFTX02608IPS	1 2	TDV00ID	
E08E SSHM N210 08	0	8	6	7	70	21,0	8	0,74–2,00	1		BF I AUZUUGIFS	1,2	IRAUOIP	
E12E SSHM N125 08	0	12	6	11	70	12,5	8	0,74-2,00	1	CCLL D/L 00				
E12F SSHM N210 08	0	12	6	11	80	21,0	8	0,74–2,00	1	SSH_ R/L 08	BFTX02608IPS	1.2	TRX08IP	
E12G SSHM N300 08	0	12	6	11	90	30,0	8	0,74-2,00	1	BF1X020001F3		1,2	IKAUOIF	
E12H SSHM N420 08	0	12	6	11	100	42,0	8	0,74-2,00	1					
E12X SSHM N195 14	0	12	9	11	75	19,5	14	0,74-3,00	2					
E12H SSHM N340 14	0	12	9	11	100	34,0	14	0,74–3,00	2		BFTX0412IPS	5,0	LT15IP	
E12J SSHM N450 14	0	12	9	11	110	45,0	14	0,74-3,00	2		BF1704121F3			
E12X SSHM N640 14	0	12	9	11	130	64,0	14	0,74-3,00	2	SSH R/L 14				
E16F SSHM N195 14	0	16	9	14	80	19,5	14	0,74-3,00	2	33N_ R/L 14				
E16H SSHM N340 14	0	16	9	14	100	34,0	14	0,74–3,00	2		DETY0412IDS		LTACID	
E16J SSHM N450 14	0	16	9	14	110	45,0	14	0,74-3,00	2	BFTX0412IPS		5,0	LT15IP	
E16X SSHM N640 14	O	16	9	14	130	64,0	14	0,74–3,00	2					
* Die abigen L.C. Abmesseungen gelten für Helter mit menierter Diette des Time CCHC / CCHD. Die W.C. Abmesseungen eind in der Tabelle für die Dietten gufreführt														

^{*} Die obigen LF-Abmessungen gelten für Halter mit monierter Platte des Typs SSHG / SSHR. Die WF-Abmessungen sind in der Tabelle für die Platten aufgeführt.

■ Platten (E08_ SSHM N_ _ _ -08 / E12_ SSHM N_ _ _ -08)

Abmessungen (mm)

		AC1											Abb. 1	(Einstechen)
Anwen- dung	Bezeichnung	Hartr		CW	CDX	RE	WF3	WF	S	E2	Abb.	Geeigneter Halter	S	CDX t E
dulig	20112 7# 2027422	R	L					1.00					2-C0,	05\ _B
	SSHG R/L 0807400	0	0	0,74	1,0	_	3,2	4,80	3,6	0,4	1		WF	; шIOI *
	R/L 0808400	0	0	0,84	1,0	_	3,2	4,80	3,6	0,4	1			<u> </u>
	R/L 0809400 R/L 0810000	0	0	0,94 1,00	1,0	_	3,2 3,2	4,80 4,80	3,6 3,1	0,4	1			(Min. Bohrungs- DMIN durchmesser)
	R/L 0810000	0	0	1,00	1,0	0,10	3,2	4,80	3,1		2			
	R/L 0810010	0	0	1,19	1,0	-	3,2	4,80	3,1		1		Abb. 2	(Einstechen)
Einste-	R/L 0813900	0	0	1,19	1,0	_	3,2	4,80	3,0		1		of American	CDX ∤ E
chen	R/L 0815000	0	0	1,50	1,0	_	3,2	4,80	3,0	_	1		2-F	
	R/L 0815010	0	0	1,50	1,0	0,10	3,2	4,80	3,0		2		WF	
	R/L 0816900	0	0	1,69	1,0	_	3,2	4,80	3,0	_	1	E08_SSHM N 08		
	R/L 0820000	0	0	2,00	1,0	_	3,2	4,80	3,0	_	1	E12_SSHM N 08		(Min. Bohrungs-
	R/L 0820010	0	0	2,00	1,0	0,10	3,2	4,80	3,0	-	2			DMIN durchmesser)
	R/L 0820020	0	0	2,00	1,0	0,20	3,2	4,80	3,0	_	2		Abb. 3 (Radiusi	nuten/Profildrehen)
	SSHR R/L 08080	0	0	0,80	1,0	0,40	3,2	4,80	3,1	_	3			CDX ₊ ₽
Radius-	R/L 08100	0	O	1,00	1,0	0,50	3,2	4,80	3,1	_	3		ov	 /51
nuten/	R/L 08120	0	O	1,20	1,0	0,60	3,2	4,80	3,1	_	3		WE	RE
Profil-	R/L 08150	0	O	1,50	1,0	0,75	3,2	4,80	3,0	_	3			
drehen	R/L 08180	0	0	1,80	1,0	0,90	3,2	4,80	3,0	_	3			(Min. Bohrungs-
	R/L 08200	0	O	2,00	1,0	1,00	3,2	4,80	3,0	_	3			DMIN durchmesser)
Anfasen	SSHC R/L 08454502	0	O	_	1,4	0,20	1,8	4,65	3,6	_	4		Abb. 4	(Anfasen)
* Die DMI	N-Abmessungen sind in d	er Ta	belle	für die	Halter	aufgefü	hrt.						45	cdx •
WF, WF3	WF, WF3, E2: Schneidkantenabstand										F3-			
														(Min. Bohrungs-
													Abb. zeigt R	Rechtsausführung.

Stechsystem SSH-Serie

■ Platten (E12_ SSHM N_ _ _ -14 / E16_ SSHM N_ _ _ -14)

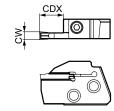
Abmessungen (mm)

Anwen-		AC1	chtetes										Abb. 1 (Einstechen)
dung	Bezeichnung	Hartr R	netall L	CW	CDX	RE	WF3	WF	S	E2	Abb.	Geeigneter Halter	(Emsteoriem)
	SSHG R/L 1407400	0	0	0,74	1,2	_	5,3	9,0	5,5	0,2	1		o∏ American CDX E
	R/L 1408400	0	0	0,84	1,3	_	5,3	9,0	5,5	0,2	1		2-C0.05
	R/L 1409400	0	0	0,94	1,5	_	5,3	9,0	5,5	0,2	1		WF. WIOI
	R/L 1410000	O	O	1,00	1,6	_	5,3	9,0	5,5	0,2	1		
	R/L 1410010	O	O	1,00	1,6	0,10	5,3	9,0	5,5	0,2	2		(Min. Bohrungs-
	R/L 1411900	O	O	1,19	4,0	-	5,3	9,0	5,2	_	1		DMIN durchmesser)
	R/L 1413900	0	0	1,39	4,0	_	5,3	9,0	5,1	_	1		Abb. 2 (Einstechen)
	R/L 1415000	O	0	1,50	4,0	_	5,3	9,0	5,1		1		· · · · · · · · · · · · · · · · · · ·
Einste-	R/L 1415010	O	O	1,50	4,0	0,10	5,3	9,0	5,1		2		σ cox ξ
chen	R/L 1416900	0	0	1,69	4,0	_	5,3	9,0	5,1	-	1		2-RE NS
	R/L 1420000	0	0	2,00	4,0	_	5,3	9,0	5,1		1		WF. WIO
	R/L 1420010	0	0	2,00	4,0	0,10	5,3	9,0	5,1	-	2		
	R/L 1420020	0	O	2,00	4,0	0,20	5,3	9,0	5,1	<u>-</u>	2	E12_SSHM N14	(Min. Bohrungs-
	R/L 1425000	0	0	2,50	4,0	-	5,3	9,0	5,1	<u>-</u>	1	E16_ SSHM N 14	DMIN durchmesser)
	R/L 1425010	0	0	2,50	4,0	0,10	5,3	9,0	5,1	_	2		Abb. 3 (Radiusnuten/Profildrehen)
	R/L 1425020	O	0	2,50	4,0	0,20	5,3	9,0	5,1		2		(readeshatery remarenery
	R/L 1430000 R/L 1430010	0	0	3,00	4,0	0,10	5,3 5,3	9,0 9,0	5,1 5,1	<u>-</u>	2		ν CDX εξ
	R/L 1430010	0	0	3,00	4,0 4,0	0,10	5,3	9,0	5,1		2		DE 1
	SSHR R/L 14100	0	0	1,00	1,6	0,50	5,3	9,0	5,1	_	3		WF S
	R/L 14120	0	0	1,20	4,0	0,60	5,3	9,0	5,2	_	3		
Radius-	R/L 14150	0	0	1,50	4,0	0,75	5,3	9,0	5,1	_	3		(Min. Bohrungs-
nuten/	R/L 14180	0	0	1,80	4,0	0.90	5,3	9,0	5,1	_	3		DMIN durchmesser)
Profil-	R/L 14200	0	0	2,00	4,0	1,00	5,3	9,0	5,1	_	3		
drehen	R/L 14220	0	0	2,20	4,0	1,10	5,3	9,0	5,1	_	3		
	R/L 14250	0	O	2,50	4,0	1,25	5,3	9,0	5,1	_	3		
	R/L 14300	0	0	3,00	4,0	1,50	5,3	9,0	5,1	_	3		Abb. zeigt Rechtsausführung.

^{*} Die DMIN-Abmessungen sind in der Tabelle für die Halter aufgeführt. WF, WF3, E2: Schneidkantenabstand

O = Japanlager

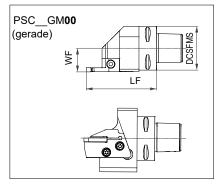
■ Empfohlene Schnittbedingungen


Material	P Kohlenstoff-/ Legierungsstahl	M Rostfreier Stahl	S Grauguss
Schnittgeschwindigkeit vc (m/min)	20–200	15–80	20–160
Vorschub f (mm/U)	0,01–0,03	0,01–0,03	0,01–0,03

GND Stechsystem

■ Beschreibung

Das bereits etablierte GND Stechsystem mit Polygonschaft und einem flexiblen Kassettensystem zur Aufnahme der Stechplatten, wurde um neue Sorten und Spanbrecher erweitert. Eine große Auswahl an Spanbrechern sorgt für eine hervorragende Spankontrolle in verschiedenen Anwendungsbereichen wie z. B. im Einstechen, Stechdrehen, Profildrehen und Abstechen.


Merkmale

- GND Platten für das Weichstechen mit Einstechbreiten von 2,0 6,0 mm
- Erweiterte Sortenvielfalt mit 9 verschiedenen Spanbrechern für einen großen Anwendungsbereich
- Erzielt eine exzellente Spankontrolle
- Stabile Standzeiten

Kassetten

Bezeichnung	R	L	CW (mm)	CDX (mm)	Stechplatten	Klemm- schraube	Anzugs- moment (N·m)	Schlüssel
GNDCM R/L 212	•	•	2	12	GCM □2000-□□		- 0 (
GNDCM R/L 312	•	•	3	12	GCM □3000-□□		5,0 🗺	
GNDCM R/L 418	•	•	4		GCM □4000-□□	BX0512		LH040
GNDCM R/L 518	•	•	5	18	GCM □5000-□□		6,0 €	
GNDCM R/L 618	•	•	6		GCM □6000-□□			

■ Grundhalter

Handhabung

ACHTUNG

Um die Kassette auf dem Halter zu fixieren, klemmen Sie die Kassette bitte als Erstes mit der inneren Torx-Schraube fest.

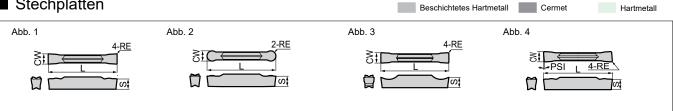
Ausführung	Bezeichnung	R	L	DCSFMS (mm)	WF (mm)	LF (mm)	Klemm- schraube	Anzugs- moment (N·m)	Schlüssel
Gerade	PSC40GM00 R/L PSC50GM00 R/L	•	•	40 50	22 27	80*	DETYOCAON	7.5.0	1.725
Abgewinkelt	PSC40GM90 R/L	•	•	40	42*	52,5	BFTX0619N	7,5 🕷	LT25
Abgewirkeit	PSC50GM90 R/L	•	•	50	47*	55,0			

^{*} Abmessungen weichen vom Axialstechen ab.

Bezeichnungsschlüssel - Polygon-Werkzeughalter

PSC	40 -	G	M	00	R
Polygonschaft	Schaftdurchmesser	Serienbezeichnung	Anwendung	Ausführung	Halterausführung
	(DCSFMS)	GND	Außenbearbeitung	00 = Gerade	R = Rechts
	,		· ·	90 = Abaewinkelt	I = I inks

■ Bezeichnungsschlüssel - Kassetten



ISO-PSC Polygon Modular GND Stechsystem

Abmessungen (mm)

Stechplatten

Einstechen / Abstechen

Einstechen	/ I	Dr€	eh	en						,	Abmess	sunge	en (mm) %	ì
	25P	35P	P	뜻	158	25S	3	3	OA	С	W				
Bezeichnung	AC8025F	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	Einstech- breite	Toleranz	RE	L	S	Abb
GCM N3002 MG	•	•		0	•	•		•	_	3,0	±0,03		21,1	3,8	
N3004 MG	•	•	•	•	•	•	0	•	-	0,0	±0,03			3,8	
N4002 MG	•	•		0	•	•		•	_	l	±0,03			4,0	
N4004 MG	•	•		0	•	•		•	-	4,0	±0,03				١.
N4008 MG	•	•	•	•	•	•	0	•	_		±0,03				1
N5004 MG	•	•		0	•	•		•	-	5.0	±0,03				
N5008 MG	•	•	•	•	•	•	0	•	_	0,0	±0,03		26,4	4,1	
N6004 MG	•	•		0	•	•		•	-	6,0	±0,03				
N6008 MG	•	•	•	•	•	•	0	•	_		±0,03	- / -		4,5	
GCM N2002 ML	ļ. <u> —</u>	ļ. <u> </u>		ļ. <u>.</u> .	•	•	0	•	_	2,0	±0,03		21,1	3,6	ļ
N3002 ML	•	•	•	•	•	•	0	•	0	3,0	±0,03			3,8	
N3004 ML	•	•	ļ	0	•	•	ļ	•	0		±0,03		21,1	3,8	ļ
N4002 ML	•	•		0	•	•		•	0		±0,03	- /	26,4	4,0	
N4004 ML	•	•	•	•	•	•	0	•	0	4,0	±0,03			4,0	1
N4008 ML	•	•		0	•	•		0	0		±0,03		26,4	4,0	Ι.
N5004 ML	•	•	•	•	•	•	0	•	-	5,0	±0,03			4,1	
N5008 ML	•	•		0	•	•		0	_	0,0	±0,03			4,1	
N6004 ML	•	•	•	•	•	•	0	•	-	6,0	±0,03		26,4		
N6008 ML	•	•		0	•	•		0	-		±0,03	0,8	26,4	4,5	

٦	1		_			1	1	1					r			
l			35P	등	58	55	13	13	OA		C	W				
-		Bezeichnung	AC8035P	AC830P	AC5015S	AC5025S	AC520	AC5301	T2500A		Einstech-	Toleranz	RE	L	S	Abl
			AC	AC	AC	AC	AC	AC	T2		breite	loleranz				
1		GCM N2002 GG	•	•	•	•	•	•	_		2,0	±0,03	0,2	21,1	3,6	
١		N3002 GG	•	•	•	•	O	•	-	 	3,0	±0,03	0,2	21,1	3,8	
l		N3004 GG	•	•	•	•	0	•	-	 	3,0	±0,03		21,1	3,8	
I		N4002 GG	•	•	•	•	O	•	-		4,0	±0,03	0,2	26,4	4,0	
l		N4004 GG	•	•	•	•	0	•	_	 	7,0	±0,03			4,0	1
l		N5002 GG	•	•	•	•	O	•	_		5,0	±0,03			4,1	
l		N5004 GG	•	•	•	•	0	•	<u> </u>	 	0,0	±0,03	0,4	26,4	4,1]
l		N6002 GG	•	•	•	•	O	•	_		6,0	±0,03				
1		N6004 GG	•	•	•	•	0	•	_		0,0	±0,03			4,5	
١		GCM N2002 GL	•	•	•	•	O	•	-		2,0	±0,03			3,6	
١		N2004 GL	•		•	•		0	_	 	,	±0,03		21,1	3,6	ļ
١		N3002 GL	•	•	•	•	0	•	-		3,0	±0,03			3,8	
l		N3004 GL	•		•	•		0	_	 		±0,03		21,1	3,8	
I		N4002 GL	•	•	•	•	0	•	-		4.0	±0,03				1
١		N4004 GL	•		•	•		0	_	 		±0,03			4,0	-
l		N5002 GL	•	•	•	•	O	•	-		5,0	±0,03				
I		N5004 GL	•		•	•		0	_	 		±0,03			4,1	l
l		N6002 GL	•	•	•	•	O	•	-		6,0	±0,03			,	
		N6004 GL	•		•	•		0	-		- , -	±0,03			4,5	
		GCM N2002 GF	-	_	•	•			0		2,0	±0,03			3,6	
		N2004 GF			-	-		0	1	 		±0,03			3,6	ł
١		N3002 GF	•	•	-	_	•	-	0		3,0	±0,03			3,8	
ĺ		N3004 GF	_	•	_	_		_	0	 	ļ	±0,03		21,1	3,8	ł
l		N4002 GF	•	•	_		•	_	0		4,0	±0,03				1
ŀ		N4004 GF N5002 GF			-	_		-	9	 		±0,03			4,0	ł
l			•	•	_		•	_	_		5,0	±0,03		26,4		
1		N5004 GF N6002 GF	-		-				1	 	ļ	±0,03				ł
١		N6002 GF N6004 GF		_	_						6,0	±0,03 ±0.03		26,4	4,5	
١	l	1N0004 GF	_		_			_	_			±0,03	0,4	20,4	4,5	
1																

Profildrehen

• I Tollidicite										,	Abmess	sunge	ıı (ııııı) (3
	25P	35P	OP	쏬	58	52	00	90	Y Y	C	W				
Bezeichnung	380251	380	C83	242	501	3502	252	253	250	Einstech-	Toleranz	RE	L	S	Abb.
	A	A	₹	₹	A	A	ĕ	ĕ	Ë	breite	TOTOTOTIL				
GCM N3015 RG	•	•	•	•	•	•	0	•	0	3,0	±0,03	1,5	21,1	3,8	
N4020 RG	•	•	•	•	•	•	0	•	0	4,0	±0,03	2,0	26,4	4,0	2
N5025 RG	•	•	•	•	•	•	O	•	-	5,0	±0,03	2,5	27,2	4,1	_
N6030 RG	•	•	•	•	•	•	O	•	_	6,0	±0,03	3,0	27,5	4,5	

Profildrehe	n /	Fr	eis	ste	ch	er	1		A	Abmess	ungen	(mm)			Ŕ
	25P	35P	830P	옷	158	258	00:	00	OA O	C	W				
Bezeichnung	AC8025	4C8035I	AC83	AC42	4C501	4C50	AC52	AC53(T250	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM N2010 RN	_	_	_	_	•	•	0	0	_	2,0	±0,03	1,0	21,7	3,6	
N3015 RN	•	•	•	0	•	•	0	O	_	3,0	±0,03	1,5	22,6	3,8	
N4020 RN	•	•	•	O	•	•	O	O	_	4,0	±0,03	2,0	28,2	4,0	2
N5025 RN	•	•	•	0	•	•	O	O	_	5,0	±0,03	2,5	28,3	4,1	
N6030 RN	•	•	•	0	•	•	0	0	_	6,0	±0,03	3,0	28,3	4,5	

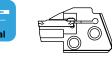
Nichteisenmetalle Abmessungen (mm) Bezeichnung ∑ GCG N2002 GA ○ N3002 GA ○ N4004 GA ○ 4.0 ±0.025 0.2 21.1 3.8 N4004 GA ○														1	
										С				_	
Bezeichnu	ıng ∑									Einstech-		RE	L	S	Abb.
										breite	IUICIAIIZ				
GCG N2002	GA O									2,0	±0,025	0,2	21,1	3,6	
N3002	GA O									3,0	±0,025	0,2	21,1	3,8	
N4004	GA O									4,0	±0,025	0,4	26,4	4,0	3
N5004	GA O									5,0	±0.025	0,4	26,4	4,1	
N6004	GA O									6,0	±0,025	0,4	26,4	4,5	

_		
	Ahstechen	

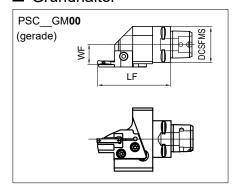
Abstecher)								,	Abmess	unge	en (mm) <u>Z</u>	t Z
	35P	Ю	58	52	00	00	30N		С	W				
Bezeichnung	AC8035F	AC830F	AC5015S	AC5025S	AC5201	AC530L	AC103	PSI	Einstech- breite	Toleranz	RE	L	S	Abb.
GCM R2002 CG 05	•	•	•	•	0	•	_	5°	2,0	±0,03	0,2	21,1	3,6	
L2002 CG 05	•	•	•	•	0	•	-	 5°	2,0	±0,03	0,2	21,1	3,6	
GCM R3002 CG 05	•	•	•	•	O	•	-	 5°	3,0	±0,03	0,2	21,3	3,8	4
L3002 CG 05	•	•	•	•	0	•	_	 5°	3,0	±0,03	0,2	21,3	3,8	7
GCM R4002 CG 05	•	•	•	•	0	•	-	5°	4,0	±0,04	0,2	26,7	4,0	
L4002 CG 05	•	•	•	•	0	•	_	5°	4,0	±0,04	0,2	26,7	4,0	
GCM R20003 CF 1	0 -	-	•	•	_	_	•	10°	2,0	±0,08	0,03	22,4	3,6	
L20003 CF 1	0 —	<u> </u>	•	•	<u> </u>	<u> </u>	•	 10°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 1	0 -	_	•	•	_	_	•	10°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 1		-	•	•	_	<u> </u>	•	 10°	3,0	±0,08				4
GCM R20003 CF 1	5 –	_	•	•	_	_	•	15°	2,0	±0,08	0,03	22,4	3,6	_
L20003 CF 1	5 –	<u> </u>	•	•	<u> </u>	<u> </u>	•	 15°	2,0	±0,08	0,03	22,4	3,6	
GCM R30003 CF 1	5 –	-	•	•	-	 	•	15°	3,0	±0,08	0,03	22,4	3,8	
L30003 CF 1	<u> 5 </u>	_	•	•	_	_	•	15°	3,0	±0,08	0,03	22,4	3,8	

GCM R: Rechte Ausführung

GCM L: Linke Ausführung


Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

GND Stechsystem


Durchmesserbereiche für Axialstechen

Die Zeichnungen zeigen Rechtsausführung.

Kassetten

Bezeichnung	R	L	CW (mm)	Durchmesser- bereich (mm)	DC (mm)	CDX (mm)	Stechplatten	Klemm- schraube	Anzugs- moment (N·m)	Schlüssel
GNDCF R/L 312-040	•	•			40–55	12				
GNDCF R/L 315-050	•	•			50-70	15				
GNDCF R/L 315-065	•	•	3	40–200	65-100	15	GC□ N3000-□□		5,0 🕞	
GNDCF R/L 318-090	•				90-150	18				
GNDCF R/L 318-140	•				140-200	18				
GNDCF R/L 418-040	•	•			40-55	18				
GNDCF R/L 418-050	•				50-70	18				
GNDCF R/L 418-065	•	•	4	40–300	65–90	18	GC□ N4000-□□			
GNDCF R/L 418-085	•		4		85-130	18	GCL N4000-LL			
GNDCF R/L 418-125					125-200	18				
GNDCF R/L 418-180	•				180-300	18		BX0512		LH040
GNDCF R/L 518-050					50-70	18				
GNDCF R/L 518-065					65–90	18			c o 🚓	
GNDCF R/L 518-085			5	50-300	85-130	18	GC□ N5000-□□		6,0 🗺	
GNDCF R/L 518-125	•				125-200	18				
GNDCF R/L 518-180					180-300	18				
GNDCF R/L 618-050					50-75	18				
GNDCF R/L 618-070					70–110	18				
GNDCF R/L 618-100			6	50–1000	100-200	18	GC□ N6000-□□			
GNDCF R/L 618-180					180-300	18				
GNDCF R/L 618-280					280-1000	18				

■ Grundhalter

Hinweis: In den **rechten** Halter PSC40/50GM90R muss eine **linke** Kassette eingesetzt weden. In den **linken** Halter PSC40/50GM90L muss eine **rechte** Kassette eingesetzt weden.

Ausführung	Bezeichnung	R	L	DCSFMS (mm)	WF (mm)	LF (mm)	Klemm- schraube	Anzugs- moment (N·m)	Schlüssel
Gerade	PSC40GM00 R/L	•	•	40	22	81*			
Gerade	PSC50GM00 R/L	•	•	50	27	01	BFTX0619N	7.5 🕅	LT25
Abgewinkelt	PSC40GM90 R/L	•	•	40	43*	52,5	DEIVOOIAN	7,5 №	LIZO
Abgewinken	PSC50GM90 R/L	•	•	50	48*	55,0			

^{*} Abmessungen weichen vom Radialstechen ab.

■ Bezeichnungsschlüssel - Polygon-Werkzeughalter

PSC	40 -	G	M	00	R
l Polygonschaft	Schaftdurchmesser (DCSFMS)	Serienbezeichnung GND	Anwendung Außenbearbeitung	Ausführung 00 = Gerade	Halterausführun R = Rechts
				90 = Abaewinkelt	L = Links

■ Bezeichnungsschlüssel - Kassetten

	J				
GND	С	F	L	3	12
Serienbezeichnung	Ausführung	Anwendung	Halterausführung	Stechbreite	Max.
GND	Kassette	Axialstechen	R = Rechts		Einstechtiefe
			L = Links		

ISO-PSC Polygon Modular GND Stechsystem

Stechplatten

Einstechen / Drehen Abmessungen (mm) AC425KAC5015SAC5025S CW ● AC8035P Bezeichnung S Abb REI L Einstechbreite • • GCM N3002 MG N3004 MG • ±0,03 0,2 21,1 3,8 ±0,03 0,4 21,1 3,8 ±0,03 0,2 26,4 4,0 • • N4002 MG Ö ±0,03 0,4 26,4 4,0 ±0,03 0,8 26,4 4,0 ±0,03 0,8 26,4 4,1 ±0,03 0,8 26,4 4,1 • • • • • • N4004 MG 4,0 N4008 MG • 0 **○** N5004 MG • 0 N5008 MG ±0.03 0.8 26.4 4.1 ±0.03 0.4 26.4 4.5 ±0.03 0.8 26.4 4.5 ±0.03 0.2 21.1 3.8 ±0.03 0.4 21.1 3.8 ±0.03 0.4 26.4 4.0 ±0.03 0.4 26.4 4.0 O • N6004 MG N6008 MG • • • 0 • • GCM N3002 ML • • 0 0 • • • N3004 ML 0 0 • О N4002 ML 0 N4004 ML • • • • 0 • 0 O N4008 ML • 0 0 • • N5004 ML • • O • ±0,03 0,4 26,4 4,1 5,0 • ±0,03 0,8 26,4 4,1 ±0,03 0,4 26,4 4,5 N5008 ML 0 0 • • • Ö • N6004 ML 6,0 •

● Profildrehe	n /	Fı	eis	ste	ch	er	1		A	Abmess	ungen	(mm)			X
Bezeichnung	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	C Einstech- breite	W Toleranz	RE	L	S	Abb.
GCM N3015 RN	•	•	•	0	•	•	0	0	_	3,0	±0,03	1,5	22,6	3,8	
N4020 RN	•	•	•	0	•	•	0	0		4,0	±0,03	2,0	28,2	4,0	2
N5025 RN	•	•	•	O	•	•	O	O	_	5,0	±0,03	2,5	28,3	4,1	_
N6030 RN	•	•	•	0	•	•	O	O	_	6,0	±0,03	3,0	28,3	4,5	

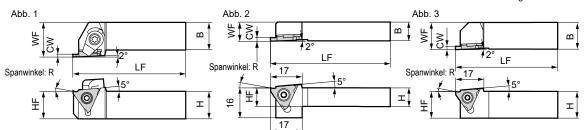
Nichteisenr	ne	tal	le				,	Abmess	sunge	en (mm) Z	
Bezeichnung	Ŧ						C Einstech- breite		RE	L	S	Abb.
GCM N3002 GA N4004 GA	0			 	 	 	4,0	±0,025 ±0,025		21,1 26,4	3,8 4,0	3
N5004 GA N6004 GA	0			 	 	 	5,0 6,0	±0,025	0,4	26,4	4,1	

N5002 GG	● Ei	nstechen	1	٩b	ste	ech	ner	า			,	Abmess	unge	n (mm)	1
GCM N3002 GG	Dan	-:-l	35P	30P	158	258	20U	30U	00A			1			0	
N3004 GG	Bez	eichnung	AC80	AC8	AC50	AC50	AC5	AC5	T25(Toleranz	KE	L	5	ADD
N3004 GG			•	•	•	•	_	•	-		3.0					
N4004 GG			•	•	•	•	ļ	•	_	 	0,0	±0,03	0,4	21,1	3,8	
N4004 GG N5002 GG N5004 GG N6002 GG N6004			•	•	•	•	_	•	_		4.0					
N5004 GG			•	•	•	•		•	_	 						1
N5002 GL N5			•	•	•	•		•	-		5.0					
N6004 GG			•	•	•	•		•		 						ļ
Second Nation Second Nati			•	•	•	•		•			6.0					
N3004 GL			•	•	•	•	_	•			- , -					
N4002 GL			•	•	•	•	J	•	_		3,0				-,-	
N4004 GL			_		_	_				 						ļ
N5002 GL N5004 GL ST ST ST ST ST ST ST ST ST ST ST ST ST			•	•	•	•	J	_			4,0					
N5004 GL N5004 GL N5004 GL N5004 GL N5004 GL N5004 GL N5004 GL N5004 GL N5004 GL N5004 GL N5004 GL N5004 GL N5004 GF N5002 GF			_		<u>.</u>	_		0		 						1
N6002 GL N6004 GL			•	•	-	•	J		_		5,0					
N6004 GL			Ĭ	_	Ĭ	Ĭ		9		 						ł
GCM N3002 GF N3004 GF N3004 GF N4002 GF N4004 GF N4004 GF N5002 GF				•	_				_		6,0					
N3004 GF									_							H
N4002 GF				•	-	-	_	-	_		3,0					
N4004 GF			_		_	_		_	ļ	 						1
N5002 GF • • • • • • - ±0,03 0,2 26,4 4,1			•		•	•		•			4,0					١.
1 30 3 3 3 3			•	•	•	•	•	•		 						1
N5004 GF $ \bullet \bullet \bullet - ^{0,0} \pm 0.03 0.4 26.4 4.1 $		N5002 GF	•		•	•		•			5,0	±0.03	0.4			
N6002 CE 0 0 0 0 0 10 10 12 12			•	•	•	•	•	•		 						1
N6002 GF			•		•	•		•	_		6,0					

Verwenden Sie die gleiche Einstechbreite (CW) für Halter und Platten.

SumiTurn B-Groove Schneidplatten

TGA-BF Typ

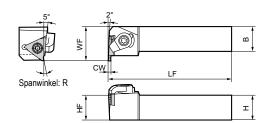

■ Charakteristik

- Hervorragende Spankontrolle in einem großen Anwendungsbereich
- Exzellente Spankontrolle bei großen Schnitttiefen und gleichzeitigem Vorschub in Längsrichtung
- Schneidplatten für Einstiche von 1,5-4,5 mm verfügbar
- Sorte AC530U mit Super ZX Beschichtung für lange Standzeiten in den unterschiedlichsten Werkstückstoffen wie Stahl, rostfreiem Stahl und Guss
- Hohe Stabilität durch tangentiale Schneidenfixierung und Doppelspannsystem

Einstechen am Außendurchmesser

Abb. zeigt Rechtsausführung

Der Spanwinkel R variiert je nach Schneidplattensorte. Einzelheiten finden Sie in der Tabelle im unteren Teil der Seite F39.


■ Ersatzteile

■ Halter

Klemmhalter in Rechtsausführung verwenden **rechte** Schneidplatten (TGA-R), linke Spannpratze (CCM _ _L) und rechte Schraube (WB_ _T).

			•		•	'				•				•				· ·
Bezeichnung	La	ger	Ab	mes	sung	en(m	m)	Λhh	Einstechbreite	Maximale	Einsetzbare		~	Cablüasal	Spann-	Cabrauba	~	Cablüasal
bezeichhung	R	L	Н	В	LF	WF	HF	Abb.	CW (mm)	Einstechtiefe (mm)	Wsp gruppe	Schraube	(N-m)	Schlüssel	pratze	Schraube	(N-m)	Schlüssel
GWC R/L 1010-3	O	0	10	10	125	10	10	2	0,33–2,80	0,8–2,5	0	BFTX						
GWC R/L 1212-3	0	0	12	12	125	12	12	2	0,33–2,80	0,8–2,5	0	0409N	3,4	TRX15	_	_	-	_
GWC R/L 1616-3	•	0	16	16	125	16	16	3	0,33–2,80	0,8–2,5	0							
GWC R/L 2020-3	O	0	20	20	125	25	20	1	0,33–2,80	0,8–2,5	0	BFTX	3.4	TRX15	CCM 6B	WB 6-20	5,0	LT20
GWC R/L 2525-3	O	•	25	20	150	30	25	1	0,33–2,80	0,8–2,5	0	0409N	0,4	110010	-L/R	-T/TL	3,0	LIZU
GWC R/L 2020-15	•	•	20	20	125	25	20	1	1,25–1,45	2,0	0							
GWC R/L 2020-25	•	0	20	20	125	25	20	1	1,50–2,30	3,5	6							
GWC R/L 2020-35	•	•	20	20	125	25	20	1	2,50-4,80	5,0	4	BFTX	5.0	TRX20	CCM 8U	WB 8-22	5.0	LT27
GWC R/L 2525-15	•	\circ	25	25	150	30	25	1	1,25–1,45	2,0	0	0511N	3,0	111/1/20	-L/R	-T/TL	5,0	LIZI
GWC R/L 2525-25	•	•	25	25	150	30	25	1	1,50–2,30	3,5	6							
GWC R/L 2525-35	•	•	25	25	150	30	25	1	2,50-4,80	5,0	4							

Der Spanwinkel R variiert je nach Schneidplattensorte. Einzelheiten finden Sie in der Tabelle im unteren Teil der Seite F39.

Abb. zeigt Rechtsausführung

■ Ersatzteile

■ Haltor

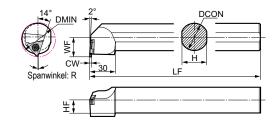
Klemmhalter in Rechtsausführung verwenden **linke** Schneidplatten (TGA-L), rechte Spannpratze (CCM R) und linke Schraube (WB TL).

Haiter											S		6				
Б	La	ger	Ab	mes	sung	en (n	nm)	Einstechbreite	Maximale	Einsetzbare		_	0 - 1-12 1	Spann-	0 - 1 1		0.1.1"1
Bezeichnung	R	L	Н	В	LF	WF	HF	CW (mm)	Einstechtiefe (mm)	Wsp gruppe	Schraube	(N-m)	Schlüssel	pratze	Schraube	(Nom	Schlüssel
GWCS R/L 2020-3	0		20	20	125	25	20	0,33-2,80	0,8–2,5	0	BFTX	3,4	TRX15	CCM 6B	WB 6-20	5,0	LT20
GWCS R/L 2525-3			25	25	150	30	25	0,33-2,80	0,8–2,5	0	0409N	٥,٦	110013	-L/R	-T/TL	3,0	LIZU
GWCS R/L 2020-15	0	O	20	20	125	27	20	1,25-1,45	2,0	0							
GWCS R/L 2020-25	0	0	20	20	125	27	20	1,50-2,30	3,5	6							
GWCS R/L 2020-35	0	0	20	20	125	27	20	2,50-4,80	5,0	4	BFTX	5,0	TRX20	CCM 8U	WB 8-22	5.0	LT27
GWCS R/L 2525-15	0	0	25	25	150	32	25	1,25–1,45	2,0	0	0511N	3,0	111/120	-L/R	-T/TL	3,0	LIZI
GWCS R/L 2525-25		O	25	25	150	32	25	1,50-2,30	3,5	6							
GWCS R/L 2525-35	0	0	25	25	150	32	25	2,50-4,80	5,0	4							

SumiTurn B-Groove Klemmhalter GWC/GWCS/GWCI

ISO-PSC Polygon Modular

Halter


Bezeichnung	R	L	Ø (mm)	F (mm)	L (mm)	Klemm- schraube	(N-m)	Schlüssel
PSC 40 GM00 R/L	•	•	40	22	80,0			
PSC 50 GM00 R/L	•	•	50	27	80,0	DETVOCADAL	7.5	LT25
PSC 40 GM90 R/L	•	•	40	42	52,5	RETX0619N	7,5	LIZO
PSC 50 GM90 R/L	•	•	50	47	55,0			

■ Kassetten

Bezeichnung	R	L	Einstech- breite (mm)	Einstech- tiefe (mm)	Stechplatten	Platten- schraube	Schlüssel	Feder	Klemm- finger	Klemm- schraube	(2)	Schlüssel
GWCCM R/L 25	•	•	1,5–2,3	3,9	TGA□4□□□BF	BFTX0511N	TRX20		SCP4A		3,0	LH030
GWCCM R/L 35	•	•	2,5–4,5	5,4	TGA□4□□□BF	I IRX			3CF4A		3,0	LHUSU

Einstechen am Innendurchmesser

Der Spanwinkel R variiert je nach Schneidplattensorte. Einzelheiten finden Sie in der Tabelle im unteren Teil der Seite F39.

Abb. zeigt Rechtsausführung

■ Ersatzteile

Halter

_	Lager Abmessungen (mm) Einstechbreite Maximale Einstechtiefe Wsp.											(S)		
Rozoichnung	La	ger		Ab	messur	ngen (m	ım)		Einstechbreite		Einsetzbare	Cabaaaba		Cabloanal
<u> </u>	R	L	DMIN	DCON	LF	Н	HF	WF	CW (mm)		gruppe	Schraube	(N-m)	Schlüssel
GWCI R/L 325	0	0		25	100	23	11,5	17,5	0,33–2,80	0,8-2,0	0	BFTX0409N	3,4	TRX 15
GWCI R/L 432	0	0	40	32	250	30	15,0	17,5	1,25-4,80	2,0-2,5	264	BFTX0511N	5,0	TRX 20

■ Schneidplatten

Bemerkung: Schneidkantenversatz (E2) bei Schneidplatten für Stechbreite ≤ 1,85 mm.

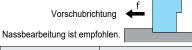
Abb.	zeigt rec	hte Aus	tührung.

·	4,76			Abb. zeigt	rechte /	Ausführu	ng.	
	So	rte	Ab	messunge	en (mr	n)		Einsetzbare
Bezeichnung	AC5	30U	()(CDX: maxim	nale Ti	efe	Abb.	Halter und Wsp.
	R	L	CW	CDX	RE	E2		Gruppen
TGA R/L 4140BF01	O	0	1,40	2,5 (2,0-1,7)	0,1	0,300	2	0
TGA R/L 4150BF	•	•	1,50			0,250		
TGA R/L 4165BF	0	0	1,65	3,9		0,175	2	
TGA R/L 4175BF	0	0	1,75			0,125	-	
TGA R/L 4185BF	0	O	1,85	Außen	0,2	0,075		6
TGA R/L 4200BF	•	•	2,00	(5,0) Innen				
TGA R/L 4220BF	0	0	2,20	(2,5)		0	1	
TGA R/L 4230BF	O	O	2,30	(=,-,				
TGA R/L 4250BF	•	•	2,50					
TGA R/L 4265BF	0	0	2,65					
TGA R/L 4270BF	0	0	2,70					
TGA R/L 4280BF	0	0	2,80					
TGA R/L 4300BF	•	•	3,00		0,3			
TGA R/L 4320BF	0	0	3,20	5,4	0,3			
TGA R/L 4330BF	0	0	3,30	5,4				
TGA R/L 4350BF	•	•	3,50	Außen		0	1	
TGA R/L 4370BF	0	0	3,70	(5,0)		0	'	9
TGA R/L 4390BF	0	0	3,90	Innen				
TGA R/L 4400BF	•	•	4,00	(2,5)				
TGA R/L 4410BF	0	O	4,10					
TGA R/L 4420BF		0	4,20		0,4			
TGA R/L 4430BF	0	O	4,30		0,4			
TGA R/L 4440BF	0	0	4,40					
TGA R/L 4450BF	•	0	4,50					

*) Kombinieren Sie Klemmhalter und Schneidplatte mit Hilfe der Nummerierung

■ Empfohlene Schnittbedingungen

Einstechen


Nassbearbeitung ist empfohlen.

Werkstücksto	ff	Stahl		Rost	tfreier Stahl			
Schnittgeschwindigkeit	(m/min)	50–180			50–160			
Einstechbreite (mm)		1,5–2,3	2,5-	-3,3	3,5–4,5			
Vorschub (mm/U)		0,03-0,12	0,04-	-0,12	0,05-0,12			
Schnitttiefe (mm)	Außen	-3,5	-5	5,0	-5,0			
Schrittiele (mm)	Innen		-2,5					

Längsdrehen

Vorschubrichtung

Werkstückstoff	Stahl		Rost	freier Stahl
Schnittgeschwindigkeit (m/min)	50–180			50–160
Vorschub (mm/U)	0,03-0,10	0,05-	-0,10	0,07-0,12
Schnitttiefe (mm)	-0,3	- C),5	-0,7

■ Spanwinkel bei montiertem Halter (E)

Einstechen	AC530U	H1	T2500Z T3000Z	T1500A	BN2000	DA2200
Außen GWC, GWCS	10°	20°	10°	5°	0°	10°
Innen GWCI	1°	11°	1°	–4°	–9°	1°

SumiTurn Groove Schneidplatten

TGA-Typ

■ Stechplatten zum Einstechen und Längsdrehen

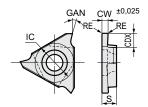


Abbildung zeigt Rechtsausführung.

Sorte		Schneidkante	GAN
Beschichtetes Hartmetall	AC530U	Gehont	15°
Hartmetall	H1	Scharf	25°
Beschichtetes Cermet	T2500Z,T3000Z	Gehont	15°
Cermet	T1500A	Scharf	10°
SUMIBORON	BN2000	Negativ-Fase	5°
SUMIDIA	DA2200	Scharf	15°

^{*} Siehe Seite F47 für den Spanwinkel mit montiertem Halter.

Abmessungen (mm)

Bezeichnung	AC:	30U	Н	1	T25	00Z	T30	00Z	T15	600A	BN2	000	DA2	200		Max. Eins	stechtiefe					WSP/Halter
(Die Artikelnummern von T1500A enden mit "E")	_	L	R			L	R	L	R	_	R	L	R	L	CW	Außen	Innen	CDX	RE	IC	S	Gruppen Nr.
TGA R/L 3033 (E)	0	-	0	_	-	0		_	. `	-	_	_	_	_	0,33	0,8	0,5	1,0				
TGA R/L 3050 (E)		0	0		0	0	0				_	_	_	_	0,50	1,2	0,8	1,4	0,05			
TGA R/L 3075 (E)	0	0	0		0	0									0,75	.,_	5,5	-,-				
R/L 3095 (E)		0			- 1	0									0,95	-						
R/L 3100 (E)	0	0	0	0	0	0	0		0	0					1,00	-						
R/L 3110 (E)		0		_	0	0				_					1,10	1						
R/L 3125 (E)	0	0	0		0	o	0		0	0					1,25	-						
R/L 3135 (E)		0			0	0	0		0	_					1,35	2,0	1,5	2,5				
R/L 3145 (E)	0	0	0		0	0	•								1,45	,	1,0	2,0				
R/L 3150 (E)	0	0	0			0									1,50	-						
R/L 3165 (E)	0	0			0	0									1,65	-			0,1	9,525	3,18	0
R/L 3175 (E)	0	0			0	0	0								1,75	-			(T1500A			
R/L 3185 (E)	0	0			0	0	•								1,85	-			0,2)			
TGA R/L 3200 (E)		0	0		_	0	O	0	0	0					2,00				†			
R/L 3220 (E)		0				0	•	•		•					2,20							
R/L 3230 (E)		-			- 1	0									2,30	1						
R/L 3250 (E)	0		0		0	0									2,50	2,5	2,0	3,0				
R/L 3265 (E)					0	0									2,65	2,0	2,0	0,0				
R/L 3270 (E)					0	0									2,70	-						
R/L 3280 (E)	O				0	0									2,80	_						
TGA R/L 4125 (E)	0	0			0	0							0		1,25							
R/L 4145 (E)		0			0	0					_		•		1,45	2,0	1,7	2,5				9
TGA R/L 4150 (E)	0	0	0	0	0	0					0		0		1,50				1			
R/L 4165 (E)		0		•		0							•		1,65	-						
R/L 4175 (E)					0	0									1,75	-			0,2			
R/L 4185 (E)		0	0	0		0									1,85	3,5	2,5	3,9	*2			
R/L 4200 (E)	0	0		•	0	0					0		0		2,00	0,0	2,0	0,0				6
R/L 4220 (E)		0			0	0									2,20	-						
R/L 4230 (E)	0	0			0	0									2,30	-						
TGA R/L 4250 (E)	0		0		_	0			0		0				2,50							
R/L 4265 (E)	0		0		0	0									2,65							
R/L 4270 (E)					- 1	0									2,70	-						
R/L 4280 (E)	0				0	0									2,80	5,0	2,5	5,4			4,76	
R/L 4300 (E)		0				0			0		0		0		3,00	*1	_,0	*1	0,3	12,70	.,,,	
R/L 4320 (E)					0	0									3,20	1			*2			
R/L 4330 (E)	0					0									3,30	1						
TGA R/L 4350 (E)	+				-	0									3,50				1			
R/L 4370 (E)					0						_				3,70	1						4
R/L 4390 (E)						0									3,90	1						•
R/L 4400 (E)	o				- 1	0					0				4,00	1				1		
R/L 4410 (E)					1	0									4,10	1						
R/L 4420 (E)						0									4,20	5,0	2,5	5,4				
R/L 4430 (E)						0									4,30	1			0,4			
R/L 4440 (E)						0									4,40	1			*2			
R/L 4450 (E)			0			0									4,50	1						
R/L 4480 (E)					0										4,80	1					5,00	1
* Siehe Gruppennummeri	n dor	CMC		MICS			VCI.	Typo	n 011	f Coil		6	4 54	7		· CDV für	CLIMIDO	ON und	SUMIDIA	- 1.1 mg		uttiofo 10

^{*} Siehe Gruppennummern der GWC-, GWCS- und GWCI-Typen auf Seite F46 und F47 für die passende Halter. Einsätze und Halter mit gleichen Gruppennummern passen zusammen.

^{*1:} CDX für SUMIBORON und SUMIDIA = 4,4, maximale Nuttiefe 4,0 (2,5 bei Innenbearbeitung)

^{*2:} RE für SUMIBORON = 0,2; RE für SUMIDIA = 0,1

SumiTurn Groove Schneidplatten **TGA-Typ**

■ Radiusplatte zum Konturdrehen

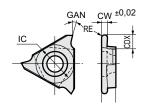


Abbildung zeigt Rechtsausführung

Sorte		Schneidkante	GAN
Beschichtetes Hartmetall	AC530U	Gehont	15°
Hartmetall	H1	Scharf	25°
Beschichtetes Cermet	T2500Z, T3000Z	Gehont	15°
Cermet	T1500A	Scharf	10°
SUMIBORON	BN2000	Negativ-Fase	5°
SUMIDIA	DA2200	Scharf	15°

* Siehe Seite F47 für den Spanwinkel mit montiertem Halter.

Abmessungen (mm)

Pozoiobnung	AC530U	H1	T250	00Z	T30	00Z	T15	00A	BN2	000	DA2	2200	CW	Max. St	echtiefe	CDX	RE	IC	s	WSP/Halter
Bezeichnung	R L	R L	R	L	R	L	R	L	R	L	R	L	CVV	Außen	Innen	CDX	KE	IC	3	Gruppen Nr.
TGA R/L 4050 R	00		0										1,00	2,0	1,7	2,5	0,50			0
TGA R/L 4075 R	00		0										1,50	3,5	2.5	3.9	0,75			
R/L 4100 R	OO		O										2,00	3,5	2,5	3,9	1,00	12.70	4,76	€
TGA R/L 4125 R	00		C										2,50				1,25	12,70	4,76	
R/L 4150 R	00		0		O						□		3,00	5,0 *1	2,5	5,4 *1	1,50			4
R/L 4200 R	0		O										4,00				2,00			

^{*} Siehe Gruppennummern der GWC-, GWCS- und GWCI-Typen auf Seite F46 und F47 für die passende Halter. Einsätze und Halter mit gleichen Gruppennummern passen zusammen.

■ Empfohlene Schnittbedingungen

Werkstückstoff	P	Allgemeiner Sta	ahl	M Ro	ostfreier Stahl		Nichteis	H Gehärteter Stahl	
Sorte	AC530U	T2500Z, T3000Z	T1500A	AC530U	T2500Z, T3000Z	T1500A	H1	DA2200	BN2000
Schnittgeschwindigkeit m/min)	50-200	100–180	100–180	50-200	80–150	80–120	200-300	200-300	80–120
Vorschub (mm/U	0,02-0,10	0,05–0,10	0,05–0,08	0,02–0,10	0,05-0,08	0,05-0,08	0,05–0,15	0,05-0,15	0,03-0,07

■ Schneidplatten-Rohlinge

(Rohling zur individuellen Bearbeitung von Stechbreite, Schneidkantenradius und Spanwinkel).

Abb. 1

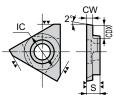


Abbildung zeigt Rechtsausführung

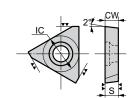
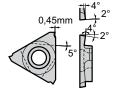


Abb. 2

Abmessungen (mm)


Bezeichnung	KH03	Н	1	EH:	510	T15	00A	CW	CDX	IC	S	Eig
bezeichnung	R L	R	L	R	L	R	L	CVV	CDX		3	Fig.
TGA R/L 3 T18								1,85	(3,4)			1
R/L 3 T23						0	O	2,35	(3,4)	9,525	3,18	<u> </u>
R/L 3 T31	0							3,18	_			2
TGA R/L 4 T22								2,20	(4,8)			1
R/L 4 T37								3,75	(6,2)	12,70	4,76	1
R/L 4 T47	0					O		4,76	_			2

Hinweis: CDX-Werte in Klammern dienen nur als Referenzwert.

■ Hinweise zur Bearbeitung eines Rohlings Bearbeiten Sie die Schneidkanten so, wie in Abb. 3 angegeben. In den Halter eingebaut, verändern sich die Winkel wie in Abb. 4 angegeben.

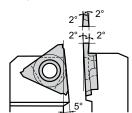
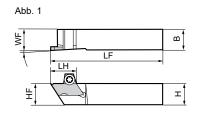

Empfohlene Form

Abb. 3



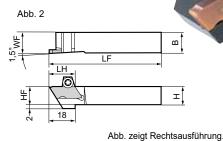

Stechplatte in Einbauposition

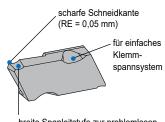
Abb. 4

^{*1:} CDX für SUMIBORON und SUMIDIA = 4,4, maximale Nuttiefe 4,0 (2,5 bei Innenbearbeitung)

SCT-Typ zum Abstechen

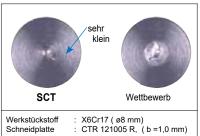
\$ 8011

Ersatzteile


Halter

<u> </u>											
Danaiahanaa			Ab	messur	ngen (m	m)		geeignete	A L L	0.1	0.11"
Bezeichnung	Lager	Н	В	LF	WF	HF	LH	Schneidplatten	Abb.	Schraube	Schlüssel
SCT R 1010	•	10	10	120	10	10	15	CT R05			
SCT R 1212	•	12	12	120	12	12	15	CT R12	1		
SCT R 1616	•	16	16	120	16	16	15	CI KIZ		BFTX0410T8L	
SCT R 101016	0	10	10	120	10	10	18		2	DI IAU41010L	
SCT R 121216	0	12	12	120	12	12	18	CT R16	1		
SCT R 161616	0	16	16	120	16	16	18		Į.		TRX 08
SCT L 1010	•	10	10	120	10	10	15	CT L05			1100
SCT L 1212	•	12	12	120	12	12	15	CT L12	1		
SCT L 1616	•	16	16	120	16	16	15	CI LIZ		BFTX0410T8R	
SCT L 101016	0	10	10	120	10	10	18		2	וסו ואט+וטוסוג	
SCT L 121216	0	12	12	120	12	12	18	CT L16	1		
SCT L 161616	0	16	16	120	16	16	18		ı.		

■ Schneideinsätze


	F	ür rechte Halter (SCTF	₹)		Für linke Halter (SCTL	.)
	CTR _ R	CTR N	CTR _ L	CTLR	CTLN	CTLL
Montage- hinweise für den Halter	20*		20°	20°		20"
Schneidein- satz	RE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2-RE	20°	20° RE	2-RE 00 10 10 10 10 10 10 10 10 10 10 10 10	20°

_	Pozoiobnung	AC	103	0U	AC	C530	Ü	Max. Schneid-Ø	CW	RE	L	S	Span-	Geeignete
	Bezeichnung	R	N	L	R	N	L	(mm)	CVV	KE	-	3	brecher	Halter
CTR (050505 R/N/L	0		0	0	0	0	5	0.5	0,05				
(050500 R/N/L	0	0		0	0		5	0,5	0				
CTR 1	121005 R/N/L	0	0	0	0	0	0	12	1,0					SCT R1010
1	121505 R/N/L	•	•	0	0	0	0	12	1,5	0,05	19	7		SCT R1212
1	122005 R/N/L	•	•		0	0		12	2,0]	19	'		
1	121000 R/N/L	0	0		0	0		12	1,0				Mit	SCT R1616
1	121500 R/N/L	0	0		0	0		12	1,5	0			Span-	
	122000 R/N/L	0	0		0	0		12	2,0					
CTR 1	161005 R/N/L							16	1,0				brecher	
1	161505 R/N/L	0	0		0	0		16	1,5	0,05				
1	162005 R/N/L	0	0	0	0	0	0	16	2,0		23,1	8.3		SCT R101016
1	161000 R/N/L							16	1,0		23,1	0,3		SCT R121216
1	161500 R/N/L	0	0		0	0		16	1,5	0				SCT R161616
1	162000 R/N/L	0	0	0	0	0	0	16	2,0					
	050500 R/N/L NB							5	0,5					SCT R1010
	121000 R/N/L NB	0			0			12	1,0]	19	7		SCT R1212
1	121500 R/N/L NB	0			0			12	1,5]	19	′	Ohne	
1	122000 R/N/L NB	0			0			12	2,0	0			Span-	SCT R1616
	161000 R/N/L NB							16	1,0]			brecher	SCT R101016
	161500 R/N/L NB							16	1,5		23,1	8,3		SCT R121216
1	162000 R/N/L NB	О			O			16	2,0					SCT R161616
CTI (050505 R/N/L	0			0	0		5	٥.	0,05				
	050500 R/N/L	0	0		0	0		5	0,5	0	1			
	121005 R/N/L	0	0	•	0	0	0	12	1,0		1			SCT R1010
	121505 R/N/L	0	0	•	0	0	0	12	1,5	0.05	40	_		
	122005 R/N/L	0	•		0	0		12	2,0	1 ,	19	7		SCT R1212
	121000 R/N/L	0	0		0	0		12	1.0		1		N 4:4	SCT R1616
-	121500 R/N/L	0	0		0	0		12	1,5	0			Mit	
1	122000 R/N/L	0	0		0	0		12	2.0	1			Span-	
	161005 R/N/L							16	1,0				brecher	
	161505 R/N/L	0	0			0		16	1,5	0.05				
	162005 R/N/L	0	0	0	0	o	0	16	2,0	1	00.4	0.0		SCT R101016
	161000 R/N/L							16	1.0		23,1	8,3		SCT R121216
	161500 R/N/L	0	0		0	0		16	1,5	0				SCT R161616
	162000 R/N/L	O	O		o	o		16	2,0	1				

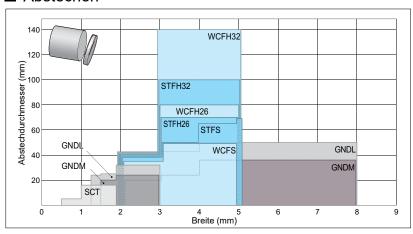
breite Spanleitstufe zur problemlosen Spanabfuhr

Butzengröße im Vergleich

Schneidplatte Schnittdaten

- - v_c = 45 m/min f = 0,02 mm/U, Nass

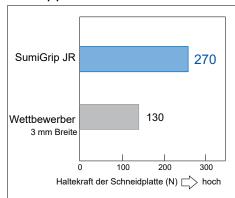
Abstechwerkzeuge Sumi-Grip


Eigenschaften

- Halterungen erhältlich in Hartmetall (SumiGrip) und Stahl (SumiGrip JR).
- Kann im unterbrochenen Schnitt eingesetzt werden.
- Anwendungsbereich: Einstechen, Abstechen, Anfasen.

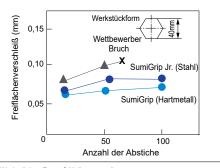
Typ

- Schwertausführung STFH (Stahl) / WCFH (Hartmetall)
- Schaftausführung STFS (Stahl) / WCFS (Hartmetall)


Abstechen


■ Konstruktionsmerkmale

Doppelte Klemmkraft



Geringe Vibrationen

3 mm Stechbreite, beschichtetes Hartmetall Schneidplatte: Schnittbedingungen:vc = 80 m/min, trocken

Verschleißfestigkeit

Werkstückstoff: C45 (hexagonal) Schneidplatte: 3 mm Stechbreite, beschichtetes Hartmetall Schnittbedingungen: vc = 150 m/min, f = 0,15 mm/U, nass

■ GG-Typ/GF-Typ/CF-Typ Spanbrecher, Sorte AC1030U

Nutzung von GND-Typ Spanbrecher für ausgezeichnete Spankontrolle.

Spanbrecher mit geringer Schnittkraft (GF-Typ (neutral) oder CF-Typ (Links- oder Rechtsausführung)), kombiniert mit dem Hartmetallschwert für eine stabile Bearbeitung und zur Reduzierung von Vibrationen bei der Bearbeitung von Edelstahl.

Lange und stabile Standzeiten mit der neuen Sorte AC1030U.

L/R-Ausführung

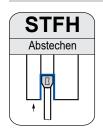
CF

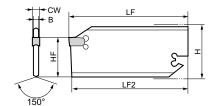
Warmfeste Legierung, Niedrige Schnittkraft

Warmfeste Legierung Niedrige Schnittkraft

Leistung (Spanbrecher)

Vergleich der Spankontrolle

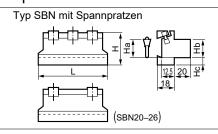




Herkömmliche Spankontrolle

X5CrMo17 12 2 (Ø 40 mm) Werkstückstoff: Schnittbedingungen: vc = 100 m/min. f = 0.1 mm/U. nass

Abstechhalter, Stahlschwert (Halter zum Einbau in Spannblock)



Ersatzteil

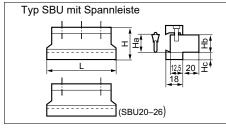
Halter

Bezeichnung	Lagor			Abmessur	ngen (mm)		Max.Ab-	Geeignete	Geeignete	Schlüssel
Bezeichhang	Lager	Н	В	LF	HF	LF2	CW	stech Ø	Schneideinsätze	Spannblöcke	Scriiussei
STFH 26-2	•	26	1,6	109	21,4	108	2,0	40	WCF 2		
26-3	•	26	2,4	109	21,4	108	3,0	70	WCF 3	SBN 20-26	
26-4	•	26	3,4	109	21,4	108	4,0	70	WCF 4	SBU 20-26	
26-5	•	26	4,3	109	21,4	108	5,0	70	WCF _ 5 _		SL 4
STFH 32-2	•	32	1,6	149	25,0	148	2,0	40	WCF 2	SBN 20-32	SL 4
32-3	•	32	2,4	149	25,0	148	3,0	100	WCF _ 3 _	SBN 25-32	
32-4	•	32	3,4	149	25,0	148	4,0	100	WCF _ 4 _	SBU 20-32	
32-5	•	32	4,3	149	25,0	148	5,0	100	WCF_5_	SBU 25-32	

■ Spannblöcke *

Pozoiobnung	Lager	Abı	mess	unge	en (m	m)	Geeignete
Bezeichnung		Н	На	Hb	Нс	L	Halter
SBN 20-26	•	45	20	20	10,0	80	STFH 26_
SBN 20-32	•	50	20	20	13,5	100	STFH 32_
SBN 25-26		48	25	25	10,0	80	STFH 26_
SBN 25-32	•	50	25	25	8,5	110	STFH 32_

Abb. zeigt Rechtsausführung.

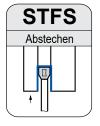

■ Ersatzteile

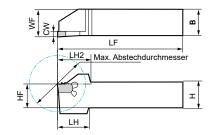
Spannkeil	Schraube	Schlüssel
		F
BWS 30	WB 8-20	LH 040

Spannleiste

SBU20-32

BCS 20 BCS 25


Bezeichnung		Ab	mess	ım)	Geeignete		
Dezeichhang	Lager	Н	На	Hb	Нс	L	Halter
SBU 20-26	•	45	20	20	10,0	80	STFH 26_
SBU 20-32	•	50	20	20	13,5	100	STFH 32_
SBU 25-26		48	25	25	10,0	80	STFH 26_
SBU 25-32	•	50	25	25	8,5	110	STFH 32_


Schraube Schlüssel

BX 0622 LH 050

BCS 15

Abstechhalter, Halter in Schaftausführung

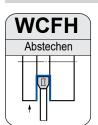
Ersatzteil

Halter

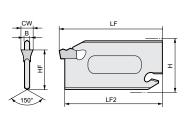
Schlüssel	Geeignete	Max.Ab-			າ)	ngen (mn	Abmessu	F			ager		Bezeichnung
Scriiussei	Schneideinsätze	stech Ø	CW	LH2	LH	HF	WF	LF	В	Н	₹ L	F	bezeichnung
		28	2,0	17	17	10	10	86	10	10)		STFS R/L 1010-2
	WCE 2	30	2,0	18	18	12	12	110	12	12			R/L 1212-2
	WCF _ 2 _	32	2,0	19	_	16	16	110	16	16	0		R/L 1616-2
		40	2,0	24	_	20	20	125	20	20			R/L 2020-2
		35	3,0	22	20	16	16	110	16	16	0		STFS R/L 1616-3
SL 4	WCF 3	40	3,0	24	_	20	12	110	12	20)		R/L 2012-3
SL 4	WCF_3_	50	3,0	30	_	20	20	125	20	20	•		R/L 2020-3
		50	3,0	30	_	25	25	150	25	25			R/L 2525-3
	WCF 4	55	4,0	33	_	20	20	125	20	20	•		STFS R/L 2020-4
	**CF_4_	65	4,0	38	_	25	25	150	25	25	•		R/L 2525-4
	WCF 5	60	5,0	35	_	20	20	125	20	20)		STFS R/L 2020-5
	WCF_5_	70	5.0	40	_	25	25	150	25	25	\circ	10	D/I 2525 5

^{*}Auswahlhilfe für Spannblöcke siehe Seite F46

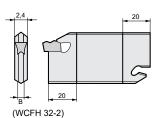
Abstechwerkzeuge Sumi-Grip Jr.- Einsätze


■ Schneideinsätze

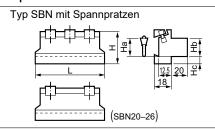
Neutral (N)		Red	hts (R)				Links (L	_)				
2° CW 2°	2-RE	0.2*		2-F % MO % Z	RE0.2*			2°, CW 2°,	8° -RE0.2*		* WCF_2T: 2_	RE=0,15
Form		Bezeichnung	AC830P	AC225	AC1030U	T1500A	A30	G10E	CW	Ge	eeigneter Halter	
WCF N _ GG Universell einsetzbar		WCF N2 GG N3 GG N4 GG N5 GG	•						2,0 3,0 4,0 5,0	STFH3 STFH4	STFS R/L STFS R/L STFS R/L STFS R/L	2 3 4 5
WCF N _ GF Sonderlegierungen Geringer Vorschub		WCF N2 GF N3 GF N4 GF N5 GF			0 0				2,0 3,0 4,0 5,0	STFH 2 STFH 3 STFH 4	STFS R/L STFS R/L STFS R/L STFS R/L	2 3 4 5
WCF CF Sonderlegierungen Geringer Vorschub		WCF R3 CF L3 CF R4 CF			0				3,0 3,0 4,0		STFS R/L	
WCF _ 2T Kleiner Durchmesser Geringe Schnittkraft		L4 CF WCF N2T R2T L2T	•		0				2,0 2,0 2,0 2,0		STFS R/L	
WCF Ohne Spanbrecher Allgemeiner Stahl		WCF N3 R3 L3	•						3,0 3,0 3,0	STFH3	STFS R/L	3
The state of the s		WCF N4 R4 L4 WCF N5	•						4,0 4,0 4,0	STFH4	STFS R/L	4
		R5 L5	•						5,0 5,0 5,0 2,0		STFS R/L	
WCF A Sonderlegierungen Geringer Vorschub		WCF N2A WCF N3A R3A L3A	•	•		O			3,0 3,0 3,0		STFS R/L	
		WCF N4A R4A L4A	0	•			O		4,0 4,0 4,0	STFH 4	STFS R/L	4
		WCF N5A R5A L5A	•	•					5,0 5,0 5,0	STFH5	STFS R/L	5
WCF B Grauguss Leichtmetalle		WCF N3B R3B L3B						•	3,0 3,0 3,0	STFH3	STFS R/L	3
Hinweis: Mit ähnlichem Spanbre sign wie für allgemeine		WCF N4B R4B L4B						0	4,0 4,0 4,0	STFH4	STFS R/L	4
(WCF) aber mit kle Schneidkantenpräpara	eineren	WCF N5B R5B L5B						0	5,0 5,0 5,0	STFH5	STFS R/L	5


■ Empfohlene Schnittbedingungen

10/6	Werkstückstoff		Schnittgeschwindigkeit (m/min)								
VVE	EIRSTUCKSTOII	AC830P	AC225	AC1030U	T1500A	A30	G10				
	Allgemeiner Stahl	80–200	80–200	50-200	80–200	50-120	_				
Stahl	Weichstahl	100–230	100–230	50-230	100–230	70–150	_				
	Gesenkstahl	60–150	60–150	50–150	60–150	50–120	_				
Rostfreier S	Stahl	70–150	70–150	50-150	_	70–130	_				
Grauguss	Grauguss		_	50-200	_	_	50–120				
Nichteisenr	Nichteisenmetalle		_	200-500	_	_	200-500				


						Vo	rschub (mm	m/U)						
	Neutral								Links oder rechts					
Spanbre	chor	GG	GF	Ohne Spanbrecher	Т	Α	В	Ohne Spanbrecher	CF	Т	Α	В		
Sparible	CHE		Sonder-		Kleiner Durch-	Sonder-			Sonder-	Kleiner	Sonder-			
		Allgemeine	legierungen	Allgemeiner	messer	legierungen	Grauguss	Allgemeiner	legierungen	Durchmesser	legierungen	Grauguss		
		Anwendung	Geringe	Stahl	Geringe	Geringer	Leichtmetalle	Stahl	Geringe	Geringe	Geringer	Leichtmetalle		
			Schnittkraft		Schnittkraft	Vorschub			Schnittkraft	Schnittkraft	Vorschub			
Stech-	2,0	0,05-0,20	0,03-0,12	_	0,03-0,10	0,03-0,12	_	_	_	0,03-0,10	_	_		
breite	3,0	0,08-0,25	0,04-0,15	0,08-0,25	_	0,04-0,15	0,05-0,15	0,08-0,25	0,08-0,12	_	0,04-0,15	0,05–0,15		
W	4,0	0,10-0,30	0,05-0,18	0,10-0,30	_	0,05-0,18	0,05-0,18	0,10-0,30	0,10-0,30	_	0,05-0,18	0,05–0,18		
(mm)	5,0	0,10-0,35	0,05–0,20	0,10-0,30	_	0,05-0,20	0,06-0,20	0,10-0,20	0,10-0,30	_	_	0,06–0,20		

CW: 2 mm

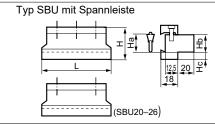

Ersatzteile

Halter

											-
Bezeichnung	Lagor		/	Abmessur	ngen (mm)		Max.Ab-	Geeignete	Geeignete	Schlüssel
Bezeichhang	Lager	Н	В	LF	HF	LF2	CW	stech Ø	Schneideinsätze	Spannblöcke	Scriiussei
WCFH 26-2	•	26	1,7	110	21,4	109,0	2,0	40	WCF _ 2 _		SL 2
26-3	•	26	2,4	110	21,4	108,5	3,0	70	WCF _ 3 _	SBN 20-26	
26-4	•	26	3,4	110	21,4	108,5	4,0	70	WCF 4	SBU 20-26	SL 1
26-5	•	26	4,3	110	21,4	108,5	5,0	70	WCF _ 5 _		
WCFH 32-2	•	32	1,7	150	25,0	149,0	2,0	40	WCF 2	SBN 20-32	SL 2
32-3	•	32	2,4	150	25,0	148,5	3,0	100	WCF _ 3 _	SBN 25-32	
32-4	•	32	3,4	150	25,0	148,5	4,0	100	WCF _ 4 _	SBU 20-32	SL 1
32-5	•	32	4,3	150	25,0	148,5	5,0	100	WCF_5_	SBU 25-32	

Geeignete Schneideinsätze siehe Seite F48.

■ Spannblöcke



Bezeichnung	Lagar	Abı	mess	m)	Geeignete		
Dezeichhung	Lager	Н	На	Hb	Нс	L	Halter
SBN 20-26	•	45	20	20	10,0	80	WCFH 26_
SBN 20-32	•	50	20	20	13,5	100	WCFH 32_
SBN 25-26		48	25	25	10,0	80	WCFH 26_
SBN 25-32	•	50	25	25	8,5	110	WCFH 32_

Ersatzteile

Abb. zeigt Rechtsausführung

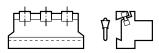
Spannkeil	Schraube	Schlüssel
		8
BWS 30	WB 8-20	LH 040

	Abı	mess	m)	Geeignete						
Lager	Н	На	Hb	Hc	Ĺ	Halter				
•	45	20	20	10,0	80	WCFH 26_				
•	50	20	20	13,5	100	WCFH 32_				
	48	25	25	10,0	80	WCFH 26_				
•	50	25	25	8,5	110	WCFH 32_				
		Lager H	Lager H Ha	Lager H Ha Hb ● 45 20 20 ● 50 20 20 □ 48 25 25	Lager H Ha Hb Hc ● 45 20 20 10,0 ● 50 20 20 13,5 □ 48 25 25 10,0	● 45 20 20 10,0 80 ● 50 20 20 13,5 100 □ 48 25 25 10,0 80				

A Mehrzweck-Drehbank usw.

(Klemmung von oben)

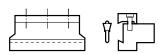
	Spannleiste	!
20.26 SBU25.26	SBU20-32	
BCS 15	BCS 20	SBU25-32 BCS 25
Schraube	Schlüssel	
BX 0622	LH 050	


B Revolveraufnahme usw.

(Klemmung von der Seite)

Auswahlhilfe für Spannblöcke

Spannblock mit Spannpratze


SBN-Typ

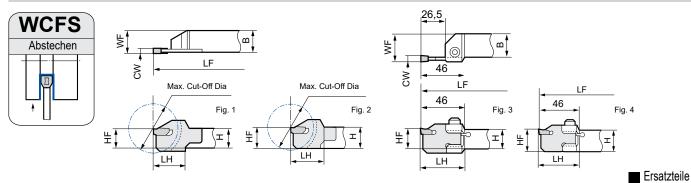
Dieser Werkzeugblock kann für die Werkzeugaufnahme A wie rechts gezeigt verwendet werden.

Spannblock mit Spannleiste

SBU-Typ

Dieser Werkzeugblock kann für die Werkzeugaufnahme A und B wie rechts gezeigt verwendet

Durch die lange Klemmleiste, ist eine ausreichende Klemmwirkung, auch bei großer Auskraglänge gewährleistet.


SBN-Typ, SBU-Typ SBU-Typ Werkzeughalter Werkzeughalter Werkzeugblock Werkzeugblock Abstandhalter Keil

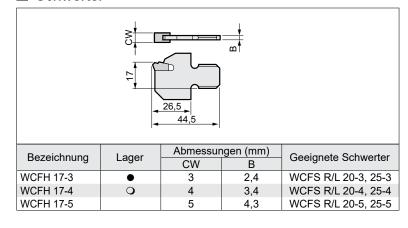
□ = Auf Anfrage

Abstechwerkzeuge

Sumi-Grip - Serie

Abstechhalter (Schaft-Typ mit Abstechschwert aus Vollhartmetall)

Abb. zeigt Rechtsausführung.


Halter

	Bezeichnung	Lag	ger			Abmes	sungen	(mm)			Max.Ab-	Geeignete	Geeignete	Abb.	Schlüssel
	bezeichhung	R	L	Н	В	LF	WF	HF	LH	CW	stech Ø	Schwerter	Schneideinsätze	ADD.	Scriiussei
Gelötete	WCFS R/L 1010-2	•		10	10	86	10	10	10	2,0	28	_	WCF _ 2 _	1	
Ausfüh-	R/L 1212-2			12	12	110	12	12	18	2,0	30	_	WCF 2	1	SL 2
	R/L 1616-2	0	$ \mathbf{o} $	16	16	100	16	16	25	2,0	35	_	WCF _ 2 _	2	
rung	R/L 1616-3			16	16	100	16	16	25	3,0	35	_	WCF_3_	2	SL 1
	WCFS R/L 20-3	•	•	20	20	125	23	20	46	3,0	50	WCFH17-3	WCF_3_	3	
Halter im	R/L 20-4			20	20	125	24	20	46	4,0	50	WCFH17-4	WCF_4_	3	
Klemm-	R/L 20-5	0		20	20	125	25	20	46	5,0	50	WCFH17-5	WCF _ 5 _	3	SL 1
-	WCFS R/L 25-3	•		25	25	150	28	25	46	3,0	50	WCFH17-3	WCF _ 3_	4	SL I
system	R/L 25-4		$ \mathbf{o} $	25	25	150	29	25	46	4,0	50	WCFH17-4	WCF 4	4	
	R/L 25-5			25	25	150	30	25	46	5,0	50	WCFH17-5	WCF_5_	4	

Geeignete Schneideinsätze siehe Seite F48.

Halter ist mit einem VHM-Schwert ausgestattet.

Schwerter

■ Ersatzteile

Zylinder- schraube	Schlüssel	Geeignete Halter
BX0622	LH050	Alle Halter mit Klemmsystem.

Abstechwerkzeuge Sumi-Grip. - Einsätze

■ Schneideinsätze

Neutral (N)		Red	hts (R)				Links (L	_)				
	∠ 2-RE	0.2*		。 / 2-F	RE0.2*			o. ∮ ^	8°			
	ů S			× × ×				×	PA			
	٥, 💆			O N	السريخ			°S C				
•	2			8	<u> </u>			`2	P-RE0.2	*	* WCF_2T: 2	_RE=0,15
Form		Bezeichnung	AC830P	AC225	AC1030U	T1500A	A30	G10E	CW	Ge	eeigneter Halter	
WCF N GG		WCF N2 GG	•						2,0	STFH2	STFS R/L	2
Universell einsetzbar		N3 GG	•						3,0	STFH3	STFS R/L	3
		N4 GG	•						4,0	STFH4	STFS R/L	4
		N5 GG	•						5,0	STFH5	STFS R/L	5
WCF N _ GF		WCF N2 GF N3 GF			0				2,0	STFH 2 STFH 3	STFS R/L STFS R/L	2
Sonderlegierungen Geringer Vorschub		N3 GF N4 GF			0				3,0 4,0	STFH 4	STFS R/L	3
Geringer vorschub		N5 GF			0				5,0		STFS R/L	- 5
WCE CE		WCF R3 CF			0				3,0			
WCF _ CF Sonderlegierungen		L3 CF			o				3,0	STFH3	STFS R/L	
Geringer Vorschub		R4 CF			ļ				4,0	0.7511 4		
		L4 CF			0				4,0	SIFH4	STFS R/L	4
WCF_2T		WCF N2T	•						2,0			
Kleiner Durchmesser		R2T	•						2,0	STFH 2	STFS R/L	2
Geringe Schnittkraft		L2T	•						2,0			
WCF		WCF N3	•						3,0			
Ohne Spanbrecher		R3	•						3,0	STFH 3	STFS R/L	3
Allgemeiner Stahl		L3	•						3,0			
		WCF N4	•						4,0	CTELL 4	CTEC D#	4
		R4 L4							4,0	SIFH4	STFS R/L	4
		WCF N5							4,0 5,0			
		R5							5,0	STEH 5	STFS R/L	5
		L5	•						5,0	011110	0110102	
WCF A		WCF N2A		•					2,0	STFH 2	STFS R/L	2
Sonderlegierungen		WCF N3A	•	•		0			3,0			
Geringer Vorschub		R3A		•					3,0	STFH 3	STFS R/L	3
		L3A		•					3,0			
•		WCF N4A	0	•			•		4,0			
	~	R4A		•					4,0	STFH 4	STFS R/L	4
		L4A		•					4,0			
		WCF N5A		•					5,0	OTEL -	0.750.5"	_
		R5A		•					5,0	SILH 2	STFS R/L	5
		L5A WCF N3B	•					_	5,0 3,0			
WCFB		R3B							3,0	STEH 3	STFS R/L	3
Grauguss Leichtmetalle		L3B							3,0	311113		
25ionimotalio		WCF N4B						•	4,0			
Hinweis:		R4B						Ö	4,0	STFH 4	STFS R/L	4
Mit ähnlichem Span		L4B							4,0			
sign wie für allgeme (WCF) aber mit		WCF N5B						0	5,0			
Schneidkantenpräpa		R5B							5,0	STFH5	STFS R/L	5
· '		L5B							5.0			

■ Empfohlene Schnittbedingungen

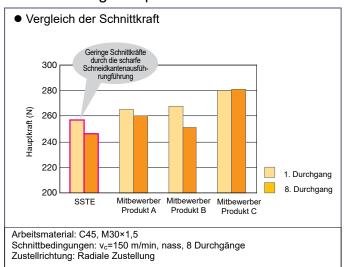
10/4	erkstückstoff			Schnittgeschwir	ndigkeit (m/min)		
VVC	EIKSLUCKSLOII	AC830P	AC225	AC1030U	T1500A	A30	G10
	Allgemeiner Stahl	80–200	80–200	50-200	80–200	50-120	_
Stahl	Weichstahl	100–230	100–230	50-230	100–230	70–150	_
	Gesenkstahl	60–150	60–150	50–150	60–150	50–120	_
Rostfreier S	Stahl	70–150	70–150	50–150	_	70–130	_
Grauguss		_	_	50-200	_	_	50-120
Nichteisenr	Nichteisenmetalle		_	200-500	_	_	200-500

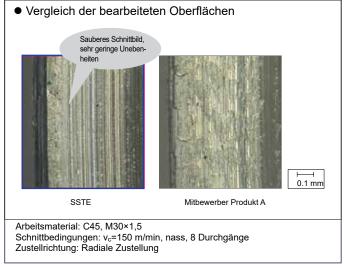
			Vorschub (mm/U)													
				Neu	utral				Lir	iks oder recl	nts					
Spanbre	chor	GG	GF	Ohne Spanbrecher	Т	Α	В	Ohne Spanbrecher	CF	Т	Α	В				
Sparible	' Sonder-		Sonder-		Kleiner Durch-	Sonder-			Sonder-	Kleiner	Sonder-					
		Allgemeine	legierungen	Allgemeiner	messer	legierungen	Grauguss	Allgemeiner	legierungen	Durchmesser	legierungen	Grauguss				
		Anwendung	Geringe	Stahl	Geringe	Geringer	Leichtmetalle	Stahl	Geringe	Geringe	Geringer	Leichtmetalle				
			Schnittkraft		Schnittkraft	Vorschub			Schnittkraft	Schnittkraft	Vorschub					
Stech-	2,0	0,05-0,20	0,03-0,12	_	0,03-0,10	0,03-0,12	_	_	_	0,03-0,10	_	_				
breite	3,0	0,08-0,25	0,04-0,15	0,08-0,25	_	0,04-0,15	0,05-0,15	0,08-0,25	0,08-0,12	_	0,04-0,15	0,05-0,15				
W	4,0	0,10-0,30	0,05-0,18	0,10-0,30	_	0,05-0,18	0,05-0,18	0,10-0,30	0,10-0,30	_	0,05-0,18	0,05-0,18				
(mm)	5,0	0,10-0,35	0,05-0,20	0,10-0,30	_	0,05–0,20	0,06–0,20	0,10-0,20	0,10-0,30	_	_	0,06-0,20				

Gewindeschneidwerkzeuge SSTE / SSTI - Typ

Merkmale

- Hochpräzise Vollprofilplatten mit und ohne Abflachung zum Gewindeschneiden, die vielseitig einsetzbar sind. Diese reichen von Industriemaschinenteilen über Rohre und Werkstücke für die Luft- und Raumfahrt.
- Ein 3D-Spanbrecher sorgt für stabile Spankontrolle.
- Die geschliffene Schneidkante sorgt für eine verbesserte Schärfe und damit für qualitativ hochwertigere Gewinde.

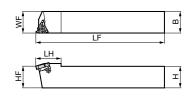


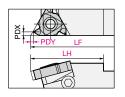

Geschliffene Schneidkanten

Produktprogramm

		Jiji	Außen/	Stei	igı	ınç	3									
Anwendungen	Тур	Vollprofil	Innen	Steigung (mm)						nde 19 18						Bezeichnung
	60° Allzweckgewinde		Außen	0.5					48	3 bis						16ER A60-CB
	00 Alizweckgewinde	Nein	Innen	0.5 3.0					48	3 bis	s 8					16IR A60-CB
	FF° Allmus also avainds	ž	Außen					T	4	3 bis	s 8					16ER A55-CB
Allgemeine	55° Allzweckgewinde		Innen						48	3 bis	s 8					16IR A55-CB
Industrie-	60° Metrisches ISO-Gewinde		Außen	0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0												16ER 075ISO-CB
anwendungen	ou Metrisches 150-Gewinde		Innen	0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0	- -		1-1	- -		- - -	- -				1	16IR 075ISO-CB
	60° Einheitsgewinde		Außen													16ER 32UN-CB
	00 Ellilleitsgewinde		Innen		-						1					16IR 32UN-CB
	55° Parallelgewinde für		Außen													16ER 36W-CB
Rohrkupplung für Gas, Wasser und	Rohre/Whitworth		Innen		-	П							T			16IR 28W-CB
Wasserhähne	60° amerikanisches	Ja	Außen			П			П							16ER 27NPT-CB
	NPT-Gewinde	7	Innen		-		1-				-					16IR 27NPT-CB
	55° konisches Gewinde für		Außen			П							П			16ER 28BSPT-CB
Dampf-, Gas- und Wasserversorgungs-	Rohre BSPT		Innen		-	17		- -						-	-	16IR 28BSPT-CB
rohre	60° amerikanisches		Außen			П	П		П							16ER 27NPTF-CB
	NPTF-Rohrgewinde		Innen		-	-	1-			1-1-				- † -		16IR 27NPTF-CB
Teile für die Luft- und	UNJ 60°		Außen													16ER 32UNJ-CB
Raumfahrttechnik	UNJ 60		Innen		-	† -	1-			1-1	1-			- 1 -		16IR 32UNJ-CB
	'		ı	1	48	36 3	2 28	27 24	20	19 18	16 14	13 1	2 115	11 10	8	

Anwendungsbeispiele




SSTE / SSTI - Typ

Bearbeitung Außengewinde

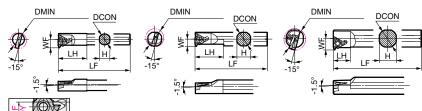
Ersatzteile

Die nachstehenden Werte für die Abmessungen LF und LH dienen nur als Referenz.

Der tatsächliche Wert ist der unten angegebene Wert abzüglich des PDY-Wertes für den entsprechenden Einsatz auf Seite F65.

Abmessungen(mm)

■ Halter

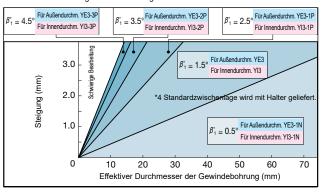

		Höhe	Breite	Länge gesamt	Kopf- länge	Schnei			Schraube)	Schraube	Scheibe	Zwischen- lage	Schlüssel
Damaiaharan				gosann	larige	Funktionsbreite	Höhe	ALL					_	~
Bezeichnung	Lagei	Н	В	LF	LH	WF	HF	Abb.		(N·m)	0			
SSTE R1616H16	•	16	16	100	20,5	16	16	1						
SSTE R2020K16	•	20	20	125	30,0	20	20	1	BFTX0312N	2,0	BX0304*1	PW3	YE3	TRX10
SSTE R2525M16	•	25	25	150	30,0	25	25	1						

^{*1} Schraubenschlüssel für Zwischenlagen ist separat erhältlich.

Bearbeitung Innengewinde

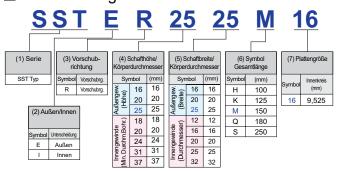
Die nachstehenden Werte für das Maß WF dienen nur als Anhaltspunkte. Der tatsächliche Wert ist der Wert auf Seite F66, abzüglich des Abstandsmaßes PDY.

Halter


— Папеі										.ene			Abmess	ungen (mm)	
		Durchm.	Höhe	Länge gesamt	Kopf- länge	Funktions- breite	Bonr		Schraube	1	Schraube	Scheibe	Zwischen- lage	Schlüssel	
Bezeichnung	Lager	DCON	н	LF	LH		durchm.	Abb.		(N·m)					
SSTI R1812M16 ⁻³	•	12	11,0	150	32,0	10,2	18	1	BFTX03085N	2.0					
SSTI R2016M16 ⁻³	•	16	15,0	150	63,5	9,2	20	2	DEIXOSOSIN	2,0	_	_	_		
SSTI R2420Q16	•	20	18,0	180	19,0	13,5	24	3						TRX10	
SSTI R3125S16	•	25	23,0	250	14,3	16,5	31	3	BFTX0312N	2,0	BX0304*1	PW3	YI3		
SSTI R3732S16	•	32	30,0	250	14,3	20,0	37	3							

^{*1} Schraubenschlüssel für Zwischenlagen ist separat erhältlich. *2 Der Mindestbohrungsdurchmesser ist der Durchmesser der vorbereiteten Bohrung. *3 Linksgewinde sind nicht verfügbar.

Zwischenlagen und Auswahlkriterien

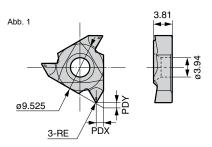

Anwendung	Führungs-	Außenge	winde	Innengev	vinde
Anwe	winkel (T1)	Bezeichnung	Lager	Bezeichnung	Lager
	4,5°	YE3-3P	0	YI3-3P	0
Nin O	3,5°	YE3-2P	0	YI3-2P	0
Rechtsgewinde	2,5°	YE3-1P	0	YI3-1P	0
scht	1,5°	YE3*4	0	YI3*4	0
	0,5°	YE3-1N	0	YI3-1N	0
Links- gewinde	-0,5°	YE3-2N	0	YI3-2N	0
Je Ei	-1,5°	YE3-3N	0	YI3-3N	0

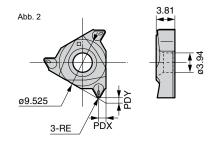
^{*4} Standardzwischenlage wird mit Halter geliefert.

Bezeichnungsschlüssel

Freatzteile

Schraubenauswahl →F67


Gewindeschneidplatten für


SSTE

Gewindeschneidplatten zur Bearbeitung des Außendurchmessers

60°/55° Allzweckgewinde (Teilprofil)

60° Metrisches ISO-Gewinde (Vollprofil)

Abmessungen (mm

Abmessungen (mm)

)	60° A	merikanischer	NPI (V	olipro	III)
٦.					

Bezeichnung

16ER 27NPT-CB

16ER 18NPT-CB

Flanken-

winkel

Abmessungen (mm)

Stk/

Pkg.

Abb.

2 2

2

Ecken-

radius

RE

0,06

Flanken- winkel	Bezeichnung	AC530U	Stei	, ,	•	Y Richtung	Ecken- radius	Stk/ Pkg.	Abb.
WIIKEI		AC	mm	Gänge/ Zoll	PDX	PDY	RE	FKY.	
	16ER A60-CB	•	0,5-1,5	16 - 48	0,8	0,6	0,09		1
60°	16ER AG60-CB	•	0,5-3,0	8 - 48	1,5	1,1	0,10	5	1
	16ER G60-CB	0	2,0-3,0	8 - 14	1,5	1,1	0,20		1
	16ER A55-CB	•	_	16 - 48	0,8	0,5	0,05		1
55°	16ER AG55-CB	•	_	8 - 48	1,5	1,1	0,08	5	1
	16ER G55-CB	0	_	8 - 14	1,5	1,1	0,22		1

60°	16ER 14NPT-CB	0	_	14	1,5	1,0	0,08	5
	16ER 115NPT-CB	0	_	11,5	1,5	1,0	0,08	
	16ER 08NPT-CB	0	_	8	1,5	1,1	0,13	

AC530L

0

0

Steigung

mm

Gänge Zoll

27

Richtung Richtung

0,8 0,6

PDX PDY

18 | 0,8 | 0,6 | 0,06

55° Konisches Gewinde für Rohre/BSPT (Vollprofil)

Abmessungen (mm)

Flanken-	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Ecken- radius	Stk./	Abb.
winkel		AC	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16ER 075 ISO-CB	•	0,75	_	0,5	1,0	0,09		2
	16ER 100 ISO-CB	•	1,00	_	0,8	0,6	0,14		2
	16ER 125 ISO-CB	•	1,25	_	0,8	0,7	0,15		2
CO°	16ER 150 ISO-CB	•	1,50	_	0,8	0,7	0,20	_	2
60°	16ER 175 ISO-CB	•	1,75	_	1,5	1,0	0,23	5	2
	16ER 200 ISO-CB	•	2,00	_	1,5	1,1	0,26		2
	16ER 250 ISO-CB		2.50		15	12	0.33		2

Flanken- winkel	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Ecken- radius	Stk/	Abb.
WITKEI	_	AC	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16ER 28BSPT-CB	0	_	28	0,8	0,6	0,13		2
55°	16ER 19BSPT-CB	0	_	19	0,8	0,6	0,18	5	2
55	16ER 14BSPT-CB	0	_	14	1,5	1,3	0,25	5	2
	16ER 11BSPT-CB	0	_	11	1,5	1,0	0,31		2

60° Amerikanisches NPTF (Vollprofil)

Abmessungen (mm)

Stk/ Abb. Pkg.

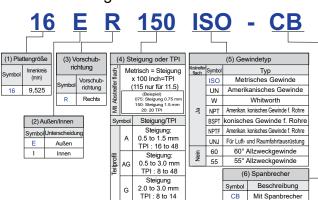
2

	16ER 200 ISO-CB 16ER 250 ISO-CB 16ER 300 ISO-CB	•	2,00 2,50 3,00	_	1,5 1,5	1,2	0,26		2 2 2	Flani		Bezeichnung	530U			Nichitung	"	Ecken- radius	:
	10EK 300 ISO-CB		3,00	_	1,5	1,1	0,41		 	WIII	Kei		AC	mm	Gänge/ Zoll	PDX	PDY	RE	1
60° Ei	inheitsgewinde (Vollpr	rofil)				,	Abmess	ungen (mm)			16ER 27NPTF-CB	0	_	27	0,8	0,6	0,06	Γ
	3 \ 1				V	l v		ugo (60	ر. ا	16ER 18NPTF-CB	0	_	18	0,8	0,6	0,06	
Flanken-		30	Steig	gung	λ Diahtura	Dialetona.	Ecken-	Stk/		00	۱ '	16ER 14NPTF-CB	0	_	14	1,5	1,0	0,13	
winkel	Bezeichnung	2			Richlung		radius	Pkg.	Abb.			16ER 115NPTF-CB	0	_	11,5	1,5	1,0	0,12	
		AC	mm	Zoll	PDX	PDY	RE												_
	16ER 32UN-CB	0	_	32	0,5	1,0	0,10		2	60	°۱	JNJ (Vollprofil)						Abmess	su
	16ER 28UN-CB	0	_	28	0,8	0,7	0,11		2							γ	γ	Ecken-	

Flanken-	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Ecken- radius	Stk/	Abb.
winkel		AC	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16ER 32UN-CB	0	_	32	0,5	1,0	0,10		2
	16ER 28UN-CB	0	_	28	0,8	0,7	0,11		2
	16ER 24UN-CB	0	_	24	0,8	0,7	0,13		2
	16ER 20UN-CB	0	_	20	0,8	0,7	0,16		2
	16ER 18UN-CB	0	_	18	0,8	0,7	0,18		2
60°	16ER 16UN-CB	0	_	16	0,8	0,8	0,20	5	2
	16ER 14UN-CB	0	_	14	1,5	1,2	0,23		2
	16ER 13UN-CB	0	_	13	1,5	1,1	0,26		2
	16ER 12UN-CB	0	_	12	1,5	1,0	0,27		2
	16ER 10UN-CB	0	_	10	1,5	1,2	0,33		2
	16ER 08UN-CB	0	_	8	1,5	1,2	0,42		2

sungen (mm)

Flanken-	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Ecken- radius	Stk/	Abb.
winkel		Ä	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16ER 32UNJ-CB	0	_	32	0,5	1,0	0,13		2
	16ER 28UNJ-CB	0	_	28	0,8	0,6	0,15		2
	16ER 24UNJ-CB	0	_	24	0,8	0,6	0,18		2
	16ER 20UNJ-CB	0	_	20	0,8	0,7	0,21		2
60°	16ER 18UNJ-CB	0	_	18	0,8	0,6	0,23	5	2
	16ER 16UNJ-CB	0	_	16	0,8	0,6	0,25		2
	16ER 14UNJ-CB	0	_	14	1,5	1,1	0,29		2
	16ER 12UNJ-CB	0	_	12	1,5	1,1	0,34		2
	16ER 10UNJ-CB	0	_	10	1,5	1,1	0,40		2

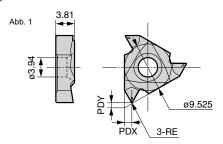

55° Parallelgewinde für Rohr/Whitworth (Vollprofil)

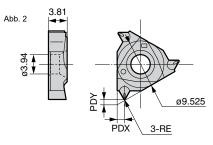
Ahmessungen (mm)

	Abilessunger (IIIII)												
Flanken-	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Ecken- radius	Stk/	Abb.				
winkel	· ·	ÄĊ	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.					
	16ER 36W-CB	0	_	36	0,5	1,0	0,10		2				
	16ER 32W-CB	0	_	32	0,5	1,0	0,11		2				
	16ER 28W-CB	0	_	28	0,8	0,6	0,12		2				
	16ER 24W-CB	0	_	24	0,8	0,6	0,15		2				
	16ER 20W-CB	0	_	20	0,8	0,6	0,18		2				
	16ER 19W-CB	0	_	19	0,8	0,6	0,18		2				
55°	16ER 18W-CB	0	_	18	0,8	0,6	0,19	5	2				
	16ER 16W-CB	0	_	16	0,8	0,6	0,22		2				
	16ER 14W-CB	0	_	14	1,5	1,0	0,25		2				
	16ER 12W-CB	0	_	12	1,5	1,1	0,29		2				
	16ER 11W-CB	0	_	11	1,5	1,1	0,32		2				
	16ER 10W-CB	0	_	10	1,5	1,1	0,35		2				
	16ER 08W-CB	0	_	8	1,5	1,1	0,43		2				

Für diese Einsätze können nur Halter vom Typ SSTE verwendet werden.

Bezeichnungsschlüssel





Gewindeschneidplatten für **SSTI**

Innen

Gewindeschneidplatten zur Bearbeitung des Innendurchmessers

60°/55° Allzweckgewinde (Teilprofil)

Abmessungen (mm)

Flanken-	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Ecken- radius	Stk/	Abb.
winkel		AC	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16IR A60-CB	•	0,5-1,5	16 - 48	0,8	0,5	0,09		1
60°	16IR AG60-CB	•	0,5-3,0	8 - 48	1,5	1,1	0,10	5	1
	16IR G60-CB	0	2,0-3,0	8 - 14	1,5	1,1	0,18		1
	16IR A55-CB	•	_	16 - 48	0,8	0,5	0,05		1
55°	16IR AG55-CB	•	_	8 - 48	1,5	1,1	0,08	5	1
	16IR G55-CB	0	_	8 - 14	1,5	1,1	0,20		1

60° Metrisches ISO-Gewinde (Vollprofil)

Abmessungen (mm)

			-						
Flanken-	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Ecken- radius	Stk/	Abb.
winkel		AC	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16IR 075 ISO-CB	•	0,75	_	0,5	0,9	0,04		2
	16IR 100 ISO-CB		1,00	_	0,8	0,6	0,06		2
	16IR 125 ISO-CB	•	1,25	_	0,8	0,6	0,07		2
60°	16IR 150 ISO-CB		1,50	_	0,8	0,6	0,09	5	2
00	16IR 175 ISO-CB	•	1,75	_	1,5	1,0	0,10	5	2
	16IR 200 ISO-CB	•	2,00	_	1,5	1,1	0,13		2
	16IR 250 ISO-CB	•	2,50	_	1,5	1,1	0,15		2
	16IR 300 ISO-CB	•	3,00	_	1,5	1,1	0,19		2

60° Einheitsgewinde (Vollprofil)

Abmessungen (mm)

Flanken- winkel	Bezeichnung	AC530U	Stei	Steigung		Y Richtung	Ecken- radius	Stk/	Abb.
WILIKEI		AC	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16IR 32UN-CB	0	_	32	0,5	0,9	0,04		2
	16IR 28UN-CB	0	_	28	0,8	0,6	0,06		2
	16IR 24UN-CB	0	<u> </u>	24	0,8	0,7	0,06		2
	16IR 20UN-CB	0	_	20	0,8	0,6	0,08		2
	16IR 18UN-CB	0	<u> </u>	18	0,8	0,6	0,08		2
60°	16IR 16UN-CB	0	_	16	0,8	0,7	0,09	5	2
	16IR 14UN-CB	0	_	14	1,5	1,1	0,13		2
	16IR 13UN-CB	0	_	13	1,5	1,1	0,11		2
	16IR 12UN-CB	0	_	12	1,5	1,1	0,13		2
	16IR 10UN-CB	0	_	10	1,5	1,1	0,15		2
	16IR 08UN-CB	0	_	8	1,5	1,1	0,20		2

55° Parallelgewinde für Rohr/Whitworth (Vollprofil)

Flanken-	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Ecken- Radius	Stk/	Abb.
winkel		AC	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16IR 28W-CB	0	_	28	0,8	0,6	0,12		2
55°	16IR 24W-CB	0	_	24	0,8	0,6	0,14	5	2
33	16IR 20W-CB	0	_	20	0,8	0,6	0,18	5	2
	16IR 19W-CB	0	_	19	0,8	0,6	0,18		2

Für diese Einsätze können nur Halter vom Typ SSTI verwendet werden.

60° Amerikanischer NPT (Vollprofil)

Abmessungen (mm)

Flanken-	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Ecken- radius	Stk/	Abb.
winkel		AC	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16IR 27NPT-CB	0	_	27	0,8	0,6	0,06		2
	16IR 18NPT-CB	0	_	18	0,8	0,6	0,06		2
60°	16IR 14NPT-CB	0	_	14	1,5	1,1	0,08	5	2
	16IR 115NPT-CB	0	_	11,5	1,5	1,0	0,08		2
	16IR 08NPT-CB	0	_	8	1,5	1,0	0,13		2

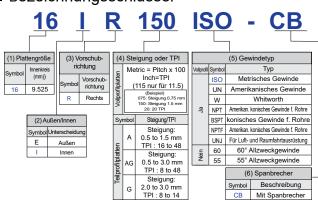
55° Konisches Gewinde für Rohre/BSPT (Vollprofil)

Abmessungen (mm)

	Flanken- winkel	Bezeichnung	3530U	Steigung		X Richtung	Y Richtung	Ecken- radius	Stk/ Pkg.	Abb.
winkei		AC	mm	Gänge/ Zoll	PDX	PDY	RE	ı ky.		
	55°	16IR 28BSPT-CB	0	_	28	0,8	0,6	0,13	5	2
	55°	16IR 19BSPT-CB	0	_	19	0,8	0,6	0,18	5	2

60° Amerikanisches NPTF (Vollprofil)

Abmessungen (mm)


Flanken- winkel	Bezeichnung	AC530U	Stei	gung	X Richtung	Y Richtung	Eck- Radius	Stk/	Abb.
WIIKEI		AC	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16IR 27NPTF-CB	0	_	27	0,8	0,6	0,06		2
	16IR 18NPTF-CB	0	_	18	0,8	0,6	0,08		2
60°	16IR 14NPTF-CB	0	_	14	1,5	1,0	0,13	5	2
	16IR 115NPTF-CB	0	_	11,5	1,5	1,0	0,08		2
	16IR 08NPTF-CB	0	_	8	1,5	1,1	0,13		2

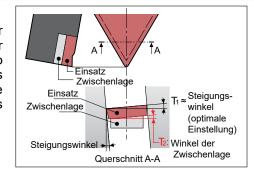
60° UNJ (Vollprofil)

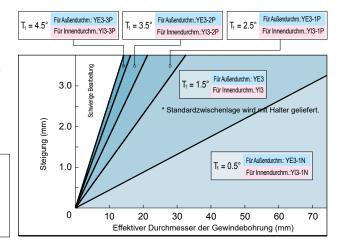
Abmessungen (mm)

Flanken- winkel	Bezeichnung	AC530U		gung	X Richtung	Y Richtung	Ecken- radius	Stk/	Abb.
WITKEI		Ä	mm	Gänge/ Zoll	PDX	PDY	RE	Pkg.	
	16IR 32UNJ-CB	0	_	32	0,5	0,9	0,04		2
	16IR 28UNJ-CB	0	_	28	0,8	0,6	0,05		2
	16IR 24UNJ-CB	0	_	24	0,8	0,6	0,06		2
	16IR 20UNJ-CB	0	_	20	0,8	0,6	0,06		2
60°	16IR 18UNJ-CB	0	_	18	0,8	0,6	0,06	5	2
	16IR 16UNJ-CB	0	_	16	0,8	0,6	0,09		2
	16IR 14UNJ-CB	0	_	14	1,5	1,1	0,09		2
	16IR 12UNJ-CB	0	_	12	1,5	1,1	0,11		2
	16IR 10UNJ-CB	0	_	10	1,5	1,1	0,15		2

■ Bezeichnungsschlüssel

SSTE / SSTI - Typ


Auswahl der Zwischenlage


Wenn die Steigung groß oder der Gewindedurchmesser klein ist, wird der Steigungswinkel des Gewindes größer und der effektive Freiwinkel der Vorderkante kleiner. Es ist am Besten, wenn Sie den Gewindeeinsatz so einstellen, dass der rechte und der linke Freiwinkel gleich sind. Daher ist es notwendig, anhand der nachstehenden Tabelle eine geeignete Zwischenlage auf der Grundlage der Gewindesteigung und des effektiven Durchmessers auszuwählen.

Vorgehensweise bei der Auswahl

- (1) Wählen Sie in der Tabelle [Rechtsgewinde / Linksgewinde] aus.
- (2) Suchen Sie die gewünschte "Steigung".
- (3) Suchen Sie die Zelle mit dem gewünschten "Effektiven Durchmesser"-Bereich.
- (4) Wählen Sie die Bezeichnung in der "Zwischenlage"-Zeile über der entsprechenden Zelle mit dem "Effektiven Durchmesser", den Sie zuvor gefunden haben. Wenn die Bezeichnung der Zwischenlage nicht mit der aktuell verwendeten übereinstimmt, wechseln Sie diese.

Beispiel: Bei der Bearbeitung eines Rechtsgewindes M16×2,0 beträgt der Steigungsdurchmesser 14,701 mm. Suchen Sie in der untenstehenden Tabelle in der Spalte "Steigung" den Wert [2,0] mm und gehen Sie dann die Zeile nach rechts, um den erforderlichen "Effektivdurchmesser"-Bereich [11,4 - 17,4] mm zu finden. Die korrekte Zwischenlage ist [YE3-1P], die in der entsprechenden Zelle in der Zeile "Außen" unten angezeigt wird.

Steigung (mm)

Rec	hts-/Linksgewinde			Rechtsgewinde			Linksg	ewinde
St	teigungswinkel	4,5°	3,5°	2,5°	1,5°	0,5°	-0,5°	-1,5°
Ė	Außen	YE3-3P	YE3-2P	YE3-1P	YE3*	YE3-1N	YE3-2N	YE3-3N
Zwischen- Iage	Innen	YI3-3P	YI3-2P	YI3-1P	YI3*	YI3-1N	YI3-2N	YI3-3N
N _	Winkel Zwischenl. (T1)	3°	2°	1°	0°	-1°	-2°	-3°
S	steigung (mm)			Effekti	ver Durchmesser	(mm)		
	0,5	1,9 - 2,2	2,2 - 2,8	2,8 - 4,3	4,3 - 11,4	> 11,4	> 11,4	11,4 - 4,3
	0,75	2,8 - 3,3	3,3 - 4,3	4,3 - 6,5	6,5 - 17,1	> 17,1	> 17,1	17,1 - 6,5
	1,0	3,8 - 4,3	4,3 - 5,7	5,7 - 8,7	8,7 - 22,8	> 22,8	> 22,8	22,8 - 8,7
	1,25	4,7 - 5,4	5,4 - 7,1	7,1 - 10,9	10,9 - 28,5	> 28,5	> 28,5	28,5 - 10,9
	1,5	5,7 - 6,5	6,5 - 8,5	8,5 - 13,0	13,0 - 34,2	> 34,2	> 34,2	34,2 - 13,0
	1,75	6,6 - 7,6	7,6 - 10,0	10,0 - 15,2	15,2 - 39,9	> 39,9	> 39,9	39,9 - 15,2
	2,0	7,6 - 8,7	8,7 - 11,4	11,4 - 17,4	17,4 - 45,6	> 45,6	> 45,6	45,6 - 17,4
	2,5	9,5 - 10,8	10,8 - 14,2	14,2 - 21,7	21,7 - 57,0	> 57,0	> 57,0	57,0 - 21,7
	3,0	11,4 - 13,0	13,0 - 17,1	17,1 - 26,0	26,0 - 68,4	> 68,4	> 68,4	68,4 - 26,0

TPI (Gewinde/Zoll)

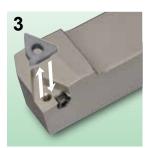
,						
		Rechtsgewinde			Linksg	ewinde
4,5°	3,5°	2,5°	1,5°	0,5°	-0,5°	-1,5°
YE3-3P	YE3-2P	YE3-1P	YE3 [*]	YE3-1N	YE3-2N	YE3-3N
YI3-3P	YI3-2P	YI3-1P	YI3*	YI3-1N	Y13-2N	Y13-3N
3°	2°	1°	0°	-1°	-2°	-3°
,		Effekt	iver Durchmesser	(mm)		
3,0 - 3,3	3,3 - 4,6	4,6 - 6,9	6,9 - 18,0	> 18,0	> 18,0	18,0 - 6,9
3,0 - 3,8	3,8 - 5,1	5,1 - 7,9	7,9 - 20,8	> 20,8	> 20,8	20,8 - 7,9
3,6 - 4,1	4,1 - 5,3	5,3 - 8,1	8,1 - 21,3	> 21,3	> 21,3	21,3 - 8,1
4,1 - 4,6	4,6 - 6,1	6,1 - 9,1	9,1 - 24,4	> 24,4	> 24,4	24,4 - 9,1
4,8 - 5,6	5,6 - 7,1	7,1 - 10,9	10,9 - 29,0	> 29,0	> 29,0	29,0 - 10,9
5,3 - 6,1	6,1 - 8,1	8,1 - 12,4	12,4 - 32,5	> 32,5	> 32,5	32,5 - 12,4
5,8 - 6,9	6,9 - 8,9	8,9 - 13,7	13,7 - 35,8	> 35,8	> 35,8	35,8 - 13,7
6,9 - 7,9	7,9 - 10,2	10,2 - 15,7	15,7 - 41,1	> 41,1	> 41,1	41,1 - 15,7
7,4 - 8,4	8,4 - 11,2	11,2 - 17,0	17,0 - 44,7	> 44,7	> 44,7	44,7 - 17,0
8,1 - 9,1	9,1 - 12,2	12,2 - 18,5	18,5 - 48,8	> 48,8	> 48,8	48,8 - 18,5
8,4 - 9,7	9,7 - 12,4	12,4 - 19,3	19,3 - 50,3	> 50,3	> 50,3	50,3 - 19,3
8,9 - 9,9	9,9 - 13,2	13,2 - 20,1	20,1 - 52,6	> 52,6	> 52,6	52,6 - 20,1
9,7 - 10,9	10,9 - 14,5	14,5 - 22,1	22,1 - 57,9	> 57,9	> 57,9	57,9 - 22,1
10,7 - 12,2	12,2 - 16,0	16,0 - 24,4	24,4 - 64,3	> 64,3	> 64,3	64,3 - 24,4
11,9 - 13,7	13,7 - 18,0	18,0 - 27,7	27,7 - 72,4	> 72,4	> 72,4	72,4 - 27,7
	YE3-3P YI3-3P 3° 3,0 - 3,3 3,0 - 3,8 3,6 - 4,1 4,1 - 4,6 4,8 - 5,6 5,3 - 6,1 5,8 - 6,9 6,9 - 7,9 7,4 - 8,4 8,1 - 9,1 8,4 - 9,7 8,9 - 9,9 9,7 - 10,9 10,7 - 12,2	YE3-3P YE3-2P YI3-3P YI3-2P 3° 2° 3,0 - 3,3 3,3 - 4,6 3,0 - 3,8 3,8 - 5,1 3,6 - 4,1 4,1 - 5,3 4,1 - 4,6 4,6 - 6,1 4,8 - 5,6 5,6 - 7,1 5,3 - 6,1 6,1 - 8,1 5,8 - 6,9 6,9 - 8,9 6,9 - 7,9 7,9 - 10,2 7,4 - 8,4 8,4 - 11,2 8,1 - 9,1 9,1 - 12,2 8,4 - 9,7 9,7 - 12,4 8,9 - 9,9 9,9 - 13,2 9,7 - 10,9 10,9 - 14,5 10,7 - 12,2 12,2 - 16,0	4,5° 3,5° 2,5° YE3-3P YE3-2P YE3-1P Y13-3P Y13-2P Y13-1P 3° 2° 1° Effekt 3,0 - 3,3 3,3 - 4,6 4,6 - 6,9 3,0 - 3,8 3,8 - 5,1 5,1 - 7,9 3,6 - 4,1 4,1 - 5,3 5,3 - 8,1 4,1 - 4,6 4,6 - 6,1 6,1 - 9,1 4,8 - 5,6 5,6 - 7,1 7,1 - 10,9 5,3 - 6,1 6,1 - 8,1 8,1 - 12,4 5,8 - 6,9 6,9 - 8,9 8,9 - 13,7 6,9 - 7,9 7,9 - 10,2 10,2 - 15,7 7,4 - 8,4 8,4 - 11,2 11,2 - 17,0 8,1 - 9,1 9,1 - 12,2 12,2 - 18,5 8,4 - 9,7 9,7 - 12,4 12,4 - 19,3 8,9 - 9,9 9,9 - 13,2 13,2 - 20,1 9,7 - 10,9 10,9 - 14,5 14,5 - 22,1 10,7 - 12,2 12,2 - 16,0 16,0 - 24,4	4,5° 3,5° 2,5° 1,5° YE3-3P YE3-2P YE3-1P YE3' Y13-3P Y13-2P Y13-1P Y13' 3° 2° 1° 0° Effektiver Durchmesser 3,0 - 3,3 3,3 - 4,6 4,6 - 6,9 6,9 - 18,0 3,0 - 3,8 3,8 - 5,1 5,1 - 7,9 7,9 - 20,8 3,6 - 4,1 4,1 - 5,3 5,3 - 8,1 8,1 - 21,3 4,1 - 4,6 4,6 - 6,1 6,1 - 9,1 9,1 - 24,4 4,8 - 5,6 5,6 - 7,1 7,1 - 10,9 10,9 - 29,0 5,3 - 6,1 6,1 - 8,1 8,1 - 12,4 12,4 - 32,5 5,8 - 6,9 6,9 - 8,9 8,9 - 13,7 13,7 - 35,8 6,9 - 7,9 7,9 - 10,2 10,2 - 15,7 15,7 - 41,1 7,4 - 8,4 8,4 - 11,2 11,2 - 17,0 17,0 - 44,7 8,1 - 9,1 9,1 - 12,2 12,2 - 18,5 18,5 - 48,8 8,4 - 9,7 9,7 - 12,4 12,4 - 19,3 19,3 - 50,3 8,9 - 9,9 9,9 - 13,2 13,2 - 20,1 20,1 -	4,5° 3,5° 2,5° 1,5° 0,5° YE3-3P YE3-2P YE3-1P YE3' YE3-1N Y13-3P Y13-2P Y13-1P Y13' Y13-1N 3° 2° 1° 0° -1° Effektiver Durchmesser (mm) 3,0 - 3,3 3,3 - 4,6 4,6 - 6,9 6,9 - 18,0 > 18,0 3,0 - 3,8 3,8 - 5,1 5,1 - 7,9 7,9 - 20,8 > 20,8 3,6 - 4,1 4,1 - 5,3 5,3 - 8,1 8,1 - 21,3 > 21,3 4,1 - 4,6 4,6 - 6,1 6,1 - 9,1 9,1 - 24,4 > 24,4 4,8 - 5,6 5,6 - 7,1 7,1 - 10,9 10,9 - 29,0 > 29,0 5,3 - 6,1 6,1 - 8,1 8,1 - 12,4 12,4 - 32,5 > 32,5 5,8 - 6,9 6,9 - 8,9 8,9 - 13,7 13,7 - 35,8 > 35,8 6,9 - 7,9 7,9 - 10,2 10,2 - 15,7 15,7 - 41,1 > 41,1 7,4 - 8,4 8,4 - 11,2 11,2 - 17,0 17,0 - 44,7 > 44,7 8,1 - 9,1 9,1 - 12,2	4,5° 3,5° 2,5° 1,5° 0,5° -0,5° YE3-3P YE3-2P YE3-1P YE3' YE3-1N YE3-2N Y13-3P Y13-2P Y13-1P Y13' Y13-1N Y13-2N Effektiver Durchmesser (mm) 3,0 - 3,3 3,3 - 4,6 4,6 - 6,9 6,9 - 18,0 > 18,0 > 18,0 3,0 - 3,8 3,8 - 5,1 5,1 - 7,9 7,9 - 20,8 > 20,8 > 20,8 3,6 - 4,1 4,1 - 5,3 5,3 - 8,1 8,1 - 21,3 > 21,3 > 21,3 4,1 - 4,6 4,6 - 6,1 6,1 - 9,1 9,1 - 24,4 > 24,4 > 24,4 4,8 - 5,6 5,6 - 7,1 7,1 - 10,9 10,9 - 29,0 > 29,0 > 29,0 5,3 - 6,1 6,1 - 8,1 8,1 - 12,4 12,4 - 32,5 > 32,5 > 32,5 5,8 - 6,9 6,9 - 8,9 8,9 - 13,7 13,7 - 35,8 > 35,8 > 35,8 6,9 - 7,9 7,9 - 10,2 10,2 - 15,7 15,7 - 41,1 > 41,1 > 41,1 7,4 - 8,4 8,4 - 11,2

Die Halter vom Typ SSTE/SSTI werden mit Zwischenlagen für einen Steigungswinkel von Y1 = 1.5° (SSTE Type: YE3, SSTI Type: YI3) geliefert.

Zwischenlagen für Steigungswinkel von Y1 = -1,5°, -0,5°, 0,5°, 0,5°, 2,5°, 3,5° und 4,5° sind separat erhältlich.


* Für SSTI R1812M16 und SSTI R2016M16 werden keine Zwischenlagen benötigt (die Halter sind bereits mit der Standardhalterneigung von 1,5° versehen).

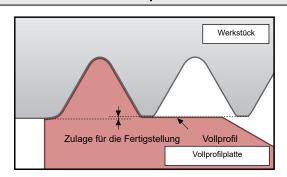
SSTE / SSTI - Typ


Austausch der Zwischenlage

Entfernen Sie die Schneidplatte, um die Zwischenlage freizulegen.

Lösen Sie die Schraube für die Zwischenlage um ein bis zwei Umdrehungen.

Tauschen Sie die Zwischenlage gegen die Ausgewählte.

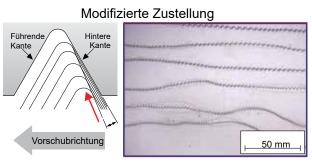

Ziehen Sie die Schraube für die Zwischenlage an (empfohlenes Anzugsdrehmoment 1,0 bis 1,5 Nm).

■ Gewindeschneidplatten Typen

Teilprofil Werkstück Teilprofilplatte

- Gewindeschneiden ohne die Bearbeitung der Gewindespitzen (die Oberfläche des vorherigen Prozesses bleibt unberührt).
- Ermöglicht die Bearbeitung von Gewinden mit unterschiedlichen Steigungsbreiten mit der gleichen Gewindeschneidplatte.
- Vor dem Gewindeschneiden muss der Innendurchmesser (oder Außendurchmesser) fertig sein.
- An den Schneidkanten bildet sich leichter Grat.

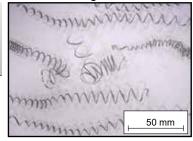
Vollprofil


- Erzeugt Gewinde entsprechend der Gewindenorm.
- Es können nur bestimmte Gewindespezifikationen und Steigungen bearbeitet werden.
- Um ein Gewinde mit Vollprofil zu fertigen, ist auf jeder Seite ein Schlichtaufmaß von 0,1 mm erforderlich.
- Die Gewindespitzen können abgerundet werden.

Bearbeitungsmethode

Für den SSTE-Typ/SSTI-Typ wird der modifizierte Flankenvorschub empfohlen.

Diese Vorschubmethode, die sich durch reduzierte Spankurvendurchmesser und eine stabile Spankontrolle auszeichnet, kann auch die Späne an den Hinterkanten verringern, die bei der Bearbeitung mit radialem Vorschub häufig auftreten (Der Änderungswinkel sollte 1° sein).



Gleichmäßige und stabile Spankontrolle durch kleine Spandurchmesser.

Arbeitsmaterial: X5CrMo17-12-2, M30 x 1,5 Schnittbedingungen: v_c = 60m/min, nass, 8 Durchgänge

Radiale Zustellung Vorschubrichtung

Schlechte Spankontrolle durch rein radiale Zustellung.

SSTE - Typ

■ SSTE-Richtlinien für die Schnitttiefe

Metrische Außengewinde (Schnitttiefe pro Durchgang: mm)

manasina / tanasingawinaa (aanimanasa pira Bananganigi mimi)											
Steigung (mm)	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00			
Gesamtschnitt- tiefe (mm)	0,48	0,64	0,80	0,92	1,10	1,26	1,57	1,87			
Anzahl der Durchgänge	4	5	7	8	10	12	14	16			
1	0,24	0,25	0,25	0,28	0,28	0,30	0,38	0,40			
2	0,12	0,15	0,15	0,15	0,15	0,16	0,19	0,22			
3	0,07	0,11	0,12	0,12	0,12	0,13	0,15	0,15			
4	0,05	0,08	0,09	0,10	0,10	0,10	0,10	0,13			
5		0,05	0,08	0,09	0,10	0,09	0,10	0,12			
6			0,06	0,07	0,09	0,09	0,09	0,10			
7			0,05	0,06	0,08	0,08	0,09	0,10			
8				0,05	0,07	0,07	0,08	0,09			
9					0,06	0,07	0,08	0,09			
10					0,05	0,06	0,07	0,08			
11						0,06	0,07	0,08			
12						0,05	0,06	0,07			
13							0,06	0,07			
14							0,05	0,06			
15								0,06			
16								0,05			

Außengewinde in Zoll (Schnitttiefe pro Durchgang: mm)

Gänge/Zoll	32	28	24	20	18	16	14	13	12	11	10	9	8
Gesamtschnitt- tiefe (mm)	0,50	0,57	0,67	0,80	0,89	1,00	1,15	1,23	1,34	1,46	1,60	1,78	2,00
Anzahl der Durchgänge	4	4	5	7	8	10	11	12	12	14	14	16	16
1	0,24	0,25	0,25	0,26	0,26	0,28	0,28	0,30	0,30	0,30	0,38	0,38	0,40
2	0,14	0,17	0,19	0,15	0,15	0,15	0,15	0,18	0,18	0,18	0,20	0,20	0,25
3	0,07	0,10	0,12	0,10	0,12	0,10	0,12	0,13	0,13	0,13	0,15	0,13	0,19
4	0,05	0,05	0,06	0,09	0,10	0,09	0,10	0,10	0,12	0,12	0,12	0,12	0,16
5			0,05	0,08	0,08	0,08	0,10	0,08	0,11	0,11	0,10	0,11	0,14
6				0,07	0,07	0,07	0,09	0,08	0,10	0,10	0,09	0,10	0,12
7				0,05	0,06	0,07	0,08	0,07	0,09	0,08	0,09	0,10	0,11
8					0,05	0,06	0,07	0,07	0,08	0,08	0,08	0,09	0,10
9						0,05	0,06	0,06	0,07	0,07	0,08	0,09	0,09
10						0,05	0,05	0,06	0,06	0,07	0,07	0,08	0,08
11							0,05	0,05	0,05	0,06	0,07	0,08	0,07
12								0,05	0,05	0,06	0,06	0,07	0,07
13										0,05	0,06	0,07	0,06
14										0,05	0,05	0,06	0,06
15												0,05	0,05
16												0,05	0,05

Die Anzahl der Durchgänge und Schnitttiefen in der obigen Tabelle ist nur eine allgemeine Richtlinie. Erhöhen oder verringern Sie sie je nach Situation. Die maximale Schnitttiefe sollte jedoch bei 0,5 mm oder weniger liegen. Wenn Sie eine Wendeschneidplatte mit Vollprofil verwenden, rechnen Sie bitte die Bearbeitungszugabe zur gesamten Schnitttiefe hinzu.

■ Empfohlene Schnittbedingungen

Material	P Kohlenstoffstahl	Legierter Stahl (bis zu 330HB)	Rostfreier Stahl	Grauguss (bis zu 330HB)	Kugelgraphitguss	S Titanlegierung
Schnittgeschwin- digkeit v _c (m/min)	75–150	75–135	60–120	90–180	75–135	24–90

SSTI - Typ

■ SSTI-Richtlinien für die Schnitttiefe

Metrische Innengewinde (Schnitttiefe pro Durchgang: mm)

	0.75	1.00		1.50	4.75	2.00	0.50	2.00
Steigung (mm)	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00
Gesamtschnitt- tiefe (mm)	0,49	0,58	0,74	0,89	1,04	1,18	1,47	1,76
Anzahl der Durchgänge	4	5	8	10	11	12	14	16
1	0,20	0,22	0,22	0,25	0,25	0,25	0,30	0,30
2	0,12	0,14	0,14	0,12	0,17	0,18	0,19	0,20
3	0,12	0,10	0,09	0,08	0,10	0,12	0,15	0,17
4	0,05	0,07	0,07	0,08	0,08	0,10	0,12	0,14
5		0,05	0,06	0,07	0,08	0,09	0,10	0,12
6			0,06	0,07	0,07	0,08	0,09	0,11
7			0,05	0,06	0,07	0,07	0,08	0,10
8			0,05	0,06	0,06	0,07	0,08	0,10
9				0,05	0,06	0,06	0,07	0,08
10				0,05	0,05	0,06	0,07	0,08
11					0,05	0,05	0,06	0,07
12						0,05	0,06	0,07
13							0,05	0,06
14							0,05	0,06
15								0,05
16								0,05

Innengewinde in Zoll (Schnitttiefe pro Durchgang: mm)

					<u> </u>								
Gänge/Zoll	32	28	24	20	18	16	14	13	12	11	10	9	8
Gesamtschnitt- tiefe (mm)	0,43	0,49	0,57	0,69	0,76	0,86	0,98	1,06	1,15	1,25	1,37	1,53	1,72
Anzahl der Durchgänge	4	4	5	7	8	10	11	12	12	14	14	16	16
1	0,20	0,20	0,20	0,22	0,22	0,22	0,25	0,25	0,27	0,27	0,27	0,30	0,30
2	0,10	0,16	0,16	0,12	0,13	0,13	0,15	0,15	0,16	0,16	0,18	0,18	0,22
3	0,08	0,08	0,09	0,09	0,10	0,08	0,10	0,10	0,12	0,12	0,16	0,16	0,18
4	0,05	0,05	0,07	0,08	0,08	0,08	0,08	0,08	0,10	0,10	0,12	0,11	0,15
5			0,05	0,07	0,07	0,07	0,07	0,08	0,09	0,08	0,10	0,09	0,12
6				0,06	0,06	0,07	0,07	0,07	0,08	0,08	0,09	0,09	0,11
7				0,05	0,05	0,06	0,06	0,07	0,07	0,07	0,08	0,08	0,10
8					0,05	0,06	0,06	0,06	0,06	0,07	0,07	0,08	0,09
9						0,05	0,05	0,06	0,06	0,06	0,06	0,07	0,08
10						0,04	0,05	0,05	0,05	0,06	0,06	0,07	0,07
11							0,04	0,05	0,05	0,05	0,05	0,06	0,06
12								0,04	0,04	0,05	0,05	0,06	0,06
13										0,04	0,04	0,05	0,05
14										0,04	0,04	0,05	0,05
15												0,04	0,04
16												0,04	0,04

Die Anzahl der Durchgänge und Schnitttiefen in der obigen Tabelle ist nur eine allgemeine Richtlinie. Erhöhen oder verringern Sie sie je nach Situation. Die maximale Schnitttiefe sollte jedoch bei 0,5 mm oder weniger liegen. Wenn Sie eine Wendeschneidplatte mit Vollprofil verwenden, rechnen Sie bitte die Bearbeitungszugabe zur gesamten Schnitttiefe hinzu.

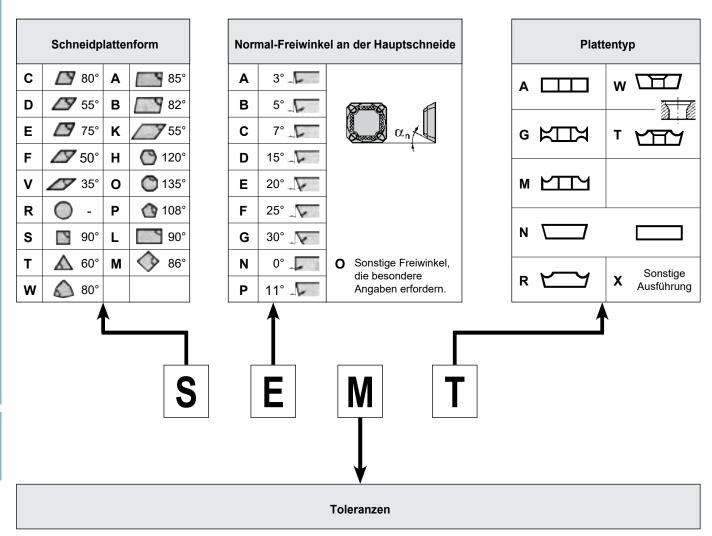
■ Empfohlene Schnittbedingungen

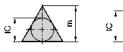
Material	P Kohlenstoffstahl	Legierter Stahl (bis zu 330HB)	M Rostfreier Stahl	Grauguss (bis zu 330HB)	Kugelgraphitguss	S Titanlegierung
Schnittgeschwin- digkeit v _c (m/min)	75–150	75–135	60–120	90–180	75–135	24–90

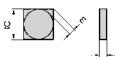
Fräsköpf

Aufsteckfräser

	Auswahlhilfe	Auswahl Aufsteckfräser	G 2-3
	ISO	Fräsplattenbezeichnung	G 4-5
Planfräsen	"Sumi Dual" Planfräser für die allg. Bearbeitung 🚧	DGC (M/F) 13000	G 6-9
	"Wave Mill" Planfräser für die allg. Bearbeitung 🕬	WGX (M/F) 13000	G10-11
		UFO (F) 4000/5000	G12-13
		DNX (F) 12000	G14-15
Multifunktionsfräser	n "Wave Mill" Radius-Planfräser mit Polygon-Platten	WRCX (F) 12000/16000/20000	G16-17
	mit runden Platten	RSX	G18-19
		RSX (F) 10000/12000/16000/20000	G20-21
Schulterfräsen	"Sumi Dual" Fräser 🕬	DFC 09000	G22-25
	"Wave Mill" Schulterfräser ∰		G26-27
		WFX (M/F) 08000	G28
		WFX (F) 12000	G29
	"Sumi Dual" Fräser, tangential 👯	TSX	G30-31
		TSX (F) 08000	G34
		TSX (M) 13000	G35-36
		TSX (F) 13000	
	"Sumi Dual" Walzenstirnfräser	TSXR 08000/13000 Neu	
	"Wave Mill" Schulterfräser ^{≨rwei}	WEZ	G40-47
		WEZ 11000/17000	G48-51
	"Wave Mill" Walzenstirnfräser	WEZR Neu	G52-53
		WEZR 11000/17000	G54-57
	"Wave Mill" Schulterfräser	WEX (F) 1000/2000/3000	G58
	Walzenstirnfräser	WRX (F)	G59
	Schulterfräser für Titanlegierungen	MTIX Neu	
Sonstige	"Sumi Dual" Fräser, Hochvorschubfräser	DMSW Neu-	G63-65
	·	DMSW 80000	G66
	Hochvorschubfräser	MSX 08000/12000/14000	G67
	Hochvorschubfräser ************************************	WFXH	G68-69
		WFXH 08000/12000	G70-71
	"Wave Mill" Serie für Aluminium	WAX 3000	G72
		WAX 4000	G73
	Hochgeschwindigkeitsfräser für Nichteisenmetalle	NX	G74-77
	<u> </u>	ANXS/ANXA 16000	G78-81
	Planfräser für Aluminium	SUMIDIA "RF"	G82
		SUMIDIA "SRF"	G83
	Planfräser für Grauguss	SUMIBORON "BN Finish Mill" FMU	G84-85

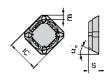

Aufsteckfräser **Auswahl**

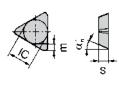

				Einstell-					An۱	vei	ndu	ng				P		erk M	(sti	ick		off S		
Anwendung	Fräsertyp	Serie	Verwendete Schneidplatten	winkel & Max. Schnitttiefe (mm)	Fräser- durch- messer		Planfräsen	Ω	sen	n.	auchen			chen	ᆂ		, Gesenkstahl		Grauguss, Kugelgraphitguss		Aluminiumlegierungen		Gehärteter Stahl HRC 45 ~ 55	Seite
Ā				Einstellwinkel	(mm)	Allg, Bearbeitung	Zum Schlichten	Mit hohem Vorschub	Schulterfräsen	Nutenfräsen	Schrägeintauchen	Anfasen	Bohren	Freiformflächen	Profilschlichten	Kohlenstoffstahl	Vergüteter Stahl	Rostfreier Stahl	Grauguss, Ku	Nichteisenmetalle	Aluminium	Ti-Leg., hitzek	Gehärteter Sta	
	DGC	DGC (-M/F)	SNM/EU 13T6	SNMU 45°	40.050																			<u> </u>
	4	13000RS	ONM/EU 05T6	ONMU 45°	40–250	0										0	0	0	U	0	0	O		G8
Planfräsen	WGX	WGX (-M/F) 13000RS	SEE/MT 13T3	16 mm 45°	40-250	0	0									0	0	0	0	0	0	0		G10
Pla	UFO	UFO (-F) 4000 RS	SFK-N/R12T3, SFK-N1504	5 mm 45°	50-315	0	0										0	0	0	0	0	0		G12
	The state of the s	UFO 5000 RS	12,70	7 mm 45°	80–315																			G13
	DNX	DNX (-F) 12000RS	SNMT 1205	18 mm/65°	80–160	0	0									0			0					G14
	RSX	RSX (-F) 10000RS	RDET10T3 RDET1204	5 mm	40-52																			
Radiusfräsen	4.53	RSX (-F) 12000RS RSX (-F) 16000RS	88 OF D	16 mm 18 mm 18 mm 18 mm	40-100 63-160	0		0	0	0	0				•	0	0	0	0			0		G20
ď		RSX (-F) 20000RS	RDET1606 RDET2006	10 mm	80-160																			
Multifunktions- fräser	WRCX	WRCX (-F/X) 12000RS 16000RS 20000RS	QPMT1204/1606/2006 QPET1204/1606	1 6-10 mm	40–160	0		0	0	0	0			0	ı	0	0	0	0		0			G17
	DMSW Neu	DMSW08000R(S)	WNMU0807	15°	50-160			0	0	0	0					0	0	0	0				0	G66
Zum Fräsen mit hohem Vorschub	MSX	MSX 08000RS 12000RS 14000RS	WDMT0603./0804./1205 1406	1,5-2,5mm 20°	40-100			0	0	0	0					0	0	0	0				0	G67
m Fräse	WFXH	WFXH 08000RS	SOMT0803, SOMT1204	1,5 mm 15°	40-63			0	0	0						0 (0	0	0			0	0	G70
Zul		WFXH 12000RS	12.7	2,5 mm 15°	50-63					0							O							G71
ırfräser	DFC	DFC (-M/F) 09000RS	XNMU0606 RE	16 mm 90°	50-200	0	0		0	0						0	0	0	0			0		G24
Schulterfräser	WFX	WFX (-F/-M) 08000RS WFX (-F) 12000 RS	SOMT080 SOMT1204	6 mm 90°	40–100 50–160		0		0	0						0	0	0	0	0	0	0		G28 G29


Empfohlen Geeignet

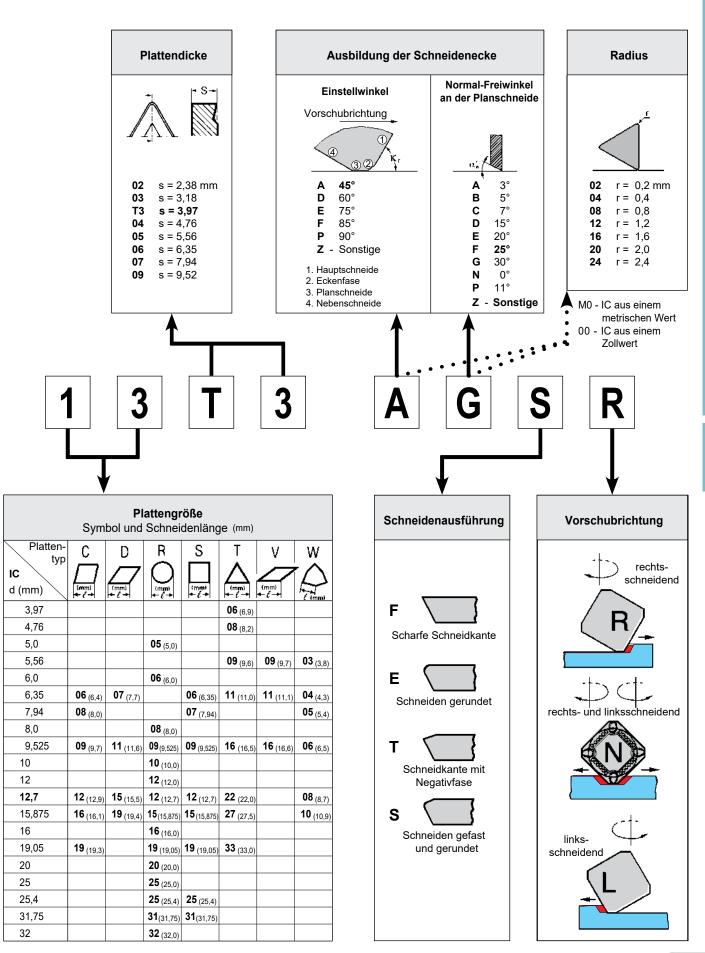
Aufsteckfräser Auswahl

				Einstell-					An	wei	ndu	ıng				Р		erk M	(sti	ick			Н	
Anwendung	Fräsertyp	Serie	Verwendete Schneidplatten	winkel & Max. Schnitttiefe (mm)	Fräser- durch- messer (mm)	Allg, Bearbeitung	Zum Schlichten Planfräsen	Mit hohem Vorschub	Schulterfräsen	Nutenfräsen	Schrägeintauchen	Anfasen	Bohren	Freiformflächen	Profilschlichten		senkstahl	Rostfreier Stahl	Grauguss, Kugelgraphitguss	Nichteisenmetalle	Aluminiumlegierungen		Gehärteter Stahl HRC 45 ~ 55	Seite
	TSX	TSX (-F) 08000RS TSXM13000RS TSX F13000RS	LNEX0804,LNEX1306	8 mm 90°	40-80 40-315 40-160	0	0		0	0					(0	0	0			0		G34 G35 G36 G37
	TSXR	TSXR 08000RS	8.6	134-60 90°	32–63	0			0							- 						0		G38 G39
	WEZ	TSXR 13000RS WEZ 11000R(S)		110mm 90°	40–125 40–100																			
	0.05	WEZ 17000R(S)	AOMT11T3, AOET11T3 AOMT1705, AOET1705	15 _{mm} 90°	40-160	0	0		0	0	0				(0	0	0		0	0		G48 G50
Schulterfräsen	WEZR Neu	WEZR 11000R(S)	12.8	144-63 90°	40–50	0	0		0	0	0				(0 0		○	0	0	0	0		G54
chulte		WEZR 17000R(S)		²⁹⁻⁵⁷ / ₂₉₋₅₇ 90°	40-80																			G56
S	WEX	WEX 1000F	AXMT0602 AXMT1235AXMT1705	5 mm 90°	32–63																			050
	9	WEX 2000F WEX 3000F	12,00	10mm 90° 14mm 90°	40–63 40–125	0			0	0							0	0	0		0	0		G58
	WRX	WRX 2000F	AXMT12350/1705	18-36 90°	40-50																0			
	1.5	WRX 3000F	RE 17,54	²⁷⁻⁵³ 90°	50-100	0			0	0							9	\odot	0		0	0		G59
	MTIX Neu	MTIX16000RS	XOMT1605	13 _{mm} 90°	50-63	0	0		0	0	0							0				0		G61
	WAX	WAX 3000 RS	AECT1604	16-18 90°)			G72
etalle		WAX 4000 RS		22-24 90°	50-125	0			0	0	0			0						0	0			G73
teisenme	ANX	ANXS 16000R(S)	ANB 1600R-L	13 mm 90°	40–125	0	0	0	0											0	0			G80
Nichi	A STATE OF	ANXA 16000R(S)			80-160																			G78
Alumimium-Leg. und Nichteisenmetalle	RF	RF 4000 RS	SNEW1204 SDET1204	13 mm 90°	80-125	0	0													0	0			G82
	SRF	SRF 50/63 RS	SNEW09T3	5 mm 90°	30-63	0	0		0											0	0			G83
"High Speed"- Bearbeitung von Grauguss	FMU	FMU 4000 RS	SNEW1203	10,5mm 90°	80-100		0												0					G85




Sym-	Т	oleranzen (mn	1)
bol	m	IC	s
Α	±0,005	±0,025	±0,025
F	±0,005	±0,013	±0,025
С	±0,013	±0,025	±0,025
Н	±0,013	±0,013	±0,025
E	±0,025	±0,025	±0,025
G	±0,025	±0,025	±0,13

Sym-	Т	oleranzen (mm	1)
bol	m	IC	s
J	±0,005	±0,05 - ±0,13*	±0,025
K	±0,013	±0,05 - ±0,13*	±0,025
L	±0,025	±0,05 - ±0,13*	±0,025
М	±0,08~ ±0,18*,	±0,05 - ±0,13*	±0,13
N	±0,08~ ±0,18*)	±0,05 - ±0,13*	±0,025
U	±0,13~ ±0,38*,	±0,08 - ±0,25*	±0,13

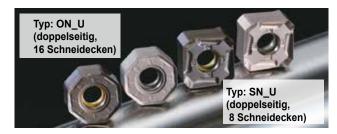

^{*)} Die Toleranz ist von der Plattengröße und Form abhängig. S. Tabellen unten.

m	S		C	W 80°	\ \	D [55]
6,35		±0	,08		-	±0,11
9,525		±0	,08		±0,13	±0,11
12,7		±0	,13			±0,15
15,875		±0	,15			±0,18
19,05		±0	,15			±0,18
25,4		±0	,18			

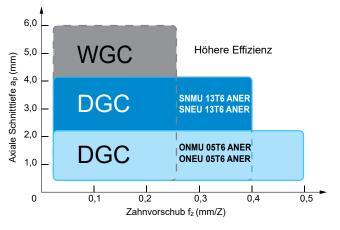
IC	S	T &	C	D _55/	V _35/	W ©	O _B
6,35			±	0,05			
9,525			±	0,05			±0,05
12,7			±	0,08			±0,08
15,875			±	0,10			±0,10
19,05			±	0,10			±0,10
25,4			±	0,13			±0,10

Fräsplatten ISO-Plattenbezeichnung

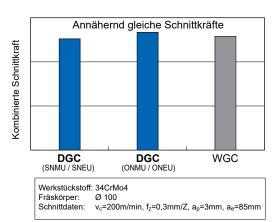
"Sumi Dual Mill" DGC (M/F) - Typ



Allgemeine Eigenschaften


Der "Sumi Dual Mill" DGC-Fräser erzielt durch den Einsatz der doppelseitigen Platten eine exzellente Wirtschaftlichkeit. Die neue Super-ZX-Beschichtung und der sehr gute Planlauf sind gute Voraussetzungen für lange Standzeiten und hervorragende Oberflächengüten in allen Anwendungsbereichen.

Doppelseitige Platten: SNMU/SNEU und ONMU/ONEU Maximal 16 Schneidecken pro Platte.



Merkmale

- Gleiche Schneidleistungen wie einseitige Platten, jedoch deutlich höhere Wirtschaftlichkeit
- Schneidenschärfe und Oberflächengüte vergleichbar mit Fräsern mit positiven Platten (ap = 3 mm)
- Empfohlene Schnittbedingungen für allg. Fräsen von Stahl

Schnittkraftvergleich



Zweifach nutzbarer Fräskörper

Zwei unterschiedliche Plattenformen können sehr kostensparend in einem Fräskörper genutzt werden. Die Auswahl erfolgt entsprechend dem Anwendungsbereich.

- erste Empfehlung
- ökonomisch
- doppelseitig nutzbar
- 8 Schneidecken pro Platte
- maximale Schnitttiefe: $a_p = 6 \text{ mm}$

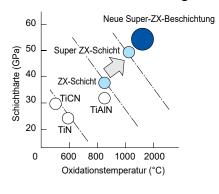
Zwei Plattentypen für unterschiedliche Anwendungen

ONMU **ONEU**

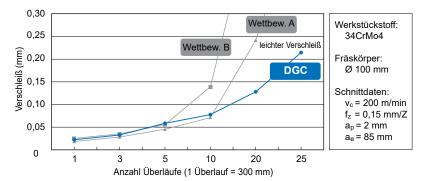
- doppelseitig nutzbar
- 16 Schneidecken pro Platte
- höhere Wirtschaftlichkeit
- maximale Schnitttiefe: $a_p = 3 \text{ mm}$

"Sumi Dual Mill" DGC (M/F) - Typ

■ Produktpalette

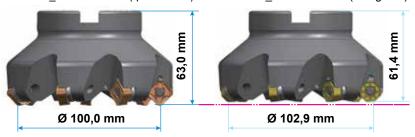

Die Fräservielfalt deckt fast alle Anwendungsfälle ab. Die Auswahl erfolgt entsprechend dem Einsatzbereich.

Bezeichn.	DGC 13000 RS	DGCM 13000 RS	DGCF 13000 RS	DGC 13000 EW
Zahn- teilung	Standard	Mittlere Zahnteilung	Feine Zahnteilung	Schaftfräser
Fräser- durchm.	Ø 40 mm – Ø 250 mm	Ø 50 mm – Ø 250 mm	Ø 50 mm – Ø 250 mm	Ø 40 mm – Ø 63 mm
Zähne- zahl	3–10	4–14	5–18	3–4
Form				→ H6


■ Hohe Zuverlässigkeit

Die "Neue Super-ZX-Beschichtung" (eine mehrlagige PVD-Beschichtung mit hoher Härte) und eine verbesserte CVD-Beschichtung (mit optimierter "Stress-Kontrolltechnologie") bieten eine gesteigerte Produktivität und zuverlässige Zerspanung. Zusätzlich werden durch den präzisen Planlauf stabilere und höhere Standzeiten sicher erzielt.

■ Neue PVD-Beschichtung



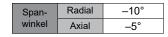
■ Verschleißfestigkeit

■ Wichtige Hinweise zu den Fräserfunktionsmaßen

Platte: SN_U 13T6 ANER (quadratisch) Platte: ON_U 05T6 ANER (oktagonal)

Beispiel: DC = 100 mm	Anzahl der Schneidkanten	Fräser Ø (mm)	Fräserhöhe (mm)	Max. Schnitt- tiefe (mm)
SNMU/SNEU	8	100,0	63,0	6,0
ONMU/ONEU	16	102,9	61,4	3,0

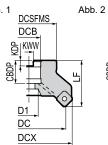
Quadratische Platten (SNMU/SNEU) und oktagonale Platten (ONMU/ONEU) können auf einem Fräskörper einfach ausgetauscht werden.

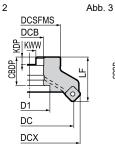

Hinweis: Die Fräserfunktionsmaße ändern sich dabei im Durchmesser und in der Höhe.

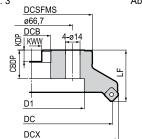
"Sumi Dual Mill"

DGC (M/F) - Typ

Planfräser für Stahl und Gusseisen


■ Fräskörper – Aufsteckfräser





Fräskörper Ø DC ≥ 160 mm: ohne Innenkühlung

■ Fräskörper

■ Typ: DGC, Standard

Por	zeichnung	Logor			Ab	messungen	(mm)					Anzahl der	Gewicht	Abb.
Dez	zeichhung	Lager	DC	DCX	DCSFMS	LF	DCB	D1	KWW	KDP	CBDP	Zähne	(kg)	ADD.
DGC	13040 RS	0	40 (42,90)	54	36	40 (38,44)	16	13,5	8,4	5,6	18	3	0,3	1
	13050 RS	•	50 (52,90)	64	40	40 (38,44)	22	18,0	10,4	6,3	20	3	0,4	1
	13063 RS	•	63 (65,90)	77	50	40 (38,44)	22	18,0	10,4	6,3	20	4	0,5	1
	13080 RS	•	80 (82,90)	94	60	50 (48,44)	27	20,0	12,4	7,0	25	4	1,2	1
DGC	13100 RS	•	100 (102,90)	114	70	50 (48,44)	32	46,0	14,4	8,5	32	5	1,6	2
	13125 RS	•	125 (127,90)	139	80	63 (61,44)	40	52,0	16,4	9,5	29	6	2,8	1
	13160 RS	0	160 (162,90)	174	130	63 (61,44)	40	88,0	16,4	9,5	29	7	4,5	3
DGC	13200 RS	0	200 (202,90)	214	150	63 (61,44)	60	130,0	25,7	14,0	35	8	7,1	4
	13250 RS	0	250 (252,90)	264	190	63 (61,44)	60	160,0	25,7	14,0	35	10	11,2	4

• Typ: DGCM, mittlere Zahnteilung

			Abmessungen (mm)										
Bezeichnung	Lager	DC	DCX	DCSFMS	LF	DCB	D1	KWW	KDP	CBDP	der Zähne	(kg)	Abb.
DGCM 13050 RS	•	50 (52,90)	64	40	40 (38,44)	22	18	10,4	6,3	20	4	0,3	1
13063 RS	•	63 (65,90)	77	50	40 (38,44)	22	18	10,4	6,3	20	5	0,5	1
13080 RS	•	80 (82,90)	94	60	50 (48,44)	27	20	12,4	7,0	25	6	1,1	1
DGCM 13100 RS	•	100 (102,90)	114	70	50 (48,44)	32	46	14,4	8,5	32	7	1,5	2
13125 RS	•	125 (127,90)	139	80	63 (61,44)	40	52	16,4	9,5	29	8	2,8	1
13160 RS	•	160 (162,90)	174	130	63 (61,44)	40	88	16,4	9,5	29	10	4,6	3
DGCM 13200 RS	0	200 (202,90)	214	150	63 (61,44)	60	130	25,7	14,0	35	12	7,0	4
13250 RS	0	250 (252,90)	264	190	63 (61,44)	60	160	25,7	14,0	35	14	11,1	4

• Typ: DGCF, feine Zahnteilung

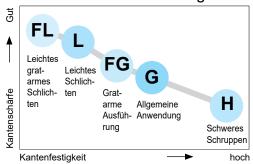
			-										
				Ab	messungen	(mm)					Anzahl	Gewicht	
Bezeichnung	Lager	DC	DCX	DCSFMS	LF	DCB	D1	KWW	KDP	CBDP	der Zähne	(kg)	Abb.
DGCF 13050 RS	•	50 (52,90)	64	40	40 (38,44)	22	18	10,4	6,3	20	5	0,3	1
13063 RS	•	63 (65,90)	77	50	40 (38,44)	22	18	10,4	6,3	20	6	0,5	1
13080 RS	•	80 (82,90)	94	60	50 (48,44)	27	20	12,4	7,0	25	8	1,1	1
DGCF 13100 RS	•	100 (102,90)	114	70	50 (48,44)	32	46	14,4	8,5	32	10	1,4	2
13125 RS	•	125 (127,90)	139	80	63 (61,44)	40	52	16,4	9,5	29	12	2,7	1
13160 RS	•	160 (162,90)	174	130	63 (61,44)	40	88	16,4	9,5	29	14	4,4	3
DGCF 13200 RS	0	200 (202,90)	214	150	63 (61,44)	60	130	25,7	14,0	35	16	6,9	4
13250 RS	0	250 (252,90)	264	190	63 (61,44)	60	160	25,7	14,0	35	18	11,0	4

^() Die Zahlen in Klammern beziehen sich auf die ONMU-Platten.

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Bezeichnungsschlüssel

DGC	M	13	050	R	S
	\neg				$\neg \neg$
Fräser-	M: mittel	Platten-	Fräser-	Schneid-	metrisch
serie	F: fein	größe	durchm.	richtung	


"Sumi Dual Mill" DGC-Typ

■ Wendeschneidplatten

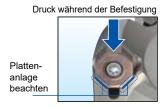
Abmessungen (mm)

Anwendung		Beschichtetes Hartmetall									Cermet			
Hochgeschw./Leichtbearb.	₽ M	₹	Р			K	K		M _S		PM			
Allgemeine Anwendung	S M	KM		PM	M	K	K		M _S		P		Abb. 1	Abb. 2
Schruppen	S M			PM	PM			K		M _S			, % × 1	, 6, x
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	T4500A	Abb.		13.5
SNMU 13T6ANER L	•	0	•	•	•	0	•	•				1	13,5	13,5 6,9
13T6ANER G	•	0	•	•	•	0	•	•				1		10,0
13T6ANER H	•	0	•	•	•	0	•	•				1		
13T6ANER FL	•		•	•	•		•	•				2		
13T6ANER FG	•	0	•	•	•	0	•	•				2	Abb. 3	Abb. 4
SNEU 13T6ANER L									•	•		1	Abb. 0	7155. 4
13T6ANER G									•	•		1		
13T6ANER FL									0	0		2		
13T6ANER FG									•	•		2	13.5	
XNEU 13T6ANEN W	•	0		•		0		•			•	3		
ONMU05T6ANER L	•		•	•	•		•	•				4	18,3	13,5 6,0
05T6ANER G	•	0	•	•	•	O	•	•				4	 	P
ONEU 05T6ANER L									•	•		4		
05T6ANER G									•	•		4		

■ Schneidkantenausführung

Verbesserte Fräsqualität

Die FG-Typ Schneidkantenausführung mit Fase zur Gratminimierung liefert eine hervorragende Fräsqualität.


FG-Typ-Schneidplatten ermöglichen Fräsen in hoher Qualität bei geringer Grat- und Riefenbildung.

Plattenmontage

Montage der ON_U - Platten

Platte auf den Anlageflächen justieren, Druck in Pfeilrichtung von ober her ausüben und dabei die Platte festziehen.

Ersatzteile

Zwischenlage	Hohlschraube	L - Schlüssel	Plattenschraube	Schlüssel
			3,0 @	
DGCS13R	BW0609F	LH040	BFTX0412IP	TRDR15IP

Optional

*Wechsel der Platte erfolgt durch einfaches Lösen der Schraube. (Einsetzbar nur bei Fräsern: DGC/DGCM mit Ø ≥ 80 mm).

■ Empfohlene Schnittbedingungen (SN_U)

I	so	Werkstück- stoff	Härte (HB)	Schnittgeschw. v _c (m/min)	Vorschub f _z (mm/Z)	Schnitt- tiefe (mm)	Schneid- stoffsorte
		Baustahl	180–280	150 –200 –250	0,10 -0,25 -0,40	<4	ACU2500
	P	Unlegierter Stahl	≤180	180 –250 –350	0,10 -0,30 -0,45	<4	ACP200 ACP300
		Gesenkstahl	200–220	100 –150 –200	0,15 –0,25 –0,35	<4	XCU2500
	M	Rostfreier Stahl	-	160 –200 –250	0,15 –0,23 –0,30	<3	ACU2500 ACM300
	K	Gusseisen	250	100 –200 –250	0,10 -0,25 -0,40	<5	ACU2500 ACK200 ACK300 XCU2500 XCK2000
	s	Warmfeste Superlegierungen	-	30 –50 –80	0,10 –0,20 –0,30	<3	ACU2500 ACM200 ACM300

Min. - Optimum - Max

■ Empfohlene Schnittbedingungen (ON_U)

	•			0 0	`	— '
ISO	Werkstück- stoff	Härte (HB)	Schnittgeschw. v _c (m/min)	Vorschub f _z (mm/Z)	Schnitt- tiefe (mm)	Schneid- stoffsorte
	Baustahl	180–280	150- 200 -250	0,10 -0,30 -0,50	<2	ACU2500
Р	Unlegierter Stahl	≤180	180 –250 –350	0,10 -0,50 -0,50	<2	ACP200 ACP300
	Gesenkstahl	200–220	100 –150 –200	0,15 -0,25 -0,30	<2	XCU2500
М	Rostfreier Stahl	-	160 –200 –250	0,15 –0,23 –0,30	<2	ACU2500 ACM300
K	Gusseisen	250	100 –200 –250	0,10 –0,30 –0,50	<2	ACU2500 ACK200 ACK300 XCU2500 XCK2000
s	Warmfeste Superlegierungen	-	30 –50 –80	0,10 –0,20 –0,30	<2	ACU2500 ACM200 ACM300

"Wave Mill"- Planfräser WGX (M/F)-Typ

Planfräser für Stahl und Gusseisen

■ Fräskörper – Aufsteckfräser

Span-	Radial	20°-24°
winkel	Axial	20°-22°

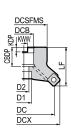
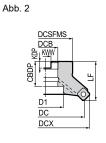
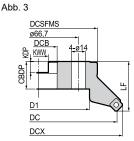
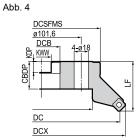





Abb. 1

Fräskörper DC ≥ 160 mm: ohne Innenkühlung

■ Fräskörper

■ Typ: WGX, Standard

D	zajahnung	Logor				Α	bmessur	ngen (mr	n)				Anzahl der	Gewicht Abb.	۸hh
De	ezeichnung	Lager	DC	DCX	DCSFMS	LF	DCB	D1	D2	KWW	KDP	CBDP	Zähne	(kg)	ADD.
WGX	13040 RS	•	40	52	32	40	16	14,0	9,0	8,4	5,6	18	3	0,3	1
	13050 RS	•	50	62	40	40	22	18,0	11,0	10,4	6,3	20	3	0,4	1
	13063 RS	•	63	76	50	40	22	18,0	11,0	10,4	6,3	20	4	0,6	1
	13080 RS	•	80	93	55	50	27	20,0	13,5	12,4	7,0	25	4	1,2	1
WGX	13100 RS	•	100	113	70	50	32	46,0	-	14,4	8,5	32	5	1,6	2
	13125 RS	•	125	138	80	63	40	52,0	29,0	16,4	9,5	29	6	2,8	1
	13160 RS	•	160	173	130	63	40	88,0	-	16,4	9,5	29	7	4,5	3
WGX	13200 RS	•	200	213	150	63	60	130,0	-	25,7	14,0	35	8	7,1	4
	13250 RS	O	250	263	190	63	60	160,0	-	25,7	14,0	35	10	11,2	4

• Typ: WGXM, mittlere Zahnteilung

D daharan	1		Abmessungen (mm)										Gewicht Abb	A I. I.
Bezeichnung	Lager	DC	DCX	DCSFMS	LF	DCB	D1	D2	KWW	KDP	CBDP	der Zähne	(kg)	Abb.
WGXM 13050 RS	•	50	62	40	40	22	18,0	11,0	10,4	6,3	20	4	0,4	1
13063 RS	•	63	77	50	40	22	18,0	11,0	10,4	6,3	20	5	0,6	1
13080 RS	•	80	94	55	50	27	20,0	13,5	12,4	7,0	25	6	1,1	1
WGXM 13100 RS	•	100	114	70	50	32	46,0	-	14,4	8,5	32	7	1,6	2
13125 RS	•	125	139	80	63	40	52,0	29,0	16,4	9,5	29	8	2,8	1
13160 RS	•	160	174	130	63	40	88,0	-	16,4	9,5	29	10	4,5	3
WGXM 13200 RS	•	200	214	150	63	60	130,0	-	25,7	14,0	35	12	7,0	4
13250 RS	0	250	264	190	63	60	160,0	-	25,7	14,0	35	14	11,1	4

Typ: WGXF, feine Zahnteilung

7.	•		·	•										
Bezeichnung	Logor		Abmessungen (mm)										Gewicht	Abb.
Bezeichnung	Lager	DC	DCX	DCSFMS	LF	DCB	D1	D2	KWW	KDP	CBDP	der Zähne	(kg)	ADD.
WGXF 13050 RS	•	50	62	40	40	22	18,0	11,0	10,4	6,3	20	5	0,4	1
13063 RS	•	63	77	50	40	22	18,0	11,0	10,4	6,3	20	6	0,6	1
13080 RS	•	80	94	55	50	27	20,0	13,5	12,4	7,0	25	8	1,1	1
WGXF 13100 RS	•	100	114	70	50	32	46,0	-	14,4	8,5	32	10	1,5	2
13125 RS	•	125	139	80	63	40	52,0	29,0	16,4	9,5	29	12	2,7	1
13160 RS	•	160	174	130	63	40	88,0	-	16,4	9,5	29	16	4,5	3
WGXF 13200 RS	•	200	214	150	63	60	130,0	-	25,7	14,0	35	20	6,9	4
13250 RS	0	250	264	190	63	60	160,0	-	25,7	14,0	35	24	11,0	4

⁾ Die Zahlen in Klammern beziehen sich auf die ONMU-Platten.

Bezeichnungsschlüssel

WGX	M	13	050	R	S
		$\overline{}$			\neg
Fräser-	M: mittel	Platten-	Fräser-	Schneid-	metrisch
serie	F: fein	größe	durchm.	richtung	

Fräsplatten sind nicht im Lieferumfang enthalten.

"Wave Mill"- Planfräser WGX (M/F)-Typ

■ Allgemeine Eigenschaften

Der "Wavemill" Typ WGX verfügt im Vergleich zu herkömmlichen Werkzeugen über einzigartige Spanbrecher für geringeren Schnittwiderstand und höhere Oberflächenqualität.

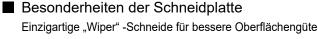
Ausführungen

Тур	Beze	ichnung	Fräser	Anz. Zähne
Standard	WGX	13000RS	Ø 40 – Ø 250	3–10
Mittlere Zahnteilung	WGXM	13000RS	Ø 50 – Ø 250	4–14
Feine Zahnteilung	WGXF	13000RS	Ø 50 – Ø 250	5–24
Schaftfräser	WGX	13000EW	Ø 32 – Ø 63	3–5

Fräser mit DC ≤ Ø125 mm haben Innenkühlung

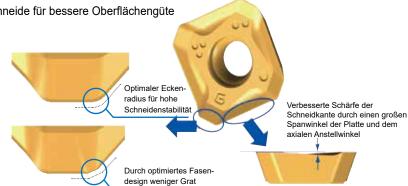
→ H7

Merkmale


Stabile Bearbeitung

Der speziell für den WGX entwickelte Spanbrecher gewährleistet geringere Schnittkräfte.

Hervorragende Oberflächenqualität
 Die einzigartige "Wiper"-Schneide und ein verbesserter Planlauf garantieren eine exzellente Oberflächenqualität. Die optimierte Fasenausführung bewirkt weniger Gratbildung und Kantenausbrüche.


Lange Standzeit

Zuverlässige und lange Standzeiten durch die neue Beschichtung und durch den Einsatz der Hochpräzisionstechnologie, die Planlaufschwankungen der Platten verringert.

Allgemeine Anwendung: G-Typ

Reduzierte Gratbildung: FG-Typ

Platten Abmessungen (mm) Anwendung Beschichtetes Hartmetall Hartm. DLC Cermet Abb. 1 K_N N Hochgeschw./Leichtbearb. Allgemeine Anwendung M_S Schruppen ACM200 XCK2000 XCU2500 **ACP100 ACK200 ACK300** DL 1000 Schraube Abb. Bezeichnung Ξ Platte SEET 13T3AGFR-L 0 1 SEET 13T3AGSR-L 1 0 0 Plattenschraube 13T3AGSR-G \mathbf{O} • 0 • • • 1 SEMT 13T3AGSR-L • \mathbf{o} • 0 • • • 1 Abb. 3 13T3AGSR-G 0 0 13T3AGSR-H 0 0 2 SEMT 13T3AGSR-FG • \mathbf{O} lacktriangle• \mathbf{O} lacktrianglelacktriangle• 3 XEEW 13T3AGER-WR 0 0

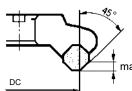
Zwischenlage Schraube Platte Platten-schraube

Ersatzteile

Fräser- typ	Zwischen- lage	Befest schraube	Platten- schraube	Platten- schlüssel	Zw.lagen- schlüssel
	9		3,0 (N-m)		
WGX (-M/F)	WGCS 13 R	BW 0507 F	BFTX 03512 IP	TRDR 15 IP	LH 035

Empfohlene Schnittbedingungen

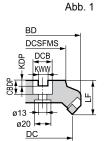
ISO	Werk- stückstoff	Härte (HB)	Schnittgeschw. v _c (m/min)	Vorschub f _z (mm/Z)	Schneid- stoffsorte
P	Legierter Stahl	180–280	150 –200 –250	0,15 –0,20 –0,25	ACU2500 ACP200 XCU2500
	Unlegierter Stahl	≤180	180 –265 –350	0,10 -0,25 -0,40	
	Gesenkstahl	200–220	100 –150 –200	0,15 -0,20 -0,25	
M	Rostfreier Stahl	-	160 –205 –250	0,15 –0,23 –0,30	ACU2500 ACM300
K	Guss	250	100 –175 –250	0,15 -0,23 -0,30	ACU2500 ACK200 XCK2000
N	Nichteisenmetalle	-	500 –750 –1000	0,15 –0,23 –0,30	DL1000
S	Superlegierung	-	30 – 50 – 80	0,10 –0,20 –0,30	ACU2500 ACM300

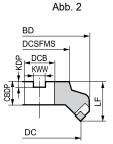

Minimum-Optimum-Maximum

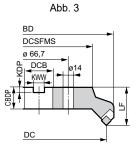
Planfräser UFO / UFOF - Typ

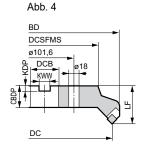
Für die hocheffiziente Bearbeitung von Stahl und Gusseisen

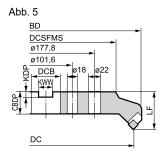
■ Ausführung

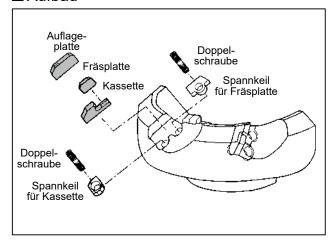



Einstellwinkel: 45°
Axialer Spanwinkel: +27°
Radialer Spanwinkel: -7°
(-10° für Ø 50 und Ø 63)


max. Schnitttiefe: 5,0 mm (UFO 4000-Typ) 7,0 mm (UFO 5000-Typ)


Fräskörper


Dozejehnung	La	ger			,	Abmessu	ngen (mn	1)			Anzahl	max.	Gewicht	Abb.
Bezeichnung	R	L	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	der Zähne	Schnitt- tiefe	(Kg)	ADD.
UFO 4050 R/L-S	•		50	74	45	50	22	10,4	6,3	20	4		1,3	1
4063 R/L-S	•		63	86	50	50	22	10,4	6,3	20	5		1,6	1
4080 R/L-S	•		80	103	60	50	27	12,4	7,0	25	5		2,1	1
UFO 4100 R/L-S	•	•	100	122	75	50	32	14,4	8,5	29	6		2,9	2
4125 R/L-S	•		125	146	75	63	40	16,4	9,5	29	7	5,0	4,2	2
4160 R/L-S	•		160	180	100	63	40	16,4	9,5	29	9		6,6	3
UFO 4200 R/L-S	•		200	220	130	63	60	25,7	14,0	32	11		9,5	4
4250 R/L-S			250	270	300	63	60	25,7	14,0	40	13		14,8	4
UFO 4315 R/L-S			315	335	240	80	60	25,7	14,0	40	15		26,6	5
UFO 5080 R/L-S			80	102	60	50	27	12,4	7,0	25	5		2,1	1
UFO 5100 R/L-S	•		100	119	75	50	32	14,4	8,5	29	6		2,9	2
5125 R/L-S	•		125	143	75	63	40	16,4	9,5	29	7		4,2	2
5160 R/L-S	•		160	177	100	63	40	16,4	9,5	29	9	7,0	6,6	3
UFO 5200 R/L-S	•		200	217	130	63	60	25,7	14,0	32	11		9,5	4
5250 R/L-S			250	267	200	63	60	25,7	14,0	40	13		14,8	4
UFO 5315 R/L-S			315	332	240	80	60	25,7	14,0	40	15		26,6	5



■ Ersatzteile

Fräsertyp	Kassette	Auflageplatte	Spannkeil für	r Fräsplatte			
	0		0)			
4050-4063	UF 4 K R/L	S-UF 4 S R/L					
4080–4315	UF 4 K R/L	UF 4 S R/L	UFTW R/L				
5080-5315	UF 5 K R/L	UF 5 S R/L					
Fräsertyp	Spar	nkeil	Doppelschraube	Schlüssel			
4050–4063							
4080–4315	UFK\	N R/L	WB 7-15 T	TT 25			
5080-5315							

Aufbau

Planfräser UFO / UFOF - Typ

■ Eigenschaften

- 45° Einstellwinkel
- Leichtlauf-Planfräser mit 27°extrem großem Spanwinkel für die hocheffiziente Bearbeitung von Stahl und Gußeisen
- Effiziente Spanabfuhr und niedrige Schnittkräfte
- Ungleichmäßige Teilung (UFO-F) für hohen Vorschub und geringe Vibration
- Wirtschaftliche 3-D Wendeschneidplatten (Typ: SFMR), stabile Hartmetall-Kassetten und HSS-Auflageplatten

■ Fräskörper (Ausführung mit feiner Zahnteilung)

Bezeichnung	La	ger				Abmessu	ngen (mn	1)			Anzahl	max. Schnitt-	Gewicht	Abb.
Bezeichnung	R	L	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	der Zähne	tiefe	(Kg)	ADD.
UFOF 4080 R/L-S	•		80	103	60	50	27	12,4	7,0	25	6		2,1	1
UFOF 4100 R/L-S	•		100	122	75	50	32	14,4	8,5	29	8		2,9	2
4160 R/L-S	•		160	180	100	63	40	16,4	9,5	29	12	F 0	6,6	3
UFOF 4200 R/L-S	۵		200	220	130	63	60	25,7	14,0	32	16	5,0	9,5	4
4250 R/L-S	۵		250	270	300	63	60	25,7	14,0	40	20		14,8	4
UFOF 4315 R/L-S	۵		315	335	240	80	60	25,7	14,0	40	24		26,6	5

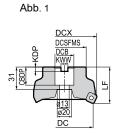
■ Wendeschneidplatten

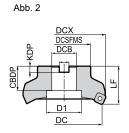
Abmessungen (mm)

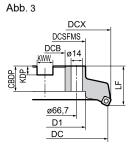
													Abmessungen (mm)
	Sorte			rtme chic	,		Cermet		artn		,		Abb. 1 (Sorten: ACP_, ACK_) Abb. 5 (Sorten: ACP_, ACK_)
Но	chgeschw./Leichtbearb.	Р			K						KN		
Alle	gemeine Anwendung		PM	PM	K		Р	P	K	K			12,70 3,97 15,875 4,76
Sc	hruppen		PM	PM		K							Abb. 2 Abb. 6
	Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	T250A	A30N	G10E	Ŧ	H10E	Abb	12,70 3,97 15,875 4,76
4000	SFKN 12T3 AZFN				•	•			•	•		1(2)	
	12T3 AZTN	•	•	•			O	0	•			1(2)	
UFO(F)	SFKR 12T3 AZTN											3	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5	UW 12500 R										0	4	12/70 3.97
0	SFKN 1504 AZFN					O						5(6)	Abb. 4
2000	1504 AZTN	•	•	•								5(6)	
UFO													3.97±0.025

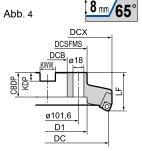
■ Empfohlene Schnittbedingungen

(vc =m/min, fz =mm/Zahn) (min.- optimum - max.)

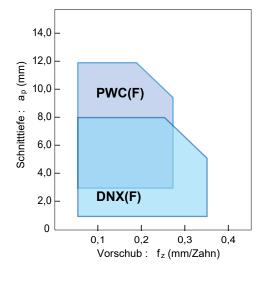

S	orte		ACP100			ACP200		ACF	300	ACK	(200	ACK	(300
Werkstück	Werkstückstoff Kohlenstoff- Legio		Legierter	Gesenk-	Kohlenstoff-	Legierter	Gesenk-	Rostfrei	er Stahl	Crougues	Kugel-	Crougues	Kugel-
Plattentyp		armer Stahl	Štahl	stahl	armer Stahl	Štahl	stahl	austenitisch	martensitisch	Grauguss	graphit- guss	Grauguss	graphit- guss
UEO (E)	Vc	100 –250 –400	80 –220 –280	80 –150 –250	80 –200 –370	70 –150 –250	60 –130 –220	120 –180 –240	100 -140- 200	220 –270 –450	150 –180 –250	180 –220 –270	130 –160 –220
UFO (-F) 4000	fz	0,1- 0,25 -0,4	0,1 -0,25 -0,4	0,1 -0,2 -0,3	0,1 -0,25 -0,4	0,1 -0,25 -0,4	0,1 -0,2 -0,3	0,1 -0,2 -0,3	0,1 -0,2 -0,3	0,1 -0,25 -0,4	0,1 -0,25 -0,4	0,1 -0,25 -0,4	0,1 –0,25 –0,4
4000	ap		1,0 –3,0 –5,0			1,0 –3,0 –5,0		1,0- 2	0 –3,0	1,0 –3	,0 –5,0	1,0 –3	,0 –5,0
1150 (5)	V _c	100 –250– 400	80 –220 –280	80 –150 –250	80 –200 –370	70 –150 –250	60 –130 –220	120 –180 –240	100 –140 –200	220 -270- 450	150 –180 –250	180 –220 –270	130 –160 –220
UFO (-F) 5000	fz	0,1 -0,25 -0,4	0,1 -0,25 -0,4	0,1 -0,2 -0,3	0,1 -0,25 -0,4	0,1 -0,25 -0,4	0,1 -0,2 -0,3	0,1 -0,2 -0,3	0,1 -0,2 -0,3	0,1 –0,25 –0,4	0,1 -0,25 -0,4	0,1 -0,25 -0,4	0,1 –0,25 –0,4
3000	ap		1,0 –4,0 –7,0			1,0 –4,0 –7,0		1,0- 2	,0 –5,0	1,0-4	,0 –7,0	1,0-4	,0 –7,0


Zum allgemeinen Planfräsen von Gusseisen und Stahl

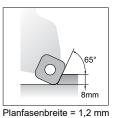

Einstellwinkel 65° Axialer Spanwinkel + 5°


Radialer Spanwinkel: - 6°

■ Fräskörper


DNX - Typ (Standardausführung)

D	ezeichnung					Abme	essungei	n (mm)				Anzahl	max.	Gewicht	A b b
Ь	ezeichhung	Lager	DC	DC DCX DCSFMS LF DCB D1 KWW KDP CBDP								der Zähne	Schnitt- tiefe	(Kg)	Abb.
DNX	12080 RS	•	80	88	60	50	27	-	12,4	7,0	25	6		1,2	1
DNX	12100 RS	•	100	108	80	50	32	46	14,4	8,5	29	7		1,6	2
	12125 RS	•	125	133	80	63	40	56	16,4	9,5	29	8	0.0	2,8	2
	12160 RS	•	160	168	100	63	40	88	16,4	9,5	29	10	8,0	4,4	3
DNX	12200 RS		200	210	150	63	60	130	25,7	14,0	35	16		8,0	4
	12250 RS		250	260	180	63	60	160	25,7	14,0	25	20		12,2	4


DNXF - Typ (Ausführung mit feiner Zahnteilung)

Bezeichnung					Abme	essungei	n (mm)				Anzahl	max.	Gewicht	Abb.
Bezeichhung	Lager	DC	DCX	DCSFMS	LF	DCB	D1	KWW	KDP	CBDP	der Zähne	Schnitt- tiefe	(Kg)	Abb.
DNXF 12080 RS	•	80	88	60	50	27	-	12,4	7,0	25	8		1,2	1
DNXF 12100 RS	•	100	108	80	50	32	46	14,4	8,5	29	10	0.0	1,6	2
12125 RS	•	125	133	80	63	40	56	16,4	9,5	29	11	8,0	2,7	2
12160 RS	•	160	168	100	63	40	88	16,4	9,5	29	12		4,4	3

■ Erste Empfehlung: DNX

DNX / DNXF

Max. Sch	nitttiefe: 8 mm, Einste	ellwinkel : 65°									
Fräsertyp	Durchmesserbereich	Eigenschaften									
DNX 12000 RS	Ø 80–Ø 250 mm	- Zum allg. Planfräsen - Mittlere Zahnteilung									
DNXF 12000 RS	DNXF 12000 RS Ø 80–Ø 160 mm - Zum allg. Planfräsen - Feine Zahnteilung										

■ Ersatzteile

Fräser	Schraube	Schlüssel	Kassette	Befestigungs- schraube	Schlüssel
	3,0 🕅				6
Ø 80 – Ø 160 Ø 200 Ø 250	BFTX0412 IP	TRDR15 IP	– DNXK 12 R	– BX 0515	- I H 040

■ Bezeichnungsschlüssel

Planfräser **DNX / DNXF** - Typ

■ Eigenschaften

- Neue 8-schneidige Wendeschneidplatte
- Kostengünstig durch doppelseitige Nutzung
- Hervorragende Schneidstoffe für die Gussbearbeitung
- Optimierte Geometrien für beste Ergebnisse in Guss
- Spezielle Platten f
 ür die Stahlbearbeitung

■ Wendeschneidplatten

Abmessungen (mm)

Anwendung	Har	tmeta	all, be	schicl	ntet		
Hochgeschw./Leichtbearbeitung			K	K			
Allgemeine Anwendung	PM	PM	K	K			
Schruppen	PM	PM			K		
Bezeichnung	ACP200	ACP300	ACK100	ACK200	ACK300	Abb.	
SNMT 1205 ZNEN-L	O					1	
1205 ZNEN-G	•		•	•	•	1	
1205 ZNEN-H	•		•	•	•	2	
1205 ZNEN-SH	•	C	•	•	•	3	

Abb. 2 Abb. 3 Abb. 1 **Н** - Тур L/G - Typ SH - Typ Schneidkante Negativfase

L - Typ : für leichte Zerspanung **G** - Typ : für generelle Zerspanung H - Typ : für schwere Zerspanung **SH** - Typ: für Stahlbearbeitung

- Negative Schneidplatten 8-schneidige Wendeplatte
- Stahlbearbeitung möglich

■ Vorteil der SH-Ausführung bei der Stahlbearbeitung

G - Typ

Spänestau verursacht höhere Schnittkräfte

SH - Typ

Gleichmäßiger Spanfluss reduziert die Schnittkräfte

■ Empfohlene Schnittbedingungen

 $(v_c = m/min, f_z = mm/Zahn) (min.-optimum - max.)$

ISO	Werkstückstoff	Härte (HB)	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/Zahn)	Hartmetallsorte
В	Kohlenstoffstahl	180–280	150– 175 –200	0,10 –0,15 –0,20	ACP200
	Legierter Stahl	180–280	150– 175 –200	0,10 –0,15 –0,20	ACP200
1Z	Grauguss (GG)	250	150 –225 –300	0,10 –0,20 –0,30	ACK200/ACK300
K	Kugelgraphitguss (GGG)	250	150- 225 -250	0,10 –0,18 –0,25	ACK200/ACK300

"Wave Mill" Radiusfräser WRCX - Typ

Merkmale

Der neue "Wave Mill" WRCX Fräser ist ein neuer Mehrzweckfräser zum Plan- und Nutfräsen, Aufweiten und Helix-Fräsen, Tauchfräsen und Profilieren. Sein einzigartiger Aufbau bietet 16-eckige Wendeschneidplatten in Polygonform. Der langlebige Fräskörper ist aus hochfestem legiertem Stahl gefertigt, wobei die Oberfläche zusätzlich eine harte Schutzschicht erhält. Die Stabilität der Wendeschneidplatte wird durch enge Toleranzen der Plattensitze und der zentrischen TORX-PLUS Schraubenklemmung maximiert.

Wählen Sie aus einer Vielzahl von Schneidstoffsorten wie z.B. unserer preisgekrönten "Diamond like Carbon" DL1000 (geeignet auch zum Hochvorschubfräsen von Aluminium), der unbeschichteten Sorte H1 (für Nicht-Eisenmetalle) oder unsere neuen ACP/ACK-Sorten für die Bearbeitung von Stahl- bzw. Gusswerkstückstoffen.

Vorteile

- Hochvorschubfräsen
- Exzellente Spanabfuhr
- Maximale Stabilität
- Breites Anwendungsfeld
- Verschleißfester Fräskörper speziell legierter Stahl mit harter Oberfläche
 - optimierte Zahnteilung und hohe Anzahl Schneidkanten
 - großzügig bemessene Spantaschen und integrierte Kühlbohrungen
 - stabile Klemmung der Platten mit TORX-PLUS Schrauben
 - niedrig legierte, legierte und rostfreie Stähle, hitzebeständige Legierungen, Form- und Gesenkstahl, AlLegierungen, Nicht-Eisenmetalle, usw.

■ Wendeschneidplatten für WRCX

Anwendung	Har	tmeta	all, be	schic	chtet	Hartmetall unbesch.	Diamant beschicht.						Abb. 1	
Hochgeschw./Leichtbearb.	P			K		KN	N						ADD. I	RE
Allgemeine Anwendung		PM	PM	K			N							
Schruppen		PM	PM		K								_	
Dozajahnung	ACP100	ACP200	4CP300	ACK200	ACK300		1000	Abmes	ssunge	n (mm)	Abb.	Geeignete		IC 90° S
Bezeichnung	ACF	ACF	ACF	AČK	Å	Ξ	01.1	IC	RE	s	ADD.	Fräser	A 0	1 22 1
QPMT 120440 PPEN	•	•	•	•	•				4,0		1	WRCX/-F	Abb. 2	
120440 PPEN-H	•	•	•	•	•			12	4,0	4,76	'	12000 RS		
QPET 120460 PPFR-S						•	•		6,0		2	WRCX/-F/-X		RE
QPMT 160660 PPEN	•	•	•	•	•				6,0		1	16000 RS		
160660 PPEN-H	•	•	•	•	•			16	0,0	6,5	1	10000 K3		
QPET 160680 PPFR-S						•	•		8,0		2	WDCVE		
QPMT 200670 PPEN		•	•	•	•			20	7.0	G E	1	WRCXF 20000 RS		□ IC □ S □
200670 PPEN-H		•	•	•	•			20	7,0	6,5	1	20000 KS		

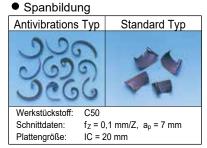
Standard-Typ (16-eckige Polygonausführung)

QPMT...-H: Stabilisierte Schneidkante

QPET...-S: Polierte, runde Wendeschneidplatte für Nicht-Eisenmetalle

Ausführung mit Schwingungsdämpfung (Paarungen für vibrationsfreie Bearbeitung)

Anwendung	Har	tmeta	all, be	eschio	htet	Hartmetall unbesch.	Diamant beschicht.						Abb. 1	RE
Hochgeschw./Leichtbearb.	Р			K		KN	N						08	
Allgemeine Anwendung		PM	PM	K			N							
Schruppen		PM	PM		K									
Pozoiohnung	ACP100	CP200	CP300	CK200	4CK300		1000	Abmes	sunge	n (mm)	Abb.	Geeignete	Al-l- O	1C 90° S
Bezeichnung	ACF	ACF	ACF	ACK	ACK	Ξ	DL1	IC	RE	S	ADD.	Fräser	Abb. 3 CP	RE RE
QPMT 160608 PPEN	•	•	•	•	•			16	0.0	6 5	1	WRCX/-F/-X	,	
160608 PPEN-CP		•	•	•	•			16	0,8	6,5	3	16000 RS	,	
QPMT 200608 PPEN	•	•	•		•			20	0.0	6.5	1	WRCXF		IC S
200608 PPEN-CP		•	•		•			20	0,8	6,5	3	20000 RS		90°


Durch die versetzte Anordnung der Plattentypen "08" bzw. "CP" variiert die Schnitttiefe und Vibrationen werden bei den folgenden Vorschüben ausgeschlossen:

 $f_Z < 0.15$ (IC = 16 mm) oder $f_Z < 0.2$ (IC = 20 mm)

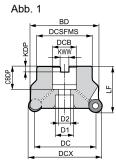
= Eurolager

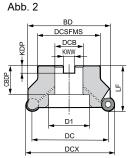
○ = Japanlager

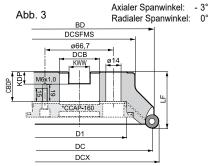
□ = Auf Anfrage

Gewicht Abb.

1


(Kg)


0,2


0,3 1

"Wave Mill" Radiusfräser WRCX - Typ

WRCX-Typ (Standardausführung)

* Hinweis zu Abb. 3, DCX = 160 mm: Kühlmittelabdeckplatte (CCAP-160) ist separat mit Schlüssel (ZH050) und 4 Schrauben (BX0620) zur Befestigung erhältlich.

Bezeichnung	Lager				Ab	messı	ıngen	(mm)					Anzahl der	Zirkular- fräsen	Eintauch- winkel
Bezeichhung	Lager	DCX*	DC	BD	DCSFMS	LF*	KWW	KDP	DCB	D2	D1	CBDP		øB Standard	αmax.
WRCX 12040 RS	•	40	28	36	36	40	8,4	5,6	16	9	14	18	4	68 ± 11	10°
12050 RS	•	50	38	46	40	40	10,4	6,3	22	11	18	20	4	88 ± 11	7°
12052 RS	•	52	40	48	40	40	10,4	6,3	22	11	18	20	5	92 ± 11	6°30'
12062 DC	_	62	E 1	EΩ	40	40	10.4	6.2	22	11	10	20		111 111	E°

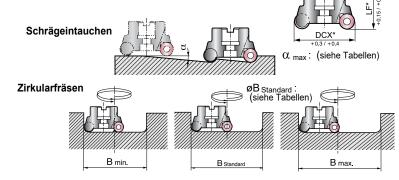
6°30' 0,3 1 5° 0,4 1 12080 RS 80 68 76 55 50 12,4 7,0 27 13,5 25 6 148 ± 11 3°30' 0,9 20 1 WRCX 16063 RS • 63 47 50 50 40 10,4 6,3 22 11 18 20 3 110 ± 15 8° 0,4 1 16080 RS 80 64 70 55 50 12,4 7,0 27 13,5 20 25 4 144 ± 15 5°30' 8,0 2 84 WRCX 16100 RS 90 70 5 100 50 14,4 8,5 32 46 32 184 ± 15 4° 1,3 16125 RS 2 125 109 115 80 63 16,4 9,5 40 52 38 5 234 ± 15 3° 2,4

WRCXF-Typ (Ausführung mit feiner Zahnteilung)

	_ `																
Bezeichnung	Logor				Ab	messı	ingen	(mm)					Anzahl der	Zirkular- fräsen	Eintauch- winkel	Gewicht	Λhh
Bezeichhung	Lager	DCX*	DC	BD	DCSFMS	LF*	KWW	KDP	DCB	D2	D1	CBDP	Zähne	ØB Standard	Ctmax.	(Kg)	ADD.
WRCXF 12050 RS	0	50	38	46	40	40	10,4	6,3	22	11	18	20	5	88 ± 11	7°	0,3	1
12063 RS	0	63	51	59	40	40	10,4	6,3	22	11	18	20	6	114 ± 11	5°	0,4	1
WRCXF 16052 RS	•	52	36	45	45	40	10,4	6,3	22	11	17,7	20	4	88 ± 15	10°	0,3	1
16063 RS	•	63	47	50	50	40	10,4	6,3	22	11	18	20	4	110 ± 15	8°	0,4	1
16080 RS	•	80	64	70	55	50	12,4	7,0	27	13,5	20	25	5	144 ± 15	5°30'	0,8	1
WRCXF 16100 RS	•	100	84	90	70	50	14,4	8,5	32	-	46	32	6	184 ± 15	4°	1,3	2
16125 RS	•	125	109	115	80	63	16,4	9,5	40	29	52	29	6	234 ± 15	3°	2,4	1
16160 RS	•	160	144	150	100	63	16,4	9,5	40	-	93	29	8	304 ± 15	2°	4,0	3*
WRCXF 20080 RS	•	80	60	68	55	50	12,4	7,0	27	13,5	20	25	5	140 ± 18	7°	0,7	1
WRCXF 20100 RS	•	100	80	88	70	50	14,4	8,5	32	-	46	32	6	180 ± 18	5°	1,1	2
20125 RS	•	125	105	113	80	63	16,4	9,5	40	29	52	29	6	230 ± 18	3°30'	2,3	1
20160 RS	•	160	140	148	100	63	16,4	9,5	40	-	93	29	8	300 ± 18	2°30'	3,9	3*

WRCXX-Typ (Ausführung mit extra feiner Zahnteilung)

Bezeichnung L	Logor				Ab	messu	ıngen	(mm)					Anzahl der	Zirkular- fräsen	Eintauch- winkel	Gewicht	Λhh
bezeichhang	Lager	DCX*	DC	BD	DCSFMS	LF*	KWW	KDP	DCB	D2	D1	CBDP		ØB Standard		(Kg)	ADD.
WRCXX 16080 RS	•	80	64	70	55	50	12,4	7,0	27	13,5	20	25	6	144 ± 15	5°30'	0,8	1
16100 RS	•	100	84	90	70	50	14,4	8,5	32	-	46	32	7	184 ± 15	4°	1,3	2


^{*} Hinweis: Bei Verwendung der CP-Antivibrationsplatte (IC=16mm), ändern sich die oben genannten Abmaße: DCX*+0,3 & LF*+0,15 mm Bei Verwendung der CP-Antivibrationsplatte (IC=20mm), ändern sich die oben genannten Abmaße: DCX*+0,4 & LF*+0,2 mm

■ Maximale Drehzahlen (min-1) bei Verwendung der QPET Platten in Nicht-Eisenwerkstückstoffen

Fräser	Plattenbezeichnung											
DC (mm)	QPET10S	QPET12S	QPET16S									
25	28.000											
32	25.000											
40		22.000	15.000									
50		20.000	14.000									
63		18.000	13.000									
80		16.000	12.000									
100			10.000									
125			9.000									
160			8.000									

Ersatzteile

Fr	äser	Schraube		Schlüssel
			(N·m)	
WRCX	12000	BFTX 0409 IP	3,0	TRDR 15 IP
WRCX/-F/-X	16052-16100	BFTX 0511 IP	5,0	TRDR 20 IP
WKCA/-F/-A	16125-16160	BFTX 0513 IP	5,0	TRUK 20 IP
WRCX/-F	20000	BFTX 0615 IP	5,0	TRDR 25 IP

■ Empfohlene Schnittbedingungen

Werk	stück- stoff	Officy. Starii	Legierter Stahl (Härte < HRc40)	Rostfreier Stahl (z.B.X10CrNiS18-9)	Guss (z.B. GG20)	Nicht-Eisen- metalle
(mm)	rustoff	ACP100, ACP200	ACP100, ACP200	ACP200, ACP300	ACK200, ACK300	DL1000, H1
40 ~	Vc	100- 160 -200	100 –140 –180	80 –120 –160	80- 120 -160	200- 500 -1000
80	fz	0,2 -0,4 -0,6	0,2 -0,3 -0,4	0,1 –0,2 –0,3	0,1 –0,2 –0,4	0,1 –0,3 –0,4
100 ~	Vc	150- 200 -250	100 –160 –200	160- 180 -200	100- 150 -200	200- 500 -1000
160	fz	0,3 –0,4 –0,6	0,1 –0,3 –0,5	0,15 –0,2 –0,3	0,1 -0,15 -0,2	0,2 –0,3 –0,6

 $[v_c = m/min, f_Z = mm/Z]$ [min.- optimal - max.]

Beschreibung

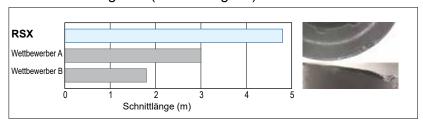
Durch das neue Design des Fräskörpers und des stabilen Plattensitzes erzielt der RSX-Fräser auch bei instabilen Bearbeitungsverhältnissen ausgezeichnete Ergebnisse. Die bisherigen Sorten der ACM-Serie für das Fräsen in Edelstahl und in hitzebeständigen Legierungen wurden mit zwei weiteren Sorten ergänzt:

ACP200 für die Bearbeitung von Stahl und ACK300 für die Gussbearbeitung.

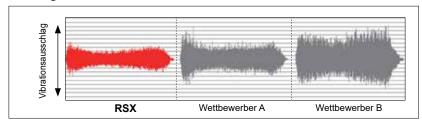
Die Schaftfräser RSX(F)08000 und die Aufsteckfräser RSX(F)20000 vervollständigen die Einsatzmöglichkeiten bei Fräsanwendungen.

■ Eigenschaften

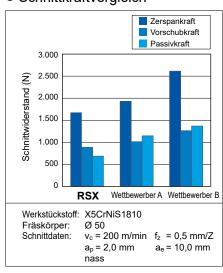
Durch den stabilen Fräskörper und den hoch positiven Spanwinkel wird eine vibrationsarme Bearbeitung mit geringem Schnittwiderstand erzielt.


Die Sorten ACM100/ACM200/ACM300 garantieren ein zuverlässiges Fräsen in hitzebeständigen Legierungen. Für eine stabile Bearbeitung in einem breiten Spektrum von Anwendungen wird der Einsatz der Sorte ACP200 für Stahl und der Sorte ACK300 für Guss empfohlen.

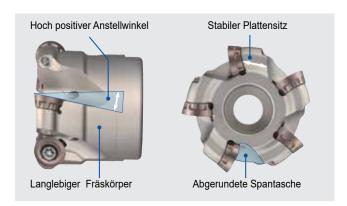
Produktpalette


F	A	Platten-	Damaiahassa					Außer	durchi	messe	r (mm)				
Fräsertyp	Ausführung	größe	Bezeichnung	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 52	Ø 63	Ø 66	Ø 80	Ø 100	Ø 125	Ø 160
Schaftfräser		08	RSX 08000 ES	•	•										
	Standard	10	10000 ES		•	•								İ	
42		12	12000 ES			•									
Olive Comment	Feine Zahn-	08	RSXF 08000 ES	•	•										<u> </u>
1170	teilung	10	10000 ES		•	•								İ	<u> </u>
<u>→ H76</u>	tellulig	12	12000 ES			•									
Aufsteckfräser	Standard	10	RSX 10000 RS				•	•	•						<u> </u>
100 m	Standard	12	12000 RS				•	•	•	•	•	•	•		<u> </u>
B - 73		16	16000 RS							•		•	•	•	
1. CO III. TO 1		20	20000 RS									•	•	•	•
13.9-21		10	RSXF 10000 RS				•	•	•						
	Feine Zahn-		12000 RS				•	•	•	•	•	•	•		
	teilung	16	16000 RS							•		•	•	•	
		20	20000 RS									•	•	•	•
Modularfräser		08	RSX 08000 M	•	•	•									
	Standard	10	10000 M		•	•									
() () () () ()	12	12000 M			•	•									
Feine Zahn- teilung	Feine Zahn-	08	RSXF 08000 M	•	•	•									
	10	10000 M	ļ	•	•	l	ļ			l					
71177	teilung	12	12000 M			•	•								

Schnittleistung


Standzeitvergleich (Bruchfestigkeit)

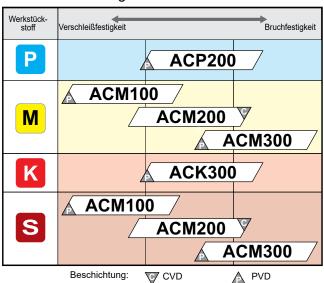
Vergleich der Vibration



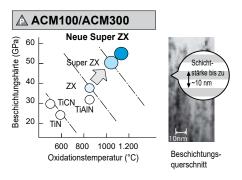
Schnittkraftvergleich

"Wave Mill" Radiusfräser RSX - Serie

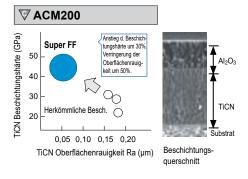
■ Geringer Schnittwiderstand, vibrationsarm Der stabile Fräskörper und ein hoch positiver Anstellwinkel garantieren eine vibrationsarme Bearbeitung mit geringem Schnittwiderstand.



■ Große Funktionsfähigkeit


Ein präziser und einzigartiger Positionierungsmechanismus erleichtert das Einsetzen der Platten.

Stabile und lange Standzeiten


Signifikant verbesserte ACM-Sorten sichern eine stabile und lange Standzeit bei der Bearbeitung von hitzebeständigen Legierungen und rostfreien Stählen.

Neue Super ZX-Beschichtung

Im Vergleich zu herkömmlichen Beschichtungen:

- 40 % erhöhte Beschichtungshärte und um 200 °C erhöhte Oxidationstemperatur
- mindestens 1,5-fach schnellere und effizientere Bearbeitung
- bei gleichen Schnittbedingungen doppelte Standzeit

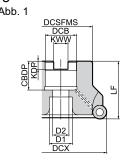
Super FF-Beschichtung

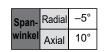
Die glatte Beschichtungsoberfläche bietet optimalen Schutz vor Adhäsion und Mikroausbrüchen.

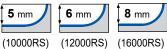
Verbesserte Schichthaftung.

Härter als herkömmliche Beschichtungen und enorme Verbesserung der Verschleißfestigkeit.

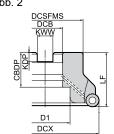
Mehr als das 1,5-Fache für eine schnellere und effizientere Bearbeitung möglich.

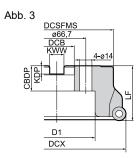

Unter gleichen Schnittbedingungen kann die Standzeit gegenüber herkömmlichen Schneidstoffen verdoppelt werden.


"Wave Mill" Radiusfräser **RSX(F)**10000/12000/16000/20000RS


Fräsen von Stahl, rostfreiem Stahl, Guss und hitzebeständigen Legierungen

■ Fräskörper – Abmessungen





(20000RS)

Abb. 2

Fräskörper

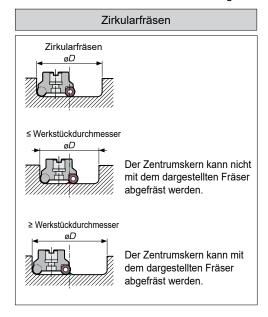
RSX...RS - Standardausführung

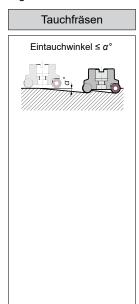
Р	ozojohnung	Logor	Abmessungen (mm)									Anzahl	Gewicht	Abb.
	ezeichnung	Lager	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	Abb.
RSX	10040 RS	•	40	34	40	16	8,4	5,6	18	14	9	4	0,2	1
	10050 RS	•	50	40	40	22	10,4	6,3	20	18	11	5	0,3	1
	10052 RS	•	52	40	40	22	10,4	6,3	20	18	11	5	0,4	1
RSX	12040 RS	•	40	32	40	16	8,4	5,6	18	13,5	9	3	0,2	1
	12050 RS	•	50	40	40	22	10,4	6,3	20	18	11	4	0,3	1
	12052 RS	0	52	40	40	22	10,4	6,3	20	18	11	4	0,3	1
	12063 RS	•	63	40	40	22	10,4	6,3	20	18	11	5	0,4	1
	12066 RS	•	66	55	50	27	12,4	7,0	25	20	14	6	0,7	1
	12080 RS	•	80	55	50	27	12,4	7,0	25	20	14	6	1,0	1
RSX	12100 RS	•	100	70	50	32	14,4	8,5	32	46	-	6	1,4	2
RSX	16063 RS	•	63	50	40	22	10,4	6,3	20	18	11	4	0,5	1
	16080 RS	•	80	55	50	27	12,4	7,0	25	20	14	5	0,9	1
RSX	16100 RS	•	100	70	50	32	14,4	8,5	32	46	-	6	1,3	2
	16125 RS	•	125	80	63	40	16,4	9,5	29	52	29	6	2,6	1
RSX	20080 RS	0	80	55	50	27	12,4	7,0	22	20	14	4	0,9	1
RSX	20100 RS	•	100	70	63	32	14,4	8,0	32	46	-	5	1,8	2
	20125 RS	•	125	80	63	40	16,4	9,0	29	52	29	6	2,6	1
	20160 RS	•	160	130	63	40	16,4	9,0	29	90	-	7	4,7	3

• RSXF...RS – Ausführung mit feiner Zahnteilung

_		J				J							
Bezeichnung	Lagor				Abme	essungen	(mm)				Anzahl	Gewicht	Abb.
Dezelcrinung	Lager	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	ADD.
RSXF 10040 RS	•	40	34	40	16	8,4	5,6	18	14	9	5	0,2	1
10050 RS	•	50	40	40	22	10,4	6,3	20	18	11	6	0,3	1
10052 RS	•	52	40	40	22	10,4	6,3	20	18	11	6	0,3	1
RSXF 12040 RS	•	40	32	40	16	8,4	5,6	18	13,5	9	4	0,2	1
12050 RS	•	50	40	40	22	10,4	6,3	20	18	11	5	0,3	1
12052 RS	•	52	40	40	22	10,4	6,3	20	18	11	5	0,3	1
12063 RS	•	63	40	40	22	10,4	6,3	20	18	11	6	0,4	1
12066 RS	•	66	55	50	27	12,4	7,0	25	20	14	7	0,7	1
12080 RS	•	80	55	50	27	12,4	7,0	25	20	14	7	0,9	1
RSXF 12100 RS	•	100	70	50	32	14,4	8,5	32	46	-	10	1,3	2
RSXF 16063 RS	•	63	50	40	22	10,4	6,3	20	18	11	5	0,4	1
16080 RS	•	80	55	50	27	12,4	7,0	25	20	14	6	0,8	1
RSXF 16100 RS	•	100	70	50	32	14,4	8,5	32	46	-	7	1,3	2
16125 RS	•	125	80	63	40	16,4	9,5	29	52	29	8	2,5	1
16160 RS		160	130	63	40	16,4	9,5	29	88	-	10	4,8	3
RSXF 20080 RS	•	80	55	50	27	12,4	7,0	22	20	14	5	0,9	1
RSXF 20100 RS	•	100	70	50	32	14,4	8,0	32	46	-	6	1,8	2
20125 RS	0	125	80	63	40	16,4	9,0	29	52	29	7	2,6	1
20160 RS	0	160	130	63	40	16,4	9,0	29	90	-	9	4,6	3

■ Bezeichnungsschlüssel


RSX	F	12	040	R	S
Fräser-	Zahnteilung	Platten-	Fräser-	Schneid-	Metrisch
bezeichnung	F: fein	größe	durchmesser	richtung	


"Wave Mill" Radiusfräser RSX(F)10000/12000/16000/20000RS

Empfohlene Werte für Zirkularfräsen/Tauchfräsen

■ Variable Einsatzmöglichkeiten

Verschiedene hocheffiziente Bearbeitungen sind möglich: Ausarbeiten von Kavitäten, Zirkularfräsen, Tauchfräsen

<u>'</u>					
		Zirkula	rfräsen		Tauchfr.
Platten-	Fräser	Werkst	ückdurch	messer	Eintauch-
bezeichnung	Ø DC	Min.	Optimal Ø	Max.	winkel α°(max)
	25	33,0	40	49	10°30'
	32	46,0	54	63	6°45'
RDET10	40	62,0	70	79	4°30'
	50	82,0	90	99	3°15'
	52	86,0	94	103	3°10'
	32	41,5	52	63	12°30'
	40	57,5	68	79	8°00'
	50	77,5	88	99	5°30'
DDET40	52	81,5	92	103	5°15'
RDET12	63	103,5	114	125	4°00'
	66	109,5	120	131	3°45'
	80	137,5	148	159	2°50'
	100	177,5	188	199	2°10'
	63	96,0	110	125	6°00'
RDET16	80	130,0	144	159	4°10'
RDETTO	100	170,0	184	199	3°00'
	125	220,0	234	249	2°20'
	80	122,0	140	159	4°15'
RDET20	100	162,0	180	199	3°00'
KDE120	125	212,0	230	249	2°00'
	160	282,0	300	319	1°15'

Schneidplatten

Abmessungen (mm)

<u>-</u>									
Anwendung		5	Sorte	Э					
Hochgeschw./Leichtbearb.			<mark>™</mark> s	M _S					
Allgemeine Anwendung	P _M		<mark>™</mark> s	M _S	<mark>M</mark> ≤				52
Schruppen	P _M	K			M/s				100000000000000000000000000000000000000
	00	8	00	500	000	Abn	ness.	Geeignete	IC±0,025 S±0,025
Bezeichnung	ACP200	ACK300	ACM100	ACM200	ACM300	ød (IC)	s	Fräser	
RDET 10T3M0EN G	•	•	•	•	•	10	3,97	D0)//E) 10000D0	Schneidkantenquerschnitt
10T3M0EN H	•	•	•	•	•	10	3,97	RSX(F) 10000RS	
RDET 1204M0EN G	•	•	•	•	•	12	4,76	D0V/E) 40000D0	
1204M0EN H	•	•	•	•	•	12	4,76	RSX(F) 12000RS	G - Typ H - Typ
RDET 1606M0EN G	•	•	•	•	•	16	6,5		3 - 1yp 11 - 1yp
1606M0EN H	•	•	0	•	•	16	6,5	RSX(F) 16000RS	
RDET 2006M0EN G	•	•	0	•	•	20	6,5	RSX(F) 20000RS	M0: IC ist metrisch
2006M0EN H	0	•	0	0	•	20	6,5	K3A(F) 20000K3	

Ersatzteile

	Schlüssel	Schraube				
Fräsertyp			N·m)			
RSX(F) 10000RS	TRDR15IP	BFTX03584IP	3,0			
RSX(F) 12000RS	IRDRISIP	BFTX0409IP	3,0			
RSX(F) 16000RS	TRDR20IP	BFTX0511IP	5,0			
RSX(F) 20000RS	TRDR25IP	BFTX0615IP	5,0			

■ Empfohlene Schnittbedingungen

Min.-Optimum-Max.

			5 5				•
ISO		W	/erkstückstoff	Härte (HB)	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/Z)	Schneidstoff- sorte
В	Kohlens	stoffstahl		180–280	100 –160 –200	0,20 -0,40 -0,60	ACP200
P	Legierte	er Stahl		180–280	100 –140 –180	0,20 –0,30 –0,40	ACP200
		Cr	Ferritisch	200	150 –180 –200	0,15 –0,25 –0,35	ACM300
	Doot	basierend	Martensitisch	200-330	80 –120 –180	0,15 –0,25 –0,35	ACM300
M	Rost- freier	Cr-Ni	Austenitisch	200	150 –180 –200	0,15 –0,25 –0,35	ACM300
	Stahl	basierend	Austenitisch, ferritisch	230–270	80 –120 –180	0,15 –0,25 –0,35	ACM200
	Starii	basierend	Ausscheidungshärtung	330	60 –100 –160	0,15 –0,25 –0,35	ACM200
K	Gussei			250	80 –120 –160	0,10 –0,30 –0,40	ACK300
	Hitzebest	ebeständige Legier. Ni basierendes Material		250-350	20 –30 –40	0,10 –0,20 –0,30	ACM100
S	STitan		Reintitan	(Rm 400)	60 –80 –100	0,10 –0,20 –0,30	ACM200
			$\alpha + \beta$ Legierung	(Rm 1050)	40 –50 –60	0,10 –0,20 –0,30	ACIVIZUU

■ Merkmale

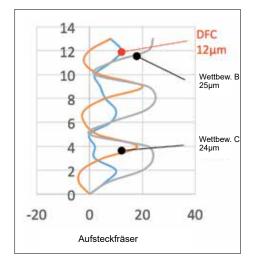
Durch ein neues Herstellungsverfahren konnte eine doppelseitige 6-schneidige Wendeschneidplatte mit einer erheblich verbesserten Genauigkeit entwickelt werden. Mit diesem neuen Verfahren ist die Grundlage für eine kosteneffiziente Bearbeitung geschaffen worden.

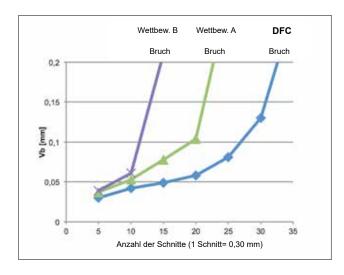
Ausführungen

- Durchmesserbereiche von Ø 25 mm bis Ø 200 mm
- Erhältlich mit Standard, mittlerer und feiner Zahnteilung
- Aufnahmedurchmesser: metrisch
- Wendeschneidplattengeomtrie: L, G, GS, H

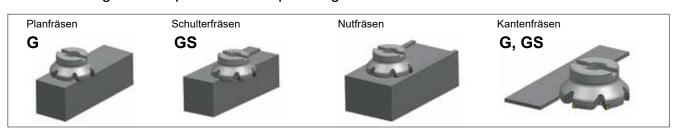
Fräskörper

Ausfü	hrung	Bezeichnung	Durchmesser (mm)	Anzahl der Zähne	Abbildung
Sahaftfrägar	Standard	DFC 09000 E	Ø 25–Ø 80	2–5	1.
Schaftfräser → H17	mittlere Zahnteilung	DFCM 09000 E	Ø 32–Ø 80	3–7	18-V
	Standard	DCF 09000 RS	Ø 50–Ø 200	4–10	8
Aufsteckfräser	mittlere Zahnteilung	DFCM 09000 RS	Ø 50–Ø 200	5–16	
	feine Zahnteilung	DFCF 09000 RS	Ø 50–Ø 200	6–20	


■ Rechtwinkligkeit beim Schulterfräsen

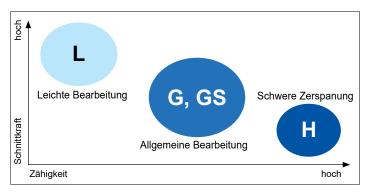

Material: Kohlenstoffstahl

Schnittwerte:


 v_c = 200 m/min, f_z = 0,1 mm/Z

 $a_e = 5.0 \text{ mm}, a_p = 5.0 \text{ mm} (3 \text{ Schnitte})$

■ Anwendungen und Spanbrecherempfehlungen

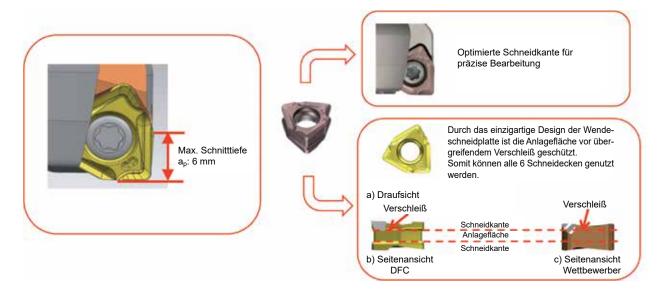


"Sumi Dual"- Serie **DFC** - Typ

■ Neue Wendeschneidplattengeometrie ermöglicht sehr präzise Bearbeitung

- Bei der Entwicklung der neuen Wendeschneidplatte wurde die Anlagefläche durch die verbesserte Geometrie von der Schneidkante separiert.
- Bei einer Zustellung von bis zu 3,0 mm erreicht der Fräser eine gleichmäßige Bearbeitungsgenauigkeit wie ein Fräser mit einseitigen Wendeschneidplatten.
- Das neue Design des DFC-Fräskörpers gibt dem Werkzeug seine hohe Stabilität, wodurch der Fräser sehr gut für die Bearbeitung mit hohen Vorschüben geeignet ist.

Schneidkantenausführung

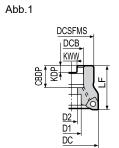

Wendeschneidplatten

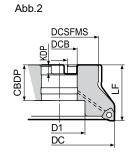
Bezeichnung	RE0,4	RE0,8	RE1,2	RE1,6
XNMU0606PNER-L	•	•		
XNMU0606PNER-G		•	•	•
XNMU0606PNER-GS	veiterung	•	•	•
XNMU0606PNER-H		•	•	•

Material		P M K	S	
	L-Typ	G-Typ	GS-Typ	Н-Тур
Schneidkanten- ausführung				
Anwendung	Leichte Bearbeitung	Allgemeine Bearbeitung bis unterbrochenes Fräsen	Schulterfräsen	Stabile Schneidkante
Schneidkanten- geometrie	30°	0,1 mm 20°	0,1 mm 20°	0,15 mm
Merkmal	Leichte Bearbeitung bei instabilen Prozessen, reduzierte Gratbildung	l Plantrasen l	Schulterfräsen	Schruppen, schwere Schnittunter- brechungen uns gehärteter Stahl

■ Wendeschneidplatte mit stabiler Schneidkante kombiniert mit hohem Maß an Zähigkeit

- Der optimal abgestimmte Fräser ermöglicht durch hohe Vorschübe eine sehr effiziente Bearbeitung.
- Durch die geschützte Anlagefläche der neuen Wendeschneidplatte verspricht der Sumi Mill DFC-Fräser einen sehr präzisen Schneidplattenwechsel. Dies wirkt sich positiv auf die Genauigkeit der Bearbeitung aus.


"Sumi Dual"- Serie DFC(M/F) 09000 RS


Fräskörper – Aufsteckfräser

Span- Radial -9° winkel Axial -5°

Max. a_p: 6 mm

■ Fräskörper – Abmessungen

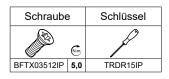
• Typ: DFC, Standard

Po	zeichnung	Lager				Abme	essungen	(mm)				Anzahl der	Gewicht	Abb.
Бе	zeichhung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	ADD.
DFC	09050RS	•	50	41	40	22	10,4	6,3	20	18	11	4	0,3	1
	09063RS	•	63	50	40	22	10,4	6,3	20	18	11	4	0,5	1
	09080RS	•	80	55	50	27	12,4	7	22	20	14	5	1,0	1
DFC	09100RS	•	100	70	50	32	14,4	8	26	46	-	6	1,4	2
	09125RS	•	125	80	63	40	16,4	9	29	52	29	7	2,8	1
	09160RS	•	160	130	63	40	16,4	9	29	90	-	8	4,6	3
DFC	09200RS		200	150	63	60	25,7	14	35	135	-	10	5,7	

Typ: DFC, mittlere Zahnteilung

Bezeichnung	Lager				Abme	essungen	(mm)				Anzahl der	Gewicht	Abb.
Bezeichhung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	
DFCM 09050RS	•	50	41	40	22	10,4	6,3	20	18	11	5	0,3	1
09063RS	•	63	50	40	22	10,4	6,3	20	18	11	6	0,5	1
09080RS	•	80	55	50	27	12,4	7	22	20	14	7	0,9	1
DFCM 09100RS	•	100	70	50	32	14,4	8	26	46	-	8	1,4	2
09125RS	•	125	80	63	40	16,4	9	29	52	29	11	2,7	1
09160RS	•	160	130	63	40	16,4	9	29	90	-	12	4,5	3
DFCM 09200RS		200	150	63	60	25,7	14	35	135	-	16	5,6	

Typ: DFC, feine Zahnteilung


Bezeichnung	Lager				Abme	essungen	(mm)				Anzahl der	Gewicht	Abb.
Dezeichhung	nnung Lager Do		DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	ADD.
DFCF 09050RS	•	50	41	40	22	10,4	6,3	20	18	11	6	0,3	1
09063RS	•	63	50	40	22	10,4	6,3	20	18	11	7	0,5	1
09080RS	•	80	55	50	27	12,4	7	22	20	14	9	0,9	1
DFCF 09100RS	•	100	70	50	32	14,4	8	26	46	-	11	1,3	2
09125RS	•	125	80	63	40	16,4	9	29	52	29	14	2,6	1
09160RS	•	160	130	63	40	16,4	9	29	90	-	16	4,6	3
DFCF 09200RS		200	150	63	60	25,7	14	35	135	-	20	5,5	

■ Bezeichnungsschlüssel

DFC Fräserserie Zahnteilung
M: mittel
F: fein

050 Fräserdurchmesser R Schneid-richtung

S metrisch

■ Wendeschneidplatten

Abmessungen (mm)

DFC - Typ

Anwendung		Е	esc	hich	itete	s H	artn	neta	II			
Hochgeschw. / Leichtbearbeitung	K _S M	KM	M			K	K		M _S			
Allgemeine Anwendung	KSM SM	KM	P _M	PM		K	K		M _S	M _S		
Schruppen	₽			P _M	M			K		M _S		_
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	RE	
XNMU 060604 PNER-L	•	0		•	•	0		•		•	0,4	RE
060608 PNER-L	•	0		ullet	•	0		ullet		lacksquare	0,8	
XNMU 060604 PNER-G	•	0	•	•	•	0	•	•	•	•	0,4	
060608 PNER-G	•	0	•		•	0	•		•	lacksquare	0,8	
060612 PNER-G	•		•	•	•		•	•	•	lacksquare	1,2	
060616 PNER-G	•		0	•	•		•	•	•	•	1,6	•
XNMU 060604 PNER-GS	0		•	•	•				•	•	0,4	11,2
060608 PNER-GS	0	0	•	•	•	0			•	•	0,8	
060612 PNER-GS	0		0	0	0				0	0	1,2	
060616 PNER-GS	O		0	O	\mathbf{c}				0	O	1,6	
XNMU 060608 PNER-H	•	0	•	•	•	0	•	•	•	•	0,8	
060612 PNER-H	•		0	•	•		•	•	0	•	1,2	
060616 PNER-H	•		0	•	0		0	•	0	•	1,6	

■ Empfohlene Schnittbedingungen

Min.-Optimum-Max.

ISO	Werkstückstoff	Härte (HB)	Schnittgeschwindigkeit (m/min)	Vorschub	Schnitttiefe (mm)	Schneidstoff- sorte
	Baustahl	180–280	150 –200 –250	0,10 –0,20 –0,30	< 6	ACU2500
Р	Unlegierter Stahl	≤180	180 –250 –350	0,15 –0,25 –0,35	< 6	ACP200 ACP300
	Gesenkstahl	200–220	100 –150 –200	0,10 –0,18 –0,25	< 4	XCU2500
M	Rostfreier Stahl	-	160- 205 -250	0,12 -0,18 -0,25	< 6	ACU2500 ACM300
K	Grauguss	250	100– 175 –250	0,10 -0,20 -0,30	< 6	ACU2500 ACK200 ACK300 XCU2500 XCK2000
s	Warmfeste Superleierung	-	30 -50 -80	0,10 –0,20 –0,30	< 6	ACU2500 ACM200 ACM300

■ Anwendungsbeispiele

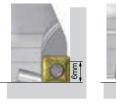
Werkstück		Sumitomo	Wettbewerber	
Material:	Spanbrecher	G		
Stahl (HRB 269-330)	Sorte	ACP200		
	v _c (m/min)	226	200	
	v _f (mm/min)	1260		
	f _z (mm/Z)	0,28	0,2	
	a _p (mm)	2	2	
	a _e (mm)	5	5	
	Kühlung	nass	nass	
	Werkzeug Ø	80		
	Anzahl Zähne	5		
	Ergebnis	58 % höhere	Effizienz	
	Auswertung	verschleißbeständig		

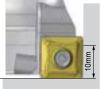
Werkstück		Sumitomo	Wettbewerber
Material:	Spanbrecher	G	
Guss	Sorte	ACP200	
	v _c (m/min)	156	156
	v _f (mm/min)	536	404
	f _z (mm/Z)	0,17	0,09
	a _p (mm)	2,2	2,2
	a _e (mm)	63,5	63,5
	Kühlung	trocken	trocken
	Werkzeug Ø	80 mm	80 mm
	Anzahl Zähne	5	7
	Ergebnis	33 % höhere 38 % mehr S	
	Auswertung	Effizienz, Stan	dzeit

Werkstück		Sumitomo	Wettbewerber
Material:	Spanbrecher	G	
S235, Planfräsen	Sorte	ACP200	
	v _c (m/min)	180	180
	v _f (mm/min)	1092	910
	f _z (mm/Z)	0,3	0,2
	a _p (mm)	2 x 2 mm	2 x 2 mm
The same of the sa	a _e (mm)	50	50
	Kühlung	trocken	trocken
	Werkzeug Ø	63 mm	63 mm
and the second second	Anzahl Zähne	4	5
	Ergebnis	20 % höhere	Effizienz
	Auswertung	verschleißbest	ändig

		Sumitomo	Wettbewerber
Material:	Spanbrecher	G	
Cr-Mo-Beschichtung	Sorte	ACP200	
	v _c (m/min)	200	200
	v _f (mm/min)	838	838
(4)	f _z (mm/Z)	0,2	0,13
	a _p (mm)	6	6
	a _e (mm)	43	43
	Kühlung	trocken	trocken
	Werkzeug Ø	80 mm	80 mm
	Anzahl Zähne	5	8
	Ergebnis	20 % höhere	Effizienz
	Auswertung	Effizienz	

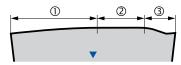
"Wave Mill"- Serie WFX - Typ

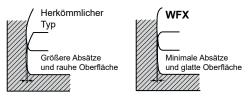

Eigenschaften


Die optimierte Schneide bietet in Verbindung mit einem hochpräzisen Plattensitz im Fräskörper eine hervorragende Oberflächengüte beim Schulterfräsen.

Zwischenlage zum Schutz des Fräskörpers WFX12000

Max. Schnitttiefe

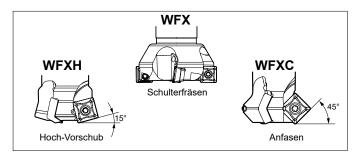



WFX08000

WFX12000

Optimierte Schneidkantenform

- ① Die konvexe Form der Schneide sorgt für eine hohe Stabilität.
- 2 Das flache Teilstück der Schneide glättet die Absätze beim Schulterfräsen.



③ Die Wiper-Fase verbessert die Oberflächengüte der Planfläche.

Allgemeine Merkmale

Der WFX Fräser der Wave Mill Serie ist ein Schulterfräser mit einschraubbaren Wendeschneidplatten.

Jede Wendeschneidplatte besitzt vier nutzbare Schneiden. Die optimierte Schneidkantenausführung überzeugt durch eine hohe Winkelgenauigkeit beim Schulterfräsen. Serienerweiterung mit dem WFXH (hoher Vorschub) und dem WFXC (zum Anfasen). Eine umfangreiche Werkzeugpalette für eine Vielzahl von verschiedenen Anwendungen.

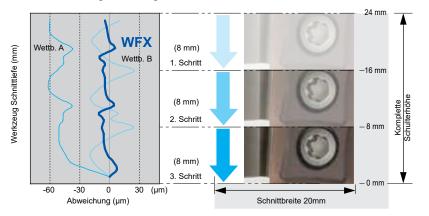
Produktpalette

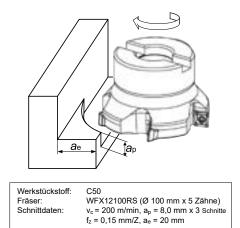
		•		Full also what we be	
Anwen- dung	Тур	Bezeichnung	Anz. der Zähne	Fräskopfdurch- messer (mm)	Form
		WFX 08000 RS	3 - 8	40–100	
		WFXM 08000 RS	4 - 10	40–100	
		WFXF 08000 RS	6 - 12	40–100	
	ser	WFX 08000 R	6 - 8	80–100	the same
	Aufsteckfräser	WFXM 08000 R	8 - 10	80–100	O El
_	stec	WFXF 08000 R	10 - 12	80–100	A. 180
äse	Auf	WFX 12000 RS	3 - 5	60–100	
Iterfi		WFXF 12000 RS	4 - 7	60–100	
Schulterfräser		WFX 12000 R	4 - 12	80–250	
0)		WFXF 12000 R	6 - 18	80–250	
	ē	WFX 08000 E	2 - 5	20–63	V 39
	Schaftfräser	WFXM 08000 E	3 - 6	25–63	→ H18/19
	haft	WFX 12000 E	3 - 4	40-80	
	တိ	WFXF 12000 E	4 - 6	60–80	1
	Modu- lar- fräser	WFX 08000 M	2 - 3	20–40	
zue		WFXH 08000 RS	4 - 6	40–63	
ffizie	Aufsteck fräser	WFXH 12000 RS	4 - 5	60- 63	The same of
Hohe Effizienz	Modular- Aufsteck- fräser fräser	WFXH 08000 M	2 - 3	25–32	
오	Modular fräser	WFXH 12000 M	3	40	→ H14/15
		WFXC 08000 E	1 - 2	8–16	
sen	Schaft- fräser	WFXC 12000 E	3	25–32	1000
Anfasen	ular-	WFXC 08000 M	2	16	
	Modular- fräser	WFXC 12000 M	3	25–32	1170.00
					→ H78-80

Wendeschneidplatten

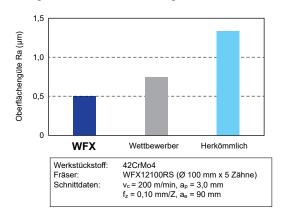
	vendeschheidplatten								
	Bezeichr	RE0,2	RE0,4	RE0,8	RE1,2	RE1,6			
SOMT	0803_	PZER-L		•	•				
	0803_	_PZER-G		•	•	•			
	0803_	_PZER-H			•	•			
SOET	0803_	PZER-G		•	•	•			
	0803_	_PZFR-S	•	•	•				
SOMT	1204_	PDER-L			•				
	1204_	_PDER-G		•	•	•	•		
	1204_	_PDER-H			•				
SOET	1204_	PDFR-S			•				

Platte für den WFX08000 (allgemeine Anwendung, Spanbrechertyp: G)

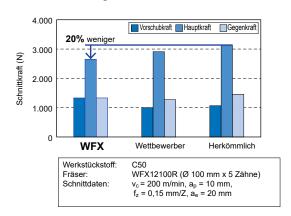



Platte für den WFX12000 (allgemeine Anwendung, Spanbrechertyp: G)

"Wave Mill"- Serie **WFX** - Typ


Schnittleistung

Rechtwinkligkeit der gefrästen Fläche



Vergleich der Oberflächengüte

Schnittkraftvergleich

Schneidkantenausführung

Werkstückstoff		P M	K S		N
	L	G	Н	Wiper	S
Schneidkan- tenausführung	0	0		9	
Leistung	Niedrige Schnittkraft	Allgemeine Anwendung	Stabile Schneidkante	Wiper	Scharfe Schneidkante
Querschnitt 08er Platte	0,05 mm	0,1 mm 15°	0,15 mm	0,18 mm	25°
Querschnitt 12er Platte	0,05 mm 25°	0,1 mm 15°	0,2 mm	0,2 mm	27°
Anwendungs- bereich	Leichte Bearbeitung, Fräsen in labilen Verhältnissen, weniger Gratbildung	Hauptspanbrecher allgemeines Fräsen, unterbrochener Schnitt	Schwere Bearbeitung, unterbr. Schnitt u. stabile Verhältnisse bei härteren Materialien	Präzise Bearbeitung	Aluminiumlegierung und Nichteisenmetalle

■ Wiper-Wendeschneidplatten

Die optimierte Wiper-Schneidkantenform erzeugt eine exzellente Oberflächengüte.

Die Wiper-Platten sind einschneidig. Die Wendeschneidplatte ist so einzusetzen, dass die gefaste Ecke der Platte (1) in Richtung Körpermitte zeigt. Die Einbaulage der Wendeschneidplatte ist in der Abbildung dargestellt.

Abb. zeigt Plattengröße 12, PG 08 hat keine Markierung der Schneide

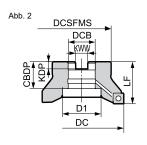

■ Fräskörper - Aufsteckfräser

Abb. 1 **DCSFMS** DCB KWW D1 DC

Axial

6 mm

WFX08000RS

WFXM08000RS

WFXF08000RS

Fräskörper WFX, Standard

Bezeichnung	Logor	Abmessungen (mm)									Anzahl	Gewicht	Abb.
bezeichnung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	ADD.
WFX 08040 RS	•	40	33	40	16	8,4	5,6	18	14	9	3	0,2	1
08050 RS	•	50	41	40	22	10,4	6,3	20	18	11	4	0,3	1
08063 RS	•	63	50	40	22	10,4	6,3	20	18	11	5	0,6	1
08080 RS	•	80*	55	50	27	12,4	7,0	25	20	14	6	1,0	1
WFX 08100 RS	•	100*	70	50	32	14,4	8,0	32	46	-	8	1,4	2

Fräskörper WFXM, mittlere Zahnteilung

Bezeichnung	Lagor			Abmessungen (mm)							-	Gewicht	Abb.
Dezelormung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	Abb.
WFXM 08040 RS	•	40	33	40	16	8,4	5,6	18	14	9	4	0,2	1
08050 RS	•	50	41	40	22	10,4	6,3	20	18	11	5	0,3	1
08063 RS	•	63	50	40	22	10,4	6,3	20	18	11	6	0,5	1
08080 RS	•	80*	55	50	27	12,4	7,0	25	20	14	8	1,0	1
WFXM 08100 RS	•	100*	70	50	32	14,4	8,0	32	46	-	10	1,4	2

Fräskörper WFXF, feine Zahnteilung

D.	ezeichnung	Logor			Abmessungen (mm)							4	Gewicht	Abb.
De	ezeichhung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	ADD.
WFXF	08040 RS	•	40	33	40	16	8,4	5,6	18	14	9	6	0,2	1
	08050 RS	•	50	41	40	22	10,4	6,3	20	18	11	7	0,3	1
	08063 RS	•	63	50	40	22	10,4	6,3	20	18	11	8	0,5	1
	08080 RS	•	80*	55	50	27	12,4	7,0	25	20	14	10	0,9	1
WFXF	08100 RS	•	100*	70	50	32	14,4	8,0	32	46	-	12	1,4	2

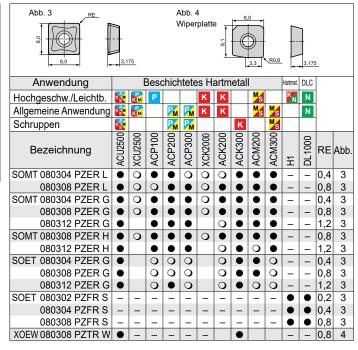
Fräsplatten sind nicht im Lieferumfang enthalten. *Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 (Ø 80: M12 x 30 ~ 35 mm, Ø 100: M16 x 40 ~ 45 mm) zur Befestigung der Fräser Ø 80 / Ø 100 auf der Aufnahme.

■ Empfohlene Schnittbedingungen

ISO	Werkstückstoff	Härte (HB)	Schnittgeschw. v _c (m/min)	Vorschub f _z (mm/Z)	DOC	Sorte
	Stahl	180–280	150 –200 –250	0,08 -0,12 -0,18	<6	ACU2500
Р	Baustahl	≤180	180 –250 –350	0,10 -0,15 -0,20	<6	ACP200 ACP300
	Gesenkstahl	200–220	100 –150 –200	0,08 -0,12 -0,18	<4	XCU2500
М	Rostfreier Stahl	-	160 –200 –250	0,10 -0,15 -0,20	<6	ACU2500 ACM300
K	Grauguss	250	100 –175 –250	0,10 -0,15 -0,20	<6	ACU2500 ACK200 ACK300 XCU2500 XCK2000
N	Nichteisenmetall	-	300 –500 –1000	0,10 -0,15 -0,20	<6	H1 DL1000
s	Warmfeste Superlegierung	-	30 –50 –80	0,08 -0,13 -0,18	<6	ACU2500 ACM200 ACM300

Min. - Optimum - Max.

Bezeichnungsschlüssel

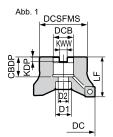

WFX	F	08	040	R	S
Fräser- bezeichnung	Zahnteilung M: mittel F: fein	Platten- größe	Fräser- durchmesser		Metrisch

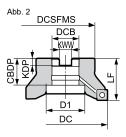
Ersatzteile

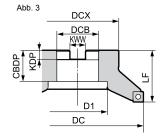
Schraube	Э	Schlüssel
	N-m	
BFTX0306IP	2,0	TRDR08IP

Wendeschneidplatten

Abmessungen (mm)


WFX(F) 12000 RS


■ Fräskörper - Aufsteckfräser



Fräskörper WFX, Standard

Bezeichnung	Logor				Abmes	ssungen (mm)				Anzahl (Sewicht	Abb.
bezeichnung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	ADD.
WFX 12050 RS	•	50	40	40	22	10,4	6,3	20	18	11	3	0,2	1
12063 RS	•	63	50	40	22	10,4	6,3	20	18	11	4	0,4	1
12080 RS	•	80*	60	50	27	12,4	7,0	25	20	13,5	4	0,9	1
WFX 12100 RS	•	100*	70	50	32	14,4	8,5	32	46	-	5	1,3	2
12125 RS	•	125	90	63	40	16,4	9,5	29	52	-	6	2,7	2
12160 RS	•	160	130	63	40	16,4	9,5	29	88	-	8	4,8	3

Fräskörper WFXF, feine Zahnteilung

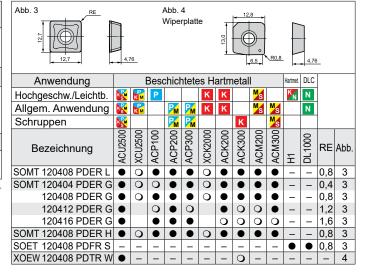
Po	zoiobnung	Logor		Abmessungen (mm)									ewicht	Abb.
Бе	ezeichnung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2 2	Zähne	(kg)	Abb.
WFXF	12050 RS	•	50	40	40	22	10,4	6,3	20	18	11	4	0,2	1
	12063 RS	•	63	50	40	22	10,4	6,3	20	18	11	5	0,4	1
	12080 RS	•	80*	60	50	27	12,4	7,0	25	20	13,5	6	0,9	1
WFXF	12100 RS	•	100*	70	50	32	14,4	8,5	32	46	-	7	1,2	2
	12125 RS	•	125	90	63	40	16,4	9,5	29	52	-	8	2,6	2
	12160 RS	•	160	130	63	40	16,4	9,5	29	88	-	12	4,7	3

Fräsplatten sind nicht im Lieferumfang enthalten.

*Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 (Ø 80: M12 x 30 ~ 35 mm, Ø 100: M16 x 40 ~ 45 mm) zur Befestigung der Fräser Ø 80 / Ø 100 auf der Aufnahme. Fräskörper ≥ Ø 160 haben keine Kühlmittelbohrungen.

■ Empfohlene Schnittbedingungen

SO	Werkstückstoff	Härte (HB)	Schnittgeschw. v _c (m/min)	Vorschub f _z (mm/Z)	DOC	Schneid- stoffsorte
	Stahl	180–280	150- 200 -250	0,10 -0,15 -0,20	<10	ACU2500
P	Baustahl	≤180	180 –250 –350	0,10 -0,15 -0,20	<10	ACP200 ACP300
	Gesenkstahl	200–220	100 –150 –200	0,10 -0,15 -0,20	<6	XCU2500
М	Rostfreier Stahl	-	160 –200 –250	0,10 –0,15 –0,20	<10	ACU2500 ACM300
ĸ	Grauguss	250	100 –175 –250	0,10 -0,15 -0,20	<10	ACU2500 ACK200 ACK300 XCU2500 XCK2000
N	Nichteisenmetall	-	300 –500 –1000	0,10 -0,15 -0,20	<10	H1 DL1000
s	Warmfeste Superlegierung	-	30 –50 –80	0,10 -0,15 -0,20	<10	ACU2500 ACM200 ACM300


Min. - Optimum - Max.

■ Bezeichnungsschlüssel

WFX	F	12	050	R	S
Fräser-	Zahnteilung	Platten-	Fräser-	Schneid-	Metrisch
Bezeichnung	F: fein	größe	durchmesser	richtung	

■ Wendeschneidplatten

Abmessungen (mm)

Zwischenlage	Schraube für Zwischenlage	Plattenschrau	ibe	Schlüssel (Platte)	Schlüssel (Zwischenlage)
			(N-m)		
WFXS4R	BW0507F	BFTX03512IP	3,0	TRDR15IP	LH035

■ Allgemeine Eigenschaften

Hocheffizienter und hochpräziser Eckfräser mit tangential montierten Hartmetall-Wendeschneidplatten.

■ Eigenschaften

- Zähe und scharfe Schneidkante
 Das neue Design der Hartmetall-Wendeschneidplatten sorgt mit
 der zähen und verbesserten Schneidkantengeometrie für ein
 scharfes Schnittverhalten.
- Sehr genaue und gute Oberflächengüte
 Dank einer neu entwickelten Hartmetallpress- &
 Sintertechnologie und einer sehr genauen Schleiftechnik erzeugen die periphär geschliffenen Schneidplatten sehr genaue und gute Oberflächengüten.
- Vielfältige Produktpalette
 Zwei unterschiedliche Wendeschneidplattengrößen,
 drei verschiedene Schneidkantenausführungen und vielfältige
 Hartmetallsorten bilden einen großen Anwendungsbereich ab.

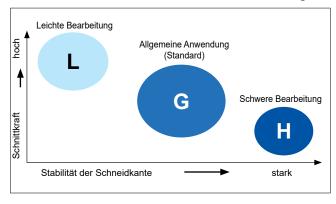
■ Produktpalette

Schulterfräser

Typ	Dozeishnung	Augführungen				Durc	hme	sserl	perei	ch / A	Anz. c	der Z	ähne				Form
1	Bezeichnung	Ausführungen	Ø16	Ø20	Ø25	Ø32	Ø40	Ø50	Ø63	Ø80	Ø100	Ø125	Ø160	Ø200	Ø250	Ø315	Form
	TSX 08000RS	Standard-Zahnteilung					4	5	6	7							
äser	TSXF 08000RS	Enge Zahnteilung					6	8	10	11							
Aufsteckfräser	TSX 13000RS	Standard-Zahnteilung					3	4	5	5	6	7	8	12	14	16	Section 1
Aufs	TSXM 13000RS	Mittlere Zahnteilung					4	5	6	7	8	10	12	16	20	24	
	TSXF 13000RS	Standard-Zahnteilung					5	6	7	8	10	14	16				
	TSX 08000E	Standard-Zahnteilung	2	2*	3*	3*	4	5	6	7							
ser	TSXF 08000E	Enge Zahnteilung		3	4	5	6	8	10	11							
Schaftfräser	TSX 13000E	Standard-Zahnteilung			2	2	3	4	5	5							
Sch	TSXM 13000E	Mittlere Zahnteilung				3	4	5	6	7							
	TSXF 13000E	Enge Zahnteilung					5	6	7	8							→ H20-23

^{*} Verschiedene Schaftdurchmesser auf Lager

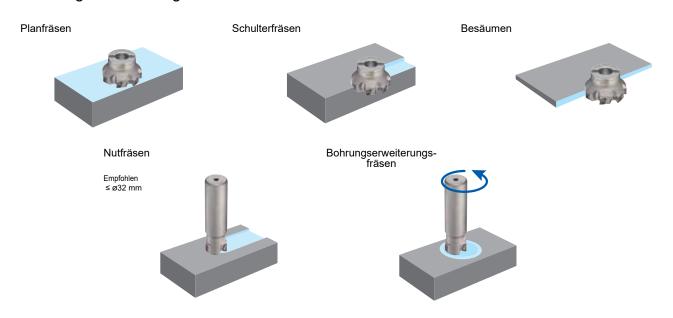
TSXR - Walzenstirnfräser


Тур	Dozeiskoung				Dur	chme	sser	berei	ch / <i>F</i>	Anzal	hl Zä	hne				Form		
1	Bezeichnung	Ø16	Ø20	Ø25	Ø32	Ø40	Ø	50	Ø	63	Ø	80	Ø1	00	Ø125	: =::::		
usteck- fräser	TSXR 08000RS				2	3	3	4	5									
Aust						2	3		3	4	4	5	5	6	7			
naft- ser	TSXR 08000E		1	2	2	3										(3/3)		
Schaft- fräser	TSXR 13000E					2	3									→ H24-25		

"Sumi Dual" Serie **TSX** - Typ

■ Schneidkantenausführung

Material		P M K S				
	L-Typ	G-Typ	Н-Тур			
Schneidkantenausführung	9	3	3			
Merkmal	geringe Schnittkraft	allgemeine Bearbeitung	stabile Schneidkante			
LNEX08 Schneidkantengeometrie	30°	15°	_			
LNEX13 Schneidkantengeometrie	25°	21°	21°			
Anwendung	Leichte Bearbeitung bei instabilen Prozessen, reduzierte Gratbildung	Hauptspanbrecher für die allgemeine Bearbeitung	Schruppen, schwere Schnittunter- brechungen und gehärteter Stahl			


■ Auswahlhilfe Schneidkantenausführung

■ Fräsplatten

Bezeichnung	RE0,4	RE0,8	RE1,2	RE1,6	RE2,4	RE3,2
LNEX0804PNER-L	•	•				
LNEX0804PNER-G	•	•	•	•		
LNEX1306PNER-L	•	•				
LNEX1306PNER-G		•		•	•	•
LNEX1306PNER-H	•	•		•	•	•

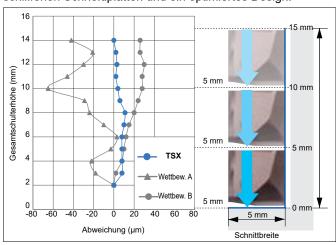
■ Vielseitige Anwendungen

"Sumi Dual Mill" Serie **TSX** - Typ

Zähigkeit

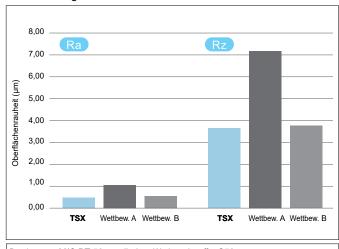
Schnittdaten:

Die Kombinatioin aus Fräskörper und Wendeschneidplatte erzeugt eine extrem stabile Schneidkante.

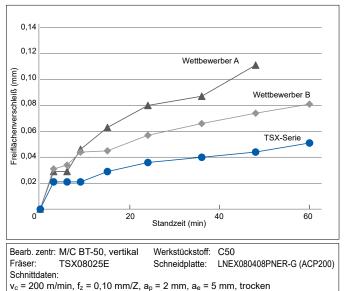

Schnittlänge	4 Überläufe	8 Überläufe	12 Überläufe
TSX			weiter einsatzfähig
Wettbewerber A		Bruch	
Wettbewerber B	Bruch		
Bearb. zentrum: M/C B Fräser: TSX13	,	erkstückstoff: C50 chneidplatte: LNEX1306	08PNER-G (ACP200)

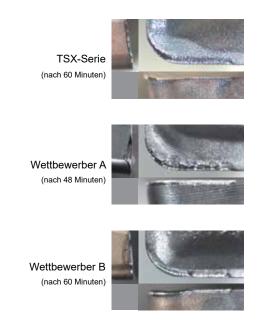
■ Rechtwinkligkeit der bearbeiteten Schulter

 $v_c = 150$ m/min, $f_z = 0.6$ mm/Z, $a_p = 3$ mm, $a_e = 40$ mm, trocken

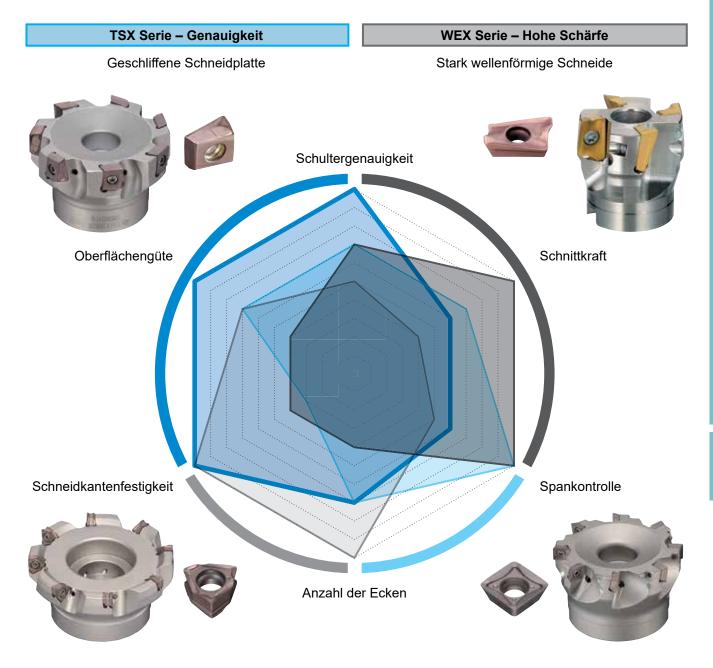

Der TSX zeigt hervorragende Rechtwinkligkeit durch die geschliffenen Schneidplatten und ein optimiertes Design.

 $\label{eq:bearb.zentr: M/C BT-50, vertikal Bearb. zentr: M/C BT-50, vertikal Fräser: TSX13100RS Schneidplatte: LNEX130608PNER-G (ACP200) Schnittdaten: $v_c = 200 \text{ m/min, } f_z = 0.2 \text{ mm/Z, } a_p = 5 \text{ mm x 3 \"{U}berl\"{a}ufe, } a_e = 5 \text{ mm, trocken} $t_{z} = 0.2 \text{ m/m}, $t_{z} = 0.2 \text{ mm/Z}, $t_{z} = 0.2 \text{ m/m}, t_{z


■ Oberflächengüte


Der TSX-Fräser zeichnet sich durch eine hervorragende Oberflächenrauhigkeit aus.

Standzeit


Bestmögliche Stabilität und längere Standzeiten durch hervorragende Verschleißfestigkeit.

"Sumi Dual Mill" Serie **TSX** - Typ

■ Auswahlhilfe für Schulterfräswerkzeuge

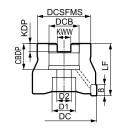
DFC Serie - Wirtschaftlich

WFX Serie - Allgmeine Anwendung

Sechseckiger doppelseitiger Einsatz

Viereckige Ausführung auf einer Seite

★★★ Erste Empfehlung


	Oberflächengüte	Schultergenauigkeit	Schnittkraft	Spankontrolle	Anzahl der Ecken	Schneidkanten- festigkeit
TSX-Serie	***	***	**	* *	**	***
DFC-Serie	**	*	*	* *	***	***
WEX-Serie	*	**	***	***	*	**
WFX-Serie	**	**	**	***	**	*

"Sumi Dual" Serie 08000 **RS**

■ Fräskörper - Aufsteckfräser

Fräskörper - TSX, Standard-Zahnteilung

•	,											
Bezeichnung	Lagor			Anzahl	Gewicht							
Bezeichhung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)
TSX 08040 RS	•	40	33	40	16	8,4	5,6	18	14	9	4	0,21
08050 RS	•	50	41	40	22	10,4	6,3	20	18	11	5	0,30
08063 RS	•	63	50	40	22	10,4	6,3	20	18	11	6	0,53
08080 RS	•	80*	55	50	27	12,4	7,0	22	20	14	7	0,99

Fräsplatten sind nicht im Lieferumfang enthalten. *Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 (Ø80: M12x30–35mm) zur Befestigung der Fräser Ø80 auf der Aufnahme.

Fräskörper - TSXF, enge Zahnteilung

		_		_								
Bezeichnung	Logor				Abme	ssungen	(mm)				Anzahl	Gewicht
Bezeichhung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)
TSXF 08040 RS	•	40	33	40	16	8,4	5,6	18	14	9	6	0,21
08050 RS	•	50	41	40	22	10,4	6,3	20	18	11	8	0,31
08063 RS	•	63	50	40	22	10,4	6,3	20	18	11	10	0,54
08080 RS	•	80*	55	50	27	12,4	7,0	22	20	14	11	0,97

Radial

Axial

winkel

8 mm

Fräsplatten sind nicht im Lieferumfang enthalten. *Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 (Ø80: M12x30–35mm) zur Befestigung der Fräser Ø80 auf der Aufnahme.

■ Fräsplatten

Anwendung		Ве	sch	nich	itet	es l	Har	tme	tall			
Hochgeschw. / Leichtbearbeitung	K SM	KM	P _M			K	K		M _S			
Allgemeine Anwendung	K SM	KM	P _M	PM		K	K		M _S	M _S		
Schruppen	K.			PM	P _M			K		M _S		RE
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	RE	
LNEX 080404 PNER-L	•			•	0		0	•	0	•	0,4	
080408 PNER-L	•			•	0		0	•	0		0,8	
080412 PNER-L	0			0				0	0	0	1,2	
080416 PNER-L	0			O				0	0	0	1,6	
LNEX 080404 PNER-G	•	0	0	•	•	0	•	•	0	•	0,4	8,6
080408 PNER-G	•	0	•	•	•	O	•	•	•	•	0,8	
080412 PNER-G	•		0	•	•		•	•	0	•	1,2	
080416 PNER-G	•		O	•	•		•	•	O	•	1,6	

■ Empfohlene Schnittbedingungen

Min. - Optimum - Max.

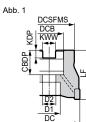
Empfohlenes Anzugsmoment (N·m)

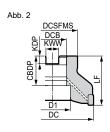
ISO	Werkstückstoff	Härte	Schnittgeschwindigkeit	TSX 08000	TSX 13000	Schneidstoff-
130	VVEIKSLUCKSLOII	(HB)	v _c (m/min)	Vorschub f _z (mm/Z)	Vorschub f _z (mm/Z)	sorte
	Kohlenstoffstahl	180–280	150- 225 -300	0,08 –0,20 –0,30	0,10 –0,30 –0,40	ACU2500 ACP100
Р	Konienstonstani	> 280	75 –150 –230	0,08 –0,20 –0,30	0,10 –0,30 –0,40	ACP200
	Legierter Stahl	180–280	100 –175 –250	0,08 –0,15 –0,25	0,10 –0,25 –0,35	ACP300 XCU2500
м	Rostfreier Stahl	220–280	90 –135 –180	0,08 –0,15 –0,25	0,10 –0,20 –0,30	ACU2500 ACM200
IVI	Rostifelei Staffi	>280	75 –125 –170	0,08 –0,15 –0,25	0,10 –0,20 –0,30	ACM300
к	Grauguss GGG	250	100 –175 –250	0,08 -0,20 -0,30	0,10 –0,30 –0,40	ACU2500 ACK200 ACK300 XCU2500 XCK2000
s	Exotische Metalle	-	30 –60 –90	0,05 –0,10 –0,15	0,05 –0,15 –0,20	ACU2500 ACM200 ACM300

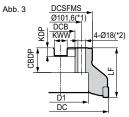
■ Identifikation des Fräskörpers

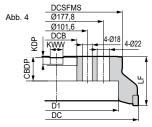
F **TSX** 80 050 R S Fräser-Zahnteilung Platten-Fräser-Schneid-Metrisch größe durchmesser richtung bezeichnung F: eng

WSP-Schraube	Schlüssel					
(m)	P					
BFTX0308IP 2,0	TRDR08IP					




"Sumi Dual" Serie **TSX** 13000 **RS**


Aufsteckfräser



Für den TSX 13160RS *1: Ø 66,7 / *2: 4–Ø 14

• Fräskörper - TSX, Standard-Zahnteilung

Bezeichnung	Lagor				Abme	ssungen	(mm)				Anzahl	Gewicht	Abb.
Bezeichhang	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	ADD.
TSX 13040 RS	•	40	33	40	16	8,4	5,6	18	14	9	3	0,20	1
13050 RS	•	50	41	40	22	10,4	6,3	20	18	11	4	0,30	1
13063 RS	•	63	50	40	22	10,4	6,3	20	18	11	5	0,50	1
13080 RS	•	80*	55	50	27	12,4	7,0	22	20	14	5	0,92	1
13100 RS	•	100*	70	50	32	14,4	8,0	32	46	_	6	1,35	2
13125 RS	•	125	80	63	40	16,4	9,0	29	52	29	7	2,55	1
13160 RS	•	160	130	63	40	16,4	9,0	29	90	_	8	4,97	3*
13200 RS	•	200	160	63	60	25,7	14,0	35	135	_	12	6,20	3
13250 RS	•	250	180	63	60	25,7	14,0	35	160	_	14	9,35	3
13315 RS	0	315	240	63	60	25,7	14,0	35	230	_	16	16,42	4
Fräsplatten sind nicht im Lieferumfang enthalten. *Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 (Ø 80: M12x30–35 mm, Ø 100: M16x40–45 mm) zur Befestigung der Fräser Ø 80 / Ø 100 auf der Aufnahme.													

■ Fräsnlatten

■ Fraspiatteri												Abmessungen (mm
Anwendung		Beschichtetes Hartmetall										
Hochgeschw. / Leichtbearbeitung	R SM	KM	PM			K	K		M _S			
Allgemeine Anwendung	₩	KM	P _M	₽ _M		K	Κ		M _S	M _S		
Schruppen	₽			P _M	M			K		M _S		_
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	RE	
LNEX 130604 PNER-L	•			•	0		0	•	0	•	0,4	
130608 PNER-L	•			•	0		O	•	O	•	0,8	RE
130612 PNER-L	0			•				•		•	1,2	
130616 PNER-L	0			O				0	0	0	1,6	
130620 PNER-L	0			\mathbf{o}				0	0	0	2,0	
130624 PNER-L	0			O				0	O	0	2,4	
130632 PNER-L	0			0				0	0	0	3,2	
LNEX 130604 PNER-G	•	0	0	•	•	O	•	•	0	•	0,4	12 12 12 12 12 12 12 12 12 12 12 12 12 1
130608 PNER-G	•	0	•	•	•	0	•	•	•	•	0,8	
130612 PNER-G	0		•	•	•		•	•		•	1,2	13 6,4
130616 PNER-G	•		0	•	•		•	•	0	•	1,6	
130620 PNER-G	0		0	0	0		0	0	0	0	2,0	
130624 PNER-G	•		0	•	•		•	•	0	•	2,4	
130632 PNER-G	•		0	•	•		•	•	0	•	3,2	
LNEX 130604 PNER-H	0			0	0		0	0			0,4	
130608 PNER-H	•	0		•	•	0	•	•			0,8	
130612 PNER-H	0			•	•		•	•			1,2	
130616 PNER-H	•			•	•		•	•			1,6	
130620 PNER-H	0			0	0		0	0			2,0	
130624 PNER-H	•			•	•		•	•			2,4	
130632 PNER-H	•			•	•		•	•			3,2	

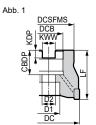
■ Empfohlene Schnittbedingungen

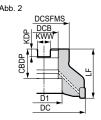
→ G34

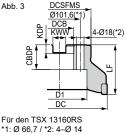
■ Identifikation des Fräskörpers

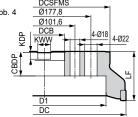
TSX	13	100	_R_	_ S
		Fräser- durchmesser		Metrisch

ube	Schlüssel
	D
(N-m)	
3,0	TRDR15IP
	3,0


"Sumi Dual Mill" Serie **TSXM** 13000 **RS**




Aufsteckfräser



Fräskörper - TSXM, mittlere Zahnteilung

Bezeichnung	Logor				Abme	ssungen	(mm)				Anzahl	Gewicht	Abb.
Bezeichhung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	ADD.
TSXM 13040 RS	•	40	33	40	16	8,4	5,6	18	14	9	4	0,19	1
13050 RS	•	50	41	40	22	10,4	6,3	20	18	11	5	0,28	1
13063 RS	•	63	50	40	22	10,4	6,3	20	18	11	6	0,50	1
13080 RS	•	80*	55	50	27	12,4	7,0	22	20	14	7	0,92	1
13100 RS	•	100*	70	50	32	14,4	8,0	32	46	_	8	1,36	2
13125 RS	•	125	80	63	40	16,4	9,0	29	52	29	10	2,57	1
13160 RS	•	160	130	63	40	16,4	9,0	29	90	_	12	5,02	3*
13200 RS	•	200	160	63	60	25,7	14,0	35	135	-	16	6,32	3
13250 RS	•	250	180	63	60	25,7	14,0	35	160	_	20	9,42	3
13315 RS	0	315	240	63	60	25,7	14,0	35	230	_	24	16,37	4

*Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 (Ø 80: M12x30–35 mm, Ø 100: M16x40–45 mm) zur Befestigung der Fräser Ø 80 / Ø 100 auf der Aufnahme.

Fräsnlatten

Frasplatten												Abmessungen (mm)
Anwendung		Beschichtetes Hartmetall										
Hochgeschw. / Leichtbearbeitung	₽ M	KM	M				Κ		M _S			
Allgemeine Anwendung	₽ M	KM	M	M		K	K		M _S	M _S		
Schruppen	R SM				M			K		M _S		
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	RE	
LNEX 130604 PNER-L	•			•	0		\mathbf{c}	•	0	•	0,4	55
130608 PNER-L	•			•	0		O	•	0	ullet	0,8	RE
130612 PNER-L	O			•				•	•	•	1,2	
130616 PNER-L	0			О				О	0	$ \circ $	1,6	
130620 PNER-L	0			О				О	0	0	2,0	
130624 PNER-L	O			O				O	0	0	2,4	
130632 PNER-L	0			0				0	0	0	3,2	
LNEX 130604 PNER-G	•	0	O	•	•	0	•	•	0		0,4	
130608 PNER-G	•	0	•	•	•	0	•	•	•	•	0,8	
130612 PNER-G	0		•	•	•		•	•	•		1,2	13 6,4
130616 PNER-G	•		0	•	•		•	•	0		1,6	
130620 PNER-G	0		0	О	0		0	О	0	0	2,0	
130624 PNER-G	•		0	•	•		•	•	0		2,4	
130632 PNER-G	•		0	•	•		•	•	0	•	3,2	
LNEX 130604 PNER-H	0			0	0		0	0			0,4	
130608 PNER-H	•	0		•	•	0	•	•			0,8	
130612 PNER-H	0			•	•		•	•			1,2	
130616 PNER-H	•			•	•		•	•			1,6	
130620 PNER-H	0			0	0		0	0			2,0	
130624 PNER-H	•			•	•		•	•			2,4	
130632 PNER-H	•			•	•		•	•			3,2	

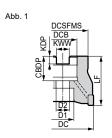
■ Empfohlene Schnittbedingungen

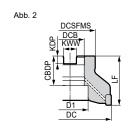
→ G34

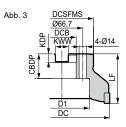
■ Identifikation des Fräskörpers

TSX	M	13	100	R	<u>s</u>
Fräser- bezeichnung	Zahnteilung M: mittel		Fräser- durchmesser		Metrisch

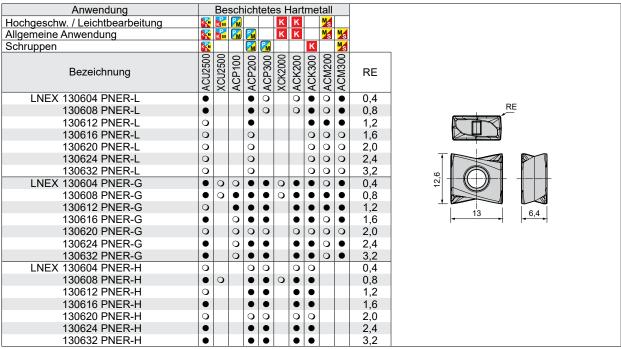
WSP-Schra	ube	Schlüssel
	(N·m)	J.
BFTX03510IP	3,0	TRDR15IP




"Sumi Dual Mill" Serie TSXF 13000 RS


■ Aufsteckfräser

Fräskörper - TSXF, enge Zahnteilung


Bezeichnung	Logor		Abmessungen (mm)										Abb.
Bezeichhung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	Zähne (kg)	
TSXF 13040 RS	•	40	33	40	16	8,4	5,6	18	14	9	5	0,18	1
13050 RS	•	50	41	40	22	10,4	6,3	20	18	11	6	0,29	1
13063 RS	•	63	50	40	22	10,4	6,3	20	18	11	7	0,50	1
13080 RS	•	80*	55	50	27	12,4	7,0	22	20	14	8	0,92	1
13100 RS	•	100*	70	50	32	14,4	8,0	32	46	_	10	1,34	2
13125 RS	•	125	80	63	40	16,4	9,0	29	52	29	14	2,58	1
13160 RS	•	160	130	63	40	16,4	9,0	29	90	_	16	5,08	3

Fräsplatten sind nicht im Lieferumfang enthalten.

*Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 (Ø 80: M12x30-35 mm, Ø 100: M16x40-45 mm) zur Befestigung der Fräser Ø 80 / Ø 100 auf der Aufnahme.

■ Fräsplatten

Abmessungen (mm)

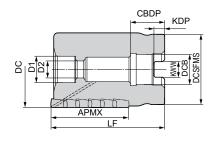
■ Empfohlene Schnittbedingungen

→ G34

■ Identifikation des Fräskörpers

TSX	F	13	100	_R_	_ S
Fräser- bezeichnung	Zahnteilung F: eng	Platten- größe	Fräser- durchmesser		Metrisch

WSP-Schra	ube	Schlüssel
	(N·m)	
BFTX03510IP	3,0	TRDR15IP

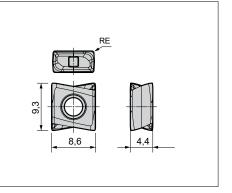

"Sumi Dual Mill" Serie TSXR 08000 RS

Walzenstirnfräser

Aufsteckfräser

Span-winkel Radial -20° - -15° Axial -6° - -3°

• Fräskörper - TSXR


Pozojohnung	Logor		Abmessungen (mm)											Effektive
Bezeichnung Lage		DC	APMX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	reihen	Zähne
TSXR 08032RS3416Z02	0	32	34	33	55	16,0	8,4	5,6	18,0	14	9	10	5	2
08040RS4016Z03	0	40	40	37	60	16,0	8,4	5,6	18,0	14	9	18	6	3
08050RS5422Z03	0	50	54	47	75	22,0	10,4	6,3	20,0	18	11	24	8	3
08050RS5422Z04	0	50	54	47	75	22,0	10,4	6,3	20,0	18	11	32	8	4
08063RS6027Z05	0	63	60	60	80	27,0	12,4	7,0	22,0	20	14	45	9	5

Fräsplatten sind nicht im Lieferumfang enthalten.

Abmessungen (mm)

■ Fräsplatten

Beschichtetes Hartmetall Anwendung Hochgeschw. / Leichtbearbearbeitung Allgemeine Anwendung Schruppen ACM300 🔀 ● ACU2500 🔯 ACP200 C ACP300 XCK2000 C ACK200 ● ACK300 O ACM200 XCU2500 Bezeichnung RE LNEX 080404 PNER-L 0.4 • • 080408 PNER-L • • \mathbf{c} 0 • 0 • 0,8 080412 PNER-L 0 0 0 0 080416 PNER-L 0 0 0 0 0 1,6 • LNEX 080404 PNER-G • • • • 0 O 0 0 • 0.4 080408 PNER-G • 0 • • \mathbf{c} ulletulletullet0,8 080412 PNER-G O • • • 0 • 1,2 080416 PNER-G 0

■ Empfohlene Schnittbedingungen

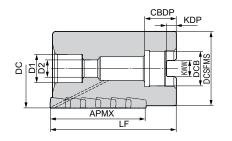
Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindigkeit	TSX 08000	TSX 13000	Schneidstoff-
130	VVEIKSIUCKSIOII	(HB)	v _c (m/min)	Vorschub f _z (mm/Z)	Vorschub f _z (mm/Z)	sorte
	Kohlenstoffstahl	180–280	150 –225 –300	0,08 –0,20 –0,30	0,10 –0,30 –0,40	ACU2500 ACP100
Р	Konienstonstani	> 280	75 –150 –230	0,08 –0,20 –0,30	0,10 –0,30 –0,40	ACP200
	Legierter Stahl	180–280	100 –175 –250	0,08 –0,15 –0,25	0,10 –0,25 –0,35	ACP300 XCU2500
м	Rostfreier Stahl	220–280	90 –135 –180	0,08 –0,15 –0,25	0,10 –0,20 –0,30	ACU2500 ACM200
IVI	Nostifelei Staffi	>280	75 –125 –170	0,08 –0,15 –0,25	0,10 –0,20 –0,30	ACM200 ACM300
К	Grauguss GGG	250	100 –175 –250	0,08 -0,20 -0,30	0,10 –0,30 –0,40	ACU2500 ACK200 ACK300 XCU2500 XCK2000
s	Exotische Metalle	-	30 –60 –90	0,05 –0,10 –0,15	0,05 –0,15 –0,20	ACU2500 ACM200 ACM300

Identifikation des Fräskörpers

TSXR 08 050 S 54 22 **Z03** R Fräser-Schneid-Bohrdurch-Effektive Platten-Metrisch Max. bezeichnung größe durchmesser richtung Schnitttiefe Zähne messer

	Schlüssel	WSP-Schra	ube	Schraube
Für Fräsertyp	P		^	
		8	N·m	
TSXR 08032RS3416Z02				BX0845
TSXR 08040RS4016Z03				BX0850
TSXR 08050RS5422Z03	TRDR08IP	BFTX0308IP	2,0	BX1060
TSXR 08050RS5422Z04				BX 1000
TSXR 08063RS6027Z05				BX1265



Walzenstirnfräser

"Sumi Dual Mill" Serie **TSXR** 13000 **RS**

Aufsteckfräser

Span-	Radial	-23°– -15°	41-60 mm	
winkel	Axial	-6° – -3°	*	90°

Fräskörper - TSXR

Bezeichnung	Lagor		Abmessungen (mm)											Effektive
bezeichhung	Lager	DC	APMX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	reihen	Zähne
TSXR 13040RS4116Z02	0	40	41	37	60	16,0	8,4	5,6	18,0	14	9	8	4	2
13050RS6022Z03	0	50	60	47	80	22,0	10,4	6,3	20,0	18	11	18	6	3
13063RS5027Z03	0	63	50	60	75	27,0	12,4	7,0	22,0	20	14	15	5	3
13063RS6027Z04	0	63	60	60	80	27,0	12,4	7,0	22,0	20	14	24	6	4
13080RS6032Z04	0	80	60	77	80	32,0	14,4	8,0	32,0	25	18	24	6	4
13080RS6032Z05	0	80	60	77	80	32,0	14,4	8,0	32,0	25	18	30	6	5
13100RS6040Z05	0	100	60	88	85	40,0	16,4	9,0	29,0	32	21	30	6	5
13100RS6040Z06	0	100	60	88	85	40,0	16,4	9,0	29,0	32	21	36	6	6
13125RS6040Z07	0	125	60	100	85	40,0	16,4	9,0	29,0	32	21	42	6	7

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Fräsplatten Abmessungen (mm) Anwendung Beschichtetes Hartmetall Hochgeschw. / Leichtbearbeitung Allgemeine Anwendung Schruppen XCU2500 ACP100 ACP200 € ACK2000 ACK2000 ACK300 Bezeichnung RE 0 0 LNEX 130604 PNER-L • • \mathbf{O} 130608 PNER-L • • 0 0,8 130612 PNER-L 1,2 0 0 130616 PNER-L \mathbf{o} \mathbf{c} \mathbf{c} \mathbf{o} 1,6 130620 PNER-L 0 0 0 0 2,0 130624 PNER-L O O O \mathbf{c} \mathbf{c} 2,4 130632 PNER-L 0 O 3,2 • LNEX 130604 PNER-G 0,4 0 • • • • 0 0 130608 PNER-G 0 • 0 ullet0,8 • 130612 PNER-G • \mathbf{c} • • 1,2 6,4 130616 PNER-G • ullet0 1,6 0 0 130620 PNER-G \mathbf{c} 0 O 0 \mathbf{o} 2,0 0 0 130624 PNER-G • 2,4 • • ullet• 130632 PNER-G 0 • 0 • ullet• • 3,2 LNEX 130604 PNER-H 0

■ Empfohlene Schnittbedingungen

130608 PNER-H

130612 PNER-H

130616 PNER-H

130620 PNER-H

130624 PNER-H

130632 PNER-H

→ G38

■ Identifikation des Fräskörpers

TSXR	13	050	_R_	S	60	22	Z 03
Fräser- bezeichnung		Fräser- durchmesser		Metrisch		Bohrdurch- messer	

• 0

0

•

0

• •

•

• ullet

0 \mathbf{o}

•

•

•

• ullet

 \mathbf{o} \mathbf{o} 0,8

12

1,6

2,0

2,4 3,2

	Schlüssel	WSP-Schra	aube	Schraube	
Geeignete Fräser	P		(N-m)		
TSXR 13040RS4116Z02 TSXR 13050RS6022Z03 TSXR 13063RS5027Z03 TSXR 13063RS6027Z04				BX0850 BX1060 BX1260 BX1265	
TSXR 13080RS6032Z04 TSXR 13080RS6032Z05 TSXR 13100RS6040Z05 TSXR 13100RS6040Z06 TSXR 13125RS6040Z07	TRDR15IP	BFTX03510IP	3,0	BX1660 BX2065	

"Wave Mill" Serie **WEZ** - Typ

■ Allgemeine Eigenschaften

Ermöglicht die unterschiedlichsten Bearbeitungen
 Geeignet für verschiedene Zerspanungsaufgaben. Die Fräserserie umfasst die Durchmesserbereiche von Ø 14 mm bis Ø 160 mm und erlaubt einen großen Eintauchwinkel.

Sehr hohe Bearbeitungsqualität

Mit einer Kombination aus optimierter Schneidenform und hochpräziser Formgebungstechnologie werden sehr gute, rechtwinklige Schulterflächen und Oberflächenqualitäten erreicht.

- Hervorragende Schärfe mit reduzierten Schnittkräften Geringere Bearbeitungsgeräusche und reduzierte Gratbildung.
 Das Portfolio beinhaltet geschliffene Fräsplatten mit besonderer Schärfe.
- Neue, universell einsetzbare Sorte
 Die neue Universalsorte ACU2500 ermöglicht ein breites Anwendungsspektrum bei der Bearbeitung von Stahl, Edelstahl und Gusseisen.

■ Produktpalette WEZ (Standard)

Fräser- typ	Bezeichnung		Durchmesserbereich (mm) / Anzahl Zähne Ø14 Ø16 Ø18 Ø20 Ø22 Ø25 Ø26 Ø28 Ø30 Ø32 Ø35 Ø40 Ø50 Ø63 Ø80 Ø100 Ø125 Ø160																	
Frä \$	Bezeichhung	Ø14													30					
\	WEZ 11000RS												4, 6	5,7	6, 8	7, 10	9, 12			
Aufsteck- fräser	WEZ 11000R (Inch)															7, 10	9, 12			
ufs	WEZ 17000RS												3, 4	3, 5	4, 6	4, 7	5, 8	6, 9, 11	8, 10	12
⋖	WEZ 17000R (Inch)															4, 7	5, 8	6, 9, 11	8, 10	12
	WEZ 11000E	1	2*	2	2*, 3*	3	2, 3*, 4*		4	4	2, 3, 4, 5*	5	2, 4, 6	5, 7	8	10				
ser	WEZ 11000ES	1	2*		3*		4*													
Schaftfräser	WEZ 11000EL	1	2*	2	2*	2	2*, 3		2	2	2*, 3	2, 3	2	3						
haff	WEZ 17000E		H30-	4.4			2*		2	3	2, 3*	3	3, 4	3*, 5*	4*, 6*	7				
Sc	WEZ 17000ES		пзо-	<mark>41</mark>			2				3									
	WEZ 17000EL						2		2	2	2*, 3	2	2, 3, 4	3*, 5*	4*, 6*					
市	WEZ 11000M		2	2	2, 3	3	2, 3, 4	4, 5	4, 5	2, 4, 5	2, 3, 4, 5	2, 5	2, 4, 5, 6							
Modu- lar	WEZ 17000M	\rightarrow	H46-	49			2, 3		2	2, 3	2, 3, 4	2, 3	2, 3, 4							

■ Produktpalette WEZR (Repeater)

* Verschiedene Schaftdurchmesser auf Lager

ser-	Dozeishnung		Durchmesserbereich (mm) / Anzahl Zähne												
Frä St	Bezeichnung	Ø20	Ø25	Ø30	Ø32	Ø35	Ø40	Ø50	Ø63	Ø80					
÷ ie	WEZR 11000RS						4	4							
Aufsteck fräser	WEZR 17000RS							2, 3, 4	3, 4, 5	5					
Schaft- fräser	WEZR 11000E	1,2	2	2	2, 3	3	3, 4								
Sc ig	WEZR 17000E -	→ H42-45					2,3	2,3							
dular	WEZR 11000M				3										
Mod	WEZR 17000M	→ H50-53					3								

■ Vielseitige Anwendungen

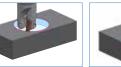
Unterstützt das Schrägeintauchen, Zirkularfräsen, Eintauchen

Planfräsen

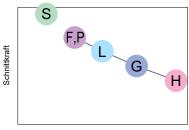
Schulterfräsen

Zirkularfräsen

Optimiertes Design


Breite Führungsfläche für eine stabile Schneidplattenspannung.

WEZ11-Typ

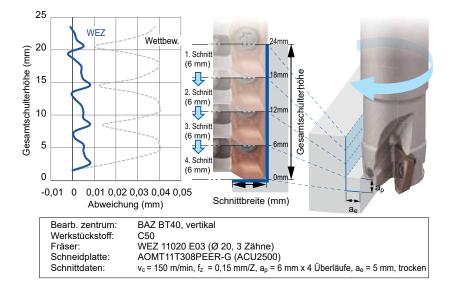


"Wave Mill" Serie **WEZ** - Typ

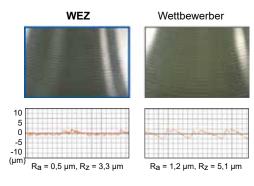
■ Schneidkantenausführungen

Material		P	M K	S H		N
	L-Typ	G-Typ	Н-Тур	F-Typ	P-Typ	S-Typ
Spanbrecher- geometrie			16			0
AO_T11 Schneidkanten- geometrie			20°	28°	28°	28°
AO_T17 Schneidkanten- geometrie		20°	10°	28°	28°	28°
Anwendung	Leichte Bearbeitung, Fräsen in labilen Verhältnissen	Hauptspanbrecher, allgemeines Fräsen, unterbrochene Schnitte	Schwerer Schnitt, stark unterbrochene Bearbeitung, vergüteter Stahl		Leichte Bearbeitung, hochpräzise, erhöhte Schulter- genauigkeit	Nichteisen-me- talle

Stabilität der Schneidkante


■ Fräsplattenübersicht

Universalsorte: ACU2500; S-Typ: H20, DL2000


-													,		
Damaiah			Eckenradius (mm)												
Bezeich	nung	R0,2	R0,4	R0,5	R0,8	R1,0	R1,2	R1,6	R2,0	R2,4	R3,0	R3,2	R4,0	R5,0	R6,4
AOMT 11T3_	PEER-G	•	•	•	•	•	•	•	•	•	•	•			
AOMT 11T3	PEER-H		•		•		•	•						[
AOET 11T3	PEER-F	•	•	•	•	•	•	•	•	•	•	•		[
AOET 11T3	PEER-P16	•	•	•	•	•	•							[
AOET 11T3	PEER-P20	•	•	•	•	•	•								
AOET 11T3	PEER-P25	•	•	•	•	•	•								
AOET 11T3	PEFR-S	•	•	•	•	•	•	•	•	•	•	•			
AOMT 1705_	PEER-L	•	•		•		•	•							
AOMT 1705	PEER-G	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AOMT 1705	PEER-H		•		•		•	•							
AOET 1705	PEER-F	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AOET 1705	PEER-P25	•	•	•	•	•	•							l	
AOET 1705	PEER-P32	•	•	•	•	•	•							l	
AOET 1705	PEFR-S	•	•	•	•	•	•	•	•	•	•	•	•	•	•

■ Verbesserte Fräsqualität

Ausgezeichnete Rechtwinkligkeit

Hervorragende Oberflächenqualität

• Geringere Schnittkraft trägt zur Reduzierung der Bearbeitungsgeräusche bei

Bearb. zentrum: BAZ BT40, vertikal

Werkstückstoff: C50

Fräser: WEZ 11020 E03 (Ø 20, 3 Zähne) Schneidplatte: AOMT11T308PEER-G (ACU2500)

Schnittdaten: $v_c = 150 \text{ m/min}$, $f_z = 0.15 \text{ mm/Z}$, $a_p = 8 \text{ mm}$, $a_e = 5 \text{ mm}$, trocken

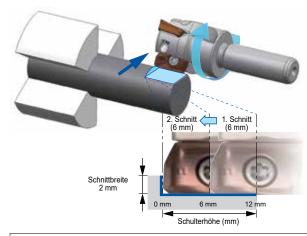
"Wave Mill" Serie WEZ - Typ

Für Multi-Tasking-Maschinen

Eigenschaften

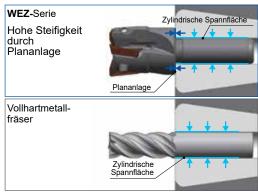
Entwickelt für Multi-Tasking-Maschinen Der kurze Schafttyp ist ideal für den Einsatz in Multi-Tasking-Maschinen mit geringer Steifigkeit.

Höchste Bearbeitungsqualität


Das Schaftdesign ist ideal für ER-Spannzangen mit Stirnflächenkontakt, wodurch die Steifigkeit erhöht und eine hervorragende Schultergenauigkeit und Oberflächengüte erreicht wird.

Große Auswahl an Schneidplatten

Für die unterschiedlichsten Anwendungen steht eine große Auswahl an Spanbrechern mit scharfen Schneiden, unterschiedlichen Eckenradien und speziellen Sorten für bestimmte Werkstoffe zur Verfügung.


Schnittleistung

Hervorragende Rechtwinkligkeit

Maschine: NC-Drehmaschine X5CrNiS1810, Ø 16 Rundstab WEZ11020ES03-10 (Ø 20, 3 Zähne) AOET11T308PEER-F (ACU2500) Werkstückstoff Fräser Schneidplatte: Schnittdaten: $v_c = 100 \text{ m/min}, f_z = 0.08 \text{ mm/Z}$ $a_p = 6 \text{ mm x 2 passes}, a_e = 2 \text{ mm, nass}$

WEZ Wettbewerber A (Ø 10, Vollhartmetallfräser) 0.06 0,05 Abweichung (mm) 0,04 0,03 0,02 0,01 0 -0,0 Schulterhöhe (mm)

Ausgezeichnete Oberflächengüte

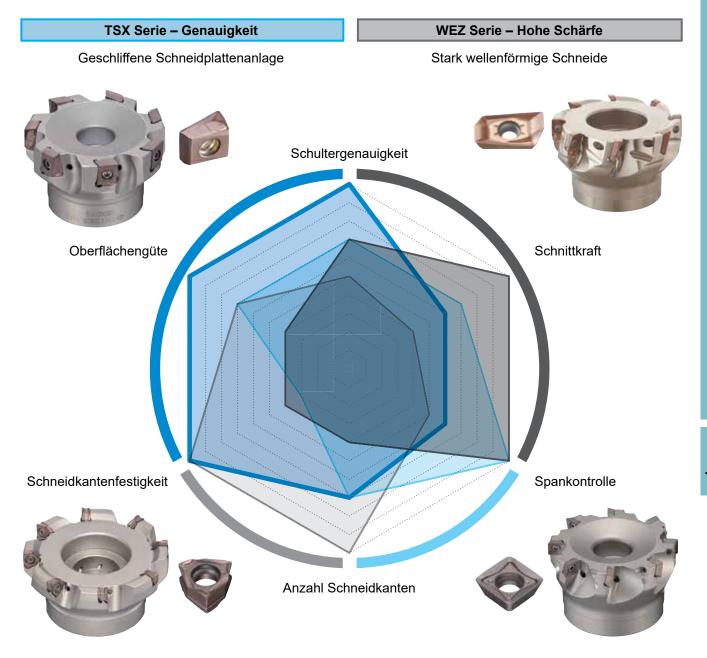
WEZ Serie 0.05 mr Ra 0,18 µm Rz 1,3 µm

Wettbewerber B (Ø 10, Vollhartmetallfräser) Ra 2,94 μm Rz 13,8 μm

Maschine: NC-Drehmaschine Werkstückstoff:

X5CrNiS1810, Ø 16 Rundstab WEZ11020ES03-10 (Ø 20, 3 Zähne) Fräser: AOET11T308PEER-F (ACU2500) Schneidplatte: Schnittdaten:

WEZ: $v_c = 100$ m/min, $f_z = 0.05$ mm/Z, $a_p = 2$ mm, $a_e = 12$ mm, nass


Wettbewerber: $v_c = 100 \text{ m/min}$, $f_z = 0.05 \text{ mm/Z}$, $a_p = 2 \text{ mm}$, $a_e = 6 \text{ mm x 2 Überläufe}$,

nass, (Vollhartmetallfräser)

Der größere Werkzeugdurchmesser als beim Vollhartmetallfräser ermöglicht eine verringerte Anzahl von Überläufen für eine hoch effiziente Bearbeitung.

Gute Schultergenauigkeit und bearbeitete Oberflächenqualität, so dass der Schlichtprozess entfallen kann.

■ Auswahlhilfe für Schulterfräswerkzeuge

DFC Serie - Wirtschaftlich

WFX Serie - Allgmeine Anwendung

Dreieckige doppelseitige Schneidplatte

Quadratische einseitige Schneidplatte

★★★ Erste Empfehlung

	Oberflächengüte	Schultergenauigkeit	Schnittkraft	Spankontrolle	Anzahl der Ecken	Schneidkanten- festigkeit
WEZ-Serie	***	***	***	***	*	* *
TSX-Serie	***	***	**	* *	**	***
DFC-Serie	* *	*	*	**	***	***
WFX-Serie	* *	**	**	***	**	**

"Wave Mill" Serie

WEZ - Typ

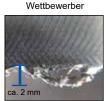
■ Geschliffene Präzisionsschneidplatten mit sehr hoher Schärfe

Geschliffene Schneidkante und Anlageflächen Die Anlageflächen und die Schneidkante sind geschliffen, um die Präzision im eingebauten Zustand weiter zu verbessern. Somit wird eine erhöhte Qualität beim Planlauf und der bearbeiteten Oberfläche garantiert.

■ Spanleitstufen für geschliffene Schneidplatten

F-Typ

Sehr scharfe Schneide mit hoher Bearbeitungsgenauigkeit



Die Schärfe der geschliffenen Schneide verhindert Gratbildung.

Ausgezeichnete Rechtwinkligkeit bei allen Durchmessern.

BAZ BT50, vertikal X5CrNiS18 9 Bearb. zentrum: Werkstückstoff:

WEZ 11050 RS07 (Ø 50, 7 Zähne) Fräser: Schneidplatte: AOET11T308PEER-F (ACU2500) Schnittdaten:

 $v_c = 120 \text{ m/min, } f_z = 0,12 \text{ mm/Z, } a_p = 1 \text{ mm, } a_e = 30 \text{ mm, trocken}$

P-Typ

Design für das Erzielen rechtwinkliger Flächen ähnlich wie bei Vollhartmetallschaftfräsern

Erstklassige Schneidkantenausführung mit einer für jeden Fräserdurchmesser optimierten Schneidkantenform und ebenso hoher Schärfe wie die des F-Typs.

Die Schneide ermöglicht eine hohe Schulterwinkligkeit vergleichbar mit VHM-Schaftfräsern.

1. Schnitt (mm) WF7 (8 mm) Schaft Gesamtschulterhöhe fräser Sesamtschulter 2. Schnitt (8 mm) 10 3 Schnitt (8 mm) 0,04 0,02 0,06 -0,02 Abweichung (mm) Schnittbreite (mm)

Auswahl je Fräserdurchmesser

Bezeichnung	Fräserdurchmesser (mm)											
	Ø14	Ø16	Ø18	Ø20	Ø22	Ø25	Ø28	Ø30	Ø32	Ø35	=> Ø40	
AOET11T3PEER-P	-P16		-P16 -P20		_	-P	25		-	-		
AOET1705PEER-P			_			-P	25		-P32		_	

BAZ BT50, vertikal Bearb. zentrum: Werkstückstoff: C50

WEZ 11020 E03 (Ø 20, 3 Zähne) AOET11T308PEER-P20 (ACU2500) Fräser: Schneidplatte: Schnittdaten:

 v_c = 150 m/min, f_z = 0,1 mm/Z, a_p = 8 mm x 3 Überläufe,

a_e = 1 mm, trocken

S-Typ

Scharfkantige Schneidkantenausführung für Nichteisenmetalle mit ausgezeichneter Adhäsionsbeständigkeit

Unterdrückt die Aufbauschneidenbildung durch geläppte Spanfläche.

DLC Beschichtung verfügbar für noch geringere Aufbauschneidenbildung.

Wettbewerber A

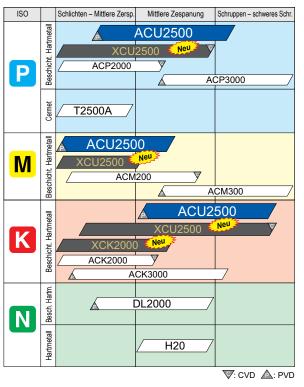
Wettbewerber B

Keine Adhäsion

Adhäsion

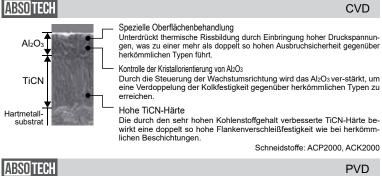
Adhäsion

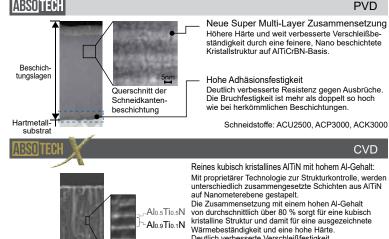
BAZ BT50, vertikal Bearb, zentrum: AlSi12Cu Werkstückstoff:


WEZ 11020 E03 (Ø 20, 3 Zähne) Fräser: Schneidplatte: AOET11T308PEÈR-S (H20)

Schnittdaten: $v_c = 350 \text{ m/min, } f_z = 0.1 \text{ mm/t, } a_p = 3 \text{ mm, } a_e = 10 \text{ mm, trocken}$

"Wave Mill" Serie WEZ - Typ


■ Schneidstoffauswahl


Die neuen, beschichteten Hartmetallsorten **XCU2500/XCK2000** sind ab sofort verfügbar. Damit steht nun eine erweiterte Auswahl an Beschichtungen zum Fräsen von Stahl, Edelstahl, Gusseisen und Aluminiumlegierungen zur Verfügung.

Beschichtungsmerkmale

Neue Absotech™ Beschichtungstechnologie für erhöhte Stabilität der Schichthaftung

Deutlich verbesserte Verschleißfestigkeit. Spezielle Oberflächenbehandlung:

Führt zu einer hohen Druckspannung in der Beschichtung und unterdrückt die Entwicklung von Rissen. Deutlich verbesserte Bruch- und thermische Riss Widerstandsfähigkeit.

Geeignete Schneidstoffe: XCU2500, XCK2000

Charakteristische Werte

_	١,	\Box
۰	v	ט

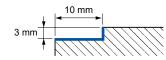
,	J V D							
ſ	ISO	Schneidstoff	Härte (HRA)	TRS (GPa)	Beschichtungstyp	Beschichtungsdicke (µm)	Eigenschaften	Alte Schneidstoffe
		ACP2000	89,5	3.2	ABSOTECH	10	Für die Hochgeschwindigkeitsbearbeitung von Stahl. Stabile, lange Standzeit bei der Hochgeschwindigkeitsbearbeitung durch Verwendung eines zähen Hartmetallsubstrates und einer neuen Beschichtung mit ausgezeichneter Beständigkeit gegen Thermorisse.	ACP100
		XCU2500	89,5	3,2	ABSOTECH X	6	Allgemeine Sorte für eine Vielzahl von Werkstoffen wie Stahl, Gusseisen und rostfreien Stahl. Eine neue Beschichtung, die Verschleiß- und Bruchfestigkeit kombiniert, sorgt für lange Standzeiten bei der Bearbeitung bei mittleren und hohen Drehzahlen.	_
	M ACM200		89,8	3,4	Super FF Coat	6	Ein Schneidstoff, der sich ideal für die Bearbeitung von gehärtetem Stahl eignet und durch die Verwendung eines neu entwickelten, ultra-harten Hartmetalls und der Super FF-Beschichtung über exzellente Verschleißfestigkeit und Hitzebeständigkeit verfügt.	AC230
	K	ACK2000	91,7	3,1	ABSOTECH	10	Für das Hochgeschwindigkeitsfräsen von Grauguss. Stabile, lange Standzeit bei der Hochge schwindigkeitsbearbeitung, durch Verwendung eines zähen Hartmetall-substrates und einer neuen Beschichtung mit ausgezeichneter Beständigkeit gegen Thermorisse.	ACK100 ACK200
		XCK2000	91,7	2,5	ABSOTECH X	6	Für das Hochgeschwindigkeitsfräsen von Gusseisen. In Verbindung mit einem hochharten Hartmetallsubstrat sorgt die neue Beschichtung, die eine hohe Verschleiß- und Bruchfestigkeit ausweist, für hervorragende Standzeiten bei der Bearbeitung bei mittleren und hohen Drehzahlen.	_

PVD							
ISO	Schneidstoff	Härte (HRA)	TRS (GPa)	Beschichtungstyp	Beschichtungsdicke (µm)	Eigenschaften	Alte Schneidstoffe
	ACU2500	91,6	3,8	ABSOTECH	3	Allroundsorte für die Bearbeitung von Stahl, Edelstahl und Gusseisen. Ein Hartmetallsubstrat mit ausgezeichneter Bruchfestigkeit und einer neue Beschichtung mit ausgezeichneter Verschleißfestigkeit und Schichthaftung, wodurch eine lange Standzeit bei unterschiedlichen Werkstückstoffen erzielt wird.	_
	ACP3000	89,5	3,2	ABSOTECH	3	Erste Empfehlung für die Fräsbearbeitung von Stahl. Hartmetallsubstrat mit ausgezeichneter Beständigkeit gegen thermische Risse und einer neuen Beschichtung mit verbesserter Verschleißfestigkeit und Schichthaftung, wodurch eine lange Standzeit bei unterschiedlichen Schnittbedingungen erreicht wird.	ACP200 ACP300
M	ACM300	89,8	3,4	(Neue) Super ZX Coat	3	Erste Empfehlung für die spanabhebende Bearbeitung von rostfreiem Stahl, der durch die Verwendung eines neu entwickelten, ultra-harten Hartmetalls und der neuen Super ZX-Beschichtung eine gut ausgewogene Verschleiß- und Bruchfestigkeit besitzt.	
K	ACK3000	91,7	3,1	ABSOTECH	3	Erste Empfehlung für die Fräsbearbeitung von Gusseisen. Hartmetallsubstrat mit hoher Wärmeleitfähigkeit und einer neuen Beschichtung mit exzellenter Verschleißfestigkeit und Schichthaftung. Erzielt stabile, lange Standzeiten bei der Bearbeitung von Gusseisen, bei unterschiedlichsten Anwendungen.	
N	DL2000	91,6	3,8	AURORA Coat (DLC)	0,5	Für das Fräsen von Nichteisenmetallen, wird eine DLC-Beschichtung mit niedrigem Reibungskoeffizienten und ausgezeichnetem Widerstand gegen Aufbauschneidenbildung eingesetzt.	_

Cer	me
-----	----

0001						
ISO	Schneidstoff	Härte (HRA)	TRS (GPa)	Beschichtungstyp Beschichtungsdicke (µm)	Eigenschaften	Alte Schneidstoffe
□	T2500A	91,8	2,4		Für die Schlichtbearbeitung von Stahl und Edelstahl. Feines, gleichmäßiges Korngefüge sorgt für deutlich höhere Zähigkeit, eine lange Standzeit sowie ausgezeichnete Oberflächenbeschaffenheit.	T250A

"Wave Mill" Serie WEZ - Typ



■ Empfohlene Schnittdaten

WEZ11-Typ

WEZ 11020 E03 AO_T11T3 Typ a_p = 3 mm, a_e = 10 mm, trocken Fräser: Schneidplatte:

Schnittdaten: Min. - Optimum - Max.

			б											
			hrun				ı		neidstoffso			1		
			ausfü	ACU2500	XCU2500	ACP2000	ACP3000	T2500A	XCK2000	ACK2000	ACK3000	ACM200	ACM300	DL2000
ISO	Material	НВ	nten					Vors	chub (mm/Z	ľahn)				
			Schneidkantenausführung	0,08 –0,15 –0,20	0,08- 0,15 -0,20	0,08 –0,15 –0,20	0,08-0,15-0,20	0,08 –0,15 –0,18	0,08-0,15-0,20	0,08 –0,15 –0,20	0,08- 0,15 -0,20	0,08- 0,15 -0,20	0,08 –0,15 –0,20	0,05 –0,10 –0,15
			Schn					Schnittgeso	hwindigkeit	v _c (m/min)				
	Unlegierter Stahl, <0, 15%C, vergütet	125	G	270 –320 –370	300 -350 -400	300 –350 –400	250- 300 -350	230-280-330						
	· , <0, 45%C, vergütet	190	G	170 –220 –270	200 –250 –300	200 –250 –300	150 –200 –250	130 –180 –230						
	- , <0, 45%C, angelassen	250	G	140 –180 –220	160 –200 –245	160 –200 –245	120 –160 –200	105 –145 –185						
	- , <0, 75%C, vergütet	270	G	110 –145 –175	130 –165 –195	130 –165 –195	100 –130 –165	85 –115 –150						
	- , <0, 75%C, angelassen	300	G	70 –90 –110	80 –100 –120	80 –100 –120	60 –80 –100	50 –70 –90						
Р	Niedrig legierter Stahl, vergütet	180	G	160 –205 –255	190 –235 –280	190 –235 –280	140 –190 –235	120 –170 –215						
	- , angelassen	275	G	90 –120 –150	110 –135 –165	110 –135 –165	80 –110 –140	70 –100 –125						
	· , angelassen	300	G	85 –110 –130	100 –125 –150	100 –125 –150	75 –100 –125	65 –90 –115						
	, angelassen	350	G	60 –80 –100	70 –90 –110	70 –90 –110	50 –70 –90	45 –65 –85						
	Hoch legierter und Werkzeugstahl, vergütet	200	G	140-180-220	160 –200 –245	160 –200 –245	120- 160 -205							
	, angelassen	325	G	55 –70– 85	60 –80 –100	60 –80 –100	50 -65 -80							
	Rostfreier Stahl, ferritisch/martensitisch, vergütet	200		110 –140 –170			00 00					140 –170 –190	90- 110 -140	
М		240		100 –125 –150								125 –150 –170		
	- , austenitisch	180	G		170 –200 –220							150- 180 -200		
	Grauguss	100	G		250 –300 –350				250 –300 –350	250 –300 –350	170 –220 –270		100 120 100	
K	Kugelgraphitguss		G		150 –180 –210					150 –180 –210	=== =: -:			
	Hitzebeständige Legierungen, Fe basierend, vergütet		G	30-40-55	100 100 210				100 100 210	100 100 210	100 100	35 -45 -60	25 –35 –50	
S	. angelassen		G	60 –80 –100								70 –90 –110	50 -70 -90	
	Aluminiumlegierung, Si < 12,6%		S	00-00-100								70-30-110	30-1 0 -30	500 –750 –100
N	• •		S											170 –200 –250
IN	· , Si > 12,6%													
	Kupferlegierung		S											300 –330 –350

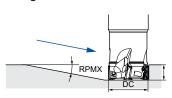
Die empfohlenen Schnittdaten dienen als Richtlinie. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Beim Nutfräsen ist der Vorschub um 70 % der in der Tabelle angegebenen Werte zu reduzieren.

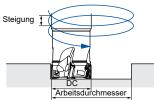
WEZ17-Typ

WEZ 17032 E03 Fräser: Schneidplatte: AO_T1705 Typ

	Schnittdaten: $a_p = 5 \text{ m}$	ım, a	e =	16 mm, tro	cken			Min Opti	mum - Max	: .				
			rung					Sc	hneidstoffso	orte				
			Schneidkantenausführun	ACU2500	XCU2500	ACP2000	ACP3000	T2500A	XCK2000	ACK2000	ACK3000	ACM200	ACM300	DL2000
ISO	Material	НВ	intena						chub (mm/Z					
			heidka	0,10 –0,20 –0,28	0,10 -0,20 -0,28	0,10 -0,20 -0,28	0,10 –0,20 –0,28	0,10 –0,15 –0,22	0,10 –0,20 –0,28	0,10 -0,20 -0,28	0,10 –0,20 –0,28	0,10 –0,20 –0,28	0,10 –0,20 –0,28	0,05 –0,10 –0,15
			Schr					Schnittgeso	chwindigkei	t vc (m/min)				
	Unlegierter Stahl, <0, 15%C, vergütet	125	G	285 –335 –390	315 –360 –420	315 –360 –420	265 –315 –370	240 –295 –345						
	· , <0, 45%C, vergütet	190	G	180 –230 –285	210 –265 –315	210 –265– 315	160 –210 –265	135 –190– 240						
	- , <0, 45%C, angelassen	250	G	145 –190– 230	170 –210 –255	170 –210 –255	130 –170– 215	110 –155 –195						
	- , <0, 75%C, vergütet	270	G	115 –150 –185	135 –170 –205	135 –170 –205	100 –135 –170	90 –125 –155						
	- , <0, 75%C, angelassen	300	G	70 –90 –115	85 –105 –125	85 –105 –125	65 –85 –105	55 –75 –95						
P	Niedrig legierter Stahl, vergütet	180	G	170 –220 –265	200– 245 –295	200 –245 –295	150 –200 –250	130 –180 –225						
	- , angelassen	275	G	100 –130 –155	115 –145 –175	115 –145 –175	85 –115 –145	75 –105 –135						
	· , angelassen	300	G	90 –115 –140	105– 130 –155	105 –130 –155	75 –105 –130	65 –90 –120						
	· , angelassen	350	G	65 –85 –100	75 –95 –115	75 –95 –115	55 –75 –95	50 –70 –85						
	Hoch legierter und Werkzeugstahl, vergütet	200	G	145 –185 –230	170– 215 –255	170– 215 –255	130 –170 –215							
	- , angelassen	325	G	55 –75– 90	65 –85 –100	65 –85 –100	50 –65 –85							
	Rostfreier Stahl, ferritisch/martensitisch, vergütet	200	G	115 –145 –175	165 –195 –215							145 –175 –195	100 –115 –145	
M	· , martensitisch, angelassen	240	G	105 –130 –155	150– 175 –195							130 –155 –175	85 –105 –130	
	- , austenitisch	180	G	125 –155 –190	180- 210 -230							160 –190 –210	105– 125 –160	
K	Grauguss		G	160 –210 –265	265 –315 –370				265 –315 –370	265 –315 –370	180 –230 –285			
K	Kugelgraphitguss		G	95 –125 –160	160 –190– 220				160 –190 –220	160 –190 –220	105 –140 –170			
s	Hitzebeständige Legierungen, Fe basierend, vergütet		G	30 –40 –60								35 –45 –60	25 –35 –50	
3	· , angelassen		G	60 –85 –105								75 –95 –115	50 –75 –95	
	Aluminiumlegierung, Si < 12,6%		S											500 –750 –100
N	· , Si > 12,6%		S											170 –200 –250
	Kupferlegierung		S											300 –330 –350


Die empfohlenen Schnittdaten dienen als Richtlinie. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Beim Nutfräsen ist der Vorschub um 70 % der in der Tabelle angegebenen Werte zu reduzieren.

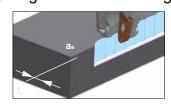

"Wave Mill" Serie **WEZ** - Typ

■ Obergrenzen beim Schrägeintauchen / Zirkularfräsen


Schrägeintauchen

Bearbeitung mit Vorbohrung

WEZ11-Typ


DC	Max. Eintauchwinkel		Zirkular	fräsen		Bearbeitung mit Vorbohrung		
Ø (mm)	RPMX (°)	Max. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)	Min. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)	Min. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)	
14	13,2	25,3	8,4	23,1	5,9	19,0	1,9	
16	10,5	29,3	7,6	27,0	5,6	21,7	1,5	
18	8,1	33,3	6,7	30,9	5,0	25,2	1,4	
20	6,5	37,3	6,0	34,9	4,6	29,1	1,3	
22	5,3	41,3	5,4	38,8	4,3	32,9	1,3	
25	4,1	47,3	4,8	44,8	3,9	38,9	1,3	
28	3,4	53,3	4,4	50,7	3,6	44,9	1,3	
30	3,0	57,3	4,2	54,7	3,5	48,8	1,3	
32	2,7	61,3	4,0	58,7	3,3	52,8	1,2	
35	2,3	67,3	3,8	64,6	3,1	58,8	1,2	
40	1,8	77,3	3,4	74,6	2,9	68,8	1,2	
50	1,2	97,3	3,0	94,6	2,6	88,8	1,1	
63	0,8	123,3	2,8	120,5	2,5	114,7	1,1	

WEZ17-Typ

- ··· · · · · · · · · · · · · · · · ·							
DC Ø (mm)	Max. Eintauchwinkel	Zirkularfräsen				Bearbeitung mit Vorbohrung	
	RPMX (°)	Max. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)	Min. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)	Min. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)
25	10,8	47,3	13,0	41,0	8,3	33,1	1,8
28	8,1	53,3	11,1	46,9	7,5	39,0	1,8
30	7,0	57,3	10,2	50,9	7,0	43,0	1,8
32	6,1	61,3	9,5	54,9	6,7	47,0	1,7
35	5,1	67,3	8,7	60,8	6,2	53,0	1,7
40	4,0	77,3	7,7	70,8	5,7	63,0	1,7
50	2,5	97,3	6,5	90,7	5,0	83,0	1,6
63	1,8	123,3	5,6	116,7	4,5	109,0	1,6

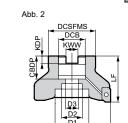
^{*} Die Tabelle zeigt Werte mit einem Eckenradius = 0,8 mm.

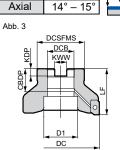
■ Tauchfräsen - Obergrenzen für die Eingriffsbreite ae

Тур	Max. ae (mm)		
WEZ11	3		
WEZ17	5		

■ Vorsichtsmaßnahmen bei der Montage

- (1) Reinigen Sie den Montagesitz und die Kontaktteile.
- (2) Bringen Sie ausreichend Schmierstoff auf das Schraubengewinde und den Schraubenkopf auf, um ein Festsitzen zu vermeiden.
- (3) Während Sie die Platte fest gegen die Sitzfläche drücken, ziehen Sie die Schrauben mit dem mitgelieferten Schraubenschlüssel an.
- (4) Nach dem Anziehen ist darauf zu achten, dass keine Lücken zwischen den Oberflächen vorhanden sind





"Wave Mill" Serie **WEZ** 11000 **R(S)**

-7° – -11°

Radial

Span-win-

kel

■ WEZ-Fräskörper (Aufsteckfräser)

10 mm

90°

	Bezeichnung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	D3	Anzahl Zähne	Gewicht (kg)	Abb.
	WEZ 11040RS04	•	40	33	40	16	8,4	5,6	18	14	9	_	4	0,21	1
	11040RS06	•	40	33	40	16	8,4	5,6	18	14	9	_	6	0,20	1
	11050RS05	•	50	41	40	22	10,4	6,3	20	18	11	_	5	0,32	1
ج ا	11050RS07	•	50	41	40	22	10,4	6,3	20	18	11	_	7	0,31	1
lsc	11063RS06	•	63	50	40	22	10,4	6,3	20	18	11	_	6	0,58	1
Metrisch	11063RS08	•	63	50	40	22	10,4	6,3	20	18	11	_	8	0,57	1
	11080RS07	•	*80	55	50	27	12,4	7,0	22	20	14	_	7	1,08	1
	11080RS10	•	*80	55	50	27	12,4	7,0	22	20	14	_	10	1,07	1
	11100RS09	•	100	70	50	32	14,4	8,0	32	46	_	_	9	1,57	3
	11100RS12	•	100	70	50	32	14,4	8,0	32	46	_	_	12	1,56	3
	WEZ 11080R07	0	*80	55	50	25,4	9,5	6,0	25	20	14	_	7	1,09	1
占	11080R10	0	*80	55	50	25,4	9,5	6,0	25	20	14	_	10	1,08	1
lnch	11100R09	0	*100	70	63	31,75	12,7	8,0	32	46	27	18	9	2,12	2
	11100R12	0	*100	70	63	31,75	12,7	8,0	32	46	27	18	12	2,10	2

Die Schneidplatten werden separat verkauft. Überprüfen Sie bei der Auswahl des Fräsers die Größe der Aufnahme (DCB).

* Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 zur Befestigung der Fräser Ø 80 mm und Ø 100 mm auf der Aufnahme. (Ø 80 mm: M12x30 to 35 mm, Ø 100 mm: M16x40x45 mm)

■ Ersatzteile

	Schraub	е	Schlüssel		
Geeignete Fräser		(N·m)	P		
WEZ 11040RS04			·		
11040RS06					
11050RS05					
11050RS07					
11063RS06	BFTX0306IP	1,5	TRDR08IP		
11063RS08	BF I XUSUUIF	1,5	INDRUGIE		
11080R(S)07					
11080R(S)10					
11100R(S)09					
11100R(S)12					

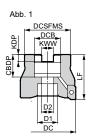
■ Empfohlene Schnittbedingungen → G46

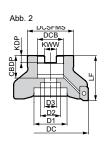
■ Identifikation des Fräskörpers

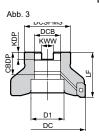
WEZ	11	050	R	S	07
Fräser-	Platten-	Fräser-	Schneid-	Metrisch	Anzahl
bezeichnung	größe	durchmesser	richtung		Zähne

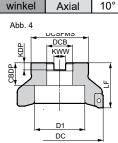
"Wave Mill" Serie **WEZ** 11000 **R(S)**

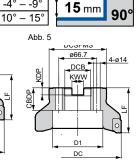
■ Fräsplatten


Vorsichtsmaßnahmen bei der Montage → G47




Anwendung		Beschichtetes Hartmetall								Hartmetall DLC Cermet								
Hochgeschw./ Leichtbearbeitung		R _M	P		K	K		Ms			N	P				Abmessungen (mm)		
Allgemeine Anwendung	K SM	K _M		P	K		K	Ms	Ms	N	N							
Schruppen	k ₹M			Р			K		Ms									
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.				
AOMT 11T302PEER-G	•			•			•	•	•	_	_	•	0,2	1				
11T304PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,4	1	Abb. 1	_		
11T305PEER-G	•							•	•	_	_		0,5	1	<u> Ri</u>	⊑		
11T308PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1				
11T310PEER-G	•							•	•	_	_		1,0	1	2,5			
11T312PEER-G	•			•			•	•	•	_	_		1,2	1		20°		
11T316PEER-G	•			•			•	•	•	_	_		1,6	1	12,8	3,6		
11T320PEER-G	•			•			•	•	•	_	_		2,0	1		→ 3,0 ←		
11T324PEER-G	•							•	•	_	_		2,4	1				
11T330PEER-G	•			•			•	•	•	_	_		3,0	2				
11T332PEER-G	•							•	•	_	_		3,2	2				
AOMT 11T304PEER-H	•	0	•	•	O	•	•	•	•	_	_	_	0,4	1				
11T308PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,8	1				
11T312PEER-H	•							•	•	_	_	_	1,2	1	Abb. 2			
11T316PEER-H	•							•	•	_	_	_	1,6	1	RI	Ε		
AOET 11T302PEER-F	•		_			_		_		_	_	_	0,2	1	1			
11T304PEER-F	•		_			_		_		_	_	_	0,4	1	22	+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
11T305PEER-F	•		_			-		-		_	_	_	0,5	1	<u> </u>	lo,		
11T308PEER-F	•		_			_		_		_	_	_	0,8	1	12,2	3.4		
11T310PEER-F	•		_			-		-		_	_	_	1,0	1	12,2	<u>→ ⁰, 1 </u>		
11T312PEER-F	•		_			_		_		_	_	_	1,2	1				
11T316PEER-F	•		_			-		-		_	_	_	1,6	1				
11T320PEER-F	•		_			_		_		_	_	_	2,0	1	'			
11T324PEER-F	•		_			_		_		_	_	_	2,4	1				
11T330PEER-F	•		_			_		_		_	_	_	3,0	2				
11T332PEER-F	•		_			_		_		-	_	_	3,2	2				
AOET 11T302PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,2	1				
11T304PEFR-S	_	_	_	_	-	_	_	_	_	•	•	_	0,4	1	L: geringe Schnittkraft			
11T305PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,5	1	G: allgemeine Anwendung			
11T308PEFR-S	_	_	_	_	-	_	_	_	_	•	•	_	0,8	1	H: stabile Schneidkante F: Schlichten			
11T310PEFR-S	_	_	_	_	-	-	_	_	_	•	•	_	1,0	1	P: Hochpräzisionsbearbeitung	l		
11T312PEFR-S	_	_	_	_	-	-	-	_	-	•	•	_	1,2	1	S: Nichteisenmetalle			
11T316PEFR-S	_	_	_	_	-	-	_	_	_	•	•	_	1,6	1				
11T320PEFR-S	_	_	_	_	-	_	_	_	_	•	•	_	2,0	1				
11T324PEFR-S	_	_	_	_	-	_	-	_	_	•	•	_	2,4	1				
11T330PEFR-S	_	_	_	_	-	_	_	_	_	•	•	_	3,0	2				
11T332PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	3,2	2				


"Wave Mill" Serie **WEZ** 17000 **R(S)**



Radial

Span-

-4° – -9°

■ WEZ-Fräskörper (Aufsteckfräser)

Abmessungen (mm) A ====bl | C===i=b4

	Bezeichnung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	D3	Anzahl Zähne	Gewicht (kg)	Abb.
	WEZ 17040RS03	•	40	33	40	16	8,4	5,6	18	14	9	_	3	0,19	1
	17040RS04	•	40	33	40	16	8,4	5,6	18	14	9	_	4	0,16	1
	17050RS03	•	50	41	40	22	10,4	6,3	20	18	11	_	3	0,30	1
	17050RS05	•	50	41	40	22	10,4	6,3	20	18	11	_	5	0,26	1
	17063RS04	•	63	50	40	22	10,4	6,3	20	18	11	_	4	0,54	1
	17063RS06	•	63	50	40	22	10,4	6,3	20	18	11	_	6	0,51	1
ج	17080RS04	•	*80	55	50	27	12,4	7,0	22	20	14	_	4	1,10	1
lsc	17080RS07	•	*80	55	50	27	12,4	7,0	22	20	14	_	7	1,05	1
Metrisch	17100RS05	•	100	70	50	32	14,4	8,0	32	46	_	_	5	1,58	3
	17100RS08	•	100	70	50	32	14,4	8,0	32	46	_	_	8	1,57	3
	17125RS06	•	125	80	63	40	16,4	9,0	29	52	29	_	6	3,04	1
	17125RS09	•	125	80	63	40	16,4	9,0	29	52	29	_	9	3,07	1
	17125RS11	•	125	80	63	40	16,4	9,0	29	52	29	_	11	3,02	1
	17160RS08	•	160	130	63	40	16,4	9,0	29	90	_	_	8	5,24	5
	17160RS10	•	160	130	63	40	16,4	9,0	29	90	_	_	10	5,31	5
	17160RS12	•	160	130	63	40	16,4	9,0	29	90	_	_	12	5,26	5
	WEZ 17080R04	O	*80	55	50	25,4	9,5	6,0	25	20	14	_	4	1,10	1
	17080R07	0	*80	55	50	25,4	9,5	6,0	25	20	14	_	7	1,06	1
	17100R05	0	*100	70	63	31,75	12,7	8,0	32	46	27	18	5	2,08	2
	17100R08	0	*100	70	63	31,75	12,7	8,0	32	46	27	18	8	2,07	2
5	17125R06	0	125	80	63	38,1	15,9	10,0	35,5	55	30	_	6	3,09	1
Inch	17125R09	0	125	80	63	38,1	15,9	10,0	35,5	55	30	_	9	3,11	1
-	17125R11	0	125	80	63	38,1	15,9	10,0	35,5	55	30	_	11	3,06	1
	17160R08	0	160	100	63	50,8	19,1	11,0	38	72	_	_	8	5,04	4
	17160R10	O	160	100	63	50,8	19,1	11,0	38	72	_	_	10	5,09	4
	17160R12	O	160	100	63	50,8	19,1	11,0	38	72	_	_	12	5,04	4

Die Schneidplatten werden separat verkauft. Überprüfen Sie bei der Auswahl des Fräsers die Größe der Aufnahme (DCB).

* Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 zur Befestigung der Fräser Ø 80 mm und Ø 100 mm auf der Aufnahme. (Ø 80 mm: M12x30 to 35 mm, Ø 100 mm: M16x40x45 mm)

■ Ersatzteile

	Schraut	ре	Schlüssel	Handgriff	Schlüssel- bart
Geeignete Fräser		(N·m)			P
WEZ 17040RS03					
17040RS04					
17050RS03					
17050RS05					
17063RS04					
17063RS06					
17080R(S)04			_	HPS1015	TRB15IP
17080R(S)07	BFTX0409IP	3,0			
17100R(S)05	DF I AU4U9IF	3,0			
17100R(S)08					
17125R(S)06					
17125R(S)09					
17125R(S)11					
17160R(S)08					
17160R(S)10			TRDR15IP	_	_
17160R(S)12					

■ Empfohlene Schnittbedingungen

o = Japanlager

→ G46

■ Identifikation des Fräskörpers

WEZ	<u>17</u>	100	_ R _	S	05
Fräser-	Platten-	Fräserdurch-	Schneid-	Metrisch	Anzahl
bezeichnung	größe	messer	richtung		Zähne

*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT170524PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT170530PEER) Eckenradius = 3.2 mm; C = 1 mm (AOMT170532PEER) Eckenradius = 4,0 mm: C = 2 mm (AOMT170540PEER) Eckenradius = 5,0 mm: C = 5 mm (AOMT170550PEER) Eckenradius = 6,4 mm: C = 5 mm (AOMT170564PEER) Standard: R = 1 mm

C: Fase R: Radius

"Wave Mill" Serie **WEZ** 17000 **R(S)**

Fräsplatten Vorsichtsmaßnahmen bei der Montage Hartmetall DLC Cermet Anwendung Beschichtetes Hartmetall Abmessungen (mm) M_S NP Hochgeschw./ Leichtbearbeitung M_S N K N Allgemeine Anwendung Р K Schruppen K_SM ACU2500 ACK3000 ACP3000 XCK2000 ACK2000 XCU2500 ACP2000 ACM300 ACM200 DL2000 T2500A Bezeichnung RE Abb H20 AOMT 170502PEER-L • 0,2 • • 1 170504PEER-L • 0 • • • 0 0,4 1 170508PEER-L 8,0 • 0 0 • • • 1 170512PEER-L • • 1,2 1 170516PEER-L . • • 1,6 1 AOMT 170502PEER-G • • • • 0.2 1 170504PEER-G • 0 0 • 0,4 1 170505PEER-G • • • _ _ 0,5 1 170508PEER-G • 0 • • 0 • • • 0,8 1 Abb. 1 170510PEER-G 1 • • 1,0 170512PEER-G • • • • 1,2 1 170516PEER-G _ 1,6 • • • • • _ 1 170520PEER-G • 2,0 1 170524PEER-G • _ 2,4 1 ullet• 170530PEER-G 3,0 1 170532PEER-G 19,5 • _ • • • _ 3,2 1 170540PEER-G • 4,0 1 _ 170550PEER-G 5,0 2 • ulletullet• • 170564PEER-G 2 • • 6,4 AOMT 170504PEER-H • 0 • • 0 • • • • 0,4 1 170508PEER-H • • • • 8,0 0 • 0 1 170512PEER-H • • • 1,2 1 Abb. 2 170516PEER-H • • • 1.6 1 AOET 170502PEER-F • 0,2 1 170504PEER-F • 0.41 170505PEER-F • _ 0,5 1 170508PEER-F 0,8 • 1 170510PEER-F • 1,0 1 18.0 170512PEER-F • 1.2 1 • _ 170516PEER-F 1,6 1 170520PEER-F 2,0 • 1 170524PEER-F • 2,4 1 170530PEER-F • 3,0 1 170532PEER-F • _ _ _ _ _ 3,2 1 170540PEER-F • 4,0 1 170550PEER-F • _ _ _ 5,0 2 170564PEER-F • 6,4 2 AOET 170502PEFR-S • _ • 0,2 1 170504PEFR-S 0,4 170505PEFR-S • 0.5 1 170508PEFR-S • 0,8 1 L: geringe Schnittkraft 170510PEFR-S _ _ _ _ _ _ • 1 _ 1,0 G: allgemeine Anwendung H: stabile Schneidkante 170512PEFR-S 1,2 1 F: Schlichten 170516PEFR-S _ _ _ _ • ullet1,6 1 P: Hochpräzisionsbearbeitung 170520PEFR-S 2,0 1 S: Nichteisenmetalle 170524PEFR-S _ • • 2,4 1 170530PEFR-S • 3,0 1

ulletullet

•

•

•

3,2 1

4.0 1

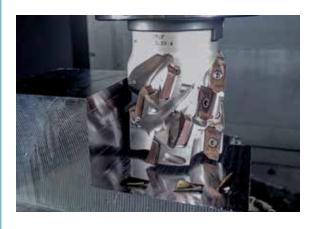
5,0 2

6,4 2

_

170532PEFR-S

170540PEFR-S


170550PEFR-S

170564PEFR-S

"Wave Mill" Serie WEZR - Typ

Walzenstirnfräser

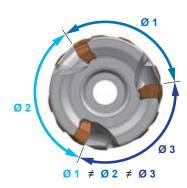
Merkmale

sen geeignet ist.

Hocheffizientes Schulterfräsen

Die Wendeschneidplatten für den WEZ-Walzenstirnfräser "Wave-Mill" sind in mehreren Stufen angeordnet und bilden dadurch eine lange Schneidkante, um ein hocheffizientes Schulterfräsen von tiefen Stufen zu ermöglichen.

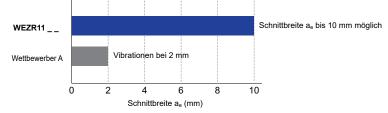
- Sehr geringe Vibrationsneigung Scharfe Wendeschneidplatten und eine ungleiche Zahnteilung tragen zur Reduzierung von Rattermarken durch Vibrationen bei.
- Geeignet für alle Arten von Werkstoffen Neben einer Reihe von werkstoffspezifischen Sorten gibt es auch die Allzwecksorte ACU2500, die für Stahl, Edelstahl und Gussei-


Eigenschaften

Verbesserte Spannutenform

Optimierte, nach oben verjüngte Spantaschengeometrie für verbesserte Spanabfuhr und Erhöhung der Steifigkeit des Fräskörpers.

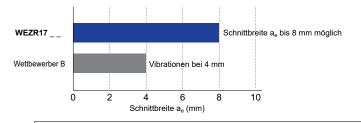
Ungleiche Zahnteilung


Die ungleiche Zahnteilung reduziert die Vibrationsneigung

Schnittleistung

Deutlich weniger Vibrationen ergeben sich aus der Kombination von scharfen Wendeschneidplatten und ungleichmäßiger Zahnteilung.

Stabile Bearbeitung auch mit BT40-Spindelmaschinen möglich


Maschine: Vertikales Bearbeitungszentrum BT40, Werkstückstoff: C55, Überhanglänge 60 mm

WEZR 11032E3632Z03 (Ø 32, 3 Zähne, 4-stufig) Fräser Schneidplatte: AOET11T308PEER-G (ACU2500)

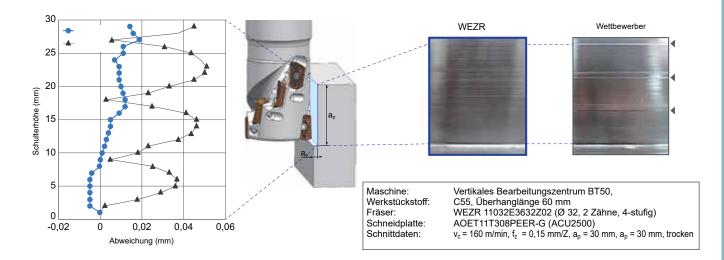
 $v_c = 150$ m/min, $f_z = 0,1$ mm/Z, $a_p = 30$ mm, trocken Schnittdaten:

Geeignet für die stabile Bearbeitung auch bei langem Überhang

Maschine: Vertikales Bearbeitungszentrum BT50,

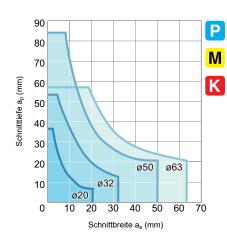
Werkstückstoff: 42CrMo4

Fräser WEZR 17063RS5727Z04 (Ø 63, 4 Zähne, 4-stufig)

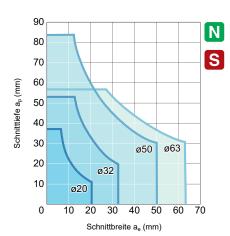

Schneidplatte: AOET170508PEER-G (ACU2500) Schnittdaten:

 v_c = 150 m/min, f_z = 0,15 mm/Z, a_p = 50 mm, trocken

"Wave Mill" Serie WEZR - Typ


Schnittleistung

Die optimierte Schneidenform und die hochpräzise Sintertechnologie führen zu einer hervorragenden Schultergenauigkeit.



Anwendungsbereich

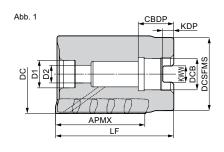
Stahl, rostfreier Stahl, Gusseisen

Aluminiumlegierungen, Titanlegierungen

Hinweis:

Die oben angegebenen Schnitttiefen sind Richtwerte für den Einsatz auf BT50-Werkzeugmaschinen. Bei Einsatz einer BT40-Werkzeugmaschine

sollte eine Schnittliefe von ca. 50% gewählt werden.
Bei einem Werkzeugüberstand von L/D = 3 oder L/D = 4 ist eine Schnittliefe von ca. 50% bzw. 25% zu empfehlen.


In Abhängigkeit von der Steifigkeit der Maschine und des Werkstücks kann es vorkommen, dass eine Bearbeitung mit den oben genannten Schnitt-tiefen nicht möglich ist. Angaben zur Schnittgeschwindigkeit und zum Vorschub finden Sie auf den nächsten Seiten.

Walzenstirnfräser

Span-	Radial	-11° – -9°
winkel	Axial	14° – 15°

■ WEZ-Fräskörper (Aufsteckfräser)

Abmessungen (mm)

	Bezeichnung	Lager	DC	APMX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Gesamtzahl Zähne	Stuten	Effective Zähnezahl	Gewicht (kg)	Abb.
- H	WEZR 11040RS4416Z04	0	40	44	37	60	16	8,4	5,6	18	14	9	20	5	4	0,27	1
etris	11050RS5322Z04	0	50	53	47	70	22	10,4	6,3	20	18	11	24	6	4	0,57	1
₩																	

Überprüfen Sie bei der Auswahl des Fräsers die Größe der Aufnahme (DCB). Schneidplatten werden separat verkauft.

Ersatzteile

	Schraul	ре	Schlüssel	Schraube
Geeignete Fräser		(N·m)	P	
WEZR 11040RS4416Z04	BFTX0306IP	1.5	TRDR08IP	BX0850
11050RS5322Z04	DE I VOSOGIE	1,5	IKDKUOIP	BX1060

■ Identifikation des Fräskörpers

WEZR 11 040 R S 44 16 Z04

Fräser- bezeich- nung	Platten- größe	Schneid- Metrisch richtung	Max. Schnitt- tiefe	des Bohr-	Anzahl Zähne	
				Inche		

■ Empfohlene Schnittbedingungen

ISO	Werkstückstoff	Härte (HB)	Schneidka- nenausführ.	Schnittgeschwin- digkeit v _c (m/min)	Vorschub f _z (mm/t)	Schneid- stoffsorte
	Kohlenstoffstahl	≤ 280HB	G	100 –150 –200	0,08 –0,12 –0,20	ACU2500
Р	Konienstonstani	> 280HB	G	80 –100 –120	0,08 –0,12 –0,20	XCU2500 ACP2000
	Legierter Stahl	≤ 280HB	G	100 –150 –80	0,08 –0,12 –0,20	ACP3000
M	Rostfreier Stahl	≤ 280HB	G	80 –120 –160	0,08 -0,12 -0,20	ACU2500 ACM200 ACM300
K	Grauguss/ Kugelgraphitguss	_	G	100 –150 –200	0,08 -0,12 -0,20	ACU2500 XCK2000 ACK2000 ACK3000
s	Hitzebeständige Legierungen	-	G	40 –50 –60	0,08 -0,12 -0,20	ACU2500 ACM200 ACM300
N	Aluminium-	Si ≤ 12,6%	S	300 –500 –800	0,05 –0,10 –0,15	DL2000
I	legierung	Si >12,6%	S	100 –200 –250	0,05 –0,10 –0,15	H20

Min. - Optimum - Max.

Hinweis:

Die oben genannten Schnittbedingungen sind ein Richtwert. Die tatsächlichen Bedingungen müssen entsprechend der Maschinensteifigkeit, der Werkstückspannung, der Schnitttiefe und weiteren Faktoren angepasst werden.

Je nach Steifigkeit der Maschine und des Werkstücks kann es vorkommen, dass die Bearbei-

Je nach Steifigkeit der Maschine und des Werkstücks kann es vorkommen, dass die Bearbei tung nicht unter den empfohlenen Bedingungen durchgeführt werden kann.

*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

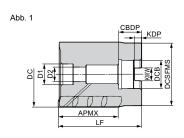
Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT11T324PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT11T330PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT11T332PEER) Standard: R = 1 mm

C: Fase R: Radius

"Wave Mill" Series **WEZR** 11000 **RS**

■ Fräsplatten


Vorsichtsmaßnahmen bei der Montage → G47

· •															•	_
Anwendung		E	Bescl	hichte	etes	Hartr	netal	l		Hartmetall	DLC	Cermet				
Hochgeschw./ Leichtbearbeitung		KM	P		K	K		Ms			N	P				Abmessungen (mm)
Allgemeine Anwendung	KSM SM	K _M		P	K		K	Ms	Ms	N	N					
Schruppen	K _S M			P			K		Ms							
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.		
AOMT 11T302PEER-G	•			•			•	•	•	_	_	•	0,2	1		
11T304PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,4	1	Abb. 1	RE
11T305PEER-G	•							•	•	_	_		0,5	1	<u> </u>	<u>(C</u>
11T308PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1	LO LO	
11T310PEER-G	•							•	•	_	_		1,0	1		1 N
11T312PEER-G	•			•			•	•	•	-	_		1,2	1	Y	9
11T316PEER-G	•			•			•	•	•	-	_		1,6	1	12,8	3.6
11T320PEER-G	•			•			•	•	•	_	_		2,0	1	- 12,0 -	→ 0,0 ∢
11T324PEER-G	•							•	•	_	_		2,4	1		
11T330PEER-G	•			•			•	•	•	_	_		3,0	2		
11T332PEER-G	•							•	•	_	_		3,2	2		
AOMT 11T304PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,4	1		
11T308PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,8	1		
11T312PEER-H	•							•	•	-	_	-	1,2	1	Abb. 2	
11T316PEER-H	•							•	•	_	_	_	1,6	1	7 (SB. 2	<u>RE</u>
AOET 11T302PEER-F	•		_			_		_		_	_	_	0,2	1		
11T304PEER-F	•		_			_		_		_	_	_	0,4	1	7.2	1
11T305PEER-F	•		_			_		_		_	_	_	0,5	1	1	ő
11T308PEER-F	•		_			_		_		_	_	_	0,8	1	12,2	3.4
11T310PEER-F	•		_			_		_		-	_	_	1,0	1	- :=,= - 	→ - , - -
11T312PEER-F	•		_			_		_		_	_	_	1,2	1		
11T316PEER-F	•		_			_		_		-	_	_	1,6	1		
11T320PEER-F	•		_			_		_		_	_	_	2,0	1	'	
11T324PEER-F	•		_			_		_		-	_	_	2,4	1		
11T330PEER-F	•		_			_		_		_	_	_	3,0	2		
11T332PEER-F	•		_			_		_		_	_	_	3,2	2		
AOET 11T302PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,2	1		
11T304PEFR-S	-	_	_	_	_	_	-	_	_	•	•	_	0,4	1	L: geringe Schnittkraft	
11T305PEFR-S	-	_	-	-	_	_	-	_	_	•	•	_	0,5	1	G: allgemeine Anwendung H: stabile Schneidkante	
11T308PEFR-S	-	-	-	-	-	-	-	-	_	•	•	_	0,8	1	F: Schlichten	
11T310PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	1,0	1	P: Hochpräzisionsbearbeitun	g
11T312PEFR-S	-	-	_	-	-	_	-	-	_	•	•	_	1,2	1	S: Nichteisenmetalle	
11T316PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	1,6	1		
11T320PEFR-S	-	_	-	_	_	_	-	_	_	•	•	_	2,0	1		
11T324PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	2,4	1		
11T330PEFR-S	_	_	_	-	_	_	-	_	_	•	•	_	3,0	2		
11T332PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	3,2	2		

■ WEZ-Fräskörper (Aufsteckfräser)

Abmessungen (mm)

	Bezeichnung	Lager	DC	APMX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Gesamtzahl Zähne	Stufen	Effective Zähnezahl	Gewicht (kg)	Abb.
	WEZR 17050RS2922Z04	O	40	29	47	50	22	10,4	6,3	20	18	11	8	2	4	0,35	1
	17050RS5722Z02	0	50	57	47	80	22	10,4	6,3	20	18	11	8	4	2	0,70	1
ے	17050RS5722Z03	0	50	57	47	80	22	10,4	6,3	20	18	11	12	4	3	0,59	1
Metrisch	17063RS2927Z05	0	63	29	60	55	27	12,4	7	22	20	14	10	2	5	0,74	1
/leti	17063RS5727Z03	0	63	57	60	80	27	12,4	7	22	20	14	12	4	3	1,11	1
~	17063RS5727Z04	O	63	57	60	80	27	12,4	7	22	20	14	16	4	4	1,05	1
	17080RS5627Z05	O	80	56	70	80	27	12,4	7	22	20	14	20	4	5	1,85	1
	17080RS5632Z05	O	80	56	70	80	32	14,4	8	26	25	18	20	4	5	1,76	1

Überprüfen Sie bei der Auswahl des Fräsers die Größe der Aufnahme (DCB). Schneidplatten werden separat verkauft.

Ersatzteile

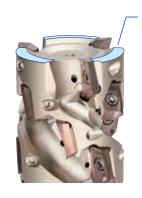
	Schraul	ре	Schlüssel	Hand- griff	Schlüssel- bart	Schraube
Geeignete Fräser		(N·m)		Ø	P	
WEZR 17050RS2922Z04						BX1045
17050RS5722Z02		2.0	-	HPS1015	TRB15IP	BX1070
17050RS5722Z03						DATUTU
17063RS2927Z05	BFTX0409IP					BX1240
17063RS5727Z03	BF I AU4U9IP	3,0				DV40CF
17063RS5727Z04						BX1265
17080RS5627Z05			TDDD45ID			BX1265
17080RS5632Z05			TRDR15IP	1	_	BX1660

■ Identification Details

WEZR 17 050 R S 29 22 Z04

	Platten- größe		Schneid- Metrisch richtung	Max. Schnitt-		Anzahl Zähne
nung		messer		tiefe	Bohr- lochs	

■ Empfohlene Schnittbedingungen


	•			•	· ·	
ISO	Werkstückstoff	Härte (HB)	Schneidka- nenausführ.	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/t)	Schneid- stoffsorte
		≤ 280HB	G	100 –150 –200	0,10 -0,20 -0,30	ACU2500
P	Kohlenstoffstahl	> 280HB	G	80 –100 –120	0,10 –0,20 –0,30	XCU2500 ACP2000
	Legierter Stahl	≤ 280HB	G	100 –150 –80	0,10 –0,20 –0,30	ACP3000
М	Rostfreier Stahl	≤ 280HB	G	80 –120 –160	0,10 -0,20- 0,30	ACU2500 ACM200 ACM300
K	Grauguss/ Kugelgraphitguss	-	G	100 –150 –200	0,10 -0,20 -0,30	ACU2500 XCK2000 ACK2000 ACK3000
s	Hitzebeständige Legierungen	-	G	40 –50 –60	0,10 -0,20 -0,30	ACU2500 ACM200 ACM300
N	Aluminium-	Si ≤ 12,6%	S	300 –500 –800	0,05 –0,10 –0,15	DL2000
IN	legierung	Si >12,6%	S	100 –200 –250	0,05 –0,10 –0,15	H20

Min. - Optimum - Max.

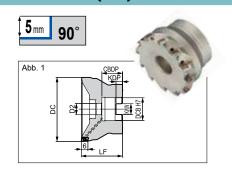
Die oben genannten Schnittbedingungen sind ein Richtwert. Die tatsächlichen Bedingungen müssen entsprechend der Maschinensteifigkeit, der Werkstückspannung, der Schnittliefe und weiteren Faktoren angenasst werden

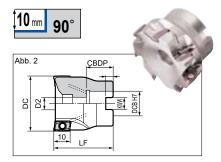
weiteren Faktoren angepasst werden. Je nach Steifigkeit der Maschine und des Werkstücks kann es vorkommen, dass die Bearbeitung nicht unter den empfohlenen Bedingungen durchgeführt werden kann.

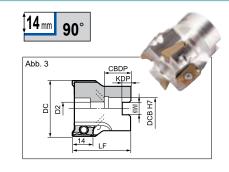
*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT170524PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT170530PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT170532PEER) Eckenradius = 4,0 mm: C = 2 mm (AOMT170540PEER) Eckenradius = 5,0 mm: C = 5 mm (AOMT170550PEER) Eckenradius = 6,4 mm: C = 5 mm (AOMT170564PEER) Standard: R = 1 mm C: Fase


-räsköpf


R: Radius


"Wave Mill" Serie WEZR 17000 RS

■ Fräsplatten									Vor	_		_		hm	nen bei der Montage → G47
Anwendung				hichte	etes I		netal		r	Hartmetall					Abmessungen (mn
Hochgeschw./ Leichtbearbeitung		KM	P		K	K		Ms			N	P			Abmessungen (min
Allgemeine Anwendung	KSM SM	₹ M		P	K		K	M _S	Ms	N	N				
Schruppen	₽ M			P			K		Ms						
11		0	0		0	0									
	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300		2	≰			
Bezeichnung	UZ	C	P2	P3	2	2	E	Σ	Ξ		50	l ig	RE	Abb.	-
	S	δ	ပ္စ	S	δ	ပ္	S	ပ္စ	Ş	H20	DL2000	T2500A			
AOMT 170502PEER-L	•		_			_	ì	•	•	_	_	-	0,2	1	
170504PEER-L	•	0	_	•	0	_	•	•	•	_	_	•	0,4	1	
170508PEER-L	•	0	_	•	0	_	•	•	•	_	_	•	0,8	1	
170512PEER-L	•		_			_		•	•	_	_		1,2	1	
170516PEER-L	•		_			_		•	•	_	_		1,6	1	
AOMT 170502PEER-G	•			•			•	•	•	_	_		0,2	1	
170504PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,4	1	
170505PEER-G	•							•	•	_	_		0,5	1	
170508PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1	
170510PEER-G	•							•	•	_	_		1,0	1	Abb. 1
170512PEER-G	•			•		_	•	•	•	_	_		1,2	1	RE
170516PEER-G	•			•			•	•	•	_	_		1,6	1	, re
170520PEER-G	•		_	•		_	•	•	•	_	_		2,0	1	
170524PEER-G	•							•	•	_	_		2,4	1	10,5
170530PEER-G	•			•			•	•	•	_	_		3,0	1	, o
170532PEER-G	•						•	•	•	_	_		3,2	1	19,5
170540PEER-G	•			•			•	•	•	_	_		4,0	1	
170550PEER-G	•			•			•	•	•	_	_		5,0	2	
170564PEER-G	•							•	•	_	_		6,4	2	
AOMT 170504PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,4	1	
170508PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,8	1	
170512PEER-H	•							•	•	_	_	_	1,2	1	
170516PEER-H	•			•				•	•	_	_	_	1,6	1	Abb. 2
AOET 170502PEER-F	•		_			_		_		_	_	_	0,2	1	, RE
170504PEER-F	•		_			_		_		_	_	_	0,4	1	
170505PEER-F	•		_			_		_		_	_	_	0,5	1	20 00 00 00 00 00 00 00 00 00 00 00 00 0
170508PEER-F	•		_			_		_		_	_	_	0,8	1	F
170510PEER-F	•		-			_		-		_	_	_	1,0	1	18.0
170512PEER-F	•		-			_		_		_	_	_	1,2	1	 10,0 3,2
170516PEER-F	•		-			_		-		_	_	_	1,6	1	
170520PEER-F	•		_			_		_		_	_	_	2,0	1	
170524PEER-F	•		_			_		_		_	_	_	2,4	1	İ
170530PEER-F	•		_			_		_		_	_	_	3,0	1	
170532PEER-F	•		_			_		_		_	_	_	3,2	1	
170540PEER-F	•		_			_		_		_	_	_	4,0	1	
170550PEER-F	•		_			_		_		_	_	_	5,0	2	
170564PEER-F	•					_		_			_	_	6,4	2	
AOET 170502PEFR-S	_	-	_	_	_	_	_	_	_	•	•	_	0,2	1	
170504PEFR-S	-	_	_	_	_	_	_	-	_	•	•	_	0,4	1	
170505PEFR-S	_	-	_	-	-	_	_	_	_	•	•	_	0,5	1	
170508PEFR-S	_	-	_	_	_	_	_	_	_	•	•	_	0,8	1	L: geringe Schnittkraft
170510PEFR-S	_	-	_	_	_	_	_	_	_	•	•	_	1,0	1	G: allgemeine Anwendung
170512PEFR-S	-	_	_	_	_	_	_	_	_	•	•	_	1,2	1	H: stabile Schneidkante F: Schlichten
170516PEFR-S	_	-	_	-	-	_	_	-	_	•	•	_	1,6	1	P: Hochpräzisionsbearbeitung
170520PEFR-S	_	-	_	_	_	_	_	_	_	•	•	_	2,0	1	S: Nichteisenmetalle
170524PEFR-S	_	-	_	_	-	_	_	_	_	•	•	_	2,4	1	
170530PEFR-S	-	-	_	-	_	_	-	_	_	•	•	_	3,0	1	
170532PEFR-S	_	-	_	_	_	-	_	_	_	•	•	_	3,2	1	
170540PEFR-S	-	-	_	-	_	_	-	_	_	•	•	_	4,0	1	
170550PEFR-S	_	-	_	_	_	_	_	_	_	•	•	_	5,0	2	
170564PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	6,4	2	<u> </u>

"Wave Mill" Serie **WEX** (F) - Typ

■ Fräskörper (F-Typ als Aufsteckfräser)

Bezeichnung				Anzahl d.	A I. I.					
Bezeichnung	Lager	DC	DCB	D2	KWW	KDP	LF	CBDP	Zähne	Abb.
WEX 1032 F	A	32	16	9	8,4	5,6	40	18	8	1
1040 F	A	40	16	11	8,4	5,6	40	18	10	1
1050 F	A	50	22	11	10,4	6,3	40	20	12	1
1063 F	A	63	22	11	10,4	6,3	40	20	14	1
WEX 2040 F	A	40	16	9	8,4	5,6	40	18	6	2
2050 F	A	50	22	11	10,4	6,3	40	20	7	2
2063 F	A	63	22	11	10,4	6,3	40	20	8	2
2080 F	A	80	27	13,5	12,4	7,0	50	25	10	2
WEX 2100 F		100	32	32	14,4	8,5	50	26	12	2
WEX 3040 F	A	40	16	9	8,4	5,6	40	18	4	3
3050 F	A	50	22	11	10,4	6,3	40	20	5	3
3063 F	A	63	22	11	10,4	6,3	40	20	6	3
3080 F	A	80	27	13,5	12,4	7,0	50	25	7	3
WEX 3100 F	A	100	32	32	14,4	8,5	50	26	8	3

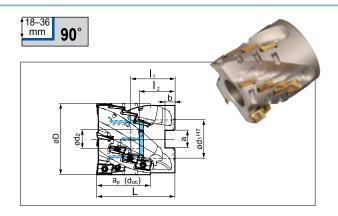
■ Schneidplatten für WEX1000 / 2000

						RE				
7,20 2,52	<i>†</i>	5°	7,00		12,00		_(3,58) 11°	
Anwendung		Besc	hicht	etes	Hartr		l	Hartmet.	DLC	
Hochgeschw./Leichtbearb.	P			K		M _S		K	N	
Allgemeine Anwendung		M	M	K		M _S	M _S		N	
Schruppen		M	M		K		M _S			1
Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	ACM200	ACM300	王	DL1000	Radius
AXMT 060204 PDER-L	•	A	A	A	A	A	A			0,4
060208 PDER-L	A	A	A	A	A	A	A			0,8
060212 PDER-L		A			0	A	A			1,2
AXMT 060204 PDER-G	A	A	A	0	A	A	A			0,4
060208 PDER-G	A	A	A	A	A	A	A			0,8
060212 PDER-G	0	A	A		A	A	A			1,2
AXMT 060204 PDER-H	0	A	A		A	A	A			0,4
060208 PDER-H	_	A	A		A	A	A			0,8
060212 PDER-H	0	A	<u> </u>		A	A	A			1,2
AXMT 123504 PEER-G	A	A	A	A	A			-	-	0,4
123508 PEER-G 123512 PEER-G	A	A	A	•	A			_	_	0,8
AXMT 123504 PEER-H	_	A	A	A	A			_	_	1,2
123508 PEER-H								_	_	0,4
123512 PEER-H	1							_	_	1,2
AXMT 123504 PEER-E				_		•	_			0,4
123508 PEER-E						1				0,4
123512 PEER-E						_	_	_	_	1,2
AXMT 123508 PEER-EH						_	_	_	_	0,8
AXMT 060202 PDFR-S	_	_	_	_	_	_	_	0	0	0,2
AXET 123502 PEFR-S	_	_	_	_	_	_	_	Ā	A	0,2
123504 PEFR-S	_	_	_	_	_	_	_	•	•	0,4
123508 PEFR-S	_	_	_	_	_	_	_	A	A	0,8

Ersatzteile

Schraube	Schl	üssel		
			(N·m)	Fräsertyp
BFTX 01804 IP	TRX 06 IP		0,5	WEX 1000 F
BFTX 0306 IP		TRDR 08 IP	2,0	WEX 2000 F
BFTX 0409 IP		TRDR 15 IP	3,0	WEX 3000 F

■ Schneidplatten für WEX3000


•											
RE 17,54 5,59											
Anwendung	I	Besc	hichte	etes	Hartr		l	Hartmet.	DLC		
Hochgeschw./Leichtbearb.	P			K		M _S		K	N		
Allgemeine Anwendung		M	M	K		M _S	M _S		N]	
Schruppen		M	M		K		M _S			1	
Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	ACM200	ACM300		JL 1000	Radius	
2020.0	ACI	ACI	ACI	ACI	ACI	AC	AC!	도	П	RE	
AXMT 170508 PEER-L	A	A	A	A	A			_	_	0,8	
AXMT 170504 PEER-G	A	A	A	A	A			-	_	0,4	
170508 PEER-G	A	A	\blacksquare	A	A			_	_	0,8	
170512 PEER-G	A		A	A	A			-	_	1,2	
170516 PEER-G	0	▲	A	A	A			_	_	1,6	
170520 PEER-G*	A	A	A	A	A			-	-	2,0	
170530 PEER-G*		A	_	_	_					3,0	
AXMT 170508 PEER-H	A		A	A	A			-	-	0,8	
170512 PEER-H	A	A	A	A	A			_	_	1,2	
AXMT 170504 PEER-E						A	A	-	_	0,4	
170508 PEER-E						A	A		_	0,8	
170512 PEER-E						A	A	-	_	1,2	
170516 PEER-E						A	A	_	_	1,6	
170520 PEER-E*						A	A	-	_	2,0	
170530 PEER-E*						A	A			3,0	
AXMT 170508 PEER-EH			A			A	A	_	_	0,8	
AXET 170502 PEFR-S	_	_	-	-	_	_	_		A	0,2	
170504 PEFR-S	_	-	_	_	-	-	-			0,4	
170508 PEFR-S	-			_	_	_			A	0,8	

- * Schneidkörper-Modifikation ist erforderlich.
- nicht möglich
- L geringe Schnittkraft
- G allg. Änwendung H stabile Schneidkante
- E weicher Schnitt für rostfreien Stahl
- EH verstärkte Ausführung für rostfreien Stahl
 S für Aluminium

■ Werkzeugbeschreibung

WEX	2	016	F
			
Fräser-	2000er	Fräser-	Aufsteck
bezeichnung	Serie	durchmesser	fräser

Walzenstirnfräser WRX (F) - Typ

■ Fräskörper (F-Typ als Aufsteckfräser)

Bezeichnung		Schnitt-		Abmessungen (mm)								Zahn-	Effek- tive
Bezeichhung	Lag	tiefe (a _p)	øD	ød ₁	ød ₂	а	b	l ₁	_	ı	Zähne	reihen	Zähne
WRX2040RH18F16		18	40	16	9	8,4	5,6	50	39	18	10	2	5
WRX2040RH36F16	•	36	40	16	9	8,4	5,6	55	44	18	16	4	4
WRX2050RH18F22		18	50	22	11	10,4	6,3	50	36	20	10	2	5
WRX2050RH36F22	•	36	50	22	11	10,4	6,3	55	41,5	20	16	4	4

■ Schneidplatten (wie für Wavemill WEX2000)

Anwendung Beschichtetes Hartmetall Hartmet DLC											
Anwendung	I	3esc	hicht	etes	Hartr	netal	I	Hartmet.	DLC		
Hochgeschw./Leichtbearb.	P			K		M _S		K	N		
Allgemeine Anwendung		Р		K		M _S	Ms		N		
Schruppen		Р	Р		K		M _S				
Pozoiobnung	ACP100	ACP200	ACP300	ACK200	ACK300	ACM200	ACM300		000	Radius	
Bezeichnung	ACF	ACF	ACF	Å	ACK	ACIV	ACIV	王	DL1000	RE	
AXMT 123504 PEER-G	A	A	A	A	A			-	_	0,4	
123508 PEER-G	▲	▲	A	A	A			-	-	0,8	
123512 PEER-G	A	A	A	A	A				_	1,2	
AXMT 123504 PEER-H	A	A	A	A	A			-	_	0,4	
123508 PEER-H	A	A	A	A	A			-	-	0,8	
123512 PEER-H	A	A	A	A	A				_	1,2	
AXMT 123504 PEER-E						A	A	_	_	0,4	
123508 PEER-E						A	A	-	-	0,8	
123512 PEER-E						A	A	-	-	1,2	
AXMT 123508 PEER-EH						A	A	_	_	0,8	
AXET 123502 PEFR-S	_	_	_	_	_	_	_		\blacktriangle	0,2	
123504 PEFR-S	_	_	_	-	-	-	-	A	A	0,4	
123508 PEFR-S	_	_	_		_	_			A	0,8	

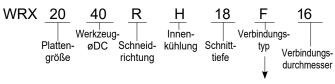
- nicht möglich
- L geringe Schnittkraft G allg. Anwendung H stabile Schneidkante
- E weicher Schnitt für rostfreien Stahl
- EH verstärkte Ausführung für rostfreien Stahl
 S für Aluminium

Ersatzteile

Schraube	Schlüssel		
		(N·m)	Fräsertyp
BFTX 0306 IP	TRDR 08 IP	2,0	WRX 2RHF
BFTX 0409 IP	TRDR 15 IP	3,0	WRX 3RHF

27–53 mm 90°

■ Fräskörper (F-Typ als Aufsteckfräser)


Bezeichnung		Schnitt-		Abmessungen (mm)								Zahn-	Effek-
Bezeichhung	Lag	tiefe (a _p)	øD	ød ₁	ød ₂	а	b	I ₁	I	1	Zähne	reihen	tive Zähne
WRX3050RH27F22		27	50	22	11	10	6,3	50	36	20	8	2	4
WRX3050RH53F22	•	53	50	22	11	10	6,3	70	56	20	12	4	3
WRX3063RH27F27		27	63	27	13,5	12	7	70	34	2	10	2	5
WRX3063RH53F27	•	53	63	27	13,5	12	7	70	54	2	16	4	4
WRX3080RH27F32		27	80	32	17	14	8	50	30	2	12	2	6
WRX3080RH53F32	•	53	80	32	17	14	8	85	63	2	20	4	5
WRX3100RH27F40		27	100	40	21	16	9,5	85	40	30	14	2	7
WRX3100RH53F40	•	53	100	40	21	16	9,5	85	59	30	24	4	6

■ Schneidplatten (wie für Wavemill WEX3000)

RE 17,54 5,59												
Anwendung		Besc	hicht	etes	Hartr	netal	l	Hartmet.	DLC]		
Hochgeschw./Leichtbearb.	Р			K		M _S		K	N	1		
Allgemeine Anwendung		₽	M	K		M _S	M _S		N	1		
Schruppen		M	M		K		M _S			1		
Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	ACM200	ACM300	Ŧ	DL 1000	Radius		
AXMT 170508 PEER-L	A	A	A	A	A			_	_	0,8		
AXMT 170504 PEER-G 170508 PEER-G	A	A	A	A	A			-	-	0,4 0,8		
170512 PEER-G	A	A	A	A	A			-	-	1,2		
170516 PEER-G	0	A	A	A	A			_	_	1,6		
170520 PEER-G*	A	A	A	A	A			-	-	2,0		
170530 PEER-G*	A	A	A	A	A			_	_	3,0		
AXMT 170508 PEER-H	A	A	A	A	A			-	-	0,8		
170512 PEER-H AXMT 170504 PEER-E	_	_	_	_	_			_	_	1,2		
170508 PEER-E						A		_	_	0,4 0,8		
170506 PEER-E									_	1,2		
170512 PEER-E						1		_	_	1,6		
170520 PEER-E*						<u> </u>		_	_	2,0		
170530 PEER-E*						A		_	_	3,0		
AXMT 170508 PEER-EH			A			A	A	_	_	0,8		
AXET 170502 PEFR-S	_	_	_	_	_	_	_	A	A	0,2		
170504 PEFR-S	-	_	_	-	_	-	-	A	A	0,4		
170508 PEFR-S * Schneidkörner-Modifikation				_	_	_				0,8		

* Schneidkörper-Modifikation ist erforderlich.

■ Werkzeugbeschreibung

E - Zylindrischer Schaft

W - Weldonschaft

F - Aufsteckfräser

MTIX 16000 - Typ

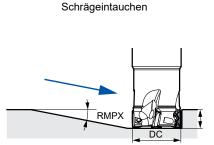
■ Allgemeine Merkmale

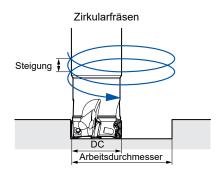
Prozesssichere hohe Standzeiten beim Schruppen von Titan Die Kombination aus dem hochzähen Werkstoff ACM300 und der optimierten Schneidkantenform führt zu einer stabilen und zuverlässigen Standzeit bei der Schruppbearbeitung von Titan.

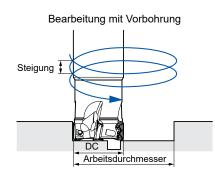
Einsetzbar bei der Bearbeitung von Strukturteilen der Luft- und Raumfahrtindustrie

Der MTIX-Fräser ist aufgrund der großen Auswahl an Eckenradien der Schneidplatten und dank des großen Eintauchwinkels für eine vielseitige Bearbeitung von Titan-Strukturteilen in der Luft- und Raumfahrtindustrie geeignet.

Zahlreiche Einsatzmöglichkeiten

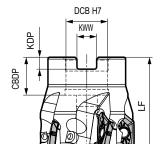

ISO	Sorte	Beschichtungsdicke (µm)	Merkmale
s	ACM300	3	Erreicht durch das hochfeste Hartmetallsubstrat und durch die absplitterungsbeständige Beschichtung eine hervorragende Stabilität bei der Bearbeitung von Titan.


■ Empfohlene Schnittbedingungen


Min. - Optimum - Max

	•	0 0			Willi Optillalli - Wax.
ISO	Material	Schnittgeschwindigkeit (m/min)	Vorschub (mm/Z)	a _p (mm)	Sorte
s	Titan	30 –60 –90	0,05 –0,10 –0,15	<13	ACM300

■ Obergrenzen beim Schrägeintauchen / Zirkularfräsen



We	rkzeuge	Schräg- eintauchen
DC Ø (mm)	Eckenradius (mm)	Max. Eintauch- winkel RMPX (°)
Ø 32	RE ≥ 5,0	8,4
Ø 32	RE ≤ 4,0	12,2
Ø 50	RE ≥ 5,0	3,6
Ø 50	RE ≤ 4,0	5,6
Ø 63	RE ≥ 5,0	2,5
ادہ ط ا	RE ≤ 4,0	3,9

We	erkzeuge		Zirkula	Bearbeitung mi	ung mit Vorbohrung		
DC Ø (mm)		Max. Bearbeitungs- durchmesser (mm)		Min. Bearbeitungs- durchmesser (mm)	0	Min. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)
Ø 32	4,0	55,3	13,0	55,2	13,0	45,9	3,0
W 32	0,8	61,3	13,0	56,3	13,0	45,9	2,9
Ø 50	4,0	91,6	11,2	91,6	11,2	81,9	2,8
טט ש	0,8	97,3	13,0	92,2	11,0	81,9	2,7
Ø 63	4,0	117,6	10,1	117,6	10,1	107,9	2,7
ט ש ט	0,8	123,3	11,7	118,2	9,9	107,9	2,6

13 mm 90°

Span-	Radial	-9° – -6°
winkel	Axial	8° – 14°

■ MTIX-Fräskörper (Aufsteckfräser)

Abmessungen (mm)

Platten-ra- dius RE	Bezeichnung	Lager	DC	DCB	LF	D2	KWW	KDP	CBDP	Anzahl Zähne	Gewicht (kg)
≤ 4,0	MTIX 16050RS05	•	50	22	50	11	10,4	6,3	20	5	0,33
	16063RS06	•	63	22	50	11	10,4	6,3	20	6	0,34
≥ 5.0	MTIX16050RS05-5,0	•	50	22	50	11	10,4	6,3	20	5	0,62
2 5,0	16063RS06-5,0	•	63	22	50	11	10,4	6,3	20	6	0,63

→ H69

Schneidplatten bitte separat bestellen.

Ersatzteile

	Schraub	е	Schlüssel	Handgriff	Schlüssel- bart	
Geeignete Fräser		(N)			Jan 1980	
MTIX 16050RS05(-5,0) 16063RS06(-5,0)	DETVO400ID	2.0		UD01015	TDD15ID	
16063RS06(-5,0)	DF I AU4U9IP	3,0	_	nr31015	TPB15IP	

■ Identifikation des Fräskörpers

MTIX

Fräser-

bezeichnung

16 Plattengröße

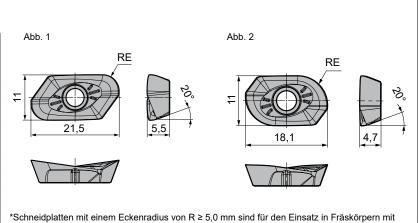
050 Frä-

messer

R ser-durchrichtung

Schneid- Metrisch

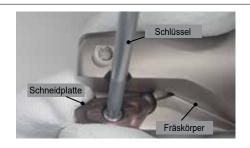
S


Anzahl Zähne

Abmessungen (mm)

05

■ Schneidplatten


Anwendung	Beschicht. Hartmetall			
Hochgeschw./ Leichtbearbeitung				
Allgemeine Anwendung	S			
Schruppen	S			
Bezeichnung	ACM300	RE (mm)	Abb.	Abb. 1
XOMT 160508PEER-E	•	0,8	1	
160512PEER-E	•	1,2	1	
160516PEER-E	•	1,6	1	21,5
160520PEER-E	•	2,0	1	
160530PEER-E	•	3,0	1	
160540PEER-E	•	4,0	1	
160550PEER-E	•	5,0	2	
160560PEER-E	•	6,0	2	*Schneidplatten mit einem Eckenr
160564PEER-E	•	6,35	2	dem Suffix "-5,0" vorgesehen.

MTIX 16000 - Typ

Vorsichtsmaßnahmen bei der Montage

- (1) Reinigen Sie den Plattensitz und die Kontaktteile.
- (2) Bringen Sie ausreichend Schmiermittel auf das Schraubengewinde und den Schraubenschaft auf, um ein Festsitzen zu vermeiden.
- (3) Während Sie die Platte fest gegen die Sitzfläche drücken, ziehen Sie die Schrauben mit dem mitgelieferten Schraubenschlüssel und dem vorgegebenen Drehmoment an.
- (4) Nach dem Anziehen ist darauf zu achten, dass keine Lücken zwischen den Oberflächen vorhanden sind.

Fräskörper	MTIX16		MTIX16	5,0
Schneidplatten- radius RE ≤ 4,0 mm		OK		Nicht geeignet. Die Schneid-platte hat keine Unterstützung durch den Fräskörper.
Schneidplatten- radius RE ≥ 4,0 mm	OK nach Modifikation	1,5 mm weniger Höhe		ОК
	Modifikationsverfahren: 1,5 mm von oben schleifen Fase 4,5 mm hinzufügen		1 2	

Schnittleistung

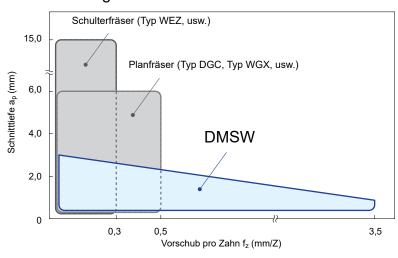
Nicht möglich

Wettbewerber

MTIX

HP Kühlung

70 bar


"Sumi Dual Mill" **DMSW** - Serie

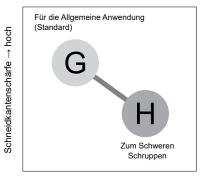
■ Allgemeine Eigenschaften

- Hohe Produktivität dank eines extrem großen Zeitspanvolumens sowie hohe Wirtschaftlichkeit, bedingt durch die stabile sechsschneidige Wendeschneidplatte.
- Durch die bogenförmige Schneide wird die Schnittkraft enorm reduziert.
 Dadurch sind Bahnvorschübe bis zu 3,5 mm/Zahn möglich.

■ Anwendungsbereich

 Spantiefen bis zu 3 mm möglich.
 Zahnvorschübe bis zu 3,5 mm/Zahn erhöhen die Produktivität.

■ Produktpalette


Тур	Bezeichnung				Durch	messer	bereich	(mm) /	Anzahl	Zähne				Form		
1	Bezeichnung	Ø35	Ø40	Ø42	Ø50	Ø52	Ø63	Ø66	Ø80	Ø85	Ø100	Ø125	Ø160	FOIIII		
Aufsteckfräser	DMSW 08000RS				4 5	4 5	4 5* 6*	5 6	6 8	6 8	6	8	10	6		
Aufstec	DMSW 08000R (Inch)				4 5		4 5 6		6 8		6	8	10	1 1 1		
Schaftfräser	DMSW 08000E	2	3		3		4					 	H8			
	DMSW 08000EL	2	3		3		4						110	b		
Modular	DMSW 08000M	2	3	3								\rightarrow	H9			

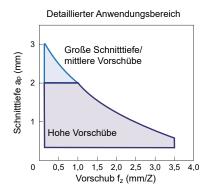
*Verschiedene Schaftdurchmesser auf Lager

■ Schneidkantenausführung

Material	P Stahl M Rostfreier Stahl K Grauguss	P Stahl M Rostfreier Stahl K Grauguss
Anwendung	Erstempfehlung für die allgemeine Bearbeitung	Bei unterbrochenem Schnitt und ungünstigen Verhältnissen
	Erstempfehlung für die allgemeine Bei unterbrochenem Schnitt un	
	G -Typ	H -Typ
Schneidkanten- ausführung		
Schneidkanten- geometrie		<u> </u>

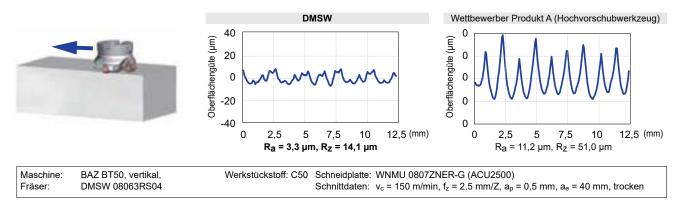
Auswahlhilfe Schneidkantenausführung

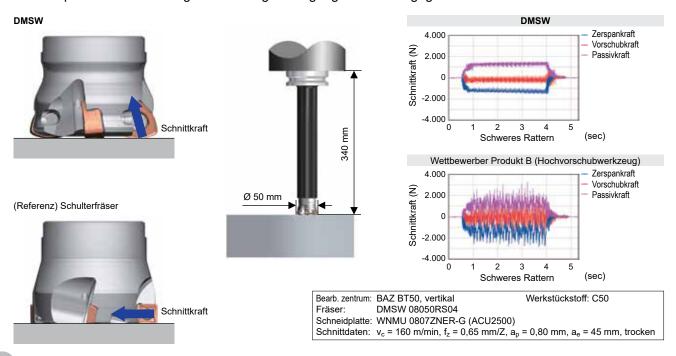
Stabilität der Schneidkante \rightarrow stark


"Sumi Dual Mill" DMSW - Serie

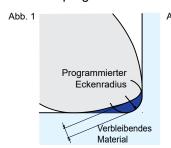
Merkmale

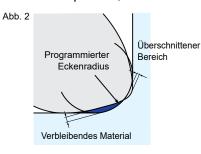
Ein geringer Spanquerschnitt bedingt durch einen kleinen Anstellwinkel ermöglicht hohe Zahnvorschübe




Wirtschaftliche, doppelseitige Wendeplatte mit 6 Schneiden. Stabile Plattendicke von 7 mm

Im Vergleich zu herkömmlichen Hochvorschubfräsern wird eine bessere Oberfläche erzeugt.

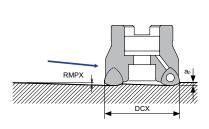

Durch einen Anstellwinkel von 15° werden die Radialkräfte reduziert.
 Die Zerspankraft wird bei langen Werkzeugauskragungen ideal ausgeglichen.



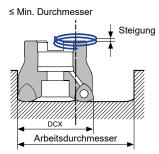
"Sumi Dual Mill" **DMSW** - Serie

■ Definiton des Eckenradius beim Programmieren

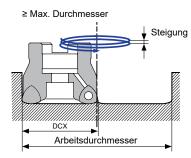
Auf Grund der Schneidplattenform weisen die Ecken verbleibendes Material gegenüber dem erwarteten Eckprofil auf. Wird der programmierte Eckenradius optimiert, muss der überschnittene Bereich beachtet werden.



Programmierter Eckenradius	Ungeschnittener Bereich	Überschnittener Bereich	Abb.
2,0	1,22	0	1
2,5	1,08	0	1
3,0	0,95	0	1
3,5	0,83	0,04	2

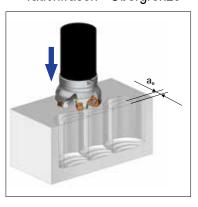

(mm)

■ Obergrenzen beim Schrägeintauchen / Bohrzirkularfräsen


Schrägeintauchen

Bohrzirkularfräsen

Unterhalb des min. Bearbeitungsdurchmessers: Zur Fräsermitte hin bleibt Restmaterial stehen.



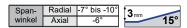
Unterhalb des max. Bearbeitungsdurchmessers: Außerhalb des schneidenden Berei-

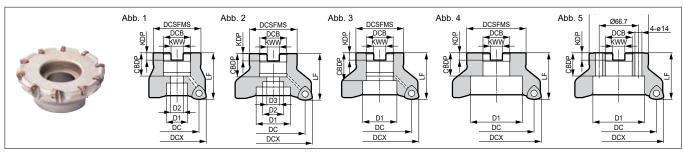
ches bleibt Restmaterial stehen.

Max. Durchm.	Schrägeintauchen			Bohrzirku	larfräsen		
DCX	Max. Eintauchwinkel	Max. Bearbeitungs-	Max. Steigung	Standard-	Max. Steigung	Min. Bearbeitungs-	Max. Steigung
(mm)	RPMX (°)	durchmesser (mm)	(mm/U)	durchmesser (mm)	(mm/U)	durchmesser (mm)	(mm/U)
35	0,5	069,3	1,3	53,5	0,5	052,0	0,5
40	0,8	079,3	2,0	63,4	1,0	060,2	0,5
42	0,8	083,3	2,0	67,4	1,0	063,9	0,5
50	1,4	099,3	2,0	83,3	2,0	079,1	1,0
52	1,4	103,3	2,0	87,3	2,0	082,8	1,0
63	1,2	125,3	2,0	109,3	2,0	103,6	1,0
66	1,2	131,3	2,0	115,3	2,0	109,4	1,0
80	1,2	159,3	2,0	143,2	2,0	134,0	1,0
85	1,2	169,3	2,0	153,2	2,0	144,0	1,0
100	0,8	199,3	2,0	183,2	2,0	174,0	1,0
125				Nicht empfohlen			
160				Nicht empfohlen			

■ Tauchfräsen - Obergrenze

■ Empfohlene Schnittdaten


Min.-Optimum-Max


ISO	Werkstückstoff	Härte	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/Z)
	Allgemeiner Stahl	< 280 HB	100–160–250	1,0–1,5–2,0
P	Legierter Stahl	< 280 HB	100–160–200	1,0–1,5–1,8
	Legierter Stahl	< 42 HRC	100–150–180	0,8-1,0-1,2
M	Rostfreier Stahl	-	80–120–150	0,8–1,0–1,2
K	Grauguss	-	100–160–250	1,0–1,5–1,8
Н	Gehärteter Stahl	< 52 HRC	80–100–120	0,3-0,5-0,7

Die oberen Angaben dienen als Richtwerte für den Einsatz auf BT50-Werkzeugmaschinen bei einer Schnitttiefe (ap) von 1,5 mm. Die empfohlenen Schnittdaten sind ggf. je nach Steifigkeit der Maschine und des Werkstücks zu ändern.

Max. a _e (mm)	Max. f _z (mm/Z)
10	0,2

"Sumi Dual Mill" DMSW 08000 R(S) Neu

■ Fräskörper (Aufsteckfräser)

Abmessungen (mm)

	Bezeichnung	Lager	DCX	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	D3	Anzahl Zähne	Gewicht (kg)	Abb.
	DMSW 08050RS04	•	50	33,4	41	40	22	10,4	6,3	20	16,7	11	_	4	0,25	1
	08050RS05	•	50	33,4	41	40	22	10,4	6,3	20	16,7	11	-	5	0,24	1
	08052RS04		52	35,4	41	40	22	10,4	6,3	20	17	11	_	4	0,27	1
	08052RS05		52	35,4	41	40	22	10,4	6,3	20	17	11	-	5	0,25	1
	08063RS04	•	63	46,4	50	40	22	10,4	6,3	20	18	11	_	4	0,46	1
	08063RS05	•	63	46,4	50	40	22	10,4	6,3	20	18	11	-	5	0,46	1
ے ا	08063RS06	•	63	46,4	50	40	22	10,4	6,3	20	18	11	_	6	0,44	1
isc	08063RS05-27	•	63	46,4	50	50	27	12,4	7	22	20	14	_	5	0,55	1
Metrisch	08063RS06-27	•	63	46,4	50	50	27	12,4	7	22	20	14	_	6	0,53	1
≥	08066RS05-27		66	49,4	50	50	27	12,4	7	22	20	14	_	5	0,60	1
	08066RS06-27		66	49,4	50	50	27	12,4	7	22	20	14	_	6	0,58	1
	08080RS06	•	*80	63,3	55	50	27	12,4	7	22	20	14	_	6	0,88	1
	08080RS08	•	*80	63,3	55	50	27	12,4	7	22	20	14	_	8	0,84	1
	08100RS06	•	100	83,3	70	50	32	14,4	8	32	46	_	_	6	1,29	3
	08125RS08	•	125	108,3	80	63	40	16,4	9	29	52	29	_	8	2,41	1
	08160RS10	•	160	143,3	130	63	40	16,4	9	29	90	_	_	10	4,73	5
	DMSW 08050R04	0	50	33,4	41	40	22,225	8,4	5	20	16,7	11	-	4	0,25	1
	08050R05	0	50	33,4	41	40	22,225	8,4	5	20	16,7	11	-	5	0,24	1
	08063R04	0	63	46,4	50	40	22,225	8,4	5	20	18	11	-	4	0,46	1
	08063R05	0	63	46,4	50	40	22,225	8,4	5	20	18	11	-	5	0,46	1
Inch	08063R06	0	63	46,4	50	40	22,225	8,4	5	20	18	11	-	6	0,44	1
=	08080R06	0	*80	63,3	70	63	31,75	12,7	8	32	27	18	-	6	1,32	1
	08080R08	0	*80	63,3	70	63	31,75	12,7	8	32	27	18	-	8	1,28	1
	08100R06	0	*100	83,3	70	63	31,75	12,7	8	32	46	27	18	6	1,75	2
	08125R08	0	125	108,3	80	63	38,1	15,9	10	35,5	55	30	_	8	2,55	1
	08160R10	O	160	143,3	100	63	50,8	19,1	11	38	72	_	-	10	4,18	4

Die Schneidplatten werden separat verkauft. Überprüfen Sie bei der Auswahl des Fräsers die Größe der Aufnahme (DCB).

* Bitte nutzen Sie die hexagonale Klemmschraube JIS B1176 zur Befestigung der Fräser Ø 80 mm, Ø 85 mm und Ø 100 mm auf der Aufnahme. (Ø 80 mm: M12x30 bis 35 mm, Ø 100 mm: M16x40x45 mm)

Ersatzteile

	Schraub	е	Schlüssel	Handgriff	Schlüs- selbit
Geeignete Fräser		(N·m)		Ø	A
DMSW 08160R(S)10 Weitere siehe oben	DETV0512ID	5 O	TRDR20IP	-	-
Weitere siehe oben	DE I VOSTSIE	5,0	_	HPL2025	TRB20IP

■ Identifikation des Fräskörpers

DMSW	80	063	R	S	05 -	27
Fräser- bezeichnung	Platten- größe	Frä- ser-durch- messer		Metrisch	Anzahl Zähne	Einbau- größe

■ Empfohlene Schnittbedingungen

→ G.65

■ Wendeschneidplatten

Abmessungen (mm)

-										5 (′
Anwendung	Bes	schich	tetes I	etall				1			
Hochgeschw./ Leichtbearbeitung		P		K							
Allgemeine Anwendung	K SM	P	P	K	K						
Schruppen	k SM		P		K					Abb. 1	
Bezeichnung	ACU2500	ACP2000	ACP3000	ACK2000	ACK3000	IC	S	RE	Abb.	RE	
WNMU 0807ZNER-G	•	•	•	•	•	13	7	1,6	1	<u>_S</u> _	
WNMU 0807ZNER-H	•	•	•			13	7	1,6	1		

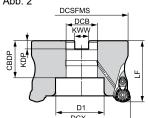
"Metal Slash"- Planfräser MSX - Typ

Für die Bearbeitung mit hohen Vorschüben von Stahl, Grauguss und Gesenkstahl

DCSFMS

D1

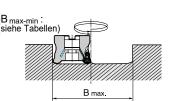
Abb. 1



(MSX 12000 □□)

(MSX 14000 □□)

→ H10-13


Fräskörper

<u> </u>															
Bezeichnung	Lagor				Abmes	sungen	(mm)				Anzahl der	fräsen	Eintauch- winkel	Gewicht	Abb.
bezeichlidig	Lager	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2				(Kg)) 755.
MSX 08040 RS	•	40	37	45	16	8,4	5,6	18	13,5	9	4	65–78	1°30'	0,2	1
MSX 12050 RS	•	50	47	50	22	10,4	6,3	20	18	11	4	78–99	2°30'	0,3	1
12052 RS	•	52	47	50	22	10,4	6,3	20	18	11	4	82–103	2°00'	0,3	1
12063 RS	•	63	60	50	22	10,4	6,3	20	18	11	5	104–125	1°30'	0,4	1
12066 RS	•	66	60	63	27	12,4	7,0	25	20	13,5	5	110–131	1°00'	0,4	1
MSX 14050 RS	•	50	47	50	22	10,4	6,3	20	17	11	3	73–98	3°30'	0,3	1
14063 RS	•	63	60	50	22	10,4	6,3	20	18	11	4	99–124	2°00'	0,6	1
14066 RS	•	66	60	63	27	12,4	7,0	25	13,5	20	4	107–132	2°00'	0,7	1
14080 RS	•	80	76	63	27	12,4	7,0	25	13,5	20	5	133–158	1°30'	1,2	1
MSX 14100 RS	•	100	96	63	32	14,4	8,5	32	-	44	6	173–198	1°00'	1,8	2

Schrägeintauchen α_{max}: (siehe Tabellen)

■ Wendeschneidplatten

■ Empfohlene Schnittbedingungen

Schnitttiefe	: a _p	(m
Vorsub	: f ₂	(m

IC S								
Anwendung	Hartn	netall,	besch	ichtet				
Hochgeschw./ Leichtbearb.			M					
Allgemeine Anwendung	PM	PM	M					
Schruppen	PM	PM		KH				
Bezeichnung	ACP200	ACP300	ACK200	ACK300	Abme	ssunger	(mm)	
Bezeichhang	ACF	ACF	ğ	Ą	IC	S	RE	
WDMT 0804 ZDTR	•	•		•	8,5	4,0	2,0	
0804 ZDTR-H	•	•	0	•	0,5	4,0	2,0	
WDMT 1205 ZDTR	•	•		•	12	5.0	2,0	
1205 ZDTR-H	•	•	0	•	12	3,0	2,0	
WDMT 1406 ZDTR	•	•	0	•	14	6.0	2,0	
1406 ZDTR-H	•	•		•	14	0,0	2,0	

ı	1100 20 11111	_
	ZDTR-H: verstärkte Schneidk	ante

■ Ersatzteile

L ilipioi		efe	: a _p : f _z	(mm	ı) ı/Zahr	n)			
Werkstück-	Hartmetall-	Schnitt-	WSP	ø	40	ø 50–66		ø 80–100	
stoff	sorte	geschwindigkeit v _c (m/min)	KatNr.	ap	fz	ap	fz	ap	fz
Aller Chalai			WDMT 0804	1,0	1,2	_	_	_	_
Allg. Stahl	ACP200	100- 150 -200	WDMT 1205	_	_	1,2	1,4	_	_
(unter HB200)			WDMT 1406	_	_	1,5	1,5	1,5	1,5
I a mia mta n Otalal			WDMT 0804	0,8	1,2	_	-	-	-
Legierter Stahl (unter HRC45)	ACP200	80 -130 -180	WDMT 1205	-	_	1,0	1,4	_	_
(uniter fixC45)			WDMT 1406	_	_	1,3	1,5	1,3	1,5
Dootfraine Ctabl			WDMT 0804	1,0	0,8	_	_	_	_
Rostfreier Stahl (X5CRNI1810)	ACP300	80 -120 -150	WDMT 1205	_	_	1,2	1,2	-	-
(XOCKINITOTU)			WDMT 1406	_	_	1,5	1,3	1,5	1,3
0			WDMT 0804	1,0	1,4	_	-	-	-
Gusseisen	ACK300	100- 150 -200	WDMT 1205	_	_	1,2	1,5	_	_
GG, GGG			WDMT 1406	_	_	1,5	1,8	1,5	1,8
O-b=w-4 C4-b1			WDMT 0804	0,5	0,8	_	_	_	_
Gehärteter Stahl	ACK300	40- 80 -100	WDMT 1205	-	_	0,6	1,0	-	-
(unter HRC50)			WDMT 1406	_	_	1,0	1,2	1,0	1,2
Die oben aufge	führten S	Schnittbeding	ıngen müsse	n ggf	an M	laschii	nentyr	und/	oder

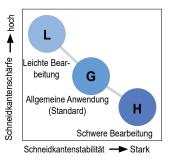
Werkstückstabilität angepasst werden.

Die oben aufgeführten Zahlen sind Richwerte bei dem Gebrauch von BT50-Maschinenwerkzeugen.

Plattenschraube	Schlüssel	Spannfinger	C-Ring	Klemmschraube	Geeignete Fräser
			D		

Plattenschrau	ıbe	Schlüssel	Spannfinger	C-Ring	Klemmschraube	Geeignete Fräser	B
	(N-m)			9			
BFTX 0306 IP	2,0	TRDR 08 IP	CCH 3,5	CR 03	BFTX 03510 IP 08	MSX 08000RS	ALC: S
BFTX 0409 IP	3,0	TRDR 15 IP	CCH 3,5	CR 03	BFTX 03510 IP 15	MSX 12000RS	
BFTX 0511 IP	5,0	TRDR 20 IP	CCH 4,5	CR 03	BFTX 04513 IP 20	MSX 14000RS	

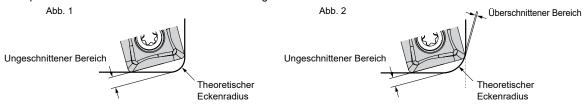
"Wave Mill"- Serie WFXH - Typ


■ Allgemeine Merkmale

Der WaveMill WFXH-Typ ist ein hocheffizienter Mehrzweckfräser mit Wendeschneidplatten der WFX-Serie zum Schruppen mit hohem Vorschub sowie für eine Vielzahl an Prozessen.

■ Eigenschaften

Stabiler, hocheffizienter Fräser mit überragender Schneidkantenschärfe. Geeignet für verschiedene Anwendungen (Schrägeintauchen und Zirkularfräsen). Nutzt die Wendeschneidplatten der WFX-Serie.

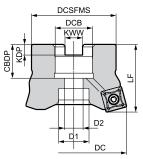

■ Schneidkantenausführung

Werkstückstoff	P M K	Stahl, rostfreier	Stahl, Grauguss	N Aluminium
	L	G	Н	s
Schneidkanten- ausführung	0	0		
Leistung	Niedrige Schnittkraft	Allgemeine Anwendung	Stabile Schneidkante	Scharfe Schneidkante
Schneidkanten- geometrie	20°	15°	10°	
Anwendungs- bereich	Leichte Bearbeitung, Fräsen in labilen Verhältnissen, weniger Gratbildung	Hauptspanbrecher allgemeines Fräsen, unterbrochener Schnitt	Schwere Bearbeitung, unterbr. Schnitt u. stabile Verhältnisse bei härteren Materialien	Aluminiumlegierung und Nichteisenmetalle

■ Hinweise zum Schlichten - Verbleibendes Material (im Profil)

Aufgrund der Schneidplattenform werden aktuell bearbeitete Profile ungeschnittene und überschnittene Bereiche in den Ecken aufweisen.

Fräskörper - WFXH 08000 RS

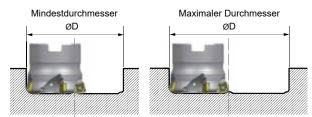

Theoretischer	SOM.	T 08○○04-□		SOM	T 080008-□		SOMT 08○○12-□			
Ecken R	Ungeschnittener Bereich	Überschnittener Bereich	Form	Ungeschnittener Bereich	Überschnittener Abschnitt	Form	Ungeschnittener Abschnitt	Überschnittener Bereich	Form	
2,0	1,41	0	Abb. 1	1,30	0	Abb. 1	1,21	0	Abb. 1	
2,5	1,30	0,02	Abb. 2	1,19	0,01	Abb. 2	1,09	0	Abb. 2	
3,0	-	-	-	-	-	-	0,98	0,05	Abb. 2	

Fräskörper - WFXH 12000 RS

Theoretischer	tischer SOMT 12 004- 🗆			SOMT 12 ○○08-□			SOMT 12 ○ ○ 12 - □			SOMT 12 ○ ○ 16- □		
Ecken R	Ungeschnittener Abschnitt	Überschnittener Bereich	Form	Ungeschnittener Abschnitt	Überschnittener Abschnitt	Form	Ungeschnittener Abschnitt	Überschnittener Bereich	Form	Ungeschnittener Abschnitt	Überschnittener Bereich	Form
2,0	2,58	0	Abb. 1	2,48	0	Abb. 1	2,37	0	Abb. 1	2,25	0	Abb. 1
2,5	2,47	0	Abb. 1	2,37	0	Abb. 1	2,25	0	Abb. 1	2,14	0	Abb. 1
3,0	2,36	0	Abb. 1	2,26	0	Abb. 1	2,14	0	Abb. 1	2,11	0	Abb. 1
3,5	2,24	0,01	Abb. 2	2,14	0	Abb. 1	2,03	0	Abb. 1	1,91	0	Abb. 1
4,0	-	-	-	2,03	0,04	Abb. 2	1,91	0,03	Abb. 2	1,8	0,01	Abb. 2

■ Minimaler Arbeitsdurchmesser

Der Minimale Arbeitsdurchmesser (DCN) hängt von der verwendeten Wendeschneidplatte ab. Für den Typ WFXH wird die Verwendung einer Wendeschneidplatte mit großem Eckenradius empfohlen.



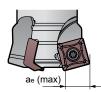
Bezeichnung	DC	DCN basiert	DCN basiert auf dem Radius der Wendeschneidplatte							
Dezeloillung	DC	RE0,4	RE0,8	RE1,2	RE1,6					
WFXH 08025 M12Z2	25	10,4	10,9	11,5	-					
08032 M12Z3	32	17,4	17,9	18,5	-					
WFXH 08040 RS	40	25,4	25,9	26,5	-					
08050 RS	50	35,4	35,9	36,5	-					
08050 RSZ6	50	35,4	35,9	36,5	-					
08063 RS	63	48,4	48,9	49,5	-					
WFXH 12040 M12Z3	40	16,6	17,1	17,5	18,1					
WFXH 12050 RS	50	26,6	27,2	27,7	28,2					
12063 RS	63	39,5	40,0	40,4	41,1					

"Wave Mill"- Serie WFXH - Typ

■ Schrägeintauchen und Zirkularfräsen

Mindestdurchmesser und Maximaler Durchmesser

		Zirkulo	rfräsen	Cohrägointauchon	
Bezeichnung	DC	Zirkula	masen	Schrägeintauchen	
		Min.	Max.	Max. Eintauchwinkel	
	25	35	49	1°30'	
	32	49	63	0°30'	
SOMT 08○○04-□	40	65	79	0°30'	
	50	Nicht möglich	Nicht möglich	0°30'	
	63	Nicht möglich	Nicht möglich	Nicht möglich	
	25	35	48	3°	
	32	49	62	1°30'	
SOMT 08○○08-□	40	65	78	1°	
	50	85	98	0°30'	
	63	111	124	0°30'	
	25	34	47	4°30'	
	32	48	61	2°30'	
SOMT 080012-□	40	64	77	1°30'	
	50	84	97	1°	



Eintauchwinkel

Bezeichnung	DC	Zirkula	rfräsen	Schrägeintauchen		
		Min.	Max.	Max. Eintauchwinkel		
	40	56	79	1°		
SOMT 12 ○ ○ 04- □	50	76	99	0°30'		
	63	Nicht möglich	Nicht möglich	Nicht möglich		
	40	56	78	1°30'		
SOMT 12 ○ ○ 08- □	50	76	98	1°		
	63	102	124	0°30'		
	40	55	77	2°30'		
SOMT 12 ○ ○ 12- □	50	75	97	1°30'		
	63	101	123	1°		
	40	55	76	3°30'		
SOMT 12 ○ ○ 16-□	50	75	96	2°		
	63	101	122	1°30'		

■ Maximale Schnittbreite beim Tauchfräsen

110

Kat. Nr.	Max. Schnittbreite ae (max)
SOMT08	6 mm
SOMT12	10 mm

123

0°30'

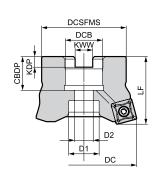
Verringern Sie die Vorschubgeschwindigkeit beim Tauchfräsen.

■ Empfohlene Schnittbedingungen

63

				Schnittgeschw.		Ø	25	Ø	32	Ø	40	Ø	50	Ø 63	
IS	0	Werkstückstoff	Sorte	(vc (m/min)	Bezeichn.	a _p (mm)	fz (mm/Z)	a _p (mm)	fz (mm/Z)	a _p (mm)	fz (mm/Z)	a _p (mm)	fz (mm/Z)	a _p (mm)	fz (mm/Z)
		Stahl	ACP200	100 - 150 - 200	SOMT08	0,8	0,8	0,8	0,8	-	-	0,8	0,8	0,8	0,8
١,	5	<200HB	ACI 200	100 - 130 - 200	SOMT12	-	-	-	-	1,0	1,0	1,0	1,0	1,0	1,0
ľ		Legierter Stahl	ACP200	80 - 130 - 180	SOMT08	0,7	0,8	0,7	0,8	-	-	0,7	0,8	0,7	0,8
		<hrc45< td=""><td>ACF200</td><td>00 - 130 - 160</td><td>SOMT12</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0,8</td><td>1,0</td><td>0,8</td><td>1,0</td><td>0,8</td><td>1,0</td></hrc45<>	ACF200	00 - 130 - 160	SOMT12	-	-	-	-	0,8	1,0	0,8	1,0	0,8	1,0
L	,	Rostfreier Stahl	ACM300	80 - 120 - 150	SOMT08	0,8	0,7	0,8	0,7	-	-	0,8	0,7	0,8	0,7
ľ	`	(z. B. X5CrNiS18 10)	ACIVISOU	80 - 120 - 130	SOMT12	-	-	-	-	1,0	0,8	1,0	0,8	1,0	0,8
	,	Gusseisen	ACK300	100 - 150 - 200	SOMT08	0,8	1,0	0,8	1,0	-	-	0,8	1,0	0,8	1,0
I.	W	FC, FCD	ACKSOO	100 - 150 - 200	SOMT12	-	-	-	-	1,0	1,2	1,0	1,2	1,0	1,2
	,	Gehärteter Stahl	hl ACK300 40 - 80	40 - 80 - 100	SOMT08	0,5	0,5	0,5	0,5	-	-	0,5	0,5	0,5	0,5
		<hrc50< td=""><td>ACINOU</td><td>40 - 60 - 100</td><td>SOMT12</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0,6</td><td>0,8</td><td>0,6</td><td>0,8</td><td>0,6</td><td>0,8</td></hrc50<>	ACINOU	40 - 60 - 100	SOMT12	-	-	-	-	0,6	0,8	0,6	0,8	0,6	0,8

Die oben empfohlenen Schnittbedingungen bedürfen einer Anpassung, je nach Maschinen- und Bauteil-/Aufspannstabilität. Die oben aufgeführten Werte sind Richtlinien bei Gebrauch einer BT50-Aufnahme.


Die oben aufgeführten Bedingungen gehen von einer Werkzeug-Auskraglänge von L/D ≤ 3 (d.h. die Auskraglänge entspricht dreimal dem Nenndurchmesser). Wenn die Auskraglänge L/D ≥ 3 und L/D ≤ 5 ist, sollten die Einstellungen auf 70 % bis 80 % der oben angegebenen Schnittbedingungen angepasst werden (d.h. ap und fz).

Wenn die Auskraglänge L/D > 5 und L/D \leq 8 ist, sollten die Einstellungen auf 50 % bis 60 % der oben angegebenen Schnittbedingungen angepasst werden (d.h. a_p und f_z).

Hochleistungsbearbeitung von Stahl, rostfreiem Stahl, Gesenkstahl und Nichteisenmetallen

■ Fräskörper - WFXH08000RS

Bezeichnung	Logor		Anzahl	Gewicht								
Dezeloillung	Lager	DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)
WFXH 08040 RS	0	40	33	40	16	8,4	5,6	18	14	9	4	0,2
08050 RS	0	50	41	40	22	10,4	6,3	20	18	11	5	0,3
08050 RSZ6	0	50	41	40	22	10,4	6,3	20	18	11	6	0,3
08063 RS	0	63	50	40	22	10,4	6,3	20	18	11	6	0,5

→ H15

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Bezeichnungsschlüssel

WFX	H	_08	040	_R_	_S_	<u>- Z6</u>
Fräser- bezeichn.	Hocheffizientes Fräsen	Platten- größe	Fräser- durchmesser		Metrisch	Feine Zahnteilun (Anzahl der Zähne)

■ Fräsplatten

Abmessungen (mm)

	<u> </u>															
	Anwendung			Ве	schic	htete	s Ha	rtme	tall				DLC	Cermet		
Hochge	schw./ Leichtbearb.	K SM	₹ M	Р			K	K		M _S		K				
Allgeme	ine Anwendung	K SM	₹ M		PM	PM	K	K		M _S	M _S		N	PM		
Schrupp	pen	K _S M			PM	PM			K		M _S		N	Р		
	Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCU2000	ACK200	ACK300	ACM200	ACM300	Ŧ	DL1000	T4500A	RE	
SOMT	080304 PZER L	•	0	•	•	0	0	0	•	•	•	_	_		0,4	RE
	080308 PZER L	•	0	0	•	•	0	•	•	•	•	_	_		0,8	
SOMT	080304 PZER G	•	0	•	•	•	0	•	•	•	•	_	_		0,4	
	080308 PZER G	•	0	•	•	•	0	•	•	•	•	-	_		0,8	
	080312 PZER G	•		•	•	•			•	•	•	–	-		1,2	8,0 3,175
SOMT	080308 PZER H	•	0	•	•	•	0	•	•	•	•	_	_		0,8	
	080312 PZER H	•		•	•	•		0	•		•	-	_		1,2	
SOET	080304 PZER G	•				0			•	•		-	_	0	0,4	
	080308 PZER G	•			0			•			•	-	_	0	0,8	
	080312 PZER G	•			•	0			•	0	0	_	_	0	1,2	
SOET	080302 PZFR S*	-	-	-	-	_	_	_	_	-	_	•	•		0,2	1
	080304 PZFR S*	_	_	_	_	_	_	_	_	_	_	•	•		0,4	
	080308 PZFR S*	_	_	_	_	_	_	_	_	_	_	•	•		0,8	

^{*} Für eine höhere Stabilität der Schneide in Nichteisenmetallen verwenden Sie die G-Ausführung mit der Sorte ACK300.

■ Ersatzteile

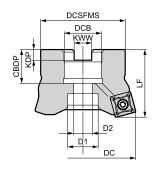
Schraube	9	Schlüssel
	(N·m)	
BFTX0306IP	2,0	TRDR08IP

■ Empfohlene Schnittbedingungen

→ **G**69

■ Hinweise zur Programmierung und Abmessungen

→ G68



WFXH 12000 **RS**

Hochleistungsbearbeitung von Stahl, rostfreiem Stahl, Gesenkstahl und Nichteisenmetallen

Span-winkel Axial 6° \$\frac{12,5 \text{ mm}}{15^\circ}\$

■ Fräskörper - WFXH12000RS

Bezeichnung	Lager		Abmessungen (mm)										
Dezeichhung		DC	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Zähne	(kg)	
WFXH 12050 RS	O	50	41	40	22	10,4	6,3	20	18	11	4	0,3	
12063 RS	0	63	50	40	22	10,4	6,3	20	18	11	5	0,4	

→ H15

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Bezeichnungsschlüssel

WFX	H	_12_	050	_R_	_S_
Fräser-	Hocheffizientes	Platten-	Fräser-	Schneid-	Metrisch
bezeichn.	Fräsen	aröße	durchmesser	richtuna	

■ Fräsplatten

Abmessungen (mm)

Anwendung			Ве	schic	htete	s Ha	rtme	tall			Hartmet.	DLC	Cermet		
Hochgeschw. / Leichtbearb.	₩	KM	Р			K	K		M _S		KN				
Allgemeine Anwendung	₿	KM		PM	PM	K	K		M _S	M _S		N	P _M		
Schruppen	₩			PM	PM			K		M _S		N	Р		
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCU2000	ACK200	ACK300	ACM200	ACM300	H1	DL1000	T4500A	RE	RE_
SOMT 120408 PDER L	•	0	•	•	•	O	•	•	•	•	_	_		0,8	
SOMT 120404 PDER G	•	0	0	•	•	0	•	•	•	•	_	_		0,4	
120408 PDER G	•	0	•	•	•	0	•	•	•	•	-	_	0	0,8	12,7
120412 PDER G	•		0	•	0		•	0	0	•	_	_		1,2	12,7
120416 PDER G	•		•	•	•		O	O	O		ı	_		1,6	
SOMT 120408 PDER H	•	0	•	•	•	0	•	•	•	•	_	_		0,8	
SOET 120408 PDFR S*	_	_		_	_	_	_	_	_	_	•	•		0,8	

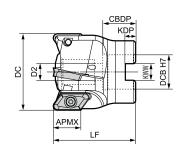
^{*} Für eine höhere Stabilität der Schneide in Nichteisenmetallen verwenden Sie die G-Ausführung mit der Sorte ACK300.

■ Ersatzteile

Schraube	:	Schlüsseö
	(N-m)	P
BFTX03512IP	3,0	TRDR15IP

■ Empfohlene Schnittbedingungen

→ **G**69


■ Hinweise zur Programmierung und Abmessungen → G68

"Wave Mill" - Serie WAX 3000 RS

(Aufsteckfräser)

■ Fräskörper

(Für Schneidplatten mit Eckenradius ≤ 3,2 mm)

— · · · · · · · · · · · · · · · · · · ·	•	•		•						
Dazaiahnung	Logor				Zähne-	Gewicht				
Bezeichnung	Lager	DC	DCB	LF	D2	KWW	KDP	CBDP	zahl	(kg)
WAX 3050 RS-3.2	•	50	22	50	11	10,4	6.3	21	4	0,34
3063 RS-3.2	•	63	22	50	11	10,4	6.3	21	5	0,6
3080 RS-3.2	•	80	27	50	13,5	12,4	7	23	5	1,0
WAX 3100 RS-3.2	•	100	32	63	18	14,4	8	26	6	2,2
3125 RS-3.2	•	125	40	63	22	16,4	9	29	7	3,5

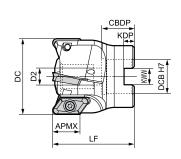
■ Fräskörper

(Für Schneidplatten mit Eckenradius ≥ 4,0 mm)

Pozojohnung	Logor		Abmessungen (mm)							
Bezeichnung	Lager	DC	DCB	LF	D2	KWW	KDP	CBDP	zahl	(kg)
WAX 3050 RS-4.0	•	50	22	50	11	10,4	6.3	21	4	0,34
3063 RS-4.0	•	63	22	50	11	10,4	6.3	21	4	0,6
3080 RS-4.0	•	80	27	50	13,5	12,4	7	23	5	1,0
WAX 3100 RS-4.0	0	100	32	63	18	14,4	8	26	6	2,2
3125 RS-4.0	•	125	40	63	22	16,4	9	29	7	3,5

■ Platten für den WAX 3000 Typ

			71					
Anwendung	DLC beschichtet	Hartmetall						
Hochgeschw. / Leichtbearbeit.	KN	N						
Allgemeine Anwendung		N						
Schruppen								
Pozoiobnung	DL1000	H1		Α	bmessur	ngen (mr	n)	
Bezeichnung	DL 1000	П	APMX	INSL	BS	RE	S	D1
AECT 160404 PEFRA	•	•	18	16,4	1,4	0,4	5	4,4
160408 PEFRA	•	•	18	16,4	1,0	0,8	5	4,4
160412 PEFRA	•	•	18	16,4	0,6	1,2	5	4,4
160416 PEFRA	•	•	17,5	16,4	0,5	1,6	5	4,4
160420 PEFRA	•	•	17,5	16,4	0,5	2,0	5	4,4
160430 PEFRA	•	•	17	16,4	0,7	3,0	5	4,4
160432 PEFRA	•	•	17	16,4	0,5	3,2	5	4,4
AECT 160440 PRFRA	•	•	16,5	16,4	0,5	4,0	5	4,4
160450 PEFRA	•	•	16	16,4	0,4	5,0	5	4,4


Ersatzteile

Schraube	Schlüssel	
3,0 🕅		Einsetzbarer Fräser
BFTX 0408	TRD 15	Ø 50 – Ø 125

"Wave Mill" - Serie WAX 4000 RS

(Aufsteckfräser)

Fräskörper (Für Schneidplatten mit Eckenradius ≤ 3,2 mm)

г	Dozeichnung Loger			Abmessungen (mm)							
	Bezeichnung	Lager	DC	DCB	LF	D2	KWW	KDP	CBDP	zahl	(kg)
WAX	4050RS-3.2		50	16	50	9	8,4	5,6	18	2	0,37
	4063RS-3.2		63	22	50	11	10,4	6,3	21	3	0,54
	4080RS-3.2		80	27	50	13,5	12,4	7	23	4	0,81
WAX	4100RS-3.2		100	32	63	18	14,4	8	26	5	1,7
	4125RS-3.2		125	40	63	22	16,4	9	29	6	2,6

Fräskörper (Für Schneidplatten mit Eckenradius ≥ 4,0 mm)

	Pozoiobnung	Logor		Abmessungen (mm)							
	Bezeichnung	Lager	DC	DCB	LF	D2	KWW	KDP	CBDP	zahl	(kg)
WAX	4050RS-4.0		50	16	50	9	8,4	5,6	18	2	0,37
	4063RS-4.0		63	22	50	11	10,4	6,3	21	3	0,54
	4080RS-4.0		80	27	50	13,5	12,4	7	23	4	0,81
WAX	4100RS-4.0		100	32	63	18	14,4	8	26	5	1,7
	4125RS-4.0		125	40	63	22	16,4	9	29	6	2,6

■ Platten für den WAX 4000 Typ

			<i>7</i> 1					
Anwendung	DLC beschichtet	Hartmetall						
Hochgeschw. / Leichtbearbeit.	KN	N						
Allgemeine Anwendung		N						
Schruppen								
Rozoichnung	DL1000	H1		Α	bmessur	ngen (mr	n)	
Bezeichnung	DL 1000	П	APMX	INSL	BS	RE	S	D1
AECT 220604 PEFRA			24	21,8	1,5	0,4	6,35	6
220608 PEFRA			24	21,8	1,2	0,8	6,35	6
220612 PEFRA			24	21,8	0,8	1,2	6,35	6
220616 PEFRA			24	21,8	0,4	1,6	6,35	6
220620 PEFRA			24	21,8	0,5	2,0	6,35	6
220630 PEFRA			23	21,8	0,6	3,0	6,35	6
220632 PEFRA			23	21,8	0,4	3,2	6,35	6
AECT 220640 PRFRA			22	21,8	1,2	4,0	6,35	6
220650 PEFRA			22	21,8	0,4	5,0	6,35	6

■ Ersatzteile

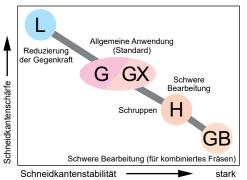
Schraube	Schlüssel	
5,0 🕅		Einsetzbarer Fräser
BFTX0511N	TRD20	Ø 50 – Ø 125

Alnex ANX - Serie

■ Eigenschaften

- Drastisch verkürzte Einstellzeit des Planlaufs
 Die Schraubverbindungen ermöglichen und vereinfachen die sehr leichte Feinjustierung.
- Direkte Kühlmittelzufuhr durch den Schneideinsatz
 Die interne Kühlmittelzufuhr führt präzise zur Schneidkante und stellt eine hervorragende Spankontrolle sicher.
- Leichter Fräskörper aus Aluminiumlegierung
 Durch eine Aluminiumlegierung wird bei einem Fräser vom
 Durchmesse Ø 125 mm mit 22 Zähnen ein Gesamtgewicht
 von weniger als 1,3 kg erreicht.

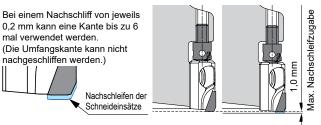
■ Produktpalette


usfüh- rung	Dozajahnung	Material		Durchmesserbereich (mm) / Anzahl Zähne									
Ausfüh- rung	Bezeichnung	Material	Ø 25	Ø 30	Ø 32	Ø 40	Ø 50	Ø 63	Ø 80	Ø 100	Ø 125	Ø 160	
-io	ANXA 16000RS	Aluminium- legierung							6, 10, 14	8, 12, 18	10, 14, 22	12, 20, 28	
Aufsteckfräser	ANXA 16000R (Inch)	Aluminium- legierung							6, 10, 14	8, 12, 18	10, 14, 22	12, 20, 28	
ufstec	ANXS 16000RS	Stahl				4, 6	4, 6, 9	6, 8, 12	6, 10, 14	8, 12, 18	10, 14, 22		
	ANXS 16000R (Inch)	Stahl						6, 8, 12	6, 10, 14	8, 12, 18	10, 14, 22		
Schaft- fräser	ANXS 16000E	Stahl	2	3, 4	3, 4	4, 6	4, 6, 9	\rightarrow	H84				
Modu- lar	ANXS 16000M	Stahl	2	3, 4	3, 4	4, 6		\rightarrow	H86				
	→ M58-M69									Inc	h Zollbohrun	g	

■ Schneideinsätze - Ausführungen

Werkstück- stoff					N				
Anwendung	Schlichten / Leicht- bearbeitung	Allgemeine Anwendung	Schr	Schruppen		Eckenradius- fräsen	Eckenradius- fräsen	Schlichten	Gratfreie / Hoch- glanzbearbeitung
Eigenschaft	Geringe Schnittkraft	Standard	Lange Schneidkante			Eckenradius 0,4 Eckenradius 0,8		Wiper	Wiper
Тур	L	G	GX	Η	GB	-	-	W	WS
Schneid- kanten- geometrie	500 FA15	R150	R150	Stabile Schneide	Stabile Schneide	R0.4	R0.8	20°	R150
Kantenlänge (*2)	6,0 mm	6,0 mm	9,0 mm	6,0 mm	6,0 mm	6,0 mm	6,0 mm	2,0 mm	_

^{*1} Mischbearbeitung (Aluminiumlegierung und Gusseisen)

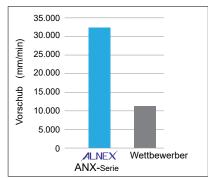

Schneidkantenauswahl

GX-Typ = 9,0 mm

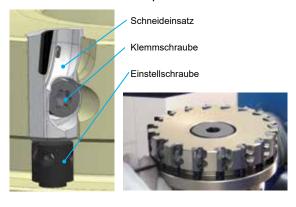
 Geringere Betriebskosten durch eine drastische Verbesserung der Schneideinsätze, Nachschleifzugabe bis 1,0 mm

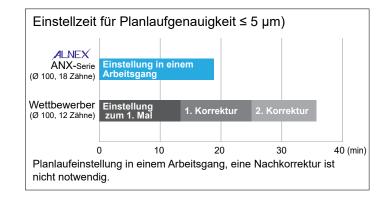
Wenn Sie nachgeschliffene Schneideinsätze verwenden möchten, so nutzen Sie immer Einsätze gleicher Höhe aus nachgeschliffenen Sets, um die Balance zu halten.

Alnex ANX - Serie


Leistungen

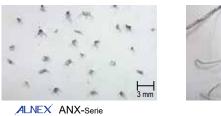
Hochgeschwindigkeitsbearbeitung / Hocheffizientes Fräsen
 Bei der Bearbeitung mit vf = 30.000 mm/min wird eine sehr hohe Produktivität erzielt.




Vergleich: Fräserdurchmesser Ø 100 mm

	Spindeldrehzahl min ⁻¹	Anzahl der Zähne	Vorschub v _f (mm/min)
ANX-Serie	18.000	18	32.400
Wettbe- werber	9.500	12	11.400

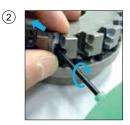
- Sehr kurze Einstellzeit bei bester Planlaufgenauigkeit
- Einfache Schraubklemmung
- Feineinstellungen sind leicht vorzunehmen
- Sehr stabiler Fräskörper



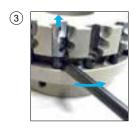
Spankontrolle

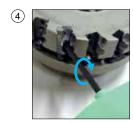
Kurze Späne durch direkte Kühlmittelzufuhr

Wettbewerber


Werkstückstoff: Schnittdaten:

G-AISI12Cu $v_c = 2500 \text{ m/min}, f_z = 0.05 \text{ mm/Z}, a_p = 0.5 \text{ mm}, \text{ nass}$


■ Einstellung der Schneideinsätze, Ausrichtung des Rundlaufs

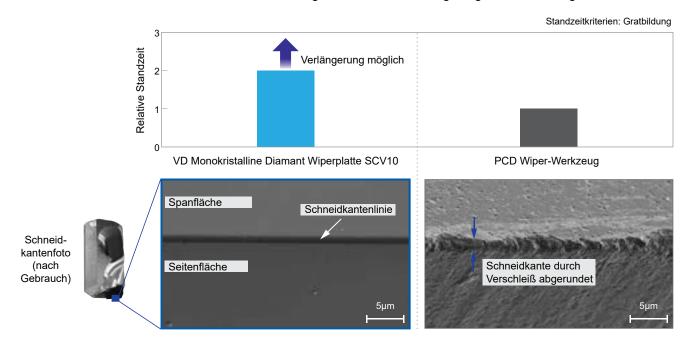

Setzen Sie den Schneideinsatz in den Plattensitz ein.

Während Sie den Schneideinsatz gegen den Sitz drücken, montieren Sie die Klemmschraube mit dem mitgelieferten Schraubenschlüssel und ziehen Sie diese leicht an. (empfohlenes Drehmoment bertägt 1 N·m)

Verwenden Sie den mitgelieferten Schlüssel, um den Planlauf des Fräsers über die vorgesehene Schraube einzustellen.

Ziehen Sie die Klemmschraube vollständig an. (empfohlenes Drehmoment ist 2 N·m)

CVD-Monokristalline-Diamant-Wiperplatte SCV10


Die Wiperplatte besteht aus hochfestem monokristallinem Diamant, der mit der Technologie der Dampfphasensynthese von Sumitomo Electric Hardmetal hergestellt wird.

Die scharfe Schneidkante erzeugt eine gratfreie, spiegelglatte Oberflächenqualität bei der Bearbeitung von Aluminiumlegierungen.

Dank der ausgezeichneten Verschleißfestigkeit bleibt die Schneidkantenschärfe sehr lange erhalten, was zu einer Verringerung der Gesamtwerkzeugkosten führt.

■ Gratfreie Bearbeitung

Die scharfe Schneide und die hohe Verschleißfestigkeit unterdrücken langfristig die Gratbildung.

■ Hochglanzoberfläche

Die scharfe Schneide erzielt schon beim Schneiden eine hochglänzende Oberfläche.

Werkstückoberfläche nach der Bearbeitung

■ Polykristalliner Diamant SUMIDIA DA1000 / DA90

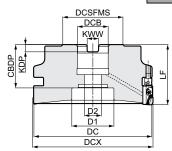
Durch die ideale Kombination von Diamantkorngröße und Bindemittel verfügt SUMIDIA DA1000/DA90 über vielseitige Eigenschaften und eignet sich für die unterschiedlichsten Anwendungen wie die Bearbeitung von Aluminiumlegierungen und Hartmetall.

■ Schneidstoff, Eigenschaften, Anwendung

9	Schneidstoff	Eigenschaften	Anwendung	Diamant- inhalt (%)	Durchschnittliche Korngröße der Diamantpartikel (µm)	Härte HK (GPa)	TRS (GPa)
	DA1000	Eine hochdichter,gesinteter Schneidstoff aus ultrafeinkörnigem Diamant, der eine ausgezeichnete Verschleiß- und Bruchfestigkeit sowie eine hohe Kantenschärfe aufweist.	Bearbeitung von Aluminiumlegierungen mit hohem Siliziumgehalt, Schruppen, unterbrochene und Schlichtbearbeitung von Aluminiumlegierungen, Schneiden/Bearbeiten von Holz oder Holzplatten, allgemeine Schlichtbearbeitung von Nichteisenmetallen	90–95	≤ 0,5	50–60	≈ 2,60
	DA90	Enthält gröbere Diamantpartikel als andere Sorten und bietet dadurch eine gute Verschleißfestigkeit für die Bearbeitung von Hartmetallen und Aluminium mit hohem Siliziumgehalt. Verfügt über den höchsten Diamantgehalt und ist besonders verschleißfest.	Bearbeitung von Aluminiumlegierungen mit hohem Siliziumgehalt, Bearbeitung von Aluminium-Verbundwerkstoffen (MMC), Schruppbearbeitung von Grünlingen oder vorgesinterten Hartmetallen und keramischen Werkstückstoffen Bearbeitung von gesinterten Keramik/Stein/Gestein	90–95	≤ 50	50–65	≈ 1,10

■ Anwendungsbereiche

	Werkstückstoff	Geeigneter Schneidstoff	Beispiele für Bauteile
	Gesintertes Aluminium, Aluminium-Knetlegierung		Kolbenbuchsen, Maschinenteile, usw.
Alturationium	Legierungen für Spritzguss	DA1000	Getriebegehäuse, Ölwanne, Zylinderblock
Aluminium	Legierungen für Guss Geringer Si-Gehalt (≤ 12%)	DA 1000	Zylinderkopf
	Legierungen für Guss Hoher Si-Gehalt (> 12%)		Zylinderblock
	Nichteisenhaltige Sinterlegierung	DA1000	Buchse
Nichteisenmetall	Rotguss, Kohlenstoff	DATOO	Pleuelstange
	Fe Kombinationen	DA90	Zylinderblock, Gehäusedeckel


ANXA 16000 **R(S)**

Span-	Radial	+5°
winkel	Axial	+5°

■ ANXA-Fräskörper (Aluminiumlegierung)

Abmessungen (mm)

	Bezei	chnung	Lager	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Anzahl Zähne	Gewicht (kg)
	ANXA	16080RS06	0	78	80	50	50	27	12,4	7	34	35	14	6	0,5
		16080RS10	•	78	80	50	50	27	12,4	7	34	35	14	10	0,5
		16080RS14	•	78	80	50	50	27	12,4	7	34	35	14	14	0,5
		16100RS08	0	98	100	50	59	27	12,4	7	34	35	14	8	0,8
ے		16100RS12	•	98	100	50	50	27	12,4	7	34	35	14	12	0,8
isc		16100RS18	•	98	100	50	50	27	12,4	7	34	35	14	18	0,9
Metrisch		16125RS10	0	123	125	50	50	27	12,4	7	34	35	14	10	1,2
-		16125RS14	•	123	125	50	50	27	12,4	7	34	35	14	14	1,2
		16125RS22	•	123	125	50	50	27	12,4	7	34	35	14	22	1,3
		16160RS12	0	158	160	80	63	40	16,4	9	35	52	29	12	2,6
		16160RS20	0	158	160	80	63	40	16,4	9	35	52	29	20	2,6
		16160RS28	0	158	160	80	63	40	16,4	9	35	52	29	28	2,6
	ANXA	16080R06	0	78	80	50	50	25,4	9,5	6	34	35	14	6	0,5
		16080R10	O	78	80	50	50	25,4	9,5	6	34	35	14	10	0,5
		16080R14	0	78	80	50	50	25,4	9,5	6	34	35	14	14	0,5
		16100R08	0	98	100	50	50	25,4	9,5	6	34	35	14	8	0,8
		16100R12	0	98	100	50	50	25,4	9,5	6	34	35	14	12	0,9
lnch		16100R18	0	98	100	50	50	25,4	9,5	6	34	35	14	18	0,9
=		16125R10	0	123	125	50	50	25,4	9,5	6	34	35	14	10	1,2
		16125R14	0	123	125	50	50	25,4	9,5	6	34	35	14	14	1,2
		16125R22	0	123	125	50	50	25,4	9,5	6	34	35	14	22	1,3
		16160R12	0	158	160	80	63	38,1	15,9	10	42,5	55	30	12	2,3
		16160R20	0	158	160	80	63	38,1	15,9	10	42,5	55	30	20	2,4
		16160R28	O	158	160	80	63	38,1	15,9	10	42,5	55	30	28	2,6

Die Schneideinsätze werden separat verkauft. Bei Verwendung einer Schneide für die Eckenradiusbearbeitung (ANB1604R/ANB1608R) DC = DCX.

Die Gewichtsangabe beinhaltet das Gewicht des Schneideinsatzes und der Ersatzteile (ohne die Fräseranzugsschraube).

Alle Fräskörper aus Aluminiumlegierung und einem maximalen Schneidendurchmesser (DCX) von Ø 80 bis Ø 125 haben den gleichen Durchmesser (metrisch Ø 27/Zoll Ø 25,4) für den Spanndurchmesser (DCB) des Halters.

■ Identifikation des Fräskörpers

ANX	Α	16	100	R	S	18
			Fräser- durchmesser		Metrisch	Anzahl Zähne

ANXA 16000 **R(S)**

■ Schneideinsätze

Abmessungen (mm)

	Anwendung	SUM	IIDIA							
Hochg	eschw./Leichte Bearb.	N	K	N						
Allgei	meine Anwendung	N	K							
Schru	ıppen	N	K							
	Bezeichnung	DA1000	DA90	SCV10	Schneid- kanten- länge	RE	Form der Wiperkante	Anwendungen	Abb.	Abb. 1 Abb. 2 Abb. 3 Ab
ANB	1600R-L	•		_	6,0	_	linear	Geringe Schnittkraft	1	
	1600R-G	•		_	6,0	_	bogenförmig	General Purpose	1	Abb. 4 16 Abb. 5 16
	1600R-GB		•	_	6,0	_	bogenförmig	Mischbearbeitung*	1	2,0
	1600R-H	•	_	_	6,0	_	bogenförmig	Starke Kante	1	
	1600R-GX	O		_	9,0	_	bogenförmig	Lange Schneide	2	
	1604R	O		-	6,0	0,4	linear	Eckenradius	3	Wiperschneide Wiperschneide
	1608R	O		_	6,0	0,8	linear	Eckenradius	3	
	1600R-W	O		_	2,0	_	bogenförmig	Wiper	4	
	1600R-WS	_	_		_	_	bogenförmig	Wiper	5	

^{*} Gusseisen/Aluminiumlegierung

■ Empfohlene Schnittbedingungen

Si-Gehalt ≤ 12,6 %

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
N	Aluminiumlegierung	_	2.000 –2.500 –3.000	0,05 –0,13 –0,20	DA1000

Si-Gehalt > 12,6 %

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
N	Aluminiumlegierung	_	400 –600 –800	0,05 -0,13 -0,20	DA1000 DA90

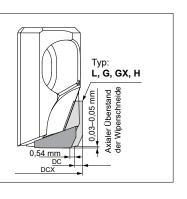
Mischbearbeitung (Gusseisen und Aluminiumlegierung)

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit vc (m/min)	Vorschub fz (mm/Z)	Sorte
K	Aluminiumlegierung	_	300 –400 –500	0,05 –0,13 –0,20	DA90

Die oben genannten empfohlenen Schnittbedingungen sind als Richtwerte zu verstehen. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Ersatzteile

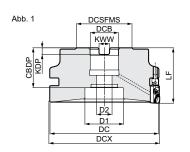

Separat erhältlich.

	Klemmschraube		Einstell- schraube	Schlüssel	Einstell- schlüssel	Fräseranzug schraube		Montage- schlüssel
Geeignete Fräser		(R)		L.		3	(N·m)	ZZ -
ANXA 16080R(S)								
16100R(S)	BXA0310IP	2.0	HFJ	TRXW10IP	ANT	BXH1235-D33	50	HFVT
16125R(S)	DAAU3 IUIF	2,0	ПГЈ	IKAWIUIF	AINT			ПЕТІ
16160R(S)						BXH2036-D50	200	

Der Einstellschlüssel (ANT) kann auch zur Höheneinstellung des Fräsers vom Typ RF für die Hochgeschwindigkeitsbearbeitung und des Fräsers vom Typ HF für die Hocheffizienzbearbeitung verwendet werden.

Setup der Wiperschneide

Achten Sie bei der Verwendung der Wiperplatte darauf, dass Sie ein Schneidwerkzeug mit einer geraden Anzahl von Schneidkanten verwenden und die Wiperplatten an gegenüberliegenden Positionen anbringen, um das Gleichgewicht zu halten.


■ Max. zulässige Spindeldrehzahl

В	ezeichnung	n max (min-1)
ANXA	16080RS06	20.000
	16080RS10	20.000
	16080RS14	20.000
	16100RS08	18.000
	16100RS12	18.000
	16100RS18	18.000
	16125RS10	16.000
	16125RS14	16.000
	16125RS22	16.000
	16160RS12	14.000
	16160RS20	14.000
	16160RS28	14.000
ANXA	16080R06	20.000
	16080R10	20.000
	16080R14	20.000
	16100R08	18.000
	16100R12	18.000
	16100R18	18.000
	16125R10	16.000
	16125R14	16.000
	16125R22	16.000
	16160R12	14.000
	16160R20	14.000
	16160R28	14.000

ANXS 16000 **R(S)**

				_		
	Span- winkel	Radial	+5°] f	3 mm	0.00
	winkel	Axial	+5°] ⊨		90°
Abb.	, ,	DCSFMS DCB KWW		ī		

■ ANXS-Fräskörper (Stahl)

Abmessungen (mm)

	Bezeichnung	Lager	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Anzahl Zähne	Gewicht (kg)	Abb.
	ANXS 16040RS04	0	38	40	38,5	40	16	8,4	5,6	26	14	9	4	0,3	1
	16040RS06	•	38	40	38,5	40	16	8,4	5,6	26	14	9	6	0,3	1
	16050RS04	0	48	50	48,5	40	22	10,4	6,3	26	18	11	4	0,4	1
	16050RS06	•	48	50	48,5	40	22	10,4	6,3	26	18	11	6	0,4	1
	16050RS09	0	48	50	48,5	40	22	10,4	6,3	26	18	11	9	0,5	1
	16063RS06	O	61	63	50	40	22	10,4	6,3	26	18	11	6	0,7	1
	16063RS08	•	61	63	50	40	22	10,4	6,3	26	18	11	8	0,7	1
l c	16063RS12	•	61	63	50	40	22	10,4	6,3	26	18	11	12	0,7	1
Metrisch	16080RS06	0	78	80	50	40	27	12,4	7	34	35	14	6	1,2	1
∣≚	16080RS10	O	78	80	50	50	27	12,4	7	34	35	14	10	1,2	1
	16080RS14	0	78	80	50	50	27	12,4	7	34	35	14	14	1,2	1
	16100RS08	0	98	100	80	50	32	14,4	8	32	46	_	8	1,9	2
	16100RS12	0	98	100	80	50	32	14,4	8	32	46	_	12	2,0	2
	16100RS18	O	98	100	80	50	32	14,4	8	32	46	_	18	2,0	2
	16125RS10	0	123	125	80	63	40	16,4	9	35	52	_	10	3,8	2
	16125RS14	0	123	125	80	63	40	16,4	9	35	52	_	14	3,9	2
	16125RS22	0	123	125	80	63	40	16,4	9	35	52	_	22	3,9	2
	ANXS 16063R06	0	61	63	50	50	25,4	9,5	6	31	20	14	6	0,9	1
	16063R08	0	61	63	50	50	25,4	9,5	6	31	20	14	8	0,9	1
	16063R12	0	61	63	50	50	25,4	9,5	6	31	20	14	12	0,9	1
	16080R06	0	78	80	50	50	25,4	9,5	6	34	35	14	6	1,2	1
	16080R10	0	78	80	50	50	25,4	9,5	6	34	35	14	10	1,2	1
lnch	16080R14	0	78	80	50	50	25,4	9,5	6	34	35	14	14	1,2	1
_=	16100R08	0	98	100	80	50	31,75	12,7	8	36	42	_	8	1,9	2
	16100R12	0	98	100	80	50	31,75	12,7	8	36	42	_	12	2,0	2
	16100R18	O	98	100	80	50	31,75	12,7	8	36	42	_	18	2,0	2
	16125R10	0	123	125	80	63	38,1	15,9	10	42,5	52	_	10	3,9	2
	16125R14	0	123	125	80	63	38,1	15,9	10	42,5	52	_	14	3,9	2
	16125R22	O	123	125	80	63	38,1	15,9	10	42,5	52	_	22	3,9	2

Die Schneideinsätze werden separat verkauft. Bei Verwendung einer Schneide für die Eckenradiusbearbeitung (ANB1604R/ANB1608R) DC = DCX. Die Gewichtsangabe umfasst das Gewicht des Schneideinsatzes und der Ersatzteile (ohne die Fräseranzugsschraube).

■ Identifikation des Fräskörpers

ANX	S	16	100	R	S	18
Fräser- bezeichnung	Stahl- körper	Schneid- einsatzgröße		Schneid- richtung	Metrisch	Anzahl Zähne

ANXS 16000 **R(S)**

■ Schneideinsätze

Abmessungen (mm)

	Anwendung	SUN	11DIA							
Hochg	eschw./Leichte Bearb.	N	K	N						
Allge	meine Anwendung	Z								
Schru	uppen	Z	K							
	Bezeichnung	DA1000	DA90	SCV10	Schneid- kanten- länge	RE	Form der Wiperkante	Anwendungen	Abb.	Abb. 1 Abb. 2 Abb. 3 Ab
ANB	1600R-L	•		_	6,0	_	linear	Geringe Schnittkraft	1	
	1600R-G	•		_	6,0	_	bogenförmig	General Purpose	1	Abb. 4 16 Abb. 5 16
	1600R-GB		$ \bullet $	_	6,0	_	bogenförmig	Mischbearbeitung*	1	2,0
	1600R-H	•	-	_	6,0	_	bogenförmig	Starke Kante	1	
	1600R-GX	O		_	9,0	_	bogenförmig	Lange Schneide	2	
	1604R	O		_	6,0	0,4	linear	Eckenradius	3	Wiperschneide Wiperschneide
	1608R	O		_	6,0	0,8	linear	Eckenradius	3	
	1600R-W	O		_	2,0	_	bogenförmig	Wiper	4	
	1600R-WS	-	_		_	_	bogenförmig	Wiper	5	

^{*} Gusseisen/Aluminiumlegierung

■ Empfohlene Schnittbedingungen

Si-Gebalt < 12.6 %

Si-Genait § 12,6 % Min Optim								
ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v₀ (m/min)	Vorschub fz (mm/Z)	Sorte			
N	Aluminiumlegierung	_	2.000 –2.500 –3.000	0,05 –0,13 –0,20	DA1000			

Si-Gehalt > 12,6 % Min. - Optimum - Max. ISO Werkstückstoff Härte Schnittgeschwindig-keit vc (m/min) Vorschub fz (mm/Z) Sorte N Aluminiumlegierung 400–600–800 0,05–0,13–0,20 DA1000

Mischbearbeitung (Gusseisen und Aluminiumlegierung)

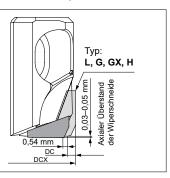
Min. - Optimum - Max.

DA90

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
K	Aluminiumlegierung	_	300 –400 –500	0,05 –0,13 –0,20	DA90

Die oben genannten empfohlenen Schnittbedingungen sind als Richtwerte zu verstehen. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Ersatzteile

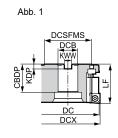

Separat erhältlich.

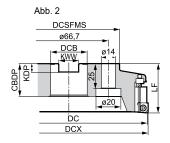
	Klemm- schraube		Einstell- schraube	Schlüssel	Einstell- schlüssel	Fräseranzugs- schraube		Montage- schlüssel
Geeignete Fräser		(N·m)		\$		3 ====	(N·m)	7
ANXS 16040RS						BXH0825-D13	15	
16050RS	BXA0310IP					BXH1030-D16	25	
16063RS		2.0	HFJ	TRXW10IP	ANT	PVU 1020-D 10	25	
16080RS		2,0	пгэ			BXH1235-D33	50	HFVT
16100RS						BXH1635-D40	100	
16125RS						BXH2036-D50	200	HEVI
16063R	BXA0310IP					BXH1235-D18	40	
16080R		20	HFJ	TRXW10IP	ANT	BXH1235-D33	50	
16100R		P 2,0	пгл	I KAW IUIP		BXH1635-D40	100	
16125R						BXH2036-D50	200	

Der Einstellschlüssel (ANT) kann auch zur Höheneinstellung des Fräsers vom Typ RF für die Hochgeschwindigkeitsbearbeitung und des Fräsers vom Typ HF für die Hocheffizienzbearbeitung verwendet werden.

Setup der Wiperschneide

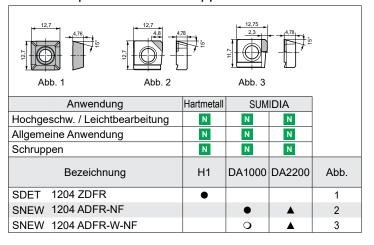
Achten Sie bei der Verwendung der Wiperplatte darauf, dass Sie ein Schneidwerkzeug mit einer geraden Anzahl von Schneidkanten verwenden und die Wiperplatten an gegenüberliegenden Positionen anbringen, um das Gleichgewicht zu halten.



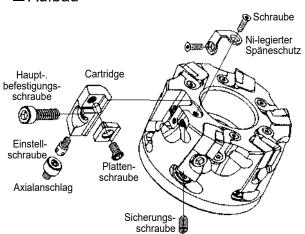

Max. zulässige Spindeldrehzahl

В	ezeichnung	n max (min ⁻¹)
ANXS	16040RS04	25.000
	16040RS06	25.000
	16050RS04	25.000
	16050RS06	25.000
	16050RS09	25.000
	16063RS06	22.000
	16063RS08	22.000
	16063RS12	22.000
	16080RS06	20.000
	16080RS10	20.000
	16080RS14	20.000
	16100RS08	18.000
	16100RS12	18.000
	16100RS18	18.000
	16125RS10	16.000
	16125RS14	16.000
	16125RS22	16.000
ANXS	16063R06	22.000
	16063R08	22.000
	16063R12	22.000
	16080R06	20.000
	16080R10	20.000
	16080R14	20.000
	16100R08	18.000
	16100R12	18.000
	16100R18	18.000
	16125R10	16.000
	16125R14	16.000
	16125R22	16.000

Für die Hochgeschwindigkeitsbearbeitung von Aluminium



■ Fräskörper


Bezeichnung	Logor	Abmessungen (mm)							Anzahl der	max. Schnitt-	Gewicht	Abb.	
Bezeichhung	Lager	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	Zähne	tiefe	(Kg)	ADD.
RF 4080 RS	•	80	82	60	50	27	12,4	7,0	29	6		0,7	1
RF 4100 RS		100	102	75	50	32	14,4	8,5	29	6	2.0	1,0	1
4125 RS	•	125	127	75	63	40	16,4	9,5	29	8	3,0	1,6	1
4160 RS		160	162	100	63	40	16,4	9,5	29	10		2,6	2

Bemerkung: PKD-Einsätze und Fräsplatten sind nicht im Lieferumfang enthalten.

■ Schneidplatten zum Schruppen und Schlichten

Aufbau

■ "Sumidia"-Einsätze

PKD-Sorte DA2200	Bezeichn.	Lager
Standard-Typ	RFB	
Wiper-Typ	RFBW	

Gewichtsausgleicheinsatz

RFD

0

■ Kassetten

Kassetten	Bezeichn.	Lager
Für Hartmetallplatte	RFR	•
Für "Sumidia"-Platte	RFF	•

Auswahl von Schneidplatten

Zur einfachen Justierung:

PKD-Einsatz: RFB

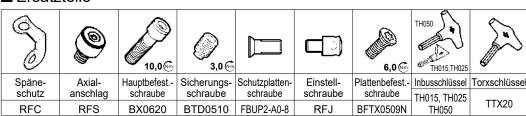
PKD-Einsatz: **RFB** (Wiper-Typ)

Zum Schlichten:

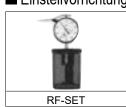
Kassette:

PKD-Platte: SNEW 1204 ADFR-NF (Standard)

SNEW 1204 ADFR-W-NF (Wiper-Typ)


Sorte: DA1000

Zum Schruppen:


Kassette: **RFR**

Unbeschichtete Hartmetallschneidplatte SDET 1204 ZDFR, Sorte: H1 SDET 1204 ZDFR, Sorte: H1

Ersatzteile

■ Einstellvorrichtung

Meßuhr ist nicht im Lieferumfang enthalten.

SUMIDIA - Planfräser **SRF** - Typ

Für die Hochgeschwindigkeitsbearbeitung von Aluminium

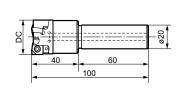
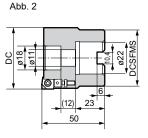
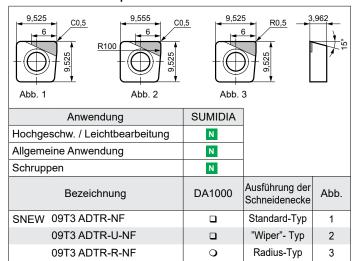
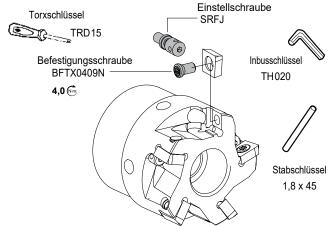



Abb. 1



Fräskörper

Bezeichnung		Abmessu	ıngen (mm)	Anzahl der	Abb.	Gewicht	
Bezeichhung	Lager	DC	DCSFMS	Zähne	ADD.	(Kg)	
SRF 30 R-ST	0	30	-	3	1	0,34	
SRF 40 R-ST	0	40	-	4	1	0,50	
SRF 50 RS		50	46,5	5	2	0,59	
SRF 63 RS		63	45,0	6	2	0,67	


Fräsplatten sind nicht im Lieferumfang enthalten.

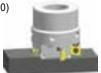
■ PKD-Schneidplatten

- Standard- und Wiper- Wendeschneidplatten k\u00f6nnen auf dem gleichen Messerkopf verwendet werden.
- Bei Vibrationen sollten zur Stabilisierung Standardplatten mit Eckenradius benutzt werden. Wiper-Platten sind nicht geeignet.
- Die Wendeschneidplatten k\u00f6nnen bis zu drei mal nachgeschliffen werden (bis zum IC Durchmesser 9.225 mm).
- Bei Verwendung von nachgeschliffenen Wendeschneidplatten empfiehlt es sich, die Einsatzhöhe und den Schneiddurchmesser mit einem Werkzeugvoreinstellgerät zu bestätigen
- Verwenden Sie keine neuen und nachgeschliffenen Platten gleichzeitig.
 Ebenso sollten Platten, die unterschiedlich oft nachgeschliffen wurden, nicht gleichzeitig benutzt werden.

■ Ersatzteile

■ Max. Schnitttiefe (SRF50RS, Zahnanzahl: 5)

Die enthaltenen Hinweise auf die max. Schnitttiefe wurden durch interne Versuche ermittelt. "O" kennzeichnet den möglichen Anwendungsbereich. Die Schnittdaten sollten auf die aktuellen Maschinen- und Materialmerkmale ab


Managhada	Vorschubg	eschwindigkeit, v	f (mm/min)				
Vorschub	2.500 4.000		5.000				
Schnitttiefe	Vorschub, f _z (mm/Zahn)						
(mm)	0,05	0,08	0,10				
0,5	0	0	0				
1,0	0	0	0				
1,5	0	0	0				
2,0	0	0	0				
2,5	0	0	0				
3,0	0	0	0				
3,5	0	0	_				
4,0	0	_	_				
4,5	0	_	_				
5,0	0	_	_				

Schnittbedingungen

Fräskopf: SRF 50 RS

Schneidplatten: SNEW 09T3 ADFR-NF (DA1000)

Spindel-U/min: 10.000 Schnittbreite: 35 mm

■ Empfohlene Schnittbedingungen für RF und SRF-Typ Planfräser

Werkstückstoff		A	Calamaidaanta	Schnittgeschwir	ndigkeit (m/min)	Vorschub	Schnitttiefe (mm)	
		Anwendung	Schneidsorte	RF- Typ	SRF- Typ	(mm/Zahn)	RF- Typ	SRF- Typ
	0: 140.0/	Schlichten	DA1000 (PKD)	2.000-5.000	-4.000		-3,0	-5,0
Aluminium-	Si < 13 %	Schruppen	H1 (Hartmetall)	1.000-2.500	_	0.05.00		
legierungen	0: > 40.0/	Schlichten	DA1000 (PKD)	400–800	-800	0,05–0,2		
	Si ≥ 13 %	Schruppen	H1 (Hartmetall)	200–400	_			

SUMIBORON "BN Finish Mill" FMU - Typ

Für "High Speed" - Bearbeitung von Grauguss

Eigenschaften

- Hochleistungsplanfräser zum Schlichten von Grauguss mit extrem hohen Schnittgeschwindigkeiten v_c = 1500 m/min
- Ausgezeichnete Oberflächengüte Rz = 3,2 (Ra = 1,0)
- Fliehkraftsichere Konstruktion
- Rundlaufabweichung < 0,01 mm
- Einfache Vorabeinstellung der Schneiden mit Hilfe der Einstellvorrichtung
- Kostenreduzierung durch wirtschaftliche CBN-Platten

SUMIBORON "BN Finish Mill"

Anwendung

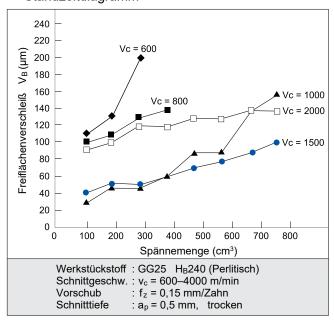
GG25-GG30 (HB200-250) Grauguss mit perlitischem Grundgefüge und ferritischem Grundgefüge (HB130-160) Beispiel: Motorblock, Zylinderkopf usw.

Ausführung

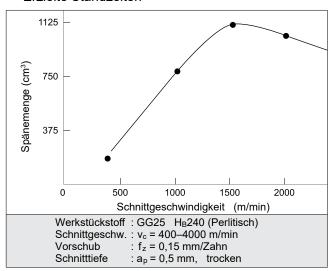
FMU-Typ: ø 80-ø 315 mm CBN-Schneidplatte: SNEW1203ADTR/L CBN-Schneidplatte mit reduzierten Schnittkräften:

SNEW1203ADTR/L-S

■ Empfohlene Schnittbedingungen


Schnittgeschwindigkeit: $v_c = 800-2000 \text{ m/min}$ Vorschub: $f_z = 0.1-0.3 \text{ mm/Zahn}$ Schnitttiefe: $a_p = < 0.5 \text{ mm}$

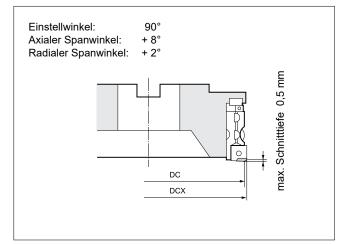
Trockenbearbeitung



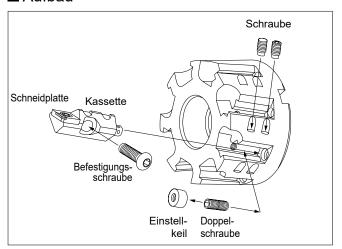
■ Leistungsvergleich

Standzeitdiagramm

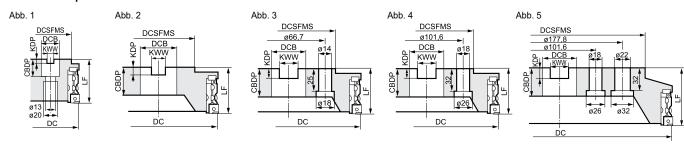
Erzielte Standzeiten



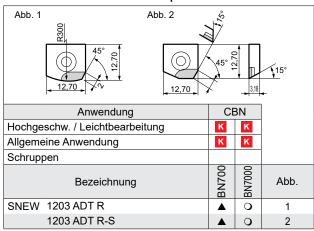
- Standzeitminderung bei der Bearbeitung von Grauguss mit ferritischem Grundgefüge, Kugelgraphitguß sowie legierten Gußwerkstoffen.
- Trockenbearbeitung ist empfohlen. Bei der Naßbearbeitung verursacht Thermoschockempfindlichkeit frühzeitige Ausbröckelung an der Schneidkante.


G84

SUMIBORON "BN Finish Mill" FMU - Typ


■ Ausführung

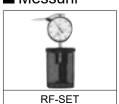
Aufbau



Fräskörper

	Dozeiehnung	Lagar			Abn	nessu	ngen (m	m)			Anzahl	max.	Gewicht	Λbb
	Bezeichnung	Lager	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	der Zähne	Schnitt- tiefe	(Kg)	Abb.
FMU	4080 RS		80	82,8	60	63	27	12,4	7,0	25	6		1,6	1
FMU	4100 RS	•	100	102,8	76	63	32	14,4	8,5	29	8		2,4	2
	4125 RS		125	127,8	75	63	40	16,4	9,5	29	10		3,4	2
	4160 RS		160	162,8	100	63	40	16,4	9,5	29	12	0,5	5,6	3
FMU	4200 RS		200	202,8	130	63	60	25,7	14,0	38	16		9,2	4
	4250 RS		250	252,8	130	63	60	25,7	14,0	38	20		14,3	4
FMU	4315 RS		315	317,8	240	80	60	25,7	14,0	40	24		27,8	5

■ "Sumiboron"-Schneidplatten


■ Kassetten

	5,0 🚱		0		
Kassette	Schraube	Einstellschraube	O-Ring	Torxschlüssel	Stabschlüssel
FMUU	BFTX0509N	FMUJ	P3	TRX20	1,8 x 45

■ Ersatzteile

Befestschraube	Schraube	Einstellkeil	Doppelschraube	Schlüssel	Schlüssel	Schlüssel
BH0620	BTD0609	FMUE	WB5-10	TH040	LH030	LH025

■ Messuhr

Messuhr ist nicht im Lieferumfang enthalten.

Schaftfräser ıit Fräsplatte

Schaftfräser

	/ tuowariii iii c	Addwarff Conditionation	112-0
	Austauschbare Fräsköpfe	Nach Werkstückstoff und Anwendung	
		Modularfräser	H4–5
Planfräsen	"Sumi Dual" Planfräser für die allg.Bearbeitung 🕬	DGC 13000 EW	H6
	"Wave Mill" Planfräser für die allg.Bearbeitung 🕬	WGX 13000 EW	H7
	"Sumi Dual" Fräser, Hochvorschubfräser	DMSW 08000 E(L)	H8
		DMSW 08000 M	H9
	Hochvorschubfräser	MSX 06000/08000/12000/14000 ES/EM/EW	H10–11
		MSX 06000/08000/12000/12000 M	H12–13
	Hochvorschubfräser 🚧	WFXH 08000/12000 M	H14–15
Schulterfrä	Gain Baar Fracti	DFC(M) 09000 E	H16–17
	"Wave Mill" Schulterfräser 🕬	WFX(F/M) 08000/12000 E	H18–19
	شد. شد	WFX 08000 M	H18
	"Sumi Dual" Fräser, tangential 🕬	TSX(F/M) 08000/13000_E	H20–23
		TSXR 08000/13000 E * Neu-	H24–25
	"Wave Mill" Schulterfräser [≨] rei	WEZ	H26–29
		WEZ 11000 E/ES/EL	H30–35
		WEZ 17000 E/ES/EL	H36–41
	"Wave Mill" Walzenstirnfräser		H42–45
		WEZ 11000/17000 M	H46–49
		WEZR 11000/17000 M	H50–53
	"Wave Mill" Schulterfräser	WEX 1000/2000/3000 E/EL/EW/M	H54–60
	"Wave Mill" Serie für Aluminium	WAX 3000 E/EL	H61–62
		WAX 4000 E/EL	
	Walzenstirnfräser	WRX 2000 / 3000	
0	Schulterfräser für Titanlegierungen	MTIX 16000 Neu	H68–69
Sonstige	Kugelbahnfräser zum Schruppen	WBMR 2000/2000L	
	Kugelbahnfräser zum Schlichten	WBMF 1000	
	"Wave Mill" Radiusfräser-Planfräser mit Polygonplatten	WRCX 08000/10000 E	H74
		08000/10000/12000 M	H75
	Fräser mit runder WSP	RSX(F) 08000/10000/12000 ES	H76
		08000/10000/12000 M	H77
	"Wave Mill" zum Anfasen 🕬		
		WFXC 08000/12000 M	
	Hochgeschwindigkeitsfräser für Nichteisenmetalle 🕬		
		ANXS 16000 E	H84–85
		ANXS 16000 M	H86–87

				Einstell-				Α	nwe	nd	นทธุ)			-		erl M	(sti	ick		off S	Н	
Anwendung	Fräsertyp	Serie	Verwendete Schneidplatten	winkel & Max. Schnitttiefe (mm)	Fräser- durch- messer (mm)	Allg, Bearbeitung	Zum Schlichten Planfräsen	Mit hohem Vorschub	Schulterfräsen	Schrädeintauchen	Anfasen	Bohren	Freiformfräsen	Profilschlichten		senkstahl	Rostfreier Stahl	Grauguss, Kugelgraphitguss 🔽	Nichteisenmetalle	Aluminiumlegierungen			Seite
äsen	DGC	DGC 13000-EW	SNMU13T6ONMU05T6	3-6 mm 45°	40–63	0									0	0	0	0	0	0	0		Н6
Planfräsen	WGX	WGX 13000-EW	SEE/MT 13T3	16 mm 45°	32–63	0	0									0	0	0	0	0	0		H7
chub	DMSW Neu	DMSW 08000-E(L)	WNMU0807	15°	35–63		(C	C)					0	0	0				0	Н8
Zum Fräsen mit hohem Vorschub	DMSW-M Neu	DMSW 08000-M	RE	15°	35–42		(C)					0	0	0				0	H9
mit hoh	MSX	MSX(ES/EM/EW) 06000, 0800, 12000, 14000	WDMT0603, WDMT0804 WDMT1205, WDMT1406	1,0-2,5mm 20°	16–63		() C	C)				0	0	0	0				0	H11
Fräsen	MSX-M	MSX 06000-M 08000-M 12000-M		1,0-2,0 mm 20 °	16–40		(O C	C)				0	0	0	0				0	H12
Zum	WFXH-M	WFXH 08000-M WFXH 12000-M	SOMT 1204	15° 15°	25–32 40	-	()					0	0	0			0	0	H15
	DFC	DFC (M) 09000-E	XNMU 0606 Ps	16 mm 90°	25–80	0	0	(9 0)					0	0	0	0			0		H17
	WFX	WFX(M/F) 08000-E 12000-E	SOMT 0803 RE	16 mm 90° 10 mm 90°	20–63 40–80)	(_	0		H18 H19
	WFX-M	WFX 08000-M	SOMT 1204 RE	16 mm 90°	20–40	-()										0	0	0		0	0		H18
	TSX	TSX (-F) 08000-E TSX (-M)	LNEX 0804	18 mm 90°	16-80	0	0	(3 C	,					0	0	0	0			0		H22
	TSXR Neu	13000-E	LNEX1306	12mm 90°	25–80																		H23
Schulterfräsen		TSXR 08000-E 13000-E		21-40mm 90°	20 - 40 40 - 50	0)							0	0	0			0		H24 H25
Schult	WEZ	WEZ 11000 -E/ES/EL WEZ 17000	AOMT 11T3, AOET11T3, AOMT 1705, AOET1705	10 mm 90° 15 mm 90°	14-80 25-80	0	0	(0	0)		0		0	0	0	0	0	0	0		H30 H32 H34 H36 H38 H40
	WEZR -Meu	-E/ES/EL WEZR 11000-E, 17000-E WEZR 11000-M, 17000-M	12,8	19-84mm 90° 127-29mm 90°	20–40, 40–50 32, 40	· (O)	0		0)		0		0	0	0	0	0	0	0		H40 H42 H44 H50 H52
	WEX	WEX 1000-E/EL WEX 2000-E/EL	AXMT0602, AXMT1235, AXMT1705	10 mm 90° 114 mm 90°	10-25 14-63	0		(0	С)				0	0	0	0	0	0	0		H56 H57 H58
	WEX-M	WEX 3000-E/EL WEX 2000-M WEX 3000-M	12,00	110mm 90° 114mm 90°	25–63 16–40 25–40	.0		(00)				0	0	0	0	0	0	0		H57 H58
	WRX	WRX 2000-E/W WRX 3000-E/W	AXMT1235 , AXMT1705	18-36mm 90° 27-53mm 90°	20–40 32–50	0		(00)				0	0	0	0	0	0	0		H65 H66

Schaftfräser **Auswahl**

				Einstell-					An۱	wei	ndı	ıng					_		(sti	ick			Н	
Anwendung	Fräsertyp	Serie	Verwendete Schneidplatten	winkel & Max. Schnitttiefe (mm)	Fräser- durch- messer (mm)	Allg, Bearbeitung	Zum Schlichten Planfräsen	Τ_	Schulterfräsen	Nutenfräsen	Schrägeintauchen	Anfasen	Bohren	Freiformfräsen	Profilschlichten	_	senkstahl	Rostfreier Stahl	Grauguss, Kugelgraphitguss	Nichteisenmetalle				Seite
Schulterfräsen	MTIX Neu	MTIX 16000	XOMT1605	13mm 90°	32	0	0		0	0	0							0				0		H69
	WRCX	WRCX 08000-E 10000-E	QPMT 0803/10T3/1204 QPET 10T35/1204	4-5 mm	12-32	0		0	0	0	0			0		0	0	0	0	0	0			H74
Multifunktionsfräser	WRCX-M	WRCX 08000-M 12000-M	IC 390.	1 4-6 mm	20-40	0		0	0	0	0			0		0	0	0	0	0	0			H75
Multifun	RSX RSX-M	RSX(F) 08000-ES 10000-ES 12000-ES	RDET0803RDET10T3 RDET1204	4 mm / 5 mm /	20- 32(ES)	0		0	0	0	0			0		0	0	0	0			0		H76 H77
	WAX	RSX(F) 08000-M 10000-M 12000-M	AECT1604, AECT2206	6 mm	40(M)																			
Alumimium	WAX	WAX 3000-E/EL	APMX RE	16-18mm 90°	20–40	0			0	0	0			0						0	0			H62 H63
Ā	WBMR	WAX 4000-E/EL	ZNMT 1804100-C	22-24mm 90°	25–40																			
Freiformfräsen		WBMR 2000 WBMR 2000-L	2004100-S RE		R10 (20)– R25 (50)					0				0		0	0	0	0					H71
Freifor	WBMF	WBMF 1000	ZPGU 1551050	10,1-0,4 ^{mm}	R5 (10)– R15 (30)					0					0		0							H73
	WFXC-E	WFXC 08000-E	SOMT0803/1204 SOET0803/1204	45°	08–16							0				0	0	0	0	0		0		1170
Fasfräsen		WFXC 12000-E	8.0	45	25–32																			H79
Fasi	WFXC-M	WFXC 08000-M WFXC 12000-M	RE 12.7	45°	16 25-32							0					0	0	0	0	0	0		H80
ndigkeit für metalle	ANX	ANXS 16000-E	ANB 1600R-L	3 mm 90°	32-40	0	0	0	0	0										0	0			H84
Hochgeschwindigkeit für Nichteisenmetalle	ANXS-M Neu	ANXS 16000-E	ANB 1600	13 mm 90°	23-38	0	0	0	0	0										0	0			H86

Austauschbare Fräsköpfe

Modularfräser

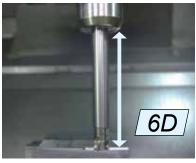
Eigenschaften

Austauschbare Fräsköpfe sind verfügbar in 10 Ausführungen!

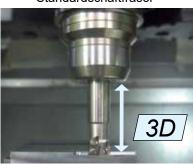
WEZ	MSX
WEX	RSX
WFX	WRXC
DMSW	WFXC
WFXH	ANXS

Zusätzlich zu den Hartmetall- und Stahlverlängerungen bieten die BBT-Spannfutter zahlreiche Kombinationsmöglichkeiten. Universelle Sorten, die für alle Werkstoffe geeignet sind. Die neue Sorte ACU2500 ist für eine Vielzahl von Anwendungen und Werkstoffen wie Stahl, Edelstahl und Gusseisen geeignet.

Hartmetall- oder Stahlverlängerung bei großen Auskraglängen


Einfacher Austausch durch Schraubverbindungen

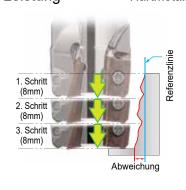
BBT-Spannfutter für große Vorschübe



RSX + BBT30-Spannfutter

Modularkopf + Hartmetallverlängerung

Standardschaftfräser



Bemerkung: Schnittbedingungen sind abhängig vom Schneidbereich, Maschinenstabilität und Werkstück

Maße

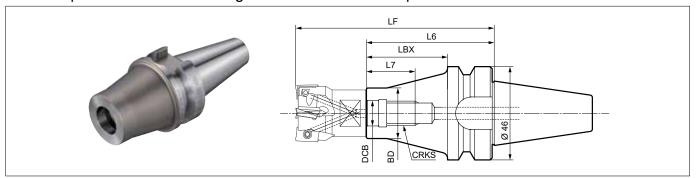
Schraube CRKS	Geeignete Fräsergröße (DC)
M8	Ø 16, Ø 18
M10	Ø 20, Ø 22
M12	Ø 24, Ø 28
M16	Ø 30, Ø 32, Ø 35, Ø 40

Leistung Hartmetallverlängerung verbessert Vorschübe, Oberfläche, Genauigkeit und Standzeit

Vergleich der Verlängerungen ... Genauigkeit der Schulterfläche geringe 200 Vibration! Abweichung (µm) ■ Hartmetallverlängerung ■ Stahlverlängerung HM-Verlängerung Vibrations-amplitude 130 Auskraglänge (mm) Stahlverlängerung

Werkstückstoff C50

WEX2025M12Z4 (ø D = 25, 4 Zähne) Fräser


Schnittbedingungen:

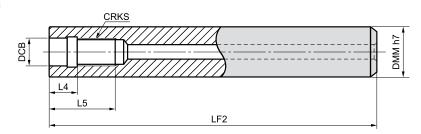
 $v_c = 100 \text{ m/min, } f_z = 0.1 \text{ mm/Zahn}$ $a_p = 8 \text{ mm x 3 Schnitte, } a_e = 2.0 \text{ mm, } \text{Maschine: BAZ BT50}$

Austauschbare Fräsköpfe

Modularfräser

■ BBT-Spannfutter mit Plananlage für Modulare Fräskörper

■ BBT-Spannfutter


Abmessungen (mm)

Bezeichnung	Lager	CRKS	DCB	BD	L6	LBX	L7	LF*	Bohrung für Kühlmittel
BBT30- M8-50	0	M8	8,5	15,9	73	50	18	98	ja
M10-45	0	M10	10,5	19,9	68	45	20	98	ja
M12-40	0	M12	12,5	24,9	63	40	22	98	ja
M16-35	O	M16	17	31,9	58	35	24	98	ja

^{*} Die Auskraglänge für LF gilt mit montiertem Kopf. Kann ebenfalls bei BT30-Spezialmaschinen verwendet werden.

■ Hartmetall- und Stahlverlängerungen

■ Hartmetallverlängerung

Damaiahauma				Abmes	sunge	n (mm	1)	
Bezeichnung	Lager	CRKS	DCB	DMM	LF2	L4	L5	LF*
MA 15 M08 L120C	•	M8	8,5	15	120	10	18	145
15 M08 L160C	•	M8	8,5	15	160	10	18	185
MA 16 M08 L120C	•	M8	8,5	16	120	10	18	145
16 M08 L160C	•	M8	8,5	16	160	10	18	185
MA 18 M10 L150C	•	M10	10,5	18	150	10	20	180
18 M10 L200C	•	M10	10,5	18	200	10	20	230
MA 20 M10 L150C	•	M10	10,5	20	150	10	20	180
20 M10 L200C	0	M10	10,5	20	200	10	20	230
MA 23 M12 L200C	•	M12	12,5	23	200	10	22	235
23 M12 L250C	•	M12	12,5	23	250	10	22	285
MA 25 M12 L200C	•	M12	12,5	25	200	10	22	235
25 M12 L250C	•	M12	12,5	25	250	10	22	285
MA 28 M16 L200C	•	M16	17,0	28	200	10	24	240
28 M16 L300C	•	M16	17,0	28	300	10	24	340
MA 32 M16 L200C	•	M16	17,0	32	200	10	24	240
32 M16 L300C	•	M16	17,0	32	300	10	24	340

●*Modulares System (Modularer Fräskopf + Verlängerung) LF

■ Stahlverlängerung

Damaiahauma			F	Abmes	sunge	n (mm)	
Bezeichnung	Lager	CRKS	DCB	DMM	LF2	L4	L5	LF*
MA 16 M08 L120S	•	M8	8,5	16	120	10	18	145
MA 20 M10 L150S	•	M10	10,5	20	150	10	20	180
MA 25 M12 L200S	•	M12	12,5	25	200	10	22	235
MA 32 M16 L200S	•	M16	17,0	32	200	10	24	240

■ Bezeichnungsschlüssel

15 M08 L120 Modular Arbor Befestigungs-Material Verlängerung gewinde C: Hartmetall Schaft-Länge S: Stahl

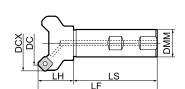
■ Empfohlenes Anzugsmoment

durchmesser

			9		
Schraube	Schli	üssel	(N·m)		
Schraube	W	S	(N-III)		
M 8	8	13	23		
M10	8	15	46		
M12	10	19	60		-
M16	10	24	80	-	

Hinweise zum Anziehen des Fräskopfes:

- entspr. der Katalogbezeichnung (s. S. H18, H19, H35 und H37) erfolgt die Auswahl der Verlängerung nach obenstehender Tabelle
- im voraus die Größe des Befestigungsgewindes für den Fräskopf und die Verlängerung prüfen
 das entspr. Anzugsmoment beim Befestigen des Kopfes an der Verlängerung ergibt sich aus obenstehender Tabelle


"Sumi Dual" Planfräser DGC(EW) - Typ

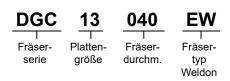
Planfräser für Stahl und Gusseisen

■ Fräskörper – Schaftfräser

Radial

Axial

-10°


-5°

■ Fräskörper

Damaiahauma	Lager		Al	messu	ngen (mm)		Anzahl der	Gewicht	
Bezeichnung	Lagoi	DC	DCX	DMM	LH	LS	LF	Zähne	(kg)
DGC 13040 EW	•	40 (42,90)	54	32	40 (38,44)	85	125	3	0,7
13050 EW	0	50 (52,90)	65	32	40 (38,44)	85	125	3	0,9
13063 EW	0	63 (65,90)	77	32	40 (38,44)	85	125	4	1,1

() Die Zahlen in Klammern beziehen sich auf die ONMT-Platten

■ Bezeichnungsschlüssel

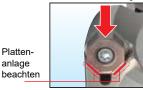
SNMU / SNEU

6 mm

■ Wendeschneidplatten

Abmessungen (mm)

ONMU / ONEU


3 mm

Anwendung			В	eschi	chtete	es Ha	rtmeta	all			Cermet				
Hochgeschw./Leichtbearb.	K [™] _S M	KM	Р			K	K		M _S		PM				
Allgemeine Anwendung	K SM	KM		PM	M	K	K		M _S		Р		Abb. 1		Abb. 2
Schruppen	K SM			PM	PM			K		M _S			. % ≠		.⊗.⊭
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	T4500A	Abb.	55		13.5
SNMU 13T6ANER L	•	0	•	•	•	0	•	•				1	13,5	6,9	13,5 6,9
13T6ANER G	•	O	•	•	•	0	•	•				1	<,	<*** >	10,0
13T6ANER H	•	0	•	•	•	0	•	•				1			
13T6ANER FL	•		•	•	•		•	•				2			
13T6ANER FG	•	0	•	•	•	0	•	•				2	Abb. 3		Abb. 4
SNEU 13T6ANER L									•	•		1	ADD. 3		Abb. 4
13T6ANER G									•	•		1			
13T6ANER FL									0	0		2	1		
13T6ANER FG									•	•		2	13,5		3.55
XNEU 13T6ANEN W	•	0		•		0		•			•	3	- 4		
ONMU05T6ANER L	•		•	•	•		•	•				4	100		13,5 6,0
05T6ANER G	•	O	•	•	•	0	•	•				4	18,3	6,6	13,5
ONEU 05T6ANER L									•	•		4			
05T6ANER G									•	•		4			

Montage der ONMU - Platten

Platte auf den Anlageflächen justieren, Druck in Pfeilrichtung von ober her ausüben und dabei die Platte festziehen.

Druck während der Befestigung

Ersatzteile

Zwischenlage	Hohlschraube	L - Schlüssel	Plattenschraube	Schlüssel
			3,0 @	
DGCS 13 R	BW 0609 F	LH 040	BFTX 0412 IP	TRDR 15 IP

Optional

*Wechsel der Platte erfolgt durch einfaches Lösen der Schraube. (Einsetzbar nur bei Fräsern: DGC / DGCM mit $\emptyset \ge 80 \text{ mm}$).

■ SNMU – Empfohlene Schnittbedingungen

ISO	Werkstück- stoff	Härte (HB)	Schnittgeschw. v _c (m/min)	Vorschub f _z (mm/Z)	Schnitt- tiefe (mm)	Sorte
	Baustahl	180–280	150– 200 –250	0,10 -0,25 -0,40	<4	ACU2500
Р	Unlegierter Stahl	≤180	180 –250 –350	0,10 -0,30 -0,45	<4	ACP200 ACP300
	Gesenkstahl	200–220	100 –150 –200	0,15 –0,25 –0,35	<4	XCU2500
M	Rostfreier Stahl	-	160 –200 –250	0,15 –0,23 –0,30	<3	ACU2500 ACM300
K	Gusseisen	250	100 –200 –250	0,10 -0,25 -0,40	<5	ACU2500 ACK200 ACK300 XCU2500 XCK2000
s	Warmfeste Superlegierungen	-	30 –50 –80	0,10 –0,20 –0,30	<3	ACU2500 ACM200 ACM300

= Eurolager

○ = Japanlager

■ ONMU – Empfohlene Schnittbedingungen

					J	<u> </u>
ISO	Werkstück- stoff	Härte (HB)	Schnittgeschw. v_c (m/min)	Vorschub f _z (mm/Z)	Schnitt- tiefe (mm)	Sorte
	Baustahl	180–280	150- 200 -250	0,10 -0,30 -0,50	<2	ACU2500
Р	Unlegierter Stahl	≤180	180- 250 -350	0,10 -0,50 -0,50	<2	ACP200 ACP300
	Gesenkstahl	200–220	100 –150 –200	0,15 -0,25 -0,30	<2	XCU2500
M	Rostfreier Stahl	-	160 –200 –250	0,15 –0,23 –0,30	<2	ACU2500 ACM300
K	Gusseisen	250	100 –200 –250	0,10 -0,30 -0,50	<2	ACU2500 ACK200 ACK300 XCU2500 XCK2000
s	Warmfeste Superlegierungen	-	30 –50 –80	0,10 –0,20 –0,30	<2	ACU2500 ACM200 ACM300

"Sumi Wave" Planfräser WGX(EW) - Typ

Radial

Axial

Planfräser für Stahl und Gusseisen

■ Fräskörper – Schaftfräser

DCX			DMM
	LH .	LS	
		LF	i

■ Fräskörper - Abmessungen

Damaiahauma	Lager			Abmessu	ngen (mm)			Anzahl der
Bezeichnung	Lagei	DC	DCX	DMM	LH	LS	LF	Zähne
WGX 13032 EW	0	32	44	32	40	85	125	3
13040 EW	0	40	52	32	40	85	125	3
13050 EW	0	50	62	32	40	85	125	4
13063 EW	0	63	76	32	40	85	125	5

Fräsplatten sind nicht im Lieferumfang enthalten. Fräskörper mit ø 32 mm nutzen keine Unterlegplatten.

■ Bezeichnungsschlüssel

WGX	13	032	EW
Fräser- serie	Platten- größe	Fräser- durchm.	Fräser- typ Weldon

-20°-24°

20°-22°

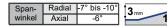
6 mm

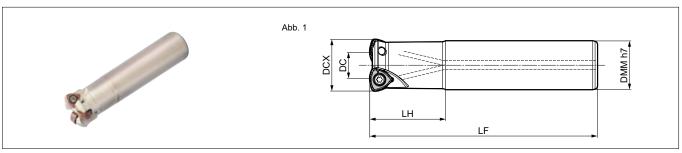
■ Besonderheiten der Schneidplatte

Platten															Abmessur	ngen (mm)	
Anwendung		Е	Besc	hich	tete	s Ha	artm	etall			Hartm	DLC	Cermet		Abb. 1		
Hochgeschw./Leichtbearb.	. K	₽	Р			K	K		M _S		KN	N					
Allgemeine Anwendung	₩	₽		PM	M	K	K		M _S	M _S		N	PM				
Schruppen	k‱ SM			PM	PM			K		M _S			Р			1 th	
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	H	DL1000	T4500A	Abb.	Abb. 2	3,97	Zwischenlage Schraube
SEET 13T3AGFR-L											O	O		1	₩₩ 5	H .	
SEET 13T3AGSR-L	•	0	•	•	•	0	•	•	•	•			•	1		in the	Platten-
13T3AGSR-G	•	0	•	•	•	0	•	•	•	•			•	1	13,4	3,97	schraube
SEMT 13T3AGSR-L	•	0	•	•	•	0	•	•	•	•				1	Abb. 3		
13T3AGSR-G	•	0	•	•	•	0	•	•	•	•				1	T 1		4
13T3AGSR-H	•	0	•	•	•	0	•	•	•	•				1			
SEMT 13T3AGSR-FG	•	0	•	•	•	0	•	•	•	•				2			
XEEW 13T3AGER-WR	•	0		0		0		0					0	3	17,8	3,97	

■ Ersatzteile

Fräser- typ	Zwischen- lage			Platten- schlüssel	(A)		
WGX 130EW	9						
øD = 32	-	-	BFTX 03512 IP	TRDR 15 IP	3,0	-	
øD = 40–63	WGCS 13 R	BW 0507 F	BFTX 03512 IP	TRDR 15 IP	3,0	LH 035	


■ Empfohlene Schnittbedingungen


	•		•	•	
ISO	Werk- stückstoff	Härte (HB)	Schnittgeschw. v _c (m/min)	Vorschub f _z (mm/Z)	Sorte
	Legierter Stahl	180–280	150 –200 –250	0,15 –0,20 –0,25	ACU2500
P	Unlegierter Stahl	≤180	180 –265 –350	0,10 -0,25 -0,40	ACP200
	Gesenkstahl	200–220	100 –150 –200	0,15 -0,20 -0,25	XCU2500
M	Rostfreier Stahl	-	160 –205 –250	0,15 –0,23 –0,30	ACU2500 ACM300
K	Guss	250	100 –175 –250	0,15 -0,23 -0,30	ACU2500 ACK200 XCK2000
N	Nichteisenmetalle	-	500 –750 –1000	0,15 –0,23 –0,30	DL1000
S	Superlegierung	-	30 – 50 – 80	0,10 –0,20 –0,30	ACU2500 ACM300

Minimum-Optimum-Maximum

"Sumi Dual Mill" DMSW 08000 E(L) Neu

■ Fräskörper (Schaftfräser)

Abmessungen (mm)

Bezeichnung	Lager	DCX	DC	DMM	LH	LF	Anzahl Zähne	Gewicht (kg)	
DMSW 08035E02	•	35	18,6	32	50	150	2	0,85	1
08040E03	•	40	23,5	32	50	150	3	0,86	1
08050E03-42	•	50	33,4	42	50	150	3	1,51	1

Die Schneidplatten werden separat verkauft.

■ Fräskörper (Schaftfräser, lange Ausführung)

Abmessungen (mm)

Bezeichnung	Lager	DCX	DC	DMM	LH	LF	Anzahl Zähne	Gewicht (kg)	
DMSW 08035EL02	•	35	18,6	32	60	210	2	1,21	1
08040EL03	•	40	23,5	32	60	210	3	1,22	1
08050EL03-42	•	50	33,4	42	50	250	3	2,54	1

Die Schneidplatten werden separat verkauft.

Ersatzteile

Schraub	Schlüssel	
	(N·m)	P
BFTX0513IP	5,0	TRDR20IP

■ Identifikation des Fräskörpers

DMSW 80 050 42

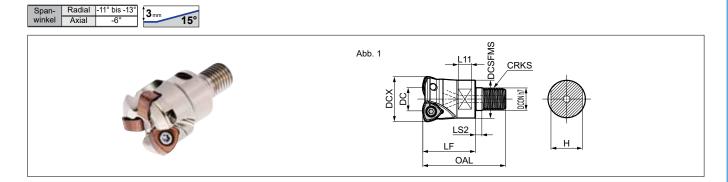
Platten- Fräserdurch- Schaft- Langer größe messer ausführung Schaft bezeichnung Zähne durchmesser

Wendeschneidplatten

Abmessungen (mm)

•										/ binocounger (min)			
Anwendung	Bes	schich	tetes I	Hartme	etall								
Hochgeschw./ Leichtbearbeitung		P		K									
Allgemeine Anwendung	K _S M	P	P	K	K								
Schruppen	K _S M		P		K					Abb. 1			
Bezeichnung	ACU2500	ACP2000	ACP3000	ACK2000	ACK3000	IC	S	RE	Abb.	IC RE			
WNMU 0807ZNER-G	•	•	•	•	•	13	7	1,6	1	<u>_S</u> _			
WNMU 0807ZNER-H	•	•	•			13	7	1,6	1				

■ Empfohlene Schnittdaten


Min.-Optimum-Max.

	iviii. Optimaii waz									
ISO	Werkstückstoff	Härte	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/Z)						
	Allgemeiner Stahl	< 280 HB	100–160–250	1,0-1,5-2,0						
P	Legierter Stahl	< 280 HB	100–160–200	1,0–1,5–1,8						
	Legierter Stahl	< 42 HRC	100–150–180	0,8–1,0–1,2						
M	Rostfreier Stahl	-	80–120–150	0,8–1,0–1,2						
K	Grauguss	-	100–160–250	1,0–1,5–1,8						
Н	Gehärteter Stahl	< 52 HRC	80–100–120	0,3-0,5-0,7						

Die oberen Angaben dienen als Richtwerte für den Einsatz auf BT50-Werkzeugmaschinen bei einer Schnitttiefe (ap) von 1,5 mm. Die empfohlenen Schnittdaten sind ggf. je nach Steifigkeit der Maschine und des Werkstücks zu ändern.

Modularfräser

"Sumi Dual Mill" DMSW 08000 M

■ Fräsköpfe (modular)

Abmessungen (mm)

Bezeichnung	Lager	DCX	DC	DCSFMS	DCON	CRKS	OAL	LF	LS2	L11	Н	Anzahl Zähne	Gewicht (kg)	Abb.
DMSW 08035M16Z2	•	35	18,6	28,5	17	M16	63	40	5	10	24	2	0,19	1
08040M16Z3	•	40	23,5	28,5	17	M16	63	40	5	10	24	3	0,21	1

Die Schneidplatten werden separat verkauft.

■ Ersatzteile

Schraub	Schlüssel	
	(N·m)	P
BFTX0513IP	5,0	TRDR20IP

■ Identifikation des Fräskopfes

DMSW 80 040 **Z**3 **M16** Fräser-Platten-Fräs-Einschraub-Anzahl bezeichnung größe kopf-durchgewinde Zähne messer

■ Wendeschneidplatten

Abmessungen (mm)

•										Abiliessungen (IIIII)	
Anwendung	Bes	schich	tetes l	Hartme	etall						
Hochgeschw./ Leichtbearbeitung		P		K							
Allgemeine Anwendung	K _S M	P	P	K	K						
Schruppen	K SM		P		K					Abb. 1	
Bezeichnung	ACU2500	ACP2000	ACP3000	ACK2000	ACK3000	IC	S	RE	Abb.	RE	
WNMU 0807ZNER-G	•	•	•	•	•	13	7	1,6	1	S	
WNMU 0807ZNER-H	•	•	•			13	7	1,6	1		

■ Empfohlene Schnittdaten

Min.-Optimum-Max.

				•	
ISC) Werkstückstoff	Härte	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/Z)	
	Allgemeiner Stahl	< 280 HB	100–160–250	1,0–1,5–2,0	
P	Legierter Stahl	< 280 HB	100–160–200	1,0–1,5–1,8	
	Legierter Stahl	< 42 HRC	100–150–180	0,8-1,0-1,2	
M	Rostfreier Stahl	_	80–120–150	0,8-1,0-1,2	
K	Grauguss	_	100–160–250	1,0–1,5–1,8	
Н	Gehärteter Stahl	< 52 HRC	80–100–120	0,3-0,5-0,7	

Die oberen Angaben dienen als Richtwerte für den Einsatz auf BT50-Werkzeugmaschinen bei einer Schnittliefe (ap) von 1,5 mm. Die empfohlenen Schnittdaten sind ggf. je nach Steifigkeit der Maschine und des Werkstücks zu ändern.

■ Eigenschaften

Der "Metal Slash"- Fräser MSX ist ein neuer Mehrzweckfräser, der mit seinen hohen Vorschüben sehr gut zum Auskammern, zum Plan- und Tauchfräsen sowie für Zirkularfräsanwendungen geeignet ist. Die Fräsplatten bieten schneidfreudige Kanten und eine sehr harte Super ZX PVD-Beschichtung, die eine extrem hohe Verschleißund Hitzebeständigkeit aufweist.

Die einzigartige Form der Schneiden optimiert die Zerspankräfte und bietet dadurch eine vibrationsarme Zerspanung, die ein genaues Schlichten und verbesserte Oberflächen auch bei großen Auskrag-längen ermöglicht. Die Innenkühlung reguliert die Temperatur an der Schneidkante optimal und fördert zusätzlich die Spanabfuhr. Eine Doppelklemmung der Platten in den breiten Spantaschen maxi-miert die Stabilität. Der neue MSX-Fräser kann in einem breiten Anwendungsfeld in Stahl (P), rostfreiem Stahl (M) oder Guss (K) angewendet werden und überzeugt durch beeindruckende Ergebnisse.

Vorteile

Innenkühlung

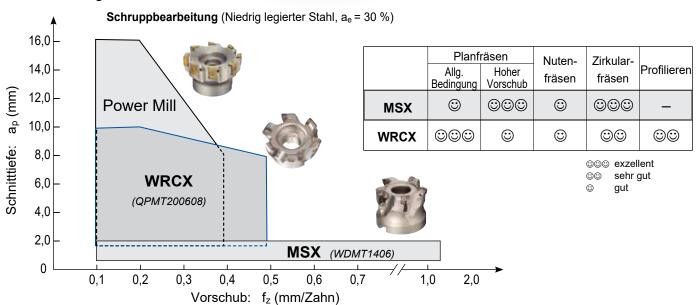
Besser Spanabfuhr durch Innenkühlung und einzigartigen **Plattensitz**

Breiter Anwendungsbereich

Plan- und Nutenfräsen Aufweiten, Zirkular- und Tauchfräsen

Geringere Schnittkraft

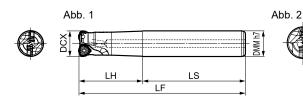
Einzigartige Plattengeometrie reduziert Schnittkraft

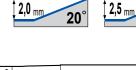

Hochstabiler Fräskörper

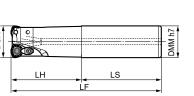
Speziell legierter Stahl mit harter Oberfläche

Doppelklemmung

Sichere Bearbeitung durch stabile Platteklemmhaftung


Anwendungsauswahl




"METAL SLASH MILL" MSX 06000/08000 ES/EM/EW

"METAL SLASH MILL" MSX 12000/14000 ES/EM/EW

Fräs	körper	

Für Schneidplattentyp	: WDMT	0603 🗆 🗆 🗆
-----------------------	--------	------------

Danaiahaaaa		A	Abmes	sunge	n (mm	1)	Anzahl	۸ ۱ - ۱-
Bezeichnung	Lager	DCX	DMM	LH	LS	LF	Zähne	Abb.
MSX 06016 ES		16	16	30	80	110	2	1
06016 EM	•	16	16	70	80	150	2	1
06016 EM15		16	15	30	120	150	2	1
MSX 06017 EM	0	17	16	20	130	150	2	1
MSX 06018 EM	O	18	16	20	130	150	2	1
MSX 06020 ES	•	20	20	50	80	130	3	1
06020 EM	•	20	20	100	80	180	3	1
06020 EM19		20	19	50	130	180	3	1
MSX 06022 EM	0	22	20	30	150	180	3	1
MSX 06025 ES	•	25	25	60	80	140	3	1
06025 ES24		25	24	60	80	140	3	1
06025 EM	•	25	25	120	130	250	3	1
06025 EM24		25	24	60	190	250	3	1
MSX 06020 EW	•	20	20	50	80	130	3	1
MSX 06025 EW	•	25	25	60	80	140	3	1

■ Fräskörper

Für Schneidplattentyp	: WDMT 0804 [
-----------------------	---------------	--

D ! - ! - · · · · · ·		F	Abmes	sunge	n (mm	1)	Anzahl	A I. I.
Bezeichnung	Lager	DCX	DMM	LH	LS	LF	Zähne	Abb.
MSX 08020 ES	•	20	20	50	80	130	2	1
08020 EM	•	20	20	100	80	180	2	1
08020 EM19		20	19	50	130	180	2	1
MSX 08022 EM	0	22	20	30	150	180	2	1
MSX 08025 ES	•	25	25	60	80	140	2	2
08025 EM	•	25	25	120	130	250	2	2
08025 EM24		25	24	60	190	250	2	2
MSX 08028 EM		28	25	40	210	250	2	2
MSX 08032 ES	O	32	32	70	80	150	3	2
08032 EM		32	32	120	130	250	3	2
MSX 08035 EM	O	35	32	50	200	250	3	2
MSX 08020 EW	•	20	20	50	80	130	2	1
MSX 08025 EW	•	25	25	60	80	140	2	2
MSX 08032 EW	•	32	32	70	80	150	3	2

■ Bezeichnungsschlüssel

N.	л	\sim	
IV	и	-> X	
	4	\mathbf{u}	

06

016

Ε

Fräser-

Platten-

durchmesser

Schaft

Fräsertyp: S: Kurze Ausführ. mit Zylinderschaft M: Lange Ausführ. mit Zylinderschaft W:Kurze Ausführ. mit Weldonschaft

Fräskörper

Für Schneidplattentyp : WDMT 1205 □□□□

	Damaiahanna		A	1)	Anzahl	A L. L.			
	Bezeichnung	Lager	DCX	DMM	LH	LS	LF	Zähne	Abb.
Λ	/ISX 12032 ES	•	32	32	70	80	150	2	2
	12032 EM	•	32	32	120	130	250	2	2
N	/ISX 12035 EM	O	35	32	50	200	250	2	2
N	/ISX 12040 ES	O	40	32	50	100	150	3	2
	12040 EM	0	40	32	50	200	250	3	2
N	/ISX 12050 EM		50	42	50	200	250	4	2
N	/ISX 12032 EW	•	32	32	70	80	150	2	2

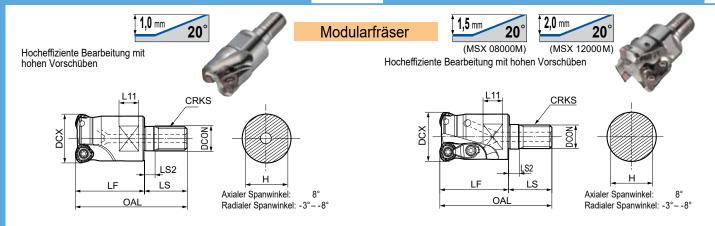
Fräskörper

Für Schneidplattentyp : WDMT 1406 □□□□

<u>.</u>								
D ! - l	Abmessungen (mm)							A I. I.
Bezeichnung	Lager	DCX	DMM	LH	LS	LF	Zähne	Abb.
MSX 14040 ES		40	32	50	100	150	2	2
14040 EM		40	32	50	200	250	2	2
MSX 14050 ES		50	42	50	100	150	3	2
MSX 14050 EM		50	42	50	200	250	3	2
14063 ES		63	42	50	100	150	4	2
MSX 14063 EM		63	42	50	200	250	4	2

■ Wendeschneidplatten

Anwendung	Hart	m b	eschi	chtet	1) IC	
Hochgeschw./Leichtbearb.			K		6	\mathcal{Y}	火	
Allgemeine Anwendung	PM	P _M	M			_		RE S.
Schruppen	PM	PM		K				< >
Dozeiehnung	ACP200	ACP300	ACK200	ACK300	Abmes	sunger	n (mm)	Geeignete
Bezeichnung	ACF	ACF	\document{\docum	PQ	IC	S	RE	Fräser
WDMT0603 ZDTR	•	•	O	•	6,35	3,0	1.5	MSX06000E□
0603 ZDTR-H	•	•	0	•	0,33	3,0	1,5	WISKUUUUUEL
WDMT0804 ZDTR	•	•		•	8,5	4,0	2,0	MSX08000E□
0804 ZDTR-H	•	•	0	•	0,5	4,0	2,0	WISKUGUUUL
WDMT1205 ZDTR	•	•		•	12	5,0	2,0	MSX12000E□
1205 ZDTR-H	•	•	0	•	12	5,0	2,0	WISK 12000L
WDMT1406 ZDTR	•	•	0	•	14	6,0	2,0	 MSX14000E□
1406 ZDTR-H	•	•		•	17	0,0	۷,0	INIOX 14000EL


ZDTR-H: verstärkte Schneidkante

■ Ersatzteile

Plattenschraube		Schlüssel	Spannfinger	C-Ring	Klemmschraube	Geeignete Fräser
	(N·m)					MSX - EO
BFTX 02505 IP	1,5	TRDR 08 IP	-	-	-	MSX 06000E□
BFTX 0306 IP	2,0	TRDR 08 IP	-	-	-	MSX 08020E□, MSX 08022E□
BFTX 0306 IP	2,0	TRDR 08 IP	CCH 3,5	CR 03	BFTX 03510 IP 08	MSX 08025E□, MSX 08028E□, MSX 08032E□, MSX 08035E□
BFTX 0409 IP	3,0	TRDR 15 IP	CCH 3,5	CR 03	BFTX 03510 IP 15	MSX 12000E□
BFTX 0511 IP	5,0	TRDR 20 IP	CCH 4,5	CR 03	BFTX 04513 IP 20	MSX 14000E□

Austauschbare Fräsköpfe **MSX** 06000 M

Austauschbare Fräsköpfe MSX 08000/12000 M

Fräskörper

■ Fräskörper	Für S	chne	eidpl	atter	ntyp	:WE	DMT	0603			
Dozeichnung	Lagar	Abmessungen (mm)									
Bezeichnung	Lager	DC	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	der Zähne
MSX 06016M08Z2	•	16	8,5	M8	42	25	5	17	8	13	2
06018M08Z2	0	18	8,5	M8	42	25	5	17	8	13	2
MSX 06020M10Z3	•	20	10,5	M10	49	30	5	19	8	15	3
06022M10Z3		22	10,5	M10	49	30	5	19	8	15	3
MSX 06025M12Z3	•	25	12,5	M12	56	35	5	21	10	19	3

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Fräskörper

Für Schneidplattentyp: WDMT 0804

Damaiahaaaa		. Abmessungen (mm)									Anzahl
Bezeichnung	Lager	DC	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	der Zähne
MSX 08025M12Z2	•	25	12,5	M12	56	35	5	21	10	19	2
08028M12Z2		28	12,5	M12	56	35	5	21	10	19	2
MSX 08030M16Z3		30	17,0	M16	63	40	5	23	10	24	3
08032M16Z3	•	32	17,0	M16	63	40	5	23	10	24	3
MSX 08035M16Z3	0	35	17,0	M16	63	40	5	23	10	24	3

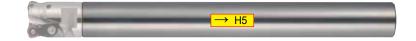
Fräsplatten sind nicht im Lieferumfang enthalten.

■ Fräskörper

Für Schneidplattentyp: WDMT 1205

D i - i		Abmessungen (mm)									
Bezeichnung	Lager	DC	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	der Zähne
MSX 12032M16Z2	•	32	17,0	M16	63	40	5	23	10	24	2
12035M16Z2	0	35	17,0	M16	63	40	5	23	10	24	2
MSX 12040M16Z3	•	40	17,0	M16	63	40	5	23	10	24	3

Fräsplatten sind nicht im Lieferumfang enthalten.


■ Schneidplatten

Anwendung	Hartr	netall,	besch	nichtet						
Allgemeine Anwendung	PM	PM	K							
Schruppen	PM	PM		M					_	
Bezeichnung	ACP200	ACP300	ACK200	ACK300	Abmes	ssunger	n (mm)	Geeignete Fräser		
Dezelorinang	ACF	ACF	ACK	ACK	IC	S	RE	Geeignete i Tasei	IC.	
WDMT 0603 ZDTR	•	•	O	•	6,35	3.0	1,5	MSX06000M□		
0603 ZDTR-H	•	•	O	•	0,33	3,0	1,5	INIOVOOOOINI		
WDMT 0804 ZDTR	•	•		•	0.5	4.0	2.0	MCV0000M□	NE RE	
0804 ZDTR-H	•	•	0	•	8,5	4,0	2,0	MSX08000M□		S►
WDMT 1205 ZDTR	•	•		•	10	E 0	2.0	MCV40000M□		
1205 ZDTR-H	•	•	O	•	12	5,0	2,0	MSX12000M□		

H - verstärkte Schneidkante

■ Bezeichnungsschlüssel

MSX	06	016	M08	Z2
Fräser-	Platten-	Fräser-Ø	Einschraub-	Anzahl de

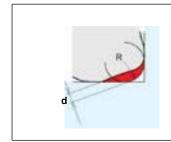
Ersatzteile

Klemmschraube		Schlüssel	Spannfinger	C-Ring	Plattenschraube	
	(N·m)					Geeignete Fräser
BFTX 02505 IP	1,5	TRDR 08 IP	-	-	-	MSX 06016M - MSX 06025M
BFTX 0306 IP	2,0	TRDR 08 IP	CCH 3,5	CR 03	BFTX 03510 IP 08	MSX 08025M - MSX 08035M
BFTX 0409 IP	3,0	TRDR 15 IP	CCH 3,5	CR 03	BFTX 03510 IP 15	MSX 12032M - MSX 12040M

"METAL SLASH MILL" MSX - Typ

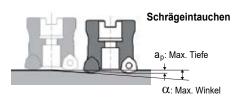
■ Empfohlene Schnittbedingungen

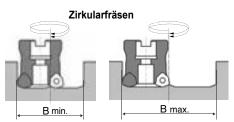
			C-b-:#	WCD				Schaf	tausfül	nrung (Ø	DC)				Auf	steckfrä	ser (Ø	DC)
V	/erkstück-	Hartmetall-	Schnitt-	WSP Kat	1	16	2	20	2	25	3	32	4	0	50	-66	80-	-100
	stoff	sorte	geschwindigkeit v _c (m/min)	Nr.	a _p (mm)	Vorschub (mm/Zahn)	a _p (mm)	Vorschub (mm/Zahn)	a _p (mm)	Vorschub (mm/Zahn)	a _p (mm)	Vorschub (mm/Zahn)	a _p (mm)	Vorschub (mm/Zahn)	a _p (mm)	Vorschub (mm/Zahn)	a _p (mm)	Vorschub (mm/Zahn)
	Alla Ctabl			WDMT 0603	0,8	0,8	0,8	0,8	0,8	0,8	-	_	_	_	-	_	_	_
	Allg. Stahl	A CD000	100 450 000	WDMT 0804	-	_	1,0	1,0	1,0	1,2	1,0	1,2	-	_	-	-	-	-
P	(unter HB200)	ACP200	100 –150 –200	WDMT 1205	-	_	_	_	_	_	1,2	1,4	1,2	1,4	1,2	1,4	_	_
	пьгии)			WDMT 1406	-	_	-	_	_	_	-	_	1,5	1,5	1,5	1,5	1,5	1,5
	Legierter			WDMT 0603	0,7	0,8	0,7	0,8	0,7	0,8	-	_	-	_	_	_	-	_
ь	Stahl	A CD000	00 420 400	WDMT 0804	-	_	0,8	1,0	0,8	1,2	0,8	1,2	_	_	_	-	_	-
Г	(unter	ACP200	80– 130 –180	WDMT 1205	-	_	-	_	_	_	1,0	1,4	1,0	1,4	1,0	1,4	_	_
	HRC45)			WDMT 1406	-	_	-	_	-	_	_	_	1,3	1,5	1,3	1,5	1,3	1,5
	Rostfreier			WDMT 0603	0,8	0,7	0,8	0,7	0,8	0,7	_	_	_	_	_	_	_	_
M	Stahl	ACP300	80– 120 –150	WDMT 0804	-	_	1,0	0,8	1,0	0,8	1,0	0,8	-	_	_	-	-	-
IV	X5CRNI1810,	ACP300	00-12 0 -150	WDMT 1205	-	_	-	_	_	_	1,2	1,2	1,2	1,2	1,2	1,2	_	_
	u.a.			WDMT 1406	-	_	-	_	_	_	_	_	1,5	1,3	1,5	1,3	1,5	1,3
				WDMT 0603	0,8	1,0	0,8	1,0	0,8	1,0	_	_	_	_	_	_	_	_
K	Gusseisen	A C1/200	 100 –150 –200	WDMT 0804	-	-	1,0	1,2	1,0	1,4	1,0	1,4	_	_	_	-	_	_
'n	GG, GGG	ACKSUU	100 –150 –200	WDMT 1205	_	_	-	_	_	_	1,2	1,5	1,2	1,5	1,2	1,5	_	_
				WDMT 1406	_	_	-	_	-	_	-	_	1,5	1,8	1,5	1,8	1,5	1,8
	Gehärteter			WDMT 0603	0,5	0,5	0,5	0,5	0,5	0,5	-	_	-	_	-	_	-	_
н	Stahl	V CK300	40 –80 –100	WDMT 0804	_	_	0,5	0,6	0,5	0,8	0,5	0,8	-	-	-	-	-	_
L	(unter	ACK300	40- 60 -100	WDMT 1205	-	-	-	_	-	_	0,6	1,0	0,6	1,0	0,6	1,0	-	_
	HRC50)			WDMT 1406	-	_	_	_	_	_	_	_	1,0	1,2	1,0	1,2	1,0	1,2


WSP KatNr.	Max a _p	RE
WDMT 0603	1,0	1,5
WDMT 0804	1,5	2,0
WDMT 1205	2,0	2,0
WDMT 1406	2.5	2.0

- Die oben aufgeführten Schnittbedingungen müssen ggf. an Maschinentyp und/oder Werkstückstabilität angepasst werden.
 Die oben aufgeführten Zahlen sind Richwerte bei dem Gebrauch von BT50-Maschinenwerkzeugen.
- Die oben aufgeführten Schnittbedingungen setzen einen Werkzeugüberhang von L/D = 3 (z.B. Überhangslänge ist 3mal Werkzeugdurchmesser) oder weniger voraus.

Wenn der Werkzeugüberhang mehr als L/D = 3 und weniger oder gleich L/D = 5 beträgt, sollten die Einstellungen auf ca. 70 % bis 80 % der oben aufgeführten Schnittbedingungen korrigiert werden (z.B. ap und Vorschub). Wenn der Werkzeugüberhang mehr als L/D = 5 und weniger oder gleich L/D = 8 beträgt, sollten die Einstellungen auf ca. 50 % bis 60 % der oben aufgeführten Schnittbedingungen korrigiert werden (z.B. ap und Vorschub).


■ Informationen zur Programmierung


Für die Maschinenprogrammierung nutzen Sie bitte den theoretischen Eckenradius (R)aus der Liste. Die maximale Tiefe zwischen dem theoretischen Radius und des tatsächlichem Profil der bearb. Oberfläche wird hier gezeigt.

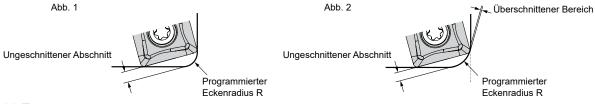
Fräskörper	Platte	Theoretischer Radius (R)	Verbleibendes Material (d)
MSX 06 000	WDMT 06 03	2,0	0,403
MSX 08 000	WDMT 08 04	2,5	0,593
MSX 12 000	WDMT 12 05	3,0	1,030
MSX 14 000	WDMT 14 06	3,5	1,219

■ Tauch- und Zirkularfräsen

	WDN	IT0603Z	DTR	WDN	1T0804Z	DTR	WDM	1T1205Z	DTR	WDN	1T1406Z	DTR
Fräser	ap	: max 1	,0	ap	: max 1	,5	ap	: max 2	.,0	ap	: max 2	.,5
Ø	Tauchfräsen	Zirkula	rfräsen	Tauchfräsen	Zirkula	rfräsen	Tauchfräsen	Zirkula	rfräsen	Tauchfräsen	Zirkula	rfräsen
	α	min.	max.	α	min.	max.	α	min.	max.	α	min.	max.
	max.	øΒ	øΒ	max.	øΒ	øΒ	max.	øΒ	øΒ	max.	øΒ	øΒ
16	6°00'	21	31									
17	5°00'	23	33									
18	4°30'	25	35									
20	3°30'	29	39	7°30'	25	38						
22	3°00'	33	43	5°30'	29	42						
25	2°00'	39	48	4°00'	35	48						
28				3°00'	41	54						
32				2°30'	49	62	6°30'	42	63			
35				2°00'	55	68	5°00'	48	69			
40				1°30'	65	78	4°00'	58	79	6°00'	53	78
50							2°30'	78	99	3°30'	73	98
63							2°00'	103	124	2°00'	99	124
66							1°30'	109	130	1°45'	105	130
80										1°30'	133	158
100										1°00'	173	198

WFXH - Typ

■ Allgemeine Eigenschaften


Der WaveMill WFXH-Typ ist ein hocheffizienter Mehrzweckfräser mit Wendeschneidplatten der WFX-Serie zum Schruppen mit hohem Vorschub sowie für eine Vielzahl an Prozessen.

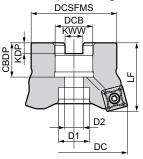
Eigenschaften

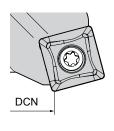
Stabiler, hocheffizienter Fräser mit überragender Schneidkantenschärfe. Geeignet für verschiedene Anwendungen (Schrägeintauchen und Zirkularfräsen). Funktioniert mit der Auswahl an Schneidplatten der WFX-Serie.

■ Hinweise zum Schlichten - Verbleibendes Material (im Profil)

Aufgrund der Schneidplattenform werden aktuell bearbeitete Ecken ungeschnittene und überschnittene Abschnitte aufweisen.

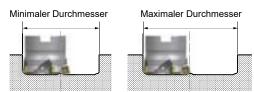
WFXH 08000-Typ


		<i>,</i> ,							
Programmierter	_	Г 080004-□		SOM	Γ 080008-□		SOMT	080012-□	
Eckenradius R	Ungeschnittener Bereich	Überschnittener Bereich	Form	Ungeschnittener Abschnitt	Überschnittener Abschnitt	Form	Ungeschnittener Abschnitt	Überschnittener Abschnitt	Form
2,0	1,41	0	Abb. 1	1,30	0	Abb. 1	1,21	0	Abb. 1
2,5	1,30	0,02	Abb. 2	1,19	0,01	Abb. 2	1,09	0	Abb. 2
3,0	-	-	-	-	-	-	0,98	0.05	Abb. 2


WFXH 12000-Typ

Programmierte	SOMT	120004-		SOM	Г 12○○08-□		SOMT	12 00 12- □		SOMT	120016-🗆	
Ecke R	Ungeschnittener Bereich	Überschnittener Abschnitt	Form	Ungeschnittener Abschnitt	Überschnittener Abschnitt	Form	Ungeschnittener Abschnitt	Überschnittener Abschnitt	Form	Ungeschnittener Abschnitt	Überschnittener Abschnitt	Form
2,0	2,58	0	Abb. 1	2,48	0	Abb. 1	2,37	0	Abb. 1	2,25	0	Abb. 1
2,5	2,47	0	Abb. 1	2,37	0	Abb. 1	2,25	0	Abb. 1	2,14	0	Abb. 1
3,0	2,36	0	Abb. 1	2,26	0	Abb. 1	2,14	0	Abb. 1	2,11	0	Abb. 1
3,5	2,24	0,01	Abb. 2	2,14	0	Abb. 1	2,03	0	Abb. 1	1,91	0	Abb. 1
4,0	-	-	-	2,03	0,04	Abb. 2	1,91	0,03	Abb. 2	1,8	0,01	Abb. 2

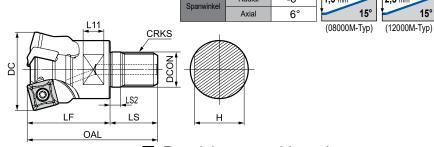
Minimaler Schnittkreisdurchmesser


Der Minimale Schnittkreisdurchmesser (DCN) hängt von der verwendeten Schneidplatte ab. Es wird die Verwendung einer Schneidplatte mit großem Spitzenradius für den WFXH-Typen empfohlen.

Pozoiobnung	DC	DCN basiert	auf dem Radii	us der Wende	schneidplatte
Bezeichnung	DC	R0,4	R0,8	R1,2	R1,6
WFXH 08025 M	25	9,69	9,48	9,27	-
08032 M	32	16,6	16,4	16,2	-
WFXH 12040 M	40	15,8	15,5	15,3	15,1

■ Schrägeintauchen und Zirkularfräsen

Minimale und Maximale Durchmesser


Winkel beim Schrägeintauchen

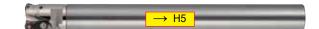
Bezeichnung WSP	DC	Zirkula	rfräsen	Schrägeintauchen
		Min.	Max.	Max. Winkel beim Schrägeintauchen
SOMT 08○○04-□	25	35	49	1°30'
30W1 000004-0	32	49	63	0°30'
SOMT 08○○08-□	25	35	48	3°
00W1 000000-	32	49	62	1°30'
SOMT 08○○12-□	25	34	47	4°30'
00W1 0000 12-0	32	48	61	2°30'
SOMT 120004-□	40	56	79	1°
SOMT 120008-□	40	56	78	1°30'
SOMT 120012-□	40	55	77	2°30'
SOMT 12○○16-□	40	55	76	3°30'

Modularfräser

■ Fräskörper (einschraubbar)

Bezeichnung	ager		-	Abme	ssu	ngei	n (m	m)			Anz. der	Gewicht
Bezeichhung	Ľa	DC	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Zähne	(kg)
WFXH08025M12Z2	0	25	12,5	M12	56	35	5	21	10	19	2	0,1
08032M12Z3	O	32	17,0	M16	63	40	5	23	10	24	3	0,2

Wendeschneidplatten sind nicht enthalten.


■ Fräskörper (einschraubbar)

Bezeichnung	ager			Abme	essu	nge	n (m	m)			Anz. der	Gewicht
bezeichnung	Ľá	DC	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Zähne	(kg)
WFXH12040M12Z3	0	40	17,0	M16	63	40	5	23	10	24	3	0,2

Wendeschneidplatten sind nicht enthalten.

Bezeichnungsschlüssel

WFX	_08	020	M10	Z2
Fräsertyp	Platten- größe	Fräskopf- durch- messer	Einschraub- gewinde	Anz. de Zähne

■ Wendeschneidplatten

	Anwendung			H	artm	etall,	besc	hicht	et			Hartmetall	DLC	Cermet								
Hochges	chw. / leichte Bearbeitung	K S	₹ M	P			K	K		M _S		K										
Allgeme	ine Anwendung	™ S	₹ M		PM	PM	K	K		M _S	M _S		Ν	PM								
Schrupp	en	k S™			PM	PM			K		M _S		Ν	Р								
	Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCU2000	ACK200	ACK300	ACM200	ACM300	H	DL1000	T4500Z	RE	Abb.						
SOMT	080304 PZER L	•	0	•	•	0	0	0	•	•	•	_	_		0,4	1						
	080308 PZER L	•	0	0	•	•	0	•	•	•	•	_	_		0,8	1	Abb. 1			RE		
SOMT	080304 PZER G	•	0	•	•	•	0	•	•	•	•	-	-		0,4	1		_	\leftarrow	KE_	E	
	080308 PZER G	•	0	•	•	•	0	•	•	•	•	_	_		0,8	1		_				
	080312 PZER G	•		•	•	•			•	•	•	-	_		1,2	1		8,0	1//		#-+	
SOMT	080308 PZER H	•	0	•	•	•	0	•	•	•	•	_	_		0,8	1		<u> </u>				
	080312 PZER H	•		•	•	•		0	•		•	-	_		1,2	1			8,0		3,175	
SOET	080304 PZER G	•				0			•	•		_	_	0	0,4	1						
	080308 PZER G	•			0			•			•	-	_	0	0,8	1	Abb. 2	2				
	080312 PZER G	•			•	0			•	O	0	_	_	0	1,2	1	ADD. 2	2		RE		
SOET	080302 PZFR S	_	_	_	_		_	_	-	_	_	•	•		0,2	1		_		/ KE	-	
	080304 PZFR S	-	-	_	-	_	_	_	-	_	_	•	•		0,4	1		. 1				
	080308 PZFR S	_	-	_	_	-	_	_	-	_	_	•	•		0,8	1		12,7			##	
SOMT	120408 PDER L	•	0	•	•	•	0	•	•	•	•	_	_		0,8	2		<u>+</u>				
SOMT	120404 PDER G	•	0	0	•	•	0	•	•	•	•	-	-		0,4	2			12,7		4,76	
	120408 PDER G	•	0	•	•	•	0	•	•	•	•	_	-	0	0,8	2						
	120412 PDER G	•		0	•	0		•	0	O	•	-	_		1,2	2						
	120416 PDER G	•		•	•	•		0	0	0		_	-		1,6	2						
SOMT	120408 PDER H	•	0	•	•	•	0	•	•	•	•	_	_		0,8	2						
SOET	120408 PDFR S	_	_	_	_	_	_	_	_	_	_	•	•		0,8	2						

Ersatzteile

	Schraube		Schlüssel
0 : +	Scrifaube	-	Scriiussei
Geeigneter			
Fräser		(N·m)	<i>></i>
	•		
WFXH08000M	BFTX0306IP	2,0	TRDR08IP
WFXH12000M	BFTX03512IP	3.0	TRDR15IP

■ Empfohlene Schnittbedingungen

				Schnittgeschwin-	Wendeschneid-	Ø	25	Ø	32	Ø	40	Ø	50	Ø	63
18	30	Werkstoff	Schneidstoff	digkeit v _c (m/min)	platte Kat Nr.	a _p (mm)	f _z (mm/Z)	a _p (mm)	f _z (mm/Z)	a _p (mm)	f _z (mm/Z)	a _p (mm)	f _z (mm/Z)	a _p (mm)	f _z (mm/Z)
		Unlegierter Stahl	ACP200	100 –150 –200	SOMT08	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
	ь	<200HB	7101 200	100 100 200	SOMT12	-	-	-	-	1,0	1,0				
		Legierter Stahl	ACP200	80 –130 –180	SOMT08	0,7	0,8	0,7	0,8	0,7	0,8	0,7	0,8	0,7	0,8
		<hrc45< td=""><td>ACFZ00</td><td>00-130-100</td><td>SOMT12</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0,8</td><td>1,0</td><td>0,8</td><td>1,0</td><td>0,8</td><td>1,0</td></hrc45<>	ACFZ00	00-130-100	SOMT12	-	-	-	-	0,8	1,0	0,8	1,0	0,8	1,0
,	И	Rostfreier Stahl	ACM300	80 –120 –150	SOMT08	0,8	0,7	0,8	0,7	0,8	0,7	0,8	0,7	0,8	0,7
'	VI	(X5CrNiS18 10, und andere)	ACIVISOU	00-12 0 -130	SOMT12	-	-	-	-	1,0	0,8	1,0	0,8	1,0	0,8
	K	Gusseisen	ACK300	100 –150 –200	SOMT08	0,8	1,0	0,8	1,0	0,8	1,0	0,8	1,0	0,8	1,0
	$^{\sim}$	GG, GGG	ACK300	100-150-200	SOMT12	-	-	-	-	1,0	1,2	1,0	1,2	1,0	1,2
F	П	Gehärteter Stahl	ACK300	40 –80 –100	SOMT08	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
1	H	<hrc50< td=""><td>ACROU</td><td>40-00-100</td><td>SOMT12</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0,6</td><td>0,8</td><td>0,6</td><td>0,8</td><td>0,6</td><td>0,8</td></hrc50<>	ACROU	40-00-100	SOMT12	-	-	-	-	0,6	0,8	0,6	0,8	0,6	0,8

Die oben empfohlenen Schnittbedingungen bedürfen einer Anpassung, je nach Maschinen- und Aufspannstabilität. Die oben aufgeführten Werte sind Richtlinien für den Gebrauch des BT50-Werkzeuges.

Die oben aufgeführten Bedingungen gehen von einer Werkzeugüberhanglänge von LD ≤3 (d.h. die Überhanglänge entspricht dreimal dem Nenndurchmesser) aus.

Wenn die Überhanglänge L/D ≥ 3 und L/D ≤ 5 ist, sollten die Einstellungen auf ca. 70 % bis 80 % der oben angegebenen Schnittbedingungen angepasst werden (d.h. ap und fz).

Wenn die Überhanglänge L/D ≥ 5 und L/D ≤ 8 ist, sollten die Einstellungen auf ca. 50 % bis 60 % der oben angegebenen Schnittbedingungen angepasst werden (d.h. ap und fz).

Merkmale

Durch ein neues Herstellungsverfahren konnte eine doppelseitige 6-schneidige Wendeschneidplatte mit einer erheblich verbesserten Genauigkeit entwickelt werden. Mit diesem neuen Verfahren ist die Grundlage für eine kosteneffiziente Bearbeitung geschaffen worden.

Ausführungen

- Durchmesserbereiche von Ø 25 mm bis Ø 200 mm
- Erhältlich mit Standard, mittlerer und enger Zahnteilung
- Aufnahmedurchmesser: metrisch
- Wendeschneidplattengeomtrie: L, G, GS, H

■ Fräskörper

Ausfü	ihrung	Bezeichnung	Durchmesser (mm)	Anzahl der Zähne	Abbildung
Schaftfräser	Standard	DFC 09000 E	Ø 25 – Ø 80	2–5	(MIII)
	mittlere Zahnteilung	DFCM 09000 E	Ø 32 – Ø 80	3–7	9
	Standard	DFC 09000 RS	Ø 50 – Ø 200	4–10	edia.
Aufsteckfräser	mittlere Zahnteilung	DFCM 09000 RS	Ø 50 – Ø 200	5–16	600
→G22-G25	feine Zahnteilung	DFCF 09000 RS	Ø 50 – Ø 200	6–20	

■ Neue Wendeschneidplattengeometrie ermöglicht sehr präzise Bearbeitung

Wendeschneidplatten

Bezeichnung	RE0,4	RE0,8	RE1,2	RE1,6
XNMU0606PNER-L	•	•		
XNMU0606PNER-G	•	•	•	•
XNMU0606PNER-GS	•	•	•	•
XNMU0606PNER-H		•	•	•

Schneidkantenausführungen

Material		P M K	S	
	L-Typ	G-Typ	GS-Typ	Н-Тур
Schneidkanten- ausführung				
Anwendung	Leichte Bearbeitung	Allgemeine Bearbeitung	Schulterfräsen	Stabile Schneidkante
Schneidkanten- geometrie		0,1 mm 20°	0,1 mm 20°	0,15 mm
Merkmal	Leichte Bearbeitung bei instabilen Prozessen, reduzierte Gratbildung	Planfräsen	Schulterfräsen	Schruppen, schwere Schnittunter- brechungen uns gehärteter Stahl

■ Wendeschneidplatte mit stabiler Schneidkante kombiniert mit hohem Maß an Zähigkeit

Erweiterung

■ Fräskörper – Schaftfräser

Radial Spanwinkel Axial -5°

"Sumi Dual Mill"

Max. a_p: 6 mm

■ Fräskörper – Abmessungen

LS LH LF

■ Typ: DFC, Standard

Do.	oichnung	Logor	P	Abmes	sunge	n (mm	1)	Anzahl
Dez	eichnung	Lager	DC	DMM	LH	LS	LF	Zähne
DFC	09025E	•	25	25	40	80	120	2
DFC	09032E	•	32	32	50	80	130	2
	09040E	•	40	32	50	80	130	3
	09050E	•	50	32	50	80	130	3
DFC	09050E-42		50	42	50	100	150	3
DFC	09063E	•	63	32	50	80	130	4
DFC	09063E-42		63	42	50	100	150	4
DFC	09080E	•	80	32	50	80	130	5
DFC	09080E-42		80	42	50	100	150	5

Typ: DFCM, mittlere Zahnteilung

Bezeichnung	Logor	Abmessungen (mm)							
Bezeichhung	Lager	DC	DMM	LH	LS	LF	Zähne		
DFCM 09032E	•	32	32	50	80	130	3		
09040E	•	40	32	50	80	130	4		
09050E	•	50	32	50	80	130	5		
DFCM 09050E-42		50	42	50	100	150	5		
DFCM 09063E	•	63	32	50	80	130	6		
DFCM 09063E-42		63	42	50	100	150	6		
DFCM 09080E	•	80	32	50	80	130	7		
DFCM 09080E-42		80	42	50	100	150	7		

■ Bezeichnungsschlüssel

DFC Fräserserie

M Zahnteilung M: mittel

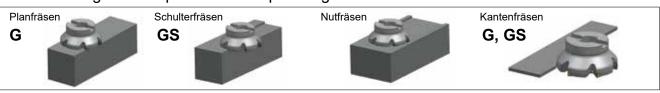
09 Plattengröße

050 Fräserdurchmesser

Ε Fräsertyp: Schaft

Wendeschneidnlatten

 vvendescrineidplatter 	ı												
Anwendung		Вє	esch	nich	tete	s H	lart	met	tall				
Hochgeschw. / Leichtbearbeitung	K _S M					K	K		M _S				
Allgemeine Anwendung	K SM	₽	P _M	P _M		K	K		M _S	M _S			
Schruppen	₩			M	P _M			K		M _S		_	
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	RE		
XNMU 060604 PNER-L	•	O		•	•	0		•		•	0,4	RE	
060608 PNER-L	•	O		•		O		lacksquare		•	0,8		
XNMU 060604 PNER-G	•	0	•	•	lacksquare	\mathbf{c}	lacktriangle	•	•	•	0,4		
060608 PNER-G	•	0	•	•	lacksquare	O	•	•	•	•	0,8		
060612 PNER-G	•		•	•	lacksquare		•	•	•	•	1,2		
060616 PNER-G	•		0	•	•		•	•	•	•	1,6		
XNMU 060604 PNER-GS	0		•	•	•				•	•	0,4	11,2	
060608 PNER-GS	O	0	•	•	•	\mathbf{o}			•	•	0,8		
060612 PNER-GS	O		0	0	0				0	0	1,2		
060616 PNER-GS	O		0	O	O				0	O	1,6		
XNMU 060608 PNER-H	•	0	•	•	•	0	•	•	•	•	0,8]	
060612 PNER-H	•		0	•	•		•	•	0	•	1,2		
060616 PNER-H	•		0	•	0		0	•	O	•	1,6		

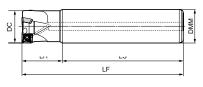

Ersatzteile

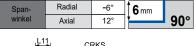
Schraube	Schlüssel
BFTX03512IP	TRDR15IP 5,0 €

■ Empfohlene Schnittbedingungen

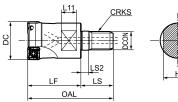
	inpromone con	muscamge	9011			MinOptimum-Max.
ISO	Werkstückstoff	Härte (HB)	Schnittgeschwindigkeit (m/min)	Vorschub	Schnitttiefe (mm)	Sorte
	Baustahl	180–280	150 –200 –250	0,10 -0,20 -0,30	< 6	ACU2500
P	Unlegierter Stahl	≤180	180 –250 –350	0,15 –0,25 –0,35	< 6	ACP200 ACP300
	Gesenkstahl	200-220	100 –150 –200	0,10 -0,18 -0,25	< 4	XCU2500
M	Rostfreier Stahl	-	160- 205 -250	0,12 -0,18 -0,25	< 6	ACU2500 ACM300
K	Grauguss	250	100 –175 –250	0,10 -0,20 -0,30	< 6	ACU2500 ACK200 ACK300 XCU2500 XCK2000
s	Warmfeste Superleierung	-	30 -50 -80	0,10 -0,20 -0,30	< 6	ACU2500 ACM200 ACM300

Anwendungen und Spanbrecherempfehlungen


"Sumi Wave" Schulterfräser WFX (M) 08000 E WFX 08000 M


"Sumi Wave" Schulterfräser

■ Fräskörper - Schaftfräser



Modularfräser

Fräskörper WFX E, Standard

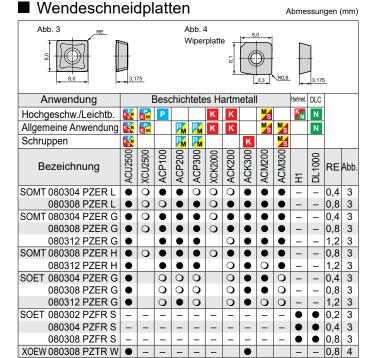
Dozajahnung	Logor		Abmes	sunge	n (mm))	Anzahl
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne
WFX 08020 E-16	•	20	16	30	80	110	2
WFX 08020 E	•	20	20	30	80	110	2
08022 E	•	22	20	30	90	120	2
WFX 08025 E-20	•	25	20	30	90	120	2
WFX 08025 E	•	25	25	30	90	120	2
08028 E	•	28	25	30	90	120	2
08030 E	•	30	25	30	90	120	3
WFX 08032 E	•	32	32	30	90	120	3
08033 E	•	33	32	30	90	120	3
08040 E	•	40	32	30	90	120	3
08050 E	•	50	32	30	90	120	4
08063 E	•	63	32	30	90	120	5

Fräsplatten sind nicht im Lieferumfang enthalten.

Fräskopf WFX M

Bezeichnung	Lager		Abmessungen (mm)								
bezeichnung	La	DC	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Zähne
WFX 08020 M10Z2	•	20	10,5	M10	49	30	5	19	8	15	2
08022 M10Z2	•	22	10,5	M10	49	30	5	19	8	15	2
WFX 08025 M12Z2	•	25	12,5	M12	56	35	5	21	10	19	2
08028 M10Z2	•	28	12,5	M12	56	35	5	21	10	19	2
WFX 08030 M16Z3	•	30	17,0	M16	63	40	5	23	10	24	3
08032 M16Z3	•	32	17,0	M16	63	40	5	23	10	24	3
08040 M16Z3	•	40	17,0	M16	63	40	5	23	10	24	3

Identifikation des Fräserkörpers


WFX	_08	020	M10	Z 2
Fräser-	Platten-	Fräser-	Einschraub-	Anzahl
bezeichnung		durchmesser	gewinde	Zähne

Fräskörper WFXM_E, mittlere Zahnteilung

Bezeichnung	Logor		Abmessungen (mm)						
bezeichhung	Lager	DC	DMM	LH	LS	LF	Zähne		
WFXM 08025 E	•	25	25	30	90	120	3		
WFXM 08032 E	•	32	32	30	90	120	4		
08040 E	•	40	32	30	90	120	4		
08050 E	•	50	32	30	90	120	5		
08063 E	•	63	32	30	90	120	6		

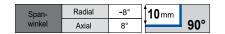
Fräsplatten sind nicht im Lieferumfang enthalten.

Abmessungen (mm)

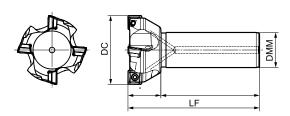
Bezeichnungsschlüssel

■ Empfohlene Schnittbedingungen

ISO	Werkstückstoff	Härte (HB)	Schnittgeschw. v _c (m/min)	Vorschub f _z (mm/Z)	DOC	Sorte
	Stahl	180–280	150- 200 -250	0,08 -0,12 -0,18	<6	ACU2500
Р	Baustahl	≤180	180 –250 –350	0,10 -0,15 -0,20	<6	ACP200 ACP300
	Gesenkstahl	200–220	100 –150 –200	0,08 -0,12 -0,18	<4	XCU2500
М	Rostfreier Stahl	-	160 –200 –250	0,10 –0,15 –0,20	<6	ACU2500 ACM300
K	Grauguss	250	100 –175 –250	0,10 -0,15 -0,20	<6	ACU2500 ACK200 ACK300 XCU2500 XCK2000
N	Nichteisenmetall	-	300 –500 –1000	0,10 -0,15 -0,20	<6	H1 DL1000
s	Warmfeste Superlegierung	-	30 -50 -80	0,08 -0,13 -0,18	<6	ACU2500 ACM200 ACM300


Min. - Optimum - Max.

Ersatzteile


Schraube	:	Schlüssel
	(N·m)	
BFTX0306IP	2,0	TRDR08IP

hatttraser ⁻räsplatten

■ Fräskörper - Schaftfräser

• Fräskörper WFX_E, Standard

Bezeichnung	Lagor		Anzahl				
bezeichhung	Lager	DC	DMM	LH	LS	LF	Zähne
WFX 12040 E	•	40	32	30	90	120	3
12050 E	•	50	32	30	90	120	3
12063 E	•	63	32	30	90	120	4
12080 E	•	80	32	30	90	120	4

Fräsplatten sind nicht im Lieferumfang enthalten.

Fräskörper WFXF_E, feine Zahnteilung

Poz	eichnung		Anzahl					
Dez	elcrifiurig	Lager	DC	DMM	LH	LS	LF	Zähne
WFXF	12050 E	•	50	32	30	90	120	4
	12063 E	•	63	32	30	90	120	5
	12080 E	•	80	32	30	90	120	6

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Bezeichnungsschlüssel

WFX	F	12	050	E		
Fräser-	Zahnteilung	Platten-	Fräser-	Schaft-		
Bezeichnung	F: fein	größe	durchmesser	ausführung		

■ Empfohlene Schnittbedingungen

ISO	Werkstückstoff	Härte (HB)	Schnittgeschw. v _c (m/min)	Vorschub f _z (mm/Z)	DOC	Sorte
	Stahl	180–280	150 –200 –250	0,10 –0,15 –0,20	<10	
Р	Baustahl	≤180	180 –250 –350	0,10 –0,15 –0,20	<10	ACP200 ACP300
	Gesenkstahl	200–220	100 –150 –200	0,10 -0,15 -0,20	<6	XCU2500
М	Rostfreier Stahl	-	160 –200 –250	0,10 –0,15 –0,20	<10	ACU2500 ACM300
K	Grauguss	250	100 –175 –250	0,10 -0,15 -0,20	<10	ACU2500 ACK200 ACK300 XCU2500 XCK2000
N	Nichteisenmetall	-	300 –500 –1000	0,10 –0,15 –0,20	<10	H1 DL1000
s	Warmfeste Superlegierung	-	30- 50 -80	0,10 -0,15 -0,20	<10	ACU2500 ACM200 ACM300

Min. - Optimum - Max.

■ Wendeschneidplatten

Abb. 3

Abiliessungen (III	111)

Z 12,7	4,	76_	,	Wipe	rplat	te	13.0		6.5	<u>R0,8</u>		4,76	<u>i_</u>	
Anwendung			Bes	chicl	ntete	es H	artm	netal			Hartmet.	DLC		
Hochgeschw./Leichtb.	k S ^M	₹ M	Р			K	K		M _S		K	N		
Allgem. Anwendung	™	KM		PM	PM	K	K		M _S	M _S		N		
Schruppen	™			PM	PM			K		M _S				
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	도	DL1000	RE	Abb.
SOMT 120408 PDER L	•	O	•	•	•	О	•	•	•	•	_	_	0,8	3
SOMT 120404 PDER G		O	O	•	•	O	•	•	•	•	-	-	0,4	
120408 PDER G	_	0	•	•	•	0	•	•	•	•	_	_	0,8	3
120412 PDER G			0	•	0		•	0	0	•	-	-	1,2	3
120416 PDER G	•		•	•	•		<u> </u>	<u> </u>	<u> </u>	0	_	_	1,6	
SOMT 120408 PDER H	•	0	•	•	•	0	•	•	•	•	_	_	0,8	
SOET 120408 PDFR S	_	_	_		_	_	_	_	_	_	•	•	0,8	3
XOEW 120408 PDTR W	O	_	_	_	_	_	_	O	_	_	-	-	_	4

Ersatzteile

Zwischenlage	Schraube für Zwischenlage	Plattenschraube	е	Schlüssel (Platte)	Schlüssel (Zwischenlage)
			√. m)		
WFXS4R	BW0507F	BETX03512IP 3	3 0	TRDR15IP	LH035

"Sumi Dual Mill" Serie **TSX** - Typ

■ Allgemeine Eigenschaften

Hocheffizienter und hochpräziser tangentialer Eckfräser mit tangential montierten Hartmetall-Schneidplatten.

■ Eigenschaften

- Zähe und scharfe Schneidkante
- Sehr genaue und gute Oberflächengüte
- Vielfältige Produktpalette

Produktpalette

TSX-Schulterfräser

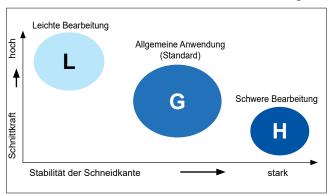
Тур	Dozeishnung	Austührungen				Durc	hme	sserl	berei	ch / A	nz. c	der Z	ähne				Form
1	Bezeichnung	Ausführungen	Ø16	Ø20	Ø25	Ø32	Ø40	Ø50	Ø63	Ø80	Ø100	Ø125	Ø160	Ø200	Ø250	Ø315	FOIIII
_	TSX 08000RS	Standard-Zahnteilung					4	5	6	7							
räse	TSXF 08000RS	Enge Zahnteilung					6	8	10	11							a Million
teckf	TSX 13000RS	Standard-Zahnteilung					3	4	5	5	6	7	8	12	14	16	MET MET
Aufsteckfräser	TSXM 13000RS	Mittlere Zahnteilung					4	5	6	7	8	10	12	16	20	24	→ G30-G37
	TSXF 13000RS	Standard-Zahnteilung					5	6	7	8	10	14	16				
	TSX 08000E	Standard-Zahnteilung	2	2*	3*	3*	4	5	6	7							
iser	TSXF 08000E	Enge Zahnteilung		3	4	5	6	8	10	11							
Schaftfräser	TSX 13000E	Standard-Zahnteilung			2	2	3	4	5	5							
Sch	TSXM 13000E	Mittlere Zahnteilung				3	4	5	6	7							
	TSXF 13000E	Enge Zahnteilung					5	6	7	8							

^{*} Verschiedene Schaftdurchmesser auf Lager

TSXR-Walzenstirnfräser

ď	Bezeichnung				Dur	chme	sser	berei	ch / A	Anzal	hl Zä	hne				Form	
<u> </u>	Bezeichhung		Ø20	Ø25	Ø32	Ø40	Ø	50	Ø63		Ø80		Ø100		Ø125		
루 <u>추</u>	TSXR 08000RS				2	3	3	4	5							020,020	
Aur	TSXR 13000RS					2	3		3	4	4	5	5	6	7	→ G38-G39	
aft-	TSXR 08000E		1	2	2	3										39	
Schaft. fräser	TSXR 13000E					2	3										

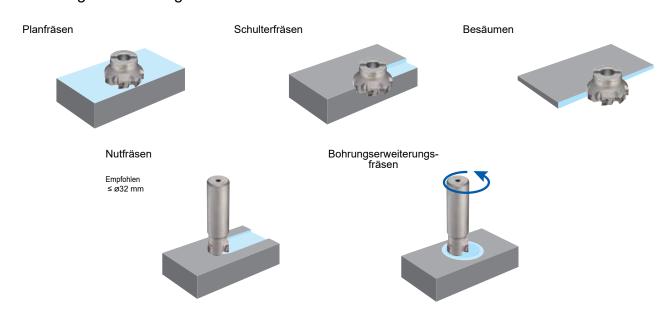
■ Empfohlene Schnittbedingungen


Min. - Optimal - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindigkeit	TSXE	Sorte
130	VVEIKSLUCKSLOII	(HB)	v _c (m/min)	Vorschub f _z (mm/Z)	Sorte
	Kohlenstoffstahl	180–280	150– 225 –300	0,08 –0,20 –0,30	ACU2500 ACP100
Р	Konienstonstani	> 280	75 –150 –230	0,08 –0,20 –0,30	ACP200
	Legierter Stahl	180–280	100– 175 –250	0,08 –0,15 –0,25	ACP300 XCU2500
м	Rostfreier Stahl	220–280	90 –135 –180	0,08 –0,15 –0,25	ACU2500 ACM200
IVI	Rostifelei Staffi	>280	75– 125 –170	0,08 –0,15 –0,25	ACM200 ACM300
К	Grauguss GGG	250	100– 175 –250	0,08 -0,20 -0,30	ACU2500 ACK200 ACK300 XCU2500 XCK2000
s	Exotische Metalle	-	30 –60 –90	0,05 –0,10 –0,15	ACU2500 ACM200 ACM300

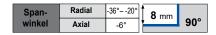
■ Schneidkantenausführungen

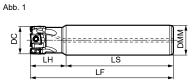
Material		P M K S	
	L-Typ	G-Typ	Н-Тур
Schneidkantenausführung	9	3	3
Merkmal	geringe Schnittkraft	allgemeine Bearbeitung	stabile Schneidkante
LNEX08 Schneidkantengeometrie	30°	115°	_
LNEX13 Schneidkantengeometrie	25°	21°	21°
Anwendung	Leichte Bearbeitung bei instabilen Prozessen, reduzierte Gratbildung	Hauptspanbrecher für die allgemeine Bearbeitung	Schruppen, schwere Schnittunter- brechungen und gehärteter Stahl

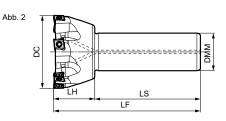

■ Auswahlhilfe Schneidkantenausführung

■ Fräsplatten

Bezeichnung	RE0,4	RE0,8	RE1,2	RE1,6	RE2,4	RE3,2
LNEX0804PNER-L	•	•				
LNEX0804PNER-G	•	•	•	•		
LNEX1306PNER-L	•	•				
LNEX1306PNER-G		•		•	•	•
LNEX1306PNER-H	•	•		•	•	•


■ Vielseitige Anwendungen


"Sumi Dual Mill" Serie TSX(F) 08000 E



Schaftfräser

Fräskörper - TSX, Standard-Zahnteilung

	•				•					
	Pozoiobnung	Logor		Abme	ssungen	(mm)		Anzahl	Gewicht	Abb.
	Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)	ADD.
TSX	08016 E	•	16	16	25	75	100	2	0,13	1
	08020 E	•	20	20	30	80	110	2	0,22	1
	08020 E-16	0	20	16	30	80	110	2	0,15	2
	08025 E	•	25	25	30	90	120	3	0,40	1
	08025 E-20	0	25	20	30	90	120	3	0,26	2
	08032 E	•	32	32	30	90	120	3	0,67	1
	08032 E-25	0	32	25	30	90	120	3	0,43	2
	08040 E	•	40	32	30	90	120	4	0,72	2
	08050 E	0	50	32	30	90	120	5	0,85	2
	08063 E	0	63	32	35	90	125	6	1,09	2
	08080 E	0	80	32	35	90	125	7	1,44	2

Fräsplatten sind nicht im Lieferumfang enthalten.

Fräskörper - TSXF, enge Zahnteilung

Bezeichnung	Logor		Abme	ssungen	(mm)		Anzahl	Gewicht	Abb.
Bezeichhung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)	ADD.
TSXF 08020 E	•	20	20	30	80	110	3	0,22	1
08025 E	•	25	25	30	90	120	4	0,40	1
08032 E	•	32	32	30	90	120	5	0,67	1
08040 E	•	40	32	30	90	120	6	0,73	2
08050 E	0	50	32	30	90	120	8	0,85	2
08063 E	0	63	32	35	90	125	10	1,10	2
08080 E	0	80	32	35	90	125	11	1,42	2

Fräsplatten sind nicht im Lieferumfang enthalten.

Fräsplatten

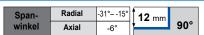
■ Fraspiatten												Abmessungen (mm)
Anwendung		Ве	escl	nich	tet	es F	lar	tme	tall			
Hochgeschw. / Leichtbearbeitung			M			K	K		M _S			
Allgemeine Anwendung	S.	KM	™	P _M		K	K		M _S	M _S		
Schruppen	KS.			M	M			Κ		M _S		RE
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	RE	
LNEX 080404 PNER-L	•			•	0		0	•	0	•	0,4	
080408 PNER-L	•			•	0		O	•	O	•	0,8	
080412 PNER-L	O			O				O	\mathbf{c}	0	1,2	
080416 PNER-L	0			0				0	O	0	1,6	
LNEX 080404 PNER-G	•	0	0	•	•	$ \mathbf{c} $	•	•	\mathbf{c}	•	0,4	8,6
080408 PNER-G	•	0	•	•	•	$ \mathbf{o} $	•	•	•	•	0,8	
080412 PNER-G	•		0	•	•		•	•	\mathbf{o}	•	1,2	
080416 PNER-G	•		O	•	•		•	•	O	•	1,6	

■ Empfohlene Schnittbedingungen

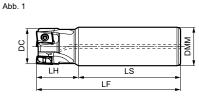
→ H20

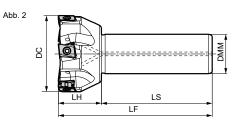
■ Identifikation des Fräskörpers

TSX	F/M	08	032	E
Fräser- bezeich- nung	F: enge M: mittlere Zahnteilung	Platten- größe	Fräser- durchmes- ser	Fräser- ausfüh- rung


Ersatzteile

WSP Schrau	ıbe	Schlüssel						
	(N·m)	P	Für Fräsertyp					
BFTX0306IP	2.0	TRDR08IP	TSX08016E, TSX08020E, TSXF08020E					
BFTX0308IP	2,0	INDRUGIE	TSX08025E-80E, TSXF08025E-80E					




"Sumi Dual Mill" Serie TSX(M/F) 13000 E

■ Schaftfräser

Fräskörper - TSX, Standard-Zahnteilung

	Dozajahnung	Logor		Abme	ssungen	(mm)		Anzahl	Gewicht	Abb.
	Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)	ADD.
TSX	13025 E	•	25	25	35	85	120	2	0,38	1
	13032 E	•	32	32	35	85	120	2	0,66	1
	13040 E	•	40	32	30	90	120	3	0,71	2
	13050 E	•	50	32	30	90	120	4	0,81	2
	13063 E	0	63	32	35	90	125	5	1,08	2
	13080 E	0	80	32	35	90	125	5	1,40	2

Fräsplatten sind nicht im Lieferumfang enthalten.

Fräskörper - TSXM, mittlere Zahnteilung

Bezeichnung	Logor		Abme	ssungen	(mm)		Anzahl	Gewicht	Abb.
Bezeichhung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)	ADD.
TSXM 13032 E	•	32	32	35	85	120	3	0,35	1
13040 E	•	40	32	30	90	120	4	0,71	2
13050 E	•	50	32	30	90	120	5	0,80	2
13063 E	0	63	32	35	90	125	6	1,07	2
13080 E	0	80	32	35	90	125	7	1,41	2

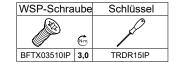
Fräskörper - TSXF, enge Zahnteilung

• 11	1 Taskorper - Toxi , enge Zarintending														
	Bezeichnung	Logor		Abme	ssungen	Anzahl	Gewicht	Abb.							
	bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)	ADD.					
TSXF	13040 E	•	40	32	30	90	120	5	0,70	2					
	13050 E	•	50	32	30	90	120	6	0,80	2					
	13063 E	0	63	32	30	90	125	7	1,07	2					
	13080 E	0	80	32	35	90	125	8	1,42	2					

O 80 32 35 90 125 8 1,42 2

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Ersatzteile


Fräsplatten sind nicht im Lieferumfang enthalten.

■ Fräsplatten

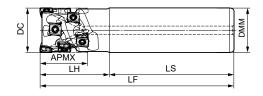
- i idopiditori												Abiliessungen (IIIII
Anwendung				nich	tete							
Hochgeschw. / Leichtbearbeitung	S.M	КM	P _M			K	K		M _S			
Allgemeine Anwendung		КM	M	P _M		K	K		M/S			
Schruppen	₹ M			M				Κ		M _S		_
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	RE	
LNEX 130604 PNER-L	•			•	0		O	•	0	•	0,4	
130608 PNER-L	•			•	0		\mathbf{c}	•	O	•	0,8	RE
130612 PNER-L	0			•				•	•	•	1,2	
130616 PNER-L	0			0				0	0	0	1,6	
130620 PNER-L	0			0				0	0	0	2,0	
130624 PNER-L	0			0				O	O	0	2,4	
130632 PNER-L	0			0				O	0	0	3,2	
LNEX 130604 PNER-G	•	0	0	•	•	0	•	•	0	•	0,4	2 2 2
130608 PNER-G	•	0	•	•	•	0	•	•	•	•	0,8	
130612 PNER-G	0		•	•	•		•	•	•	•	1,2	13 6,4
130616 PNER-G	•		0	•	•		•	•	0	•	1,6	13 6,4
130620 PNER-G	0		0	0	0		O	O	O	0	2,0	
130624 PNER-G	•		0	•	•		•	•	O	•	2,4	
130632 PNER-G	•		0	•	•		•	•	O	•	3,2	
LNEX 130604 PNER-H	0			0	0		O	0			0,4	
130608 PNER-H	•	0		•	•	0	•	•			0,8	
130612 PNER-H	0			•	•		•	•			1,2	
130616 PNER-H	•			•	•		•	•			1,6	
130620 PNER-H	0			0	0		\mathbf{c}	O			2,0	
130624 PNER-H	•			•	•		•	•			2,4	
130632 PNER-H	•			•	•		•	•			3,2	

- Empfohlene Schnittbedingungen
- Identifikation des Fräskörpers

→ H22

H23

"Sumi Dual Mill" Serie TSXR 08000 E



Schaftfräser

Fräskörper - TSXR

Dozajahnung	Lagar		Α	Anzahl	Zahn-	Effektive				
Bezeichnung	Lager	DC	APMX	DMM	LH	LS	LF	Zähne	reihen	Zähne
TSXR 08020E2120Z01	0	20	21	20	30	80	110	3	3	1
08025E2725Z02	0	25	27	25	35	90	125	8	4	2
08032E3432Z02	0	32	34	32	50	90	140	10	5	2
08040E4032Z03	0	40	40	32	60	90	150	18	6	3

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Fräsplatten

Abmessungen (mm)

•												
Anwendung		Ве	escl	nich	ntet	es l	Har	tme	tall			
Hochgeschw. / Leichtbearbeitung	₩	KM	P _M			K	K		Ms			
Allgemeine Anwendung	₩	KM		M		K	K		M _S	M _S		
Schruppen	S.			P _M	PM			K		M _S		RE
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	RE	
LNEX 080404 PNER-L	•			•	0		0	•	0	•	0,4	
080408 PNER-L	•			•	0		0	•	O	•	0,8	
080412 PNER-L	O			0				O	O	O	1,2	
080416 PNER-L	O			0				O	O	O	1,6	
LNEX 080404 PNER-G	•	0	0	•	•	0	•	•	O	•	0,4	8,6
080408 PNER-G	•	0	•	•	•	O	•	•	•	•	0,8	
080412 PNER-G	•		0	•	•		•	•	O	•	1,2	
080416 PNER-G	•		0	•	•		•	•	O	•	1,6	

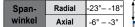
■ Empfohlene Schnittbedingungen

Min. - Optimum - Max.

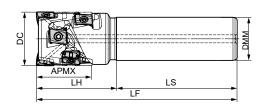
	•				•
ISO	Werkstückstoff	Härte	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/Z)	Sorte
	Kohlenstoffstahl	180-280HB	110 –200 –280	0,10 –0,20 –0,30	ACU2500 ACP100
Р	Koniensionsiani	> 280HB	70 –135 –200	0,10 –0,20 –0,30	ACP200
	Legierter Stahl	180-280HB	90 –155– 220	0,10 –0,15 –0,25	ACP300 XCU2500
М	Rostfreier Stahl	220-280HB	90 –135 –180	0,10 –0,15 –0,25	ACU2500 ACM200
IVI	Rostifelei Staffi	>280HB	70– 115 –160	0,10 –0,15 –0,25	ACM300
К	Grauguss GGG	250HB	125– 175 –225	0,10 –0,20 –0,30	ACU2500 ACK200 ACK300 XCU2500 XCK2000
s	Exotische Metalle	_	30 –60 –90	0,05 –0,10 –0,15	ACU2500 ACM200 ACM300

■ Identifikation des Fräskörpers

Z02 **TSXR** 025 25 Effektive Fräser-Platten-Fräser-Schaft-Schaftdurch-Max. bezeichnung größe durchmesser Schnitttiefe Zähne fräser messer


Ersatzteile

"Sumi Dual Mill" Serie **TSXR** 13000 **E**


■ Schaftfräser

Abmessungen (mm)

Fräskörper - TSXR

	Bezeichnung	Logor		Α	bmessu	ngen (mr	n)		Anzahl	Zahn-	Effektive
	Bezeichhung	Lager	DC	APMX	DMM	LH	LS	LF	Zähne	reihen	Zähne
TS	XR 13040E4132Z02	0	40	41	32	60	90	150	8	4	2
	13050E6042Z03	0	50	60	42	80	90	170	18	6	3

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Fräsplatten

Anwendung Beschichtetes Hartmetall Hochgeschw. / Leichtbearbeitung

Allgemeine Anwendung	K SM	KM	P _M	P _M		K	K		M _S	M _S		
Schruppen	₩			M	PM			K		M _S		
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	RE	
LNEX 130604 PNER-L	•			•	0		0	•	0	•	0,4	
130608 PNER-L	•			•	0		0	•	O	•	0,8	RE
130612 PNER-L	0			•				•	•	•	1,2	
130616 PNER-L	0			0				0	0	0	1,6	RE RE
130620 PNER-L	0			0				0	O	0	2,0	KE
130624 PNER-L	0			0				0	0	0	2,4	
130632 PNER-L	0			0				0	O	0	3,2	
LNEX 130604 PNER-G	•	0	0	•	•	O	•	•	O	•	0,4	
130608 PNER-G	•	0	•	•	•	0	•	•	•	•	0,8	
130612 PNER-G	0		•	•	•		•	•	•	•	1,2	13 6,4
130616 PNER-G	•		0	•	•		•	•	0	•	1,6	13 6,4
130620 PNER-G	0		0	0	0		0	0	0	0	2,0	
130624 PNER-G	•		0	•	•		•	•	0	•	2,4	
130632 PNER-G	•		0	•	•		•	•	O	•	3,2	
LNEX 130604 PNER-H	0			0	0		0	O			0,4	
130608 PNER-H	•	0		•	•	0	•	•			0,8	
130612 PNER-H	O			•	•		•	•			1,2	
130616 PNER-H	•			•	•		•	•			1,6	
130620 PNER-H	0			0	0		0	0			2,0	
130624 PNER-H	•			•	•		•	•			2,4	
130632 PNER-H	•			•	•		•	•			3.2	

■ Empfohlene Schnittbedingungen

→ H24

■ Identifikation des Fräskörpers

TSXR	13	050	Е	60	42	Z03
Fräser-	Platten-	Schneid-	Schaft-	Max.	Schaftdurch-	Effektive
bezeichnung	größe	durchmesser	fräser	Schnitttiefe	messer	Zähne

■ Ersatzteile

"Wave Mill" Serie **WEZ** - Typ

- Allgemeine Eigenschaften
- Ermöglicht die unterschiedlichsten Bearbeitungen
- Sehr hohe Bearbeitungsqualität
- Hervorragende Schärfe mit reduzierten Schnittkräften
- Neue, universell einsetzbare Sorte

■ Produktpalette

Ω																			
erty	Bezeichnung	Durchmesserbereich (mm) / Anzahl Zähne																	
Fräsertyp		Ø14	Ø16	Ø18	Ø20	Ø22	Ø25	Ø26	Ø28	Ø30	Ø32	Ø35	Ø40	Ø50	Ø63	Ø80	Ø100	Ø125	Ø160
ser	WEZ 11000RS	\rightarrow (G48										4, 6	5,7	6, 8	7, 10	9, 12		
Aufsteckfräser	WEZ 11000R (Inch)															7, 10	9, 12		
stec	WEZ 17000RS	\rightarrow (G50										3, 4	3, 5	4, 6	4, 7	5, 8	6, 9, 11	8, 10 12
Aul	WEZ 17000R (Inch)															4, 7	5, 8	6, 9, 11	8, 10 12
	WEZ 11000E	1	2*	2	2*, 3*	3	2, 3*, 4*		4	4	2, 3, 4, 5*	5	2, 4, 6	5, 7	8	10			
ser	WEZ 11000ES	1	2*		3*		4*												
Itas	WEZ 11000EL	1	2*	2	2*	2	2*, 3		2	2	2*, 3	2, 3	2	3					
Schaftfrä	WEZ 17000E						2*		2	3	2, 3*	3	3, 4	3*, 5*	4*, 6*	7			
တိ	WEZ 17000ES						2				3								
	WEZ 17000EL						2		2	2	2*, 3	2	2, 3, 4	3*, 5*	4*, 6*				
Modular	WEZ 11000M		2	2	2, 3	3	2, 3, 4	4, 5	4, 5	2, 4, 5	2, 3, 4, 5	2, 5	2, 4, 5, 6						
Moo	WEZ 17000M						2, 3		2	2, 3	2, 3, 4	2, 3	2, 3, 4						

^{*} Verschiedene Schaftdurchmesser auf Lager

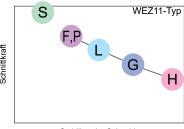
■ Vielseitige Anwendungen

• Unterstützt das Schrägeintauchen, Zirkularfräsen, Eintauchen

Planfräsen Bohrungserweiterungsfräsen

Schulterfräsen

Schrägeintauchen


■ Optimiertes Design

Breite Führungsfläche für eine stabile Schneidplattenspannung.

■ Spanbrechergeometrien

Material		P	M K	SH		N
	L-Typ	G-Typ	Н-Тур	F-Typ	P-Typ	S-Typ
Spanbrecher- geometrie			16			0
AO_T11 Schneidkanten- geometrie		28°	20°	28°	28°	28°
AO_T17 Schneidkanten- geometrie		20°	10°	28°	28°	28°
Anwendung	Leichte Bearbeitung, Fräsen in labilen Verhältnissen	Hauptspanbrecher, allgemeines Fräsen, unterbrochene Schnitte	Schwerer Schnitt, stark unterbrochene Bearbeitung, vergüteter Stahl		Leichte Bearbeitung, hochpräzise, erhöhte Schulter- genauigkeit	Nichteisen-me- talle

Stabilität der Schneide

"Wave Mill" Serie WEZ - Typ

Fräsplattenübersicht

Universalsorte: ACU2500; S-Typ: H20, DL2000

Dazaiahnuna		Eckenradius (mm)													
Bezeichnung	R0,2	R0,4	R0,5	R0,8	R1,0	R1,2	R1,6	R2,0	R2,4	R3,0	R3,2	R4,0	R5,0	R6,4	
AOMT 11T3PE	ER-G ●	•	•	•	•	•	•	•	•	•	•				
AOMT 11T3 PE	ER-H	•		•		•	•								
AOET 11T3 PE	ER-F ●	•	•	•	•	•	•	•	•	•	•				
AOET 11T3 PE	ER-P16 ●	•	•	•	•	•									
AOET 11T3PE	ER-P20 ●	•	•	•	•	•									
AOET 11T3PE	ER-P25 ●	•	•	•	•	•									
AOET 11T3PEF	FR-S ●	•	•	•	•	•	•	•	•	•	•				
AOMT 1705 PE	ER-L ●	•		•		•	•								
AOMT 1705 PE	ER-G ●	•	•	•	•	•	•	•	•	•	•	•	•	•	
AOMT 1705 PE	ER-H	•		•		•	•								
AOET 1705 PE	ER-F ●	•	•	•	•	•	•	•	•	•	•	•	•	•	
AOET 1705 PE	ER-P25 ●	•	•	•	•	•									
AOET 1705 PE	ER-P32 ●	•	•	•	•	•									
AOET 1705 PER	FR-S ●	•	•	•	•	•	•	•	•	•	•	•	•	•	

■ Spanleitstufen für geschliffene Schneidplatten

Sehr scharfe Schneide mit hoher Bearbeitungsgenauigkeit

Die Schärfe der geschliffenen Schneide verhindert Gratbildung.

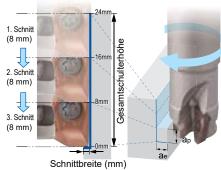
Ausgezeichnete Rechtwinkligkeit bei allen Durchmessern.

Bearb. zentrum: BAZ BT50, vertikal Werkstückstoff: X5CrNiS18 9

WEZ 11050 RS07 (Ø 50, 7 Zähne) Fräser: Schneidplatte: AOET11T308PEER-F (ACU2500)

Schnittdaten: v_c = 120 m/min, f_z = 0,12 mm/Z, a_p = 1 mm, a_e = 30 mm, trocken

P-Typ


Design für das Erzielen rechtwinkliger Flächen ähnlich wie bei Vollhartmetallschaftfräsern

Erstklassige Schneidkantenausführung mit einer für jeden Fräserdurchmesser optimierten Schneidkantenform und ebenso hoher Schärfe wie die des F-Typs.

Die Schneide ermöglicht eine hohe Schulterwinkligkeit vergleichbar mit VHM-Schaftfräsern.

Gesamtschulterhöhe (mm) WEZ Schaftfräser 0,04 0,02 Abweichung (mm)

P Typ Auswahl je Fräserdurchmesser

D		Fräserdurchmesser (mm)												
Bezeichnung	Ø14	Ø14 Ø16 Ø18 Ø20 Ø22			Ø22	Ø25	Ø28	Ø30	Ø32	Ø35	=> Ø40			
AOET11T3PEER-P	-P	-P16 -P20 -			_	-P	25	_						
AOET1705PEER-P			_			-P	25	-P32			_			

Bearb. zentrum: BAZ BT50, vertikal

Werkstückstoff:

Fräser: WEZ 11020 E03 (Ø 20, 3 Zähne) Schneidplatte: Schnittdaten:

AOET11T308PEER-P20 (ACU2500) v_c = 150 m/min, f_z = 0,1 mm/Z, a_P = 8 mm x 3 Überläufe,

ae = 1 mm, trocken

S-Typ

Scharfkantige Schneidkantenausführung für Nichteisenmetalle mit ausgezeichneter Adhäsionsbeständigkeit

Unterdrückt die Aufbauschneidenbildung durch geläppte Spanfläche.

DLC Beschichtung verfügbar für noch geringere Aufbauschneidenbildung.

Wettbewerber A

Wettbewerber B

Keine Adhäsior

Adhäsion

Adhäsion

Bearb. zentrum: BAZ BT50, vertikal

Werkstückstoff: AlSi12Cu WEZ 11020 E03 (Ø 20, 3 Zähne) Fräser:

Schneidplatte: AOET11T308PEÈR-S (H20) Schnittdaten:

 $v_c = 350$ m/min, $f_z = 0,1$ mm/t, $a_p = 3$ mm, $a_e = 10$ mm, trocken

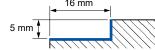
"Wave Mill" Serie WEZ - Typ

■ Empfohlene Schnittdaten

WEZ11-Typ

Fräser: WEZ 11020 E03 Schneidplatte:

AO_T11T3 Typ a_p = 3 mm, a_e = 10 mm, trocken Schnittdaten:

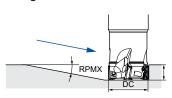

	Schnittdaten: $a_p = 3 \text{ m}$	nm, a	ae =	10 mm, tro	cken			Min Opti	mum - Max			, ///	(/////	111111
			ier					Scl	neidstoffso	rte				
			echer	ACU2500	XCU2500	ACP2000	ACP3000	T2500A	XCK2000	ACK2000	ACK3000	ACM200	ACM300	DL2000
ISO	Material	НВ	q		Vorschub (mm/Zahn)									
			Spar	0,08 -0,15 -0,20	0,08 –0,15 –0,20	0,08 –0,15 –0,20	0,08 -0,15 -0,20	0,08 –0,15 –0,18	0,08 –0,15 –0,20	0,08 –0,15 –0,20	0,08 –0,15 –0,20	0,08 -0,15 -0,20	0,08 –0,15 –0,20	0,05 –0,10 –0,15
			S					Schnittgeso	chwindigkeit	v _c (m/min)				
	Unlegierter Stahl, <0, 15%C, vergütet	125	G	270 –320 –370	300 –350 –400	300 –350 –400	250 –300 –350	230 –280 –330						
	· , <0, 45%C, vergütet	190	G	170 –220 –270	200 –250 –300	200 –250 –300	150- 200 -250	130 –180 –230						
	- , <0, 45%C, angelassen	250	G	140 –180 –220	160- 200 -245	160 –200 –245	120 –160 –200	105 –145 –185						
	- , <0, 75%C, vergütet	270	G	110 –145 –175	130 –165 –195	130 –165 –195	100 –130 –165	85 –115 –150						
	- , <0, 75%C, angelassen	300	G	70 –90 –110	80 –100 –120	80 –100 –120	60 –80 –100	50 –70 –90						
Р	Niedrig legierter Stahl, vergütet	180	G	160 –205 –255	190- 235 -280	190 –235 –280	140 –190 –235	120 –170 –215						
	· , angelassen	275	G	90 –120 –150	110 –135 –165	110 –135 –165	80 –110 –140	70 –100 –125						
	· , angelassen	300	G	85 –110 –130	100 –125 –150	100 –125 –150	75 –100 –125	65 –90 –115						
	· , angelassen	350	G	60 –80 –100	70 –90 –110	70 –90 –110	50 –70 –90	45 –65 –85						
	Hoch legierter und Werkzeugstahl, vergütet	200	G	140 –180 –220	160 –200 –245	160 –200 –245	120 –160 –205							
	- , angelassen	325	G	55 –70– 85	60 –80 –100	60 –80 –100	50 –65 –80							
	Rostfreier Stahl, ferritisch/martensitisch, vergütet	200	G	110 –140 –170	160 –190 –210							140 –170 –190	90 –110 –140	
M	· , martensitisch, angelassen	240	G	100 –125 –150	145 –170 –190							125 –150 –170	80 –100 –125	
	- , austenitisch	180	G	120 –150 –180	170 –200 –220							150 –180 –200	100 –120 –150	
к	Grauguss		G	150 –200 –250	250 –300 –350				250 –300 –350	250 –300 –350	170 –220 –270			
I.	Kugelgraphitguss		G	90 –120 –150	150 –180 –210				150 –180 –210	150 –180 –210	100 –130 –160			
s	Hitzebeständige Legierungen, Fe basierend, vergütet		G	30 –40 –55								35 –45 –60	25 –35 –50	
3	· , angelassen		G	60 –80 –100								70 –90 –110	50 –70 –90	
	Aluminiumlegierung, Si < 12,6%		S											500 –750 –100
N	· , Si > 12,6%		S											170 –200 –250
	Kupferlegierung		S											300 –330 –350

Die empfohlenen Schnittdaten dienen als Richtlinie. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

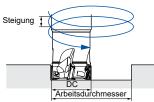
Beim Nutfräsen ist der Vorschub um 70 % der in der Tabelle angegebenen Werte zu reduzieren.

WEZ17-Typ

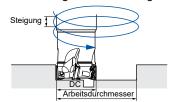
WEZ 17032 E03 Fräser: Schneidplatte: AO_T1705 Typ


	Schnittdaten: $a_p = 5 \text{ m}$	nm, a	ae =	16 mm, tro	cken			Min Opti	mum - Max	i.				
			er						Sc					
			brecher	ACU2500	XCU2500	ACP2000	ACP3000	T2500A	XCK2000	ACK2000	ACK3000	ACM200	ACM300	DL2000
ISO	Material	НВ	ğ					,	Vorschub	(mm/Zahn)			
			Spar	0,10 -0,20 -0,28	0,10 –0,20 –0,28	0,10 –0,20 –0,28	0,10 -0,20 -0,28	0,10 –0,15 –0,22	0,10 –0,20 –0,28	0,10 –0,20 –0,28	0,10 –0,20 –0,28	0,10 –0,20 –0,28	0,10 –0,20 –0,28	0,05 –0,10 –0,15
			S		Schnittgeschwindigkeit vc (m/min)									
	Unlegierter Stahl, <0, 15%C, vergütet	125	G	285 –335 –390	315 –360 –420	315 –360– 420	265 –315– 370	240 –295 –345						
	· , <0, 45%C, vergütet	190	G	180 –230 –285	210 –265 –315	210 –265 –315	160 –210 –265	135 –190 –240						
	- , <0, 45%C, angelassen	250	G	145 –190– 230	170 –210 –255	170 –210 –255	130 –170– 215	110 –155 –195						
	- , <0, 75%C, vergütet	270	G	115 –150 –185	135 –170 –205	135 –170 –205	100 –135 –170	90 –125 –155						
	- , <0, 75%C, angelassen	300	G	70 –90 –115	85 –105 –125	85 –105 –125	65 –85 –105	55 –75– 95						
P	Niedrig legierter Stahl, vergütet	180	G	170 –220 –265	200– 245 –295	200 –245 –295	150- 200 -250	130 –180 –225						
	- , angelassen	275	G	100 –130 –155	115 –145 –175	115 –145 –175	85 –115 –145	75 –105 –135						
	· , angelassen	300	G		105 –130 –155	105 –130 –155	75 –105 –130	65 –90 –120						
	· , angelassen	350	G	65 –85 –100	75 –95 –115	75 –95 –115	55 –75 –95	50 –70– 85						
	Hoch legierter und Werkzeugstahl, vergütet	200	G	145 –185 –230	170– 215 –255	170 –215 –255	130 –170 –215							
	· , angelassen	325	G	55 –75 –90	65 –85 –100	65 –85 –100	50 –65 –85							
	Rostfreier Stahl, ferritisch/martensitisch, vergütet	200	G	115 –145 –175	165 –195 –215							145 –175 –195	100 –115 –145	
M	· , martensitisch, angelassen	240	G	105 –130 –155	150– 175 –195							130 –155 –175	85 –105 –130	
	· , austenitisch	180	G	125 –155 –190	180- 210 -230							160 –190 –210	105– 125 –160	
K	Grauguss		G	160 –210 –265	265 –315 –370				265 –315 –370	265 –315 –370	180 –230 –285			
K	Kugelgraphitguss		G	95 –125 –160	160 –190– 220				160 –190 –220	160 –190 –220	105 –140 –170			
s	Hitzebeständige Legierungen, Fe basierend, vergütet		G	30 –40 –60								35 –45 –60	25 –35 –50	
3	· , angelassen		G	60 –85 –105								75 –95 –115	50 –75 –95	
	Aluminiumlegierung, Si < 12,6%		S											500 –750 –100
N	· , Si > 12,6%		S											170 –200 –250
	Kupferlegierung		S											300 –330 –350

Die empfohlenen Schnittdaten dienen als Richtlinie. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

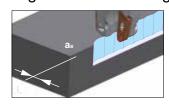

Beim Nutfräsen ist der Vorschub um 70 % der in der Tabelle angegebenen Werte zu reduzieren.

■ Obergrenzen beim Schrägeintauchen / Zirkularfräsen


Schrägeintauchen

Bearbeitung mit Vorbohrung

WEZ11-Typ


DC	Max. Eintauchwinkel	Bearbeitung m	nit Vorbohrung				
Ø (mm)	RPMX (°)	Max. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)	Max. Steigung (mm/U)	Min. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)	
14	13,2	25,3	8,4	23,1	5,9	19,0	1,9
16	10,5	29,3	7,6	27,0	5,6	21,7	1,5
18	8,1	33,3	6,7	30,9	5,0	25,2	1,4
20	6,5	37,3	6,0	34,9	4,6	29,1	1,3
22	5,3	41,3	5,4	38,8	4,3	32,9	1,3
25	4,1	47,3	4,8	44,8	3,9	38,9	1,3
28	3,4	53,3	4,4	50,7	3,6	44,9	1,3
30	3,0	57,3	4,2	54,7	3,5	48,8	1,3
32	2,7	61,3	4,0	58,7	3,3	52,8	1,2
35	2,3	67,3	3,8	64,6	3,1	58,8	1,2
40	1,8	77,3	3,4	74,6	2,9	68,8	1,2
50	1,2	97,3	3,0	94,6	2,6	88,8	1,1
63	0,8	123,3	2,8	120,5	2,5	114,7	1,1

WEZ17-Typ

DC	Max. Eintauchwinkel		Zirkular	Bearbeitung mit Vorbohrung			
Ø (mm)	RPMX (°)	Max. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)	Min. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)	Min. Bearbeitungs- durchmesser (mm)	Max. Steigung (mm/U)
25	10,8	47,3	13,0	41,0	8,3	33,1	1,8
28	8,1	53,3	11,1	46,9	7,5	39,0	1,8
30	7,0	57,3	10,2	50,9	7,0	43,0	1,8
32	6,1	61,3	9,5	54,9	6,7	47,0	1,7
35	5,1	67,3	8,7	60,8	6,2	53,0	1,7
40	4,0	77,3	7,7	70,8	5,7	63,0	1,7
50	2,5	97,3	6,5	90,7	5,0	83,0	1,6
63	1,8	123,3	5,6	116,7	4,5	109,0	1,6

^{*} Die Tabelle zeigt Werte mit einem Eckenradius = 0,8 mm.

■ Tauchfräsen - Obergrenzen für die Eingriffsbreite ae

Тур	Max. ae (mm)
WEZ11	3
WEZ17	5

■ Vorsichtsmaßnahmen bei der Montage

- (1) Reinigen Sie den Montagesitz und die Kontaktteile.
- (2) Bringen Sie ausreichend Schmierstoff auf das Schraubengewinde und den Schraubenkopf auf, um ein Festsitzen zu vermeiden.
- (3) Während Sie die Platte fest gegen die Sitzfläche drücken, ziehen Sie die Schrauben mit dem mitgelieferten Schraubenschlüssel an.
- (4) Nach dem Anziehen ist darauf zu achten, dass keine Lücken zwischen den Oberflächen vorhanden sind.

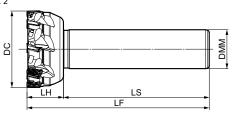

WEZ 11000 **E**

Abb. 1		Abb.
DC -		DMM

Radial -7° – -18° Span-Axial 6° – 15°

10 mm

■ WEZ-Fräskörper (Schaftfräser)

Abmessungen (mm)

			,						
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Anzahl Zähne	Gewicht (kg)	Abb.
WEZ 11014E01	•	14	16	25	55	80	1	0,10	1
11016E02	•	16	16	25	75	100	2	0,13	1
11016E02-12	•	16	12	25	75	100	2	0,07	2
11018E02	•	18	16	25	75	100	2	0,13	2
11020E02	•	20	20	30	80	110	2	0,23	1
11020E02-16	•	20	16	30	80	110	2	0,15	2
11020E03	•	20	20	30	80	110	3	0,22	1
11020E03-16	•	20	16	30	80	110	3	0,14	2
11022E03	•	22	20	30	80	110	3	0,23	1
11025E02	•	25	25	35	85	120	2	0,40	1
11025E03	•	25	25	35	85	120	3	0,40	1
11025E03-20	•	25	20	35	85	120	3	0,26	2
11025E04	•	25	25	35	85	120	4	0,39	2
11025E04-20	•	25	20	35	85	120	4	0,26	2
11028E04	•	28	25	35	85	120	4	0,41	1
11030E04	•	30	25	40	90	130	4	0,46	1
11032E02	•	32	32	40	90	130	2	0,74	1
11032E03	•	32	32	40	90	130	3	0,73	1
11032E04	•	32	32	40	90	130	4	0,73	2
11032E05	•	32	32	40	90	130	5	0,72	2
11032E05-25	•	32	25	40	90	130	5	0,46	2
11035E05	•	35	32	40	90	130	5	0,75	2
11040E02	•	40	32	30	120	150	2	0,96	2
11040E04	•	40	32	30	120	150	4	0,94	2
11040E06	•	40	32	30	120	150	6	0,93	2
11050E05	•	50	32	30	120	150	5	1,04	2
11050E07	•	50	32	30	120	150	7	1,04	2
11063E08	•	63	32	30	120	150	8	1,24	2
11080E10	•	80	32	30	120	150	10	1,52	2
							Die Schneidnla	tten werden separat	verkauft

Die Schneidplatten werden separat verkauft.

Ersatzteile

	Schraub	е	Schlüssel
Geeignete Fräser		(N·m)	
WEZ 11014E01		2,0	
11016E02(-12)	BFTX0305IP	,_	
11018E02 11020E02(-16)			
11020E02(-10) 11020E03(-16)			
11020E03(=10)			
11025E02			
11025E03(-20)			
11025E04(-20)			
11028E04			
11030E04			
11032E02			TRDR08IP
11032E03	BFTX0306IP	1,5	
11032E04			
11032E05(-25) 11035E05			
11040E02			
11040E04			
11040E06			
11050E05			
11050E07			
11063E08			
11080F10	I .		

■ Identifikation des Fräskörpers

WEZ 11 025 02 **22** Ε Fräser-Platten-Schaft-Anzahl Schaftbezeichnung größe ser-durchausführung Zähne durchmesser messer

C: Fase R: Radius

= Eurolager

□ = Auf Anfrage

- =Nicht möglich

Empfohlenes Anzugsmoment (N·m)

"Wave Mill" Serie WEZ 11000 E

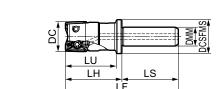
■ Fräsplatten

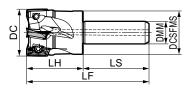
Vorsichtsmaßnahmen bei der Montage

\rightarrow	H29

Anwendung			Bescl	hichte	ntoc l	Hartr	notal	I			DLC				en bei dei Montage 🗡 H29
Hochgeschw./ Leichtbearbeitung		R _M	P	ПСПЦ	K	K	lletai	Ms		nailiilelaii	N	P			Abmessungen (mm
Allgemeine Anwendung	NP.	K M		Р	K	IX		Ms	Ms	N	N		-		
	SM SM	KM		P	N		K	S		Ш	Ш				
Schruppen	KSM S	_					K		Ms						
	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	8		0	⋖			
Bezeichnung	726	122	22	3(§	S	&	Ϋ́	M3(500	00	RE	Abb.	
	Ş	ΙŌ	Ş	ᇢ	Δ	Ş	5	ᇢ	ACM300	H20	DL2000	T2500A			
AOMT 11T302PEER-G	•	<u> </u>		•			•	•	•	_	_	•	0,2	1	
11T304PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,4	1	
11T305PEER-G	•							•	•	_	_		0,5	1	
11T308PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1	
11T310PEER-G	•							•	•	_	_		1,0	1	
11T312PEER-G	•			•			•	•	•	_	_		1,2	1	
11T316PEER-G	•			•			•	•	•	_	_		1,6	1	
11T320PEER-G	•			•			•	•	•	_	_		2,0	1	
11T324PEER-G	•							•	•	_	_		2,4	1	Abb. 1
11T330PEER-G	•			•			•	•	•	_	_		3,0	2	RE
11T332PEER-G	•							•	•	_	_		3,2	2	
AOMT 11T304PEER-H	•	0	•	•	0	•	•	•	•	-	-	-	0,4	1	
11T308PEER-H	•	0	•	•	0	•	•	•	•	_	-	-	0,8	1	200
11T312PEER-H	•							•	•	_	_	_	1,2	1	
11T316PEER-H	•							•	•	_	_	_	1,6	1	12,8
AOET 11T302PEER-F	•		_			_		_		_	_	_	0,2	1	
11T304PEER-F	•		_			_		_		_	-	_	0,4	1	
11T305PEER-F	•		-			-		_		_	_	-	0,5	1	
11T308PEER-F	•		_			_		_		_	-	-	0,8	1	
11T310PEER-F	•		_			-		_		_	_	_	1,0	1	
11T312PEER-F	•		_			_		_		_	-	-	1,2	1	Abb. 2
11T316PEER-F	•		_			-		_		_	_	-	1,6	1	RE
11T320PEER-F	•		-			_		_		_	-	-	2,0	1	
11T324PEER-F 11T330PEER-F	•		_			_		_			_	_	2,4 3,0	1 2	20 -
11T330PEER-F	•		_			_		_		_	_	_	3,2	2	i i i i i i i i i i i i i i i i i i i
AOET 11T302PEER-P16	•							_		_	_	_	0,2	1	12,2
11T304PEER-P16	•		_			_		_		_	_	_	0,2	1	-
11T305PEER-P16	•		_			l _		_		_	_	_	0,5	1	
11T308PEER-P16	•		_			_		_		_	_	_	0,8	1	
11T310PEER-P16	•		_			_		_		_	_	_	1,0	1	
11T312PEER-P16	•		_			_		_		_	_	_	1,2	1	
11T302PEER-P20	•		_			_		-		_	_	_	0,2	1	
11T304PEER-P20	•		_			_		_		_	_	_	0,4	1	
11T305PEER-P20	•		-			_		_		_	_	_	0,5	1	
11T308PEER-P20	•		-			-		-		_	-	_	0,8	1	
11T310PEER-P20	•		_			_		_		_	_	_	1,0	1	
11T312PEER-P20	•		_			_		_		_	_	_	1,2	1	
11T302PEER-P25	•		_			-		_		_	_	-	0,2	1	
11T304PEER-P25	•		_			-		-		_	-	_	0,4	1	
11T305PEER-P25	•		_			-		_		_	-	-	0,5	1	
11T308PEER-P25	•		_			_		_		_	_	_	0,8	1	
11T310PEER-P25	•		-			_		_		_	-	-	1,0	1	
11T312PEER-P25	•		_			_		_		_	_	_	1,2	1	L: geringe Schnittkraft G: allgemeine Anwendung
AOET 11T302PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,2	1	H: stabile Schneidkante
11T304PEFR-S	_	_	_	_	_	-	_	_	_	•	•	_	0,4	1	F: Schlichten P: Hochpräzisionsbearbeitung
11T305PEFR-S	-	_	-	-	-	-	-	-	-	•	•	-	0,5	1	S: Nichteisenmetalle
11T308PEFR-S	_	_	_	_	_	-	_	_	_	•	•	_	0,8	1	*P16 ist anwendbar für Fräserdurchmesser
11T310PEFR-S	_	_	_	-	_	_	_	_	_	•	•	-	1,0	1	Ø 14 mm und Ø 16 mm.
11T312PEFR-S 11T316PEFR-S	_	_	_	_	_	-	_	_	_	_	_	_	1,2	1	*P20 ist anwendbar für Fräserdurchmesser Ø 18 mm, Ø 20 mm.
111316PEFR-S 11T320PEFR-S									_		•		1,6 2,0	1	*P25 ist anwendbar für Fräserdurchmesser
11T320PEFR-S 11T324PEFR-S	_	_	_	_	_	_	_	_	_		•	_	2,0	1	Ø 25 mm, Ø 28 mm.
11T324PEFR-S											•		3,0	2	
11T332PEFR-S	_		_	_	_		_	_	_			_	3,0	2	
1110021 L111-0								_		_	_		٥,٧		

■ Empfohlene Schnittbedingungen


Für Multi-Tasking Maschinen


Abb. 2

Span-	Radial	-14° – -18°
winkel	Axial	6° – 10°

■ WEZ-Fräskörper (Schaftfräser)

Abmessungen (mm)

Bezeichnung	Lager	DC	DCSFMS	DMM	LH	LU	LS	LF	Anzahl Zähne	Gewicht (kg)	Abb.
WEZ 11014ES01-12	O	14	18	12	30	27	35	65	1	0,05	1
11016ES02-10	0	16	18	10	25	22	30	55	2	0,04	1
11016ES02-12	O	16	18	12	30	27	35	65	2	0,05	1
11020ES03-10	0	20	18	10	25	-	30	55	3	0,04	2
11020ES03-12	O	20	18	12	30	_	35	65	3	0,06	2
11020ES03-16	0	20	23	16	30	27	40	70	3	0,10	1
11025ES04-12	O	25	23	12	30	_	35	65	4	0,09	2
11025ES04-16	O	25	23	16	30	_	40	70	4	0,12	2

Die Schneidplatten werden separat verkauft.

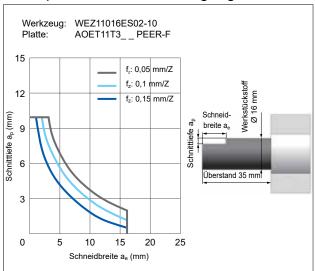
Ersatzteile

	Schraube	Schlüssel		
Geeignete Fräser		(N·m)		
WEZ 11014ES01-12			•	
11016ES02-10	BFTX0305IP			
11016ES02-12				
11020ES03-10		1,5	TRDR08IP	
11020ES03-12		1,5	INDRUGIE	
11020ES03-16	BFTX0306IP			
11025ES04-12				
11025ES04-16				

■ Identifikation des Fräskörpers

WEZ	11	020	Ε	S	03	- 12		
Fräser- bezeich- nung	Platten- größe	Fräser- durch- messer	Schaft- aus- führung	Kurzer Schaft	Anzahl Zähne	Schaft- durchmesser		

*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.



Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT11T324PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT11T330PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT11T332PEER) Standard: R = 1 mm

C: Fase

■ Empfohlene Schnittbedingungen

Informationen zu den Schnittbedingungen für den jeweiligen Werkstoff finden Sie auf

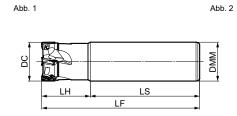
Wenn Sie die Schneidkanenausführung vom Typ G verwenden, stellen Sie den

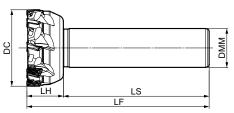
Die empfohlenen Schnittbedingungen sind je nach den Betriebsbedingungen (z. B. Maschine, Form des Werkstücks, Spannsystem) möglicherweise nicht praktikabel.

"Wave Mill" Serie **WEZ** 11000 **ES**

■ Schneidplatten

Vorsichtsmaßnahmen bei der Montage → H29


Schneidplatten									VOI	rsic	htsi	mai	sna	hme	en bei der Montage → н29
Anwendung			Bescl	nicht	etes	Hartr	netal	I		Hartmetall	DLC	Cermet			
Hochgeschw./ Leichtbearbeitung		KM	P		K	K		Ms			N	P	1		Abmessungen (mn
Allgemeine Anwendung	₩	KM		Р	K		K	Ms	M/S	N	N		1		
Schruppen	k SM			Р			K		Ms				1		
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.	
AOMT 11T302PEER-G	•	<u> </u>		•	<u> ^</u>	<u> </u>	•	•	•		_	•	0,2	1	
11T304PEER-G		0	•	•	0	•	•	•	•	_	_	•	0,2	1	
11T305PEER-G	•							•	•	_	_		0,5	1	
11T308PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1	
11T310PEER-G	•							•	•	_	_		1,0	1	
11T312PEER-G	•			•			•	•	•	_	_		1,2	1	
11T316PEER-G	•			•			•	•	•	_	_	_	1,6	1	
11T320PEER-G	•			•			•	•	•	_	_		2,0	1	
11T324PEER-G	•					_		•	•	_	_		2,4	1	Abb. 1
11T330PEER-G	•			-			•	•	•	_	_		3,0	2	RE
11T332PEER-G	•					_		•	•	_	_		3,2	2	
AOMT 11T304PEER-H	•	0	•	•	0	•	•	•	•		_	_	0,4	1	
11T308PEER-H		0			0	•		•		_	_	_	0,4	1	5,7
11T312PEER-H	•							•	•		_	_	1,2	1	
11T316PEER-H												_	1,6	1	12,8
AOET 11T302PEER-F	•		_						Ť	_	_	_	0,2	1	-
11T304PEER-F			_			_		_		_	_	_	0,2	1	
11T305PEER-F											_		0,4	1	
11T308PEER-F			_			_		_		_	_	_	0,3		
11T310PEER-F	•					_					_		,	1	
			_			_		_		_	_		1,0		
11T312PEER-F 11T316PEER-F	•					_				_	_		1,2	1	Abb. 2
			-			_		_		_	_	_	1,6	1	i <u>RE</u>
11T320PEER-F	•		-										2,0	1	
11T324PEER-F	-		-			-		-		-	_	_	2,4	1	2
11T330PEER-F	•		_			-		_		-	_	_	3,0	2	No.
11T332PEER-F	•		_			_		_		_	_	_	_	2	12,2 3,4
AOET 11T302PEER-P16	•		-					-					0,2	1	12,2
11T304PEER-P16 11T305PEER-P16	-		-			-		-		-	_	_	0,4	1	
11T308PEER-P16	•		-			-		-		_	_	_	0,5	1	
11T310PEER-P16			-			_		_		_	_	_ _	0,8 1,0	1	l
11T312PEER-P16	•		-			_							1,0	1	
11T302PEER-P20	-		_			_		_		_	_	_	0,2	1	
	•		_			_		_		_	_	_	0,2	1	
11T304PEER-P20	•		_			_		_		_	_	_			
11T305PEER-P20	•		_			_		_		_	_	_	0,5	1	
11T308PEER-P20	•		-			_		-		_	_	_	0,8	1	
11T310PEER-P20 11T312PEER-P20	•		-			_		_		_	-	_	1,0	1	
11T312PEER-P20 11T302PEER-P25	-		-			_		_		_	_	_		1	
	•		_			_		_		-	_	_	0,2	1	
11T304PEER-P25	•		-			_		-		-	_	_	0,4	1	
11T305PEER-P25	•		_			_		_		-	_	_	0,5	1	
11T308PEER-P25 11T310PEER-P25	•		-			_		_		_	_	_	0,8	1	
	•		_			_		_		-	_	_	1,0	1	L: geringe Schnittkraft
11T312PEER-P25 AOET 11T302PEFR-S	•		_			_		-		_	_	_	1,2	1	G: allgemeine Anwendung
	-	_	_	_	_	_	-	_	_	•	•	_	0,2	1	H: stabile Schneidkante
11T304PEFR-S	-	_	_	_	_	_	-	_	-	•	•	_	0,4	1	F: Schlichten P: Hochpräzisionsbearbeitung
11T305PEFR-S	-	_	_	_	_	_	-	-	-	•	•	_	0,5	1	S: Nichteisenmetalle
11T308PEFR-S	-	_	-	_	_	-	-	_	-	•	•	_	0,8	1	*P16 ist anwendbar für Fräserdurchmesser
11T310PEFR-S	-	_	-	_	_	_	_	-	-	•	•	_	1,0	1	Ø 14 mm und Ø 16 mm.
11T312PEFR-S	-	_	_	_	_	-	-	_	-	•	•	_	1,2	1	*P20 ist anwendbar für Fräserdurchmesser
11T316PEFR-S	-	_	_	_	-	_	-	-	-	•	•	_	1,6	1	Ø 18 mm, Ø 20 mm. *P25 ist anwendbar für Fräserdurchmesser
11T320PEFR-S	-	_	_	_	-	-	-	-	-	•	•	_	2,0	1	Ø 25 mm, Ø 28 mm.
11T324PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	2,4	1	
11T330PEFR-S	-	_	_	_	_	_	-	_	-	•	•	_	3,0	2	
11T332PEFR-S	_	_		_	_	_	_	_	_		•	_	3,2	2	


WEZ 11000 **EL**

Radial -7° – -18° Spanwinkel Axial 6° – 15°

10 mm

■ WEZ-Fräskörper (Schaftfräser, lange Ausführung)

Abmessungen (mm)

Bezeichnung	Lager	DC	DMM	LH	LS	LF	Anzahl Zähne	Gewicht (kg)	Abb.
WEZ 11014EL01	•	14	16	25	95	120	1	0,16	1
11016EL02	•	16	16	25	120	145	2	0,19	1
11016EL02-14	•	16	14	25	120	145	2	0,15	2
11018EL02	•	18	16	25	120	145	2	0,20	2
11020EL02	•	20	20	40	110	150	2	0,31	1
11020EL02-18	•	20	18	25	125	150	2	0,26	2
11022EL02	•	22	20	30	120	150	2	0,32	2
11025EL02	•	25	25	50	120	170	2	0,57	1
11025EL02-22	•	25	22	30	140	170	2	0,46	2
11025EL03	•	25	25	50	120	170	3	0,57	1
11028EL02	•	28	25	30	140	170	2	0,60	2
11030EL02	•	30	25	30	140	170	2	0,62	2
11032EL02	•	32	32	60	110	170	2	0,97	1
11032EL02-30	•	32	30	30	140	170	2	0,88	2
11032EL03	•	32	32	60	110	170	3	0,96	1
11035EL02	•	35	32	30	140	170	2	1,02	2
11035EL03	•	35	32	30	140	170	3	1,00	2
11040EL02	•	40	32	30	140	170	2	1,08	2
11050EL03	•	50	32	30	140	170	3	1,19	2

Die Schneidplatten werden separat verkauft.

Ersatzteile

	Schraub	е	Schlüssel
Geeignete Fräser		(N·m)	
WEZ 11014EL01		2,0	
11016EL02(-14)	BFTX0305IP		
11018EL02			
11020EL02(-18)			
11022EL02			
11025EL02(-22)			
11025EL03			
11028EL02		1,5	TRDR08IP
11030EL02	BFTX0306IP	1,5	
11032EL02(-30)	DE I XUSUUIE		
11032EL03			
11035EL02			
11035EL03			
11040EL02			
11050EL03			

■ Empfohlene Schnittbedingungen

→ H28

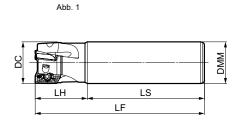
■ Identifikation des Fräskörpers

WEZ 11 025 E 22 02

Schaft- Langer Schaft-Fräser-Platten-Frä-Anzahl bezeichnung größe ser-durchausführung Schaft Zähne durchmesser messer

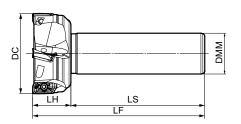
"Wave Mill" Serie **WEZ** 11000 **EL**

■ Schneidplatten


Vorsichtsmaßnahmen bei der Montage → H29

Schneidplatten															n bei der Montage → H29
Anwendung				nicht		Hartr	netal		ī	Hartmetall					Abmessungen (m
Hochgeschw./ Leichtbearbeitung			P		K	K		M _S	N/ d	_	N	P			, ,
Allgemeine Anwendung	KSM SM	KM		P	K		K	Ms	Ms	N	N				
Schruppen	KSM SM			P			K		Ms						
	200	200	000	000	000	000	000	000	000		8	_≼			
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	KE	Abb.	
AOMT 11T302PEER-G	•	_		•	_		•	•	•	_	_	•	0,2	1	
11T304PEER-G	•	0	•	•	O	•	•	•	•	_	_	•	0,4	1	
11T305PEER-G	•							•	•	_	_		0,5	1	
11T308PEER-G	•	0	•	•	O	•	•	•	•	_	_	•	0,8	1	
11T310PEER-G	•							•	•	_	_		1,0	1	
11T312PEER-G	•			•			•	•	•	-	_		1,2	1	
11T316PEER-G	•			•			•	•	•	_	_		1,6	1	
11T320PEER-G	•			•			•	•	•	_	_		2,0	1	
11T324PEER-G	•							•	•	_	_		2,4	1	Abb. 1
11T330PEER-G	•			•			•	•	•	_	_		3,0	2	RE
11T332PEER-G	•							•	•	_	_		3,2	2	
AOMT 11T304PEER-H	•	O	•	•	O	•	•	•	•	-	-	-	0,4	1	
11T308PEER-H	•	0	•	•	0	•	•	•	•	-	_	_	0,8	1	
11T312PEER-H	•							•	•	-	-	-	1,2	1	#
11T316PEER-H	•							•	•	_	_	_	1,6	1	12,8
AOET 11T302PEER-F	•		_			_		_		_	_	_	0,2	1	
11T304PEER-F	•		-			_		_		_	_	_	0,4	1	
11T305PEER-F	•		-			-		_		_	_	_	0,5	1	<u> </u>
11T308PEER-F	•		-			_		_		_	_	_	0,8	1	
11T310PEER-F	•		-			-		_		_	_	_	1,0	1	
11T312PEER-F	•		-			_		-		_	_	-	1,2	1	Abb. 2
11T316PEER-F	•		_			_		_		_	_	_	1,6	1	, RE
11T320PEER-F	•		_			_		_		_	_	_	2,0	1	
11T324PEER-F	•		-			-		_		_	_	_	2,4	1	roj — — — — — — — — — — — — — — — — — — —
11T330PEER-F	•		_			_		_		_	_	-	3,0	2	200
11T332PEER-F	•		_			_		_		_	_	_	3,2	2	
AOET 11T302PEER-P16	•		-			-		_		_	_	_	0,2	1	12,2
11T304PEER-P16	•		_			_		_		_	_	_	0,4	1	
11T305PEER-P16	•		_			-		-		_	_	_	0,5	1	
11T308PEER-P16 11T310PEER-P16	•		_			_		_		_	_	_	0,8 1,0	1	I .
11T310PEER-P16	•		_			_		_		_		-	1,0	1	
11T302PEER-P20			-					_		_	_	_	0,2	1	
11T304PEER-P20			_			_		_		_	_		0,2	1	
11T304PEER-P20			_			_		_		_	_	_	0,4	1	
11T303PEER-P20	•		_			_		_		_			0,3	1	
11T310PEER-P20	•		_			_		_			_	_	1,0	1	
11T312PEER-P20	•		_					_		_	_	_	1,2	1	
11T302PEER-P25	•									_	_	_	0,2	1	
11T304PEER-P25	•		_			_		_		_	_	_	0,4	1	
11T305PEER-P25	•		_			_		_		_	_	_	0,5	1	
11T308PEER-P25	•		_			_		_		_	_	_	0,8	1	
11T310PEER-P25	•		_			_		_		_	_	_	1,0	1	
11T312PEER-P25	•		_			_		_		_	_	_	1,2	1	L: geringe Schnittkraft
AOET 11T302PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,2	1	G: allgemeine Anwendung H: stabile Schneidkante
11T304PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,4	1	F: Schlichten
11T305PEFR-S	_	-	-	_	-	-	_	_	_	•	•	_	0,5	1	P: Hochpräzisionsbearbeitung
11T308PEFR-S	_	_	_	_	_	-	_	_	_	•	•	_	0,8	1	S: Nichteisenmetalle
11T310PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	1,0	1	*P16 ist anwendbar für Fräserdurchmesser
11T312PEFR-S	_	-	_	-	_	-	_	_	_	•	•	_	1,2	1	Ø 14 mm und Ø 16 mm. *P20 ist anwendbar für Fräserdurchmesser
11T316PEFR-S	_	-	-	-	-	-	-	-	-	•	•	_	1,6	1	Ø 18 mm, Ø 20 mm.
11T320PEFR-S	_	-	-	-	-	-	_	_	-	•	•	-	2,0	1	*P25 ist anwendbar für Fräserdurchmesser Ø 25 mm, Ø 28 mm.
11T324PEFR-S	_	-	-	_	_	-	_	_	-	•	•	_	2,4	1	,
11T330PEFR-S	-	-	-	-	-	-	-	-	-	•	•	_	3,0	2	
	_	_	_	_	_	_	_	_	_	_	•	_	3,2	2	

WEZ 17000 **E**



Span-	Radial	-6° – -12°
winkel	Axial	6° – 15°

15 mm 90°

Abb. 2

■ WEZ-Fräskörper (Schaftfräser)

Abmessungen (mm)

Bezeichnung	Lager	DC	DMM	LH	LS	LF	Anzahl Zähne	Gewicht (kg)	Abb.
WEZ 17025E02	•	25	25	35	85	120	2	0,38	1
17025E02-20	•	25	20	35	85	120	2	0,25	2
17028E02	•	28	25	35	85	120	2	0,40	2
17030E03	•	30	25	40	90	130	3	0,43	2
17032E02	•	32	32	40	90	130	2	0,71	1
17032E03	•	32	32	40	90	130	3	0,69	1
17032E03-25	•	32	25	40	90	130	3	0,44	2
17035E03	•	35	32	40	90	130	3	0,72	2
17040E03	•	40	32	30	105	135	3	0,81	2
17040E04	•	40	32	30	105	135	4	0,79	2
17050E03	•	50	32	30	105	135	3	0,93	2
17050E03-42	•	50	42	30	105	135	3	1,41	2
17050E05	•	50	32	30	105	135	5	0,89	2
17050E05-42	•	50	42	30	105	135	5	1,37	2
17063E04	•	63	32	30	105	135	4	1,10	2
17063E04-42	•	63	42	30	105	135	4	1,58	2
17063E06	•	63	32	30	105	135	6	1,08	2
17063E06-42	•	63	42	30	105	135	6	1,56	2
17080E07	•	80	32	30	105	135	7	1,39	2

Die Schneidplatten werden separat verkauft.

Ersatzteile

	Schraub	е	Schlüssel
Geeignete Fräser		(N·m)	P
WEZ 17025E02(-20)			
17028E02	BFTX0407IP		
17030E03			
17032E02			
17032E03(-25)			
17035E03			
17040E03		3,0	TRDR15IP
17040E04	BFTX0409IP		
17050E03(-42)	BF1704091F		
17050E05(-42)			
17063E04(-42)			
17063E06(-42)			
17080E07			

■ Empfohlene Schnittbedingungen

→ H28

■ Identifikation des Fräskörpers

WEZ 17 032 Ε 02 30 Platten-Frä-Schaft-Anzahl Schaft-Fräserbezeichnung größe ser-durchausführung Zähne durchmesser messer

*Bei der Montage von Schneidplatten mit einem Eckenradius von \geq 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT170524PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT170530PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT170532PEER) Eckenradius = 4,0 mm: C = 2 mm (AOMT170540PEER) Eckenradius = 5,0 mm: C = 5 mm (AOMT170550PEER) Eckenradius = 6,4 mm: C = 5 mm (AOMT170564PEER) Standard: R = 1 mm C: Fase R: Radius

● = Eurolager

"Wave Mill" Serie **WEZ** 17000 **E**

Fräsplatten

AOET 170502PEER-F

170504PEER-F

170505PEER-F

170508PEER-F

170510PEER-F

170512PEER-F

170516PEER-F

170520PEER-F

170524PEER-F

170530PEER-F

170532PEER-F

170540PEER-F

170550PEER-F

170564PEER-F

170504PEER-P25

170505PEER-P25

170508PEER-P25

170510PEER-P25

170512PEER-P25

170502PEER-P32

170504PEER-P32

170505PEER-P32

170508PEER-P32

170510PEER-P32

170512PEER-P32

170504PEFR-S

170505PEFR-S

170508PEFR-S

170510PEFR-S

170512PEFR-S

170516PEFR-S

170520PEFR-S

170524PEFR-S

170530PEFR-S

170532PEFR-S

170540PEFR-S

170550PEFR-S

170564PEFR-S

AOET 170502PEFR-S

AOET 170502PEER-P25

•

.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ullet

•

_

_

_

_

_

_

_

_

_

_

Vorsichtsmaßnahmen bei der Montage → H29

0,2 1

0.4

0,5 1

0,8

1,0 1

1.2 1

1,6 1 2,0

2,4 1

3,0 1

3,2 1

4,0 1

5,0 2

6,4 2

0,2 1

0,4

0.5 1

0,8 1

1,0 1

1,2 1

0,2

0,4 1

0,5 1

8,0 1

1,0 1

1.2 1

0,2 1

0.4 1

0,5 1

0.8 1

1,0 1

1,2 1

1,6 1

2,0

2,4 1

3,0

3,2 1

4,0 1

5,0 2

6,4 2

1

1

1

1

1

1

■ Fraspiatteri									VOI	SIC	HIS	IIai	sııa	11111	en bei dei Montage - H29
Anwendung		- 1	Besc	hicht	etes	Hartı	neta	ı		Hartmetall	DLC	Cermet			Abmessungen (mm)
Hochgeschw./ Leichtbearbeitung		₽ M	P		K	K		Ms			N	P]		/ a.m.cccangen ()
Allgemeine Anwendung	KPM	КМ		P	K		K	MS	MS	Z	N				
Schruppen	KSM			P			K		MS						
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.	
AOMT 170502PEER-L	•		_			_		•	•	_	_		0,2	1	
170504PEER-L	•	0	_	•	0	_	•	•	•	_	_	•	0,4	1	
170508PEER-L	•	0	_	•	0	_	•	•	•	_	_	•	0,8	1	
170512PEER-L	•		_			_		•	•	_	_		1,2	1	
170516PEER-L	•		_			_		•	•	_	_		1,6	1	
AOMT 170502PEER-G	•			•			•	•	•	_	-		0,2	1	
170504PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,4	1	
170505PEER-G	•							•	•	_	-		0,5	1	
170508PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1	Abb. 1
170510PEER-G	•							•	•	-	-		1,0	1	ADD. 1
170512PEER-G	•			•			•	•	•	_	_		1,2	1	<u>RE</u>
170516PEER-G	•			•			•	•	•	-	-		1,6	1	
170520PEER-G	•			•			•	•	•	_	_		2,0	1	50 000
170524PEER-G	•							•	•	-	-		2,4	1	2 28
170530PEER-G	•			•			•	•	•	_	_		3,0	1	
170532PEER-G	•						•	•	•	-	-		3,2	1	19,5
170540PEER-G	•			•			•	•	•	_	_		4,0	1	
170550PEER-G	•			•			•	•	•	_	-		5,0	2	
170564PEER-G								•	•	_	_		6,4	2	
AOMT 170504PEER-H	•	0	•	•	0	•	•	•	•	_	-	_	0,4	1	
170508PEER-H	•	0	•	•	0	•	•	•	•	_	-	_	0,8	1	
170512PEER-H	•							•	•	-	-	_	1,2	1	
170516PEER-H	•			•				•	•	_	_	_	1,6	1	Abb. 2

_

_

_

_

_

_

_

_ _

_

_ _

• •

• •

• •

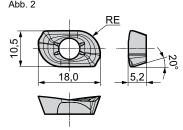
• •

•

• •

•

•


•

•

•

•

•

L: geringe Schnittkraft G: allgemeine Anwendung H: stabile Schneidkante

F: Schlichten

P: Hochpräzisionsbearbeitung

S: Nichteisenmetalle

^{*}P25 ist anwendbar für Fräserdurchmesser Ø 25 mm und Ø 28 mm.

^{*}P32 ist anwendbar für Fräserdurchmesser Ø 30 mm, Ø 32 mm and Ø 35 mm.

"Wave Mill" Serie **WEZ** 17000 **ES**

Für Multi-Tasking Maschinen

Span-	Radial	-10° – -12°
winkel	Axial	6° – 8°

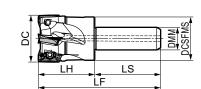


Abb. 1

■ WEZ-Fräskörper (Schaftfräser)

Abmessungen (mm)

Bezeichnung	Lager	DC	DCSFMS	DMM	LH	LS	LF	Anzahl Zähne	Gewicht (kg)	Abb.
WEZ 17025ES02-16	0	25	23	16	30	40	70	2	0,11	1
17032ES03-16	0	32	27	16	30	40	70	3	0,14	1

Die Schneidplatten werden separat verkauft.

Ersatzteile

	Schraub	е	Schlüssel
Geeignete Fräser		(N·m)	
WEZ 17025ES02-16	BFTX0407IP	3.0	TRDR15IP
17032ES03-16	BFTX0409IP	3,0	INDRISIP

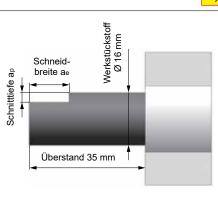
■ Identifikation des Fräskörpers

025 02 WEZ 17 16 Fräser-Platten-Frä-Schaft-Kurzer Anzahl Schaftbezeichnung größe ser-durchausführung Schaft Zähne durchmesser messer

*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT170524PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT170530PEER) Eckenradius = 3.2 mm; C = 1 mm (AOMT170532PEER) Eckenradius = 4.0 mm: C = 2 mm (AOMT170540PEER) Eckenradius = 5.0 mm; C = 5 mm (AOMT170550PEER) Eckenradius = 6,4 mm: C = 5 mm (AOMT170564PEER) Standard: R = 1 mm


C: Fase

■ Empfohlene Schnittbedingungen

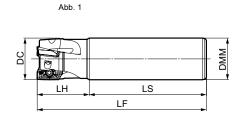
Werkzeug: Platte:

WEZ17025ES02-16 AOET1705__PEER-F

15 f_z: 0,06 mm/Z f_z: 0,12 mm/Z 12 fz: 0,20 mm/Z Schnitttiefe a_p (mm) 6 3 0 10 Schneidbreite a. (mm)

Informationen zu den Schnittbedingungen für den jeweiligen Werkstoff finden Sie auf Seite 8. Wenn Sie Spanbrecher vom Typ G verwenden, stellen Sie den Wirkungsgrad auf 80 % ein.

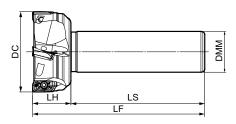
Die empfohlenen Schnittbedingungen sind je nach den Betriebsbedingungen (z. B. Maschine, Form des Werkstücks, Spannsystem) möglicherweise nicht praktikabel.


"Wave Mill" Serie **WEZ** 17000 **ES**

_	П	
\rightarrow	н	_

■ Schneidplatten									Voi	rsic	htsı	maí	ßna	hmer	n bei der Montage 🛚 🕕 на
Anwendung				hicht		Hartı	meta			Hartmetal	DLC				Abmessungen (mm
Hochgeschw./ Leichtbearbeitung	_	KM	P		K	K		Ms			N	P			
Allgemeine Anwendung	K _S M	KM		Р	K		K	M _S		N	N				
Schruppen	K _S M			P			K		Ms						
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.	
AOMT 170502PEER-L	•		-			-		•	•	-	_		0,2	1	
170504PEER-L	•	0	-	•	0	-	•	•	•	-	-	•	0,4	1	
170508PEER-L	•	0	-	•	0	-	•	•	•	_	_	•	0,8	1	
170512PEER-L	•		_			-		•	•	_	_		1,2	1	
170516PEER-L	•		_			_		•	•	_	_		1,6	1	
AOMT 170502PEER-G 170504PEER-G	•			•			•	•	•	-	_		0,2	1	
170504PEER-G 170505PEER-G	•	0	•		0	•	•	•	•	-	_	•	0,4	1	
170505FEER-G		0	•	•	0	•	•			_	_	•	0,3	1	
1705001 EER-G	•							•	•	_	_		1,0	1	Abb. 1
170512PEER-G	•			•			•	•	•	_	_	_	1,2	1	RE
170516PEER-G	•			•			•	•	•	_	_		1,6	1	
170520PEER-G	•			•			•	•	•	_	_		2,0	1	
170524PEER-G	•							•	•	-	_		2,4	1	
170530PEER-G	•			•			•	•	•	-	_		3,0	1	19,5
170532PEER-G	•						•	•	•	-	_		3,2	1	19,5
170540PEER-G	•			•			•	•	•	-	_		4,0	1	
170550PEER-G 170564PEER-G	•						•	•	•	_	_		5,0 6,4	2 2	
AOMT 170504PEER-H	•	0	•	•	0	•	•	•	•		_	_	0,4	1	
170508PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,4	1	
170512PEER-H	•							•	•	_	_	_	1,2	1	
170516PEER-H	•			•				•	•	_	_	_	1,6	1	Abb. 2
AOET 170502PEER-F	•		-			-		-		-	_	_	0,2	1	, RE
170504PEER-F	•		-			-		-		-	_	_	0,4	1	
170505PEER-F	•		-			-		-		-	_	_	0,5	1	10,00
170508PEER-F 170510PEER-F	•		_			_		_		_	_	_	0,8 1,0	1 1	
170510FEER-F			_			_		_		_	_	_	1,0	1	18,0
170516PEER-F	•		_			_		_		_	_	_	1,6	1	
170520PEER-F	•		l –			l –		l –		-	-	_	2,0	1	
170524PEER-F	•		-			-		-		_	-	_	2,4	1	
170530PEER-F	•		_			_		_		-	_	_	3,0	1	
170532PEER-F	•		-			-		-		-	_	_	3,2	1	
170540PEER-F 170550PEER-F	•		_			_		_		_	_	_	4,0 5,0	1 2	
170564PEER-F			_			_		_		_	_	_	6,4	2	
AOET 170502PEER-P25	•		_			_		_		_	_	_	0,2	1	
170504PEER-P25	•		_			_		_		_	_	_	0,4	1	
170505PEER-P25	•		_			_		_		-	_	_	0,5	1	
170508PEER-P25	•		-			-		-		_	_	_	0,8	1	
170510PEER-P25	•		-			-		-		-	_	_	1,0	1	
170512PEER-P25	•		_			_		_		-	_	_	1,2	1	
170502PEER-P32 170504PEER-P32	•		_			_		_		_	_	_	0,2	1	
170505PEER-P32			_					_		_	_	_	0,5	1	
170508PEER-P32	•		-			_		-		-	_	_	0,8	1	
170510PEER-P32	•		-			-		_		_	_	_	1,0	1	
170512PEER-P32	•		_			_		_		_	_	_	1,2	1	
AOET 170502PEFR-S	-	-	-	_	_	-	-	-	-	•	•	_	0,2	1	
170504PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,4	1	
170505PEFR-S 170508PEFR-S	_	_	_	_	_	_	_	_	_		•	_	0,5	1	L: geringe Schnittkraft
170500PEFR-S 170510PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	1,0	1	G: allgemeine Anwendung
170510FEFR-S	_	-	_	_	_	_	_	_	_	•	•	_	1,2	1	H: stabile Schneidkante F: Schlichten
170516PEFR-S	-	-	-	-	_	-	-	-	-	•	•	_	1,6	1	P: Hochpräzisionsbearbeitung
170520PEFR-S	_	_	-	_	-	_	_	-	_	•	•	_	2,0	1	S: Nichteisenmetalle
170524PEFR-S	-	-	-	-	_	-	-	-	-	•	•	_	2,4	1	*P25 ist anwendbar für Fräserdurchmesser
170530PEFR-S	-	-	-	-	_	-	-	-	-	•	•	_	3,0	1	Ø 25 mm und Ø 28 mm. *P32 ist anwendbar für Fräserdurchmesser
170532PEFR-S 170540PEFR-S	_	- _	_	_	_	_	_	_	_		•	_	3,2	1	Ø 30 mm, Ø 32 mm and Ø 35 mm.
170540PEFR-S 170550PEFR-S	_	_	_	_	_	_	_	_	_		•	_	5,0	2	
170564PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	6,4	2	
			1			1							, -, -		

WEZ 17000 **EL**



Span-	Radial	-6° – -12°
winkel	Axial	6° – 15°

15 mm 90°

Abb. 2

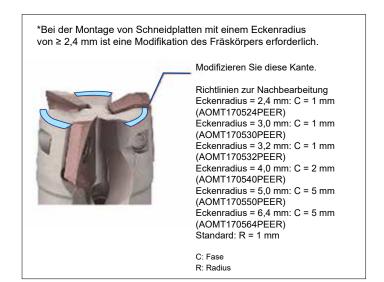
■ WEZ-Fräskörper (Schaftfräser, lange Ausführung)

Abmessungen (mm)

Bezeichnung	Lager	DC	DMM	LH	LS	LF	Anzahl Zähne	Gewicht (kg)	Abb.
WEZ 17025EL02	•	25	25	50	120	170	2	0,55	1
17028EL02	•	28	25	50	120	170	2	0,57	2
17030EL02	•	30	25	50	120	170	2	0,59	2
17032EL02	•	32	32	60	110	170	2	0,94	1
17032EL02-30	•	32	30	50	120	170	2	0,85	2
17032EL03	•	32	32	60	110	170	3	0,92	1
17035EL02	•	35	32	50	120	170	2	0,98	2
17040EL02	•	40	32	50	120	170	2	1,09	2
17040EL03	•	40	32	50	120	170	3	1,08	2
17040EL04	•	40	32	50	120	170	4	1,05	2
17050EL03	•	50	32	50	120	170	3	1,29	2
17050EL03-42	•	50	42	50	120	170	3	1,83	2
17050EL05	•	50	32	50	120	170	5	1,25	2
17050EL05-42	•	50	42	50	120	170	5	1,79	2
17063EL04	•	63	32	50	120	170	4	1,61	2
17063EL04-42	•	63	42	50	120	170	4	2,16	2
17063EL06	•	63	32	50	120	170	6	1,58	2
17063EL06-42	•	63	42	50	120	170	6	2,13	2

Die Schneidplatten werden separat verkauft.

Ersatzteile


	Schraub	Schlüssel		
Geeignete Fräser		(N·m)	P	
WEZ 17025EL02				
17028EL02	BFTX0407IP			
17030EL02				
17032EL02(-30)				
17032EL03				
17035EL02				
17040EL02		3,0	TRDR15IP	
17040EL03	BFTX0409IP			
17040EL04	DF 1 X04091P			
17050EL03(-42)				
17050EL05(-42)				
17063EL04(-42)				
17063EL06(-42)				

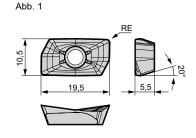
■ Empfohlene Schnittbedingungen

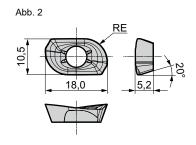
→ H28

■ Identifikation des Fräskörpers

WEZ 17 032 Ε 30 02 Platten-Fräser-Frä-Schaft-Langer Anzahl Schaftbezeichnung größe ser-durchausführung Schaft Zähne durchmesser messer

"Wave Mill" Serie **WEZ** 17000 **EL**


■ Fräsplatten


170550PEFR-S 170564PEFR-S

Vor

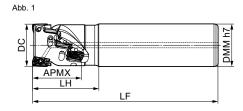
r	sic	htsi	maí	Տna	hm	er	n k	эе	ic	de	r N	Иo	nt	ag	е	-	>	H29	
	Hartmetall	DLC	Cermet											Al	ome	ssunc	ien	(mm)
		Z	P													Jou. 15	,	(′
	N	Z																	
	20	L2000	2500A	RE	Abb.														

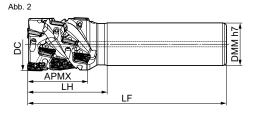
Anwendung			Resc	hicht	etes	Hartr	netal	1	VOI	Hartmetall	r	Cermet		ınm
Hochgeschw./ Leichtbearbeitung		₹ M	P	HIGHL	K	K	netal	Ms		ı idi ti liktdil	N	P		
Allgemeine Anwendung	K _S M	KM KM		P	K	-	K	Ms	Ms	N	N			
Schruppen	K PM S	M		Р			K		Ms					
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.
AOMT 170502PEER-L	•		_			-		•	•	_	_		0,2	1
170504PEER-L	•	0	_	•	0	-	•	•	•	_	_	•	0,4	1
170508PEER-L	•	0	_	•	0	-	•	•	•	_	_	•	0,8	1
170512PEER-L 170516PEER-L	•		_ _			_ _		•	•	_ _	_		1,2 1,6	1
AOMT 170502PEER-G	•			•			•	•	•	_	_		0,2	1
170504PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,2	1
170505PEER-G	•							•	•	_	_		0,5	1
170508PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1
170510PEER-G	•							•	•	_	_		1,0	1
170512PEER-G	•			•			•	•	•	_	_		1,2	1
170516PEER-G	•			•			•	•	•	_	_		1,6	1
170520PEER-G 170524PEER-G	•			•			•	•	•	_	_		2,0	1
170524PEER-G 170530PEER-G	•			•			•	•	•	_	_		3.0	1
170530FEER-G							•	•	•	_	_		3,2	1
170540PEER-G	•		_	•			•	•	•	_	_		4,0	1
170550PEER-G	•			•			•	•	•	_	_		5,0	2
170564PEER-G								•	•	_	_		6,4	2
AOMT 170504PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,4	1
170508PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,8	1
170512PEER-H	•							•	•	_	_	_	1,2	1
170516PEER-H AOET 170502PEER-F	•			•				•	•	_	_	_	1,6 0,2	1
170504PEER-F			_			_		_		_	_	_ _	0,2	1
170505FEER-F			_			_		_		_	_	_	0,5	1
170508PEER-F	•		_			_		_		_	_	_	0,8	1
170510PEER-F	•		_			_		_		_	_	_	1,0	1
170512PEER-F	•		_			_		_		_	_	_	1,2	1
170516PEER-F	•		_			_		_		_	_	_	1,6	1
170520PEER-F	•		_			_		_		_	_	_	2,0	1
170524PEER-F	•		_			_		_		_	_	_	2,4	1
170530PEER-F 170532PEER-F	•		_			_		_		_	_	_	3,0	1
170532FEER-F			_			_					_	_	4,0	1
170550PEER-F			_			_		_		_	_	_	5,0	2
170564PEER-F	•		-			-		_		_	_	_	6,4	2
AOET 170502PEER-P25	•		_			_		_		_	_	_	0,2	1
170504PEER-P25	•		_			-		_		_	_	_	0,4	1
170505PEER-P25	•		_			_		_		_	_	_	0,5	1
170508PEER-P25	•		-			_		_		_	_	-	0,8	1
170510PEER-P25	•		_			_		_		_	_	_	1,0	1
170512PEER-P25 170502PEER-P32	•		_			_		_		_	_	-	1,2	1
170504PEER-P32			_			_		_		_	_	_	0,2	1
170505PEER-P32	•		_			_		_		_	_	_	0,5	1
170508PEER-P32	•		_			_		_		_	_	_	0,8	1
170510PEER-P32	•		_			_		_		_	_	_	1,0	1
170512PEER-P32	•		_			_		_		_	_	_	1,2	1
AOET 170502PEFR-S	-	_	_	_	_	_	_	_	_	•	•	_	0,2	1
170504PEFR-S	_	_	_	_	_	-	-	_	_	•	•	_	0,4	1
170505PEFR-S	-	_	_	_	-	-	_	-	-	•	•	_	0,5	1
170508PEFR-S 170510PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,8 1,0	1
170510FEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	1,0	1
1705121 ETR-0	_	_	_	_	_	_	_	_	_	•	•	_	1,6	1
170520PEFR-S	-	-	-	_	-	-	_	_	_	•	•	-	2,0	1
170524PEFR-S	-	-	-	-	-	-	_	-	-	•	•	-	2,4	1
170530PEFR-S	-	_	_	_	_	_	_	_	_	•	•	_	3,0	1
170532PEFR-S	-	_	_	_	_	-	_	_	_	•	•	_	3,2	1
170540PEFR-S	-	_	_	_	_	_	_	_	_	•	•	_	4,0 5.0	1
L/USSUPEEK-S			_					_					7 []	

- L: geringe Schnittkraft G: allgemeine Anwendung H: stabile Schneidkante F: Schlichter

5,0 2 6,4 2

- P: Hochpräzisionsbearbeitung S: Nichteisenmetalle
- *P25 ist anwendbar für Fräserdurchmesser Ø 25 mm und Ø 28 mm. *P32 ist anwendbar für Fräserdurchmesser Ø 30 mm, Ø 32 mm and Ø 35 mm.




Walzenstirnfräser

Span-	Radial	-15° – -11°
winkel	Axial	8° – 14°

■ WEZ-Fräskörper (Schaftfräser)

Abmessungen (mm)

Bezeichnung	Lager	DC	APMX	DMM	LH	LF	Gesamtzahl Zähne	Stufen	Effective Zähnezahl	Gewicht (kg)	Abb.
WEZR 11020E1920Z02	O	20	19	20	30	110	4	2	2	0,22	1
11020E3620Z01	0	20	36	20	45	125	4	4	1	0,24	1
11025E2725Z02	O	25	27	25	40	130	6	3	2	0,41	1
11025E3625Z02	0	25	36	25	50	140	8	4	2	0,42	1
11030E5325Z02	O	30	53	25	65	155	12	6	2	0,52	2
11032E3632Z02	0	32	36	32	50	140	8	4	2	0,74	1
11032E3632Z03	O	32	36	32	50	140	12	4	3	0,71	1
11032E5332Z02	O	32	53	32	70	160	12	6	2	0,90	1
11035E5332Z03	O	35	53	32	65	155	18	6	3	0,88	2
11040E4432Z03	O	40	44	32	60	150	15	5	3	0,87	2
11040E4432Z04	O	40	44	32	60	150	20	5	4	0,85	2
11040E6132Z03	O	40	61	32	75	165	21	7	3	0,95	2

Schneidplatten werden separat verkauft.

Ersatzteile

	Schraul	be	Schlüssel
Geeignete Fräser		(N·m)	P
WEZR 11	BFTX0306IP	1,5	TRDR08IP

■ Identifikation des Fräskörpers

WEZ	R 11	032	Е	36	32	Z 02
	Dietten	Fräger	Cahaft	Max	Coboff	□#oldin

Fräser-	Platten-	Fräser-	Schaft-	Max.	Schaft-	Effektive
bezeich-	größe	durch-	fräser	Schnitt-	durch-	Zähne-
nung		messer		tiefe	messer	zahl

■ Empfohlene Schnittbedingungen

ISC	Werkstückstoff	Härte (HB)	Schneidka- nenausführ.	Schnittgeschwin- digkeit v _c (m/min)	Vorschub f _z (mm/t)	Schneid- stoffsorte
Р	Kohlenstoffstahl Legierter Stahl	≤ 280HB > 280HB ≤ 280HB	G G G	100 –150 –200 80 –100 –120 100 –150 –80	0,08 -0,12 -0,20 0,08 -0,12 -0,20 0,08 -0,12 -0,20	ACU2500 XCU2500 ACP2000 ACP3000
M	Rostfreier Stahl	≤ 280HB	G	80 –120 –160	0,08 -0,12 -0,20	ACU2500 ACM200 ACM300
K	Grauguss/ Kugelgraphitguss	_	G	100 –150 –200	0,08 -0,12 -0,20	ACU2500 XCK2000 ACK2000 ACK3000
s	Hitzebeständige Legierungen	-	G	40 –50 –60	0,08 -0,12 -0,20	ACU2500 ACM200 ACM300
N	Aluminium- legierung Si ≤ 12,6 Si >12,6		S S	300 –500 –800 100 –200 –250	0,05 -0,10 -0,15 0,05 -0,10 -0,15	DL2000 H20

Min. - Optimum - Max.

Hinweis:

Die oben genannten Schnittbedingungen sind ein Richtwert. Die tatsächlichen Bedingungen müssen entsprechend der Maschinensteifigkeit, der Werkstückspannung, der Schnittliefe und weiteren Faktoren angepasst werden.

Je nach Steifigkeit der Maschine und des Werkstücks kann es vorkommen, dass die Bearbeitung nicht unter den empfohlenen Bedingungen durchgeführt werden kann.

*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT11T324PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT11T330PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT11T332PEER) Standard: R = 1 mm

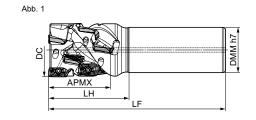
C: Fase R: Radius

"Wave Mill" Serie WEZR 11000 E

■ Fräsplatten

Vorsichtsmaßnahmen bei der Montage → H29

Anwendung			Rosel	aichte	otos	Hartr	netal			Hartmetall	DI C	Cormot			
Hochgeschw./ Leichtbearbeitung		RM.		ПСПЦ	K		Tietai	Ms	Ι	Паннецан	N	P	-		Abmessungen (mm)
Allgemeine Anwendung	k SM	K M		Р	K	N	K	Ms	Ms	N	N		-		
		KM			N		=	S	S M	W	Ш		1		
Schruppen	SM SM	_	_	P	_	_	K		Ms						
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.	
AOMT 11T302PEER-G	•			•	,		•	•	•	_	_	•	0,2	1	
11T304PEER-G	•	0	•	•	O	•	•	•	•	_	_	•	0,4	1	
11T305PEER-G	•							•	•	-	_		0,5	1	
11T308PEER-G	•	0	•	•	O	•	•	•	•	_	_	•	0,8	1	
11T310PEER-G	•							•	•	-	-		1,0	1	
11T312PEER-G	•			•			•	•	•	_	_		1,2	1	
11T316PEER-G	•			•			•	•	•	_	_		1,6	1	
11T320PEER-G	•			•			•	•	•	_	_		2,0	1	
11T324PEER-G	•							•	•	_	_		2,4	1	
11T330PEER-G	•			•			•	•	•	-	_		3,0	2	Abb. 1 <u>RE</u>
11T332PEER-G	•							•	•	-	_		3,2	2	
AOMT 11T304PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,4	1	
11T308PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,8	1	18
11T312PEER-H	•							•	•	-	-	-	1,2	1	•
11T316PEER-H	•							•	•	-	-	_	1,6	1	12,8
AOET 11T302PEER-F	•		_			_		_		_	_	_	0,2	1	
11T304PEER-F	•		_			_		_		-	_	_	0,4	1	
11T305PEER-F	•		_			-		-		-	-	-	0,5	1	<u> </u>
11T308PEER-F	•		_			_		_		_	_	_	0,8	1	
11T310PEER-F	•		_			_		_		_	_	_	1,0	1	
11T312PEER-F	•		_			_		_		-	_	_	1,2	1	
11T316PEER-F	•		_			_		-		-	_	_	1,6	1	Abb. 2 RE
11T320PEER-F	•		_			_		_		_	_	_	2,0	1	
11T324PEER-F	•		_			_		_		-	_	_	2,4	1	ro T
11T330PEER-F	•		_			_		_		_	_	_	3,0	2	7
11T332PEER-F	•		_			_		_		-	_	_	3,2	2	
AOET 11T302PEER-P20	•		_			_		-		-	_	_	0,2	1	12,2
11T304PEER-P20	•		_			_		-		-	_	_	0,4	1	
11T305PEER-P20	•		_			_		_		-	_	_	0,5	1	
11T308PEER-P20	•		_			-		-		-	_	_	0,8	1	
11T310PEER-P20	•		_			_		-		-	_	_	1,0	1	
11T312PEER-P20	•		_			-		-		-	_	-	1,2	1	
11T302PEER-P25	•		_			_		-		-	_	-	0,2	1	
11T304PEER-P25	•		_			_		_		-	_	_	0,4	1	
11T305PEER-P25	•		_			_		_		-	_	_	0,5	1	
11T308PEER-P25	•		_			_		_		-	_	_	0,8	1	
11T310PEER-P25	•		_			-		-		-	_	_	1,0	1	
11T312PEER-P25	•		_			_		-		-	_	_	1,2	1	L: geringe Schnittkraft
AOET 11T302PEFR-S	_	-	-	_	_	_	_	-	-	•	•	_	0,2	1	G: allgemeine Anwendung H: stabile Schneidkante
11T304PEFR-S	_	-	_	_	_	_	-	_	_	•	•	_	0,4	1	F: Schlichten
11T305PEFR-S	_	-	_	_	_	_	-	_	_	•	•	-	0,5	1	P: Hochpräzisionsbearbeitung S: Nichteisenmetalle
11T308PEFR-S	_	-	_	_	_	-	_	_	_	•	•	_	0,8	1	
11T310PEFR-S	_	-	_	_	_	_	_	_	-	•	•	_	1,0	1	*P20 ist anwendbar für Fräserdurchmesser Ø 18 mm, Ø 20 mm.
11T312PEFR-S	_	-	_	_	_	-	_	_	-	•	•	_	1,2	1	*P25 ist anwendbar für Fräserdurchmesser
11T316PEFR-S	_	_	_	_	_	-	_	_	_	•		-	1,6	1	Ø 25 mm, Ø 28 mm.
11T320PEFR-S	_	-	_	_	_	-	_	-	_	•	•	_	2,0	1	Ab der zweiten Stufe sind periphere Schneidplat-
11T324PEFR-S	-	-	-	_	-	_	_	-	-	•	•	_	2,4	1	ten mit RE ≤ 0,8 mm einzusetzen.
11T330PEFR-S	_	-	_	_	_	_	_	_	_	•	•	_	3,0	2	
11T332PEFR-S	_	_	_	_	-	_	_	_	-	•		_	3,2	2	



Walzenstirnfräser

Span-	Radial	-9° – -8°
winkel	Axial	10° – 12°

■ WEZ-Fräskörper (Schaftfräser)

Abmessungen (mm)

Bezeichnung	Lager	DC	APMX	DMM	LH	LF	Gesamtzahl Zähne	Stufen	Effective Zähnezahl	Gewicht (kg)	Abb.
WEZR 17040E2932Z03	O	40	29	32	45	110	6	3	2	0,75	1
17040E4332Z02	0	40	43	32	60	125	6	2	3	0,86	1
17050E5742Z03	0	50	57	42	75	130	12	3	4	1,58	1
17050E8442Z02	O	50	84	42	105	140	12	2	6	1,04	1

Schneidplatten werden separat verkauft.

■ Ersatzteile

	Schraul	ре	Schlüssel
Geeignete Fräser		(N·m)	P
WEZR 17	BFTX0409IP	3,0	TRDR15IP

■ Identifikation des Fräskörpers

WEZF	R 17	040	E	29	32	Z03
Fräser- bezeich- nung	Platten- größe			Max. Schnitt- tiefe	durch-	

■ Empfohlene Schnittbedingungen

ISO	Werkstückstoff	Härte (HB)	Schneidka- nenausführ.	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/t)	Schneid- stoffsorte
	Kohlenstoffstahl	≤ 280HB	G	100 –150 –200	0,10 –0,20 –0,30	ACU2500
P	Konienstonstani	> 280HB		80 –100 –120	0,10 –0,20 –0,30	XCU2500 ACP2000
	Legierter Stahl	≤ 280HB	G	100 –150 –80	0,10 –0,20 –0,30	ACP3000
M	Rostfreier Stahl	≤ 280HB	G	80 –120 –160	0,10- 0,20- 0,30	ACU2500 ACM200 ACM300
K	Grauguss/ Kugelgraphitguss	-	G	100 –150 –200	0,10 -0,20 -0,30	ACU2500 XCK2000 ACK2000 ACK3000
s	Hitzebeständige Legierungen	-	G	40 –50 –60	0,10 -0,20 -0,30	ACU2500 ACM200 ACM300
N	Aluminium-	Si ≤ 12,6%	S	300 –500 –800	0,05 –0,10 –0,15	DL2000
IN	legierung	Si >12,6%	S	100 –200 –250	0,05 –0,10 –0,15	H20

Min. - Optimum - Max.

Hinweis:
Die oben genannten Schnittbedingungen sind ein Richtwert. Die tatsächlichen Bedingungen müssen entsprechend der Maschinensteifigkeit, der Werkstückspannung, der Schnitttiefe und weiteren Faktoren angepasst werden.
Je nach Steifigkeit der Maschine und des Werkstücks kann es vorkommen, dass die Bearbeitung nicht unter den empfohlenen Bedingungen durchgeführt werden kann.

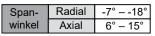
*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT170524PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT170530PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT170532PEER) Eckenradius = 4,0 mm: C = 2 mm (AOMT170540PEER) Eckenradius = 5,0 mm: C = 5 mm (AOMT170550PEER) Eckenradius = 6,4 mm: C = 5 mm (AOMT170564PEER) Standard: R = 1 mm

C: Fase R: Radius

"Wave Mill" Serie WEZR 17000 E


■ Fräsplatten

Vorsichtsmaßnahmen bei der Montage → H29

Anwendung		Е	Besch	nichte	etes	Hartr	netal			Hartmetall	DLC	Cermet			
Hochgeschw./ Leichtbearbeitung		₩.	Р		K	K		Ms			N	P			Abmessungen (mm)
Allgemeine Anwendung	₽	₹		Р	K		K	Ms	Ms	N	N				
Schruppen	K _S M	- Carrier		Р			K		Ms						
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.	
AOMT 170502PEER-L	•	×	_		_ ×	< <	_ <u> </u>	•	•	_	_		0,2	1	
170504PEER-L		0	_	•	0	_	•	•	•	_	_	•	0,4	1	
170508PEER-L	•	0	_	•	0	_	•	•	•	_	_	•	0,8	i	
170512PEER-L	•	1	_			_		•	•	_	_		1,2	1	
170516PEER-L	•		_			_		•	•	_	_		1,6	1	
AOMT 170502PEER-G	•			•			•	•	•	_	_		0,2	1	
170504PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,4	1	
170505PEER-G	•							•	•	_	_		0,5	1	
170508PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1	
170510PEER-G	•							•	•	_	_		1,0	1	Abb. 1
170512PEER-G	•			•			•	•	•	_	_		1,2	1	ADD. I RE
170516PEER-G	•			•			•	•	•	_	_		1,6	1	- NE
170520PEER-G	•			•			•	•	•	_	_		2,0	1	
170524PEER-G	•							•	•	_	_		2,4	1	10,5
170530PEER-G	•			•			•	•	•	_	_		3,0	1	
170532PEER-G	•						•	•	•	_	_		3,2	1	19,5
170540PEER-G	•			•			•	•	•	_	_		4,0	1	
170550PEER-G	•			•			•	•	•	_	_		5,0	2	
170564PEER-G								•	•	_	_		6,4	2	
AOMT 170504PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,4	1	
170508PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,8	1	
170512PEER-H	•							•	•	_	_	_	1,2	1	
170516PEER-H	•			•				•	•	_	_	_	1,6	1	Abb. 2
AOET 170502PEER-F	•		_			_		_		_	_	_	0,2	1	<u>RE</u>
170504PEER-F	•		_			_		_		_	_	_	0,4	1	
170505PEER-F	•		_			-		-		_	_	-	0,5	1	201
170508PEER-F	•		_			_		_		_	_	_	0,8	1	7
170510PEER-F	•		_			_		_		_	_	_	1,0	1	18.0
170512PEER-F	•		_			_		_		_	_	_	1,2	1	- - - -
170516PEER-F	•		_			-		_		_	_	-	1,6	1	
170520PEER-F	•		_			_		_		_	_	_	2,0	1	
170524PEER-F	•		_			-		-		-	_	_	2,4	1	l
170530PEER-F	•		_			_		_		_	_	_	3,0	1	
170532PEER-F	•		_			_		_		_	_	_	3,2	1	
170540PEER-F	•		_			_		_		_	_	_	4,0	1	
170550PEER-F	•		_			_		_		_	_	_	5,0	2	
170564PEER-F	•		_			_		_		_	_	_	6,4	2	
AOET 170502PEFR-S	-	-	_	_	-	_	-	_	-	•	•	_	0,2	1	
170504PEFR-S	_	_	_	_	_	_	-	_	_	•	•	_	0,4	1	
170505PEFR-S	-	-	_	_	_	_	-	_	_	•	•	_	0,5	1	L: geringe Schnittkraft
170508PEFR-S	_	-	_	_	_	_	_	_	_	•	•	_	0,8	1	G: allgemeine Anwendung
170510PEFR-S	_	-	_	_	_	_	-	_	_	•	•	_	1,0	1	H: stabile Schneidkante F: Schlichten
170512PEFR-S	_	-	_	_	_	_	-	_	-	•	•	_	1,2	1	P: Hochpräzisionsbearbeitung
170516PEFR-S	-	-	_	_	_	_	-	_	_	•	•	-	1,6	1	S: Nichteisenmetalle
170520PEFR-S	_	-	_	_	_	_	-	_	-	•	•	_	2,0	1	Ab der zweiten Stufe sind periphere Schneidplat-
170524PEFR-S	_	-	_	_	_	_	-	_	_	•	•	_	2,4	1	ten mit RE ≤ 0,8 mm einzusetzen.
170530PEFR-S	-	-	_	_	-	-	_	_	-	•	•	_	3,0	1	
170532PEFR-S	-	-	_	_	_	_	-	_	_	•	•	_	3,2	1	
170540PEFR-S	-	-	_	_	_	-	-	_	_	•	•	_	4,0	1	
170550PEFR-S	-	_	_	_	_	_	-	_	_	•	•	_	5,0	2	
170564PEFR-S	_	-	_	_	_	_	_	_	_	•	•	_	6,4	2	

Modularfräser

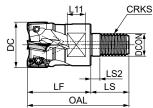


Abb. 1

■ Fräskörper (einschraubbar)

Abmessungen (mm)

Bezeichnung	Lager	DC	DCON	CRKS	OAL	LF	LS2	L11	Н	Anzahl Zähne	Gewicht (kg)	Abb.
WEZ 11016M08Z2	•	16	8,5	M8	42	25	5	8	13	2	0,03	1
11018M08Z2	•	18	8,5	M8	42	25	5	8	13	2	0,03	1
11020M10Z2	•	20	10,5	M10	49	30	5	8	15	2	0,06	1
11020M10Z3	•	20	10,5	M10	49	30	5	8	15	3	0,05	1
11022M10Z3	•	22	10,5	M10	49	30	5	8	15	3	0,06	1
11025M12Z2	•	25	12,5	M12	56	35	5	10	19	2	0,11	1
11025M12Z3	•	25	12,5	M12	56	35	5	10	19	3	0,10	1
11025M12Z4	•	25	12,5	M12	56	35	5	10	19	4	0,10	1
11026M12Z4	•	26	12,5	M12	56	35	5	10	19	4	0,10	1
11026M12Z5	•	26	12,5	M12	56	35	5	10	19	5	0,09	1
11028M12Z4	•	28	12,5	M12	56	35	5	10	19	4	0,11	1
11028M12Z5	•	28	12,5	M12	56	35	5	10	19	5	0,10	1
11030M16Z2	•	30	17	M16	63	40	5	10	24	2	0,20	1
11030M16Z4	•	30	17	M16	63	40	5	10	24	4	0,19	1
11030M16Z5	•	30	17	M16	63	40	5	10	24	5	0,17	1
11032M16Z2	•	32	17	M16	63	40	5	10	24	2	0,22	1
11032M16Z3	•	32	17	M16	63	40	5	10	24	3	0,20	1
11032M16Z4	•	32	17	M16	63	40	5	10	24	4	0,20	1
11032M16Z5	•	32	17	M16	63	40	5	10	24	5	0,19	1
11035M16Z2	•	35	17	M16	63	40	5	10	24	2	0,24	1
11035M16Z5	•	35	17	M16	63	40	5	10	24	5	0,22	1
11040M16Z2	•	40	17	M16	63	40	5	10	24	2	0,28	1
11040M16Z4	•	40	17	M16	63	40	5	10	24	4	0,26	1
11040M16Z5	•	40	17	M16	63	40	5	10	24	5	0,26	1
11040M16Z6	•	40	17	M16	63	40	5	10	24	6	0,25	1

Die Schneidplatten werden separat verkauft. Verlängerung → H5.

Ersatzteile

	Schraub	е	Schlüssel
Geeignete Fräser		(N·m)	B
WEZ 11016M08Z2	BFTX0305IP		
11018M08Z2	BF I XUSUSIF	1,5	TRDR08IP
11020M10Z2-11040M16Z2	BFTX0306IP		

■ Empfohlene Schnittbedingungen

→ H. 28

■ Identifikation des Fräskörpers

WEZ	11	016	_M 08	Z2

Anzahl Einschraub-Fräser-Platten-Fräsbezeichnung größe kopf-durchgewinde Zähne messer

*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

Modifizieren Sie diese Kante.

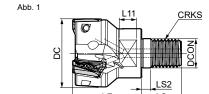
Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT11T324PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT11T330PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT11T332PEER) Standard: R = 1 mm

C: Fase R: Radius

"Wave Mill" Serie **WEZ** 11000 M

Schneidnlatten

Vorsichtsmaßnahmen bei der Montage → H29


Schneidplatten									Vor	Sic	hts	maí	ßna	hme	en bei der	· Monta	ige [→ H29
Anwendung		E	Besch	nichte	etes I	Hartr	netal	ı		Hartmetall	DLC	Cermet						
Hochgeschw./ Leichtbearbeitung		₽	Р		K	K		Ms			N	Р	1				Abmes	sungen (mm)
Allgemeine Anwendung	K PM	K _M		Р	K		K	Ms	Ms	N	N		1					
Schruppen	R PM	N _M		P	-		K		Ms	-	u		1					
Schluppen			_		_	_			∠ S									
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.				
AOMT 11T302PEER-G	•			•			•	•	•	_	_	•	0,2	1				
11T304PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,4	1				
11T305PEER-G	•							•	•	_	_		0,5	1				
11T308PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1				
11T310PEER-G	•							•	•	_	_		1,0	1				
11T312PEER-G	•			•			•	•	•	_	_		1,2	1				
11T316PEER-G	•			•			•	•	•	_	_		1,6	1				
11T320PEER-G	•			•			•	•	•	_	_		2,0	1				
11T324PEER-G	•							•	•	_	_		2,4	1	Abb. 1			
11T330PEER-G	•			•			•	•	•	_	_		3,0	2			RE	
11T332PEER-G	•							•	•	_	_		3,2	2	<u> </u>			3
AOMT 11T304PEER-H	•	0	•	•	O	•	•	•	•	-	-	-	0,4	1	7,5			1
11T308PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,8	1	'~ \			128
11T312PEER-H	•							•	•	_	_	_	1,2	1				†
11T316PEER-H	•							•	•	_	_	_	1,6	1	-	12,8	3,6	6 → ′
AOET 11T302PEER-F	•		_			_		-		_	_	_	0,2	1				
11T304PEER-F	•		_			_		_		_	_	_	0,4	1	F			
11T305PEER-F	•		_			_		-		_	_	_	0,5	1	_	<u> </u>		
11T308PEER-F	•		_			_		_		_	_	_	0,8	1				
11T310PEER-F	•		_			_		-		_	_	_	1,0	1				
11T312PEER-F	•		_			_		-		_	_	_	1,2	1	Abb. 2			
11T316PEER-F	•		_			_		-		_	_	-	1,6	1	7 IDD. L		RE	
11T320PEER-F	•		_			_		-		_	_	_	2,0	1		/		_
11T324PEER-F	•		_			_		_		_	_	_	2,4	1	رن اب			L
11T330PEER-F	•		_			_		-		-	_	_	3,0	2				22
11T332PEER-F	•		_			_		-		_	_	_	3,2	2				<i>f</i>
AOET 11T302PEER-P16	•		_			-		-		-	_	-	0,2	1	-	12,2	3,4	-
11T304PEER-P16	•		_			_		_		_	_	_	0,4	1	_	_		
11T305PEER-P16	•		_			_		-		-	_	_	0,5	1	\			
11T308PEER-P16	•		_			_		_		_	_	_	0,8	1		i		
11T310PEER-P16	•		_			-		-		-	_	-	1,0	1				
11T312PEER-P16	•		_			_		-		_	_	_	1,2	1				
11T302PEER-P20	•		_			-		-		-	_	-	0,2	1				
11T304PEER-P20	•		_			_		_		_	_	_	0,4	1				
11T305PEER-P20	•		_			_		_		_	_	_	0,5	1				
11T308PEER-P20	•		_			_		_		-	_	_	0,8	1				
11T310PEER-P20 11T312PEER-P20	•		-			-		_		_	-	-	1,0	1				
	•		_			_		_		_	_	_	1,2	1				
11T302PEER-P25 11T304PEER-P25	•					_		_		_	_	-	0,2	1				
11T304PEER-P25	•		_			_		_		_	_	_	0,4	1				
11T305PEER-P25 11T308PEER-P25	•												0,5	1				
11T308PEER-P25 11T310PEER-P25	•		_			_		_		_	_	_	1,0	1				
11T310PEER-P25	•		_			_				_	_	_	1,0	1	L: geringe Scl	hnittkraft		
AOET 11T302PEFR-S	_		_	_	_	_		_	_	-	•	_	0,2	1	G: allgemeine	Anwendung		
11T304PEFR-S	_		_		_	_	_	_	_	•	•	_	0,2	1	H: stabile Sch F: Schlichten	neidkante		
11T305PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,5	1	P: Hochpräzis		ng	
11T308PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	0,8	1	S: Nichteisen	metalle		
11T310PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	1,0	1		ndbar für Fräs	serdurchm	esser
11T310FEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	1,2	1	Ø 14 mm und		ordureby-	occor
11T316PEFR-S	_	_	_	_	_	_	_	-	_	•	•	_	1,6	1	°P20 ist anwe Ø 18 mm, Ø	ndbar für Fräs 20 mm.	eruurcnm	cssei
11T320PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	2,0	1		ndbar für Fräs	serdurchm	esser
11T324PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	2,4	1	Ø 25 mm, Ø	ZO IIIIII.		
11T330PEFR-S	_	_	_	_	_	_	-	_	_	•	•	_	3,0	2				
11T332PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	3,2	2				
													, .,_					

Modularfräser

Span-	Radial	-6° – -12°
winkel	Axial	6° – 15°

15 mm 90°

■ Fräskörper (einschraubbar)

Abmessungen (mm)

•	•		,								•	, ,
Bezeichnung	Lager	DC	DCON	CRKS	OAL	LF	LS2	L11	Н	Anzahl Zähne	Gewicht (kg)	Abb.
WEZ 17025M012Z2	•	25	12,5	M12	56	35	5	10	19	2	0,08	1
17025M012Z3	•	25	12,5	M12	56	35	5	10	19	3	0,07	1
17028M012Z2	•	28	12,5	M12	56	35	5	10	19	2	0,10	1
17030M016Z2	•	30	17	M16	63	40	5	10	24	2	0,17	1
17030M016Z3	•	30	17	M16	63	40	5	10	24	3	0,15	1
17032M016Z2	•	32	17	M16	63	40	5	10	24	2	0,19	1
17032M016Z3	•	32	17	M16	63	40	5	10	24	3	0,16	1
17032M016Z4	•	32	17	M16	63	40	5	10	24	4	0,14	1
17035M016Z2	•	35	17	M16	63	40	5	10	24	2	0,21	1
17035M016Z3	•	35	17	M16	63	40	5	10	24	3	0,19	1
17040M016Z2	•	40	17	M16	63	40	5	10	24	2	0,15	1
17040M016Z3	•	40	17	M16	63	40	5	10	24	3	0,23	1
17040M016Z4	•	40	17	M16	63	40	5	10	24	4	0,21	1

Die Schneidplatten werden separat verkauft. Verlängerung → H5.

Ersatzteile

	Schraub	е	Schlüssel
Geeignete Fräser		(N·m)	P
WEZ 17025M12Z2-17030M16Z3	BFTX0407IP	3.0	TRDR15IP
17032M16Z2-17040M16Z4	BFTX0409IP	3,0	ווכן אטאו

■ Identifikation des Fräskörpers

WEZ 17 0

025 M 12


Z2

Fräser- Plattenbezeichnung größe Fräskopf-durchmesser Einschraubgewinde Anzahl Zähne

■ Empfohlene Schnittbedingungen

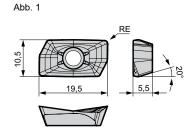
→ H. 28

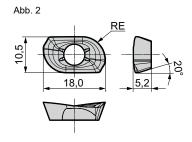
*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT170524PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT170530PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT170532PEER) Eckenradius = 4,0 mm: C = 2 mm (AOMT170540PEER) Eckenradius = 5,0 mm: C = 5 mm (AOMT170550PEER) Eckenradius = 6,4 mm: C = 5 mm (AOMT170564PEER) Standard: R = 1 mm

C: Fase R: Radius


"Wave Mill" Serie **WEZ** 17000 M

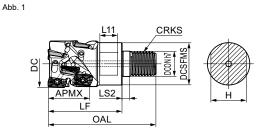

Schneidnlatten

Vorsich

ntsı	maſ	Տna	hm	en bei der Montage	\rightarrow	H29
DLC	Cermet			Ahme	ssungen	(mm)
N	P			, is in a	ooungon	()
N						
						İ
2000	500A	RE	Abb.			

AOMT 170502PEER-L 170504PEER-L 170504PEER-L 170504PEER-L 0	Schneidplatten									Vor	sic	hts	mal	3na	ıhm
Allgemeine Anwendung Schruppen Schru	Anwendung			Besc	hicht	etes	Hartr	netal			Hartmetal	DLC	Cermet		
Schruppen Rezeichnung Re	<u> </u>		KM	P		K	K					_	P		
Bezeichnung So So So So So So So S	<u>*</u>		₹ M			K		_	M/S		N	N			
AOMT 170502PER-L 170504PER-L 170504PER-L 170508PER-L 170504PER-L 170512PER-L 170516PER-L 170504PER-C 170508PER-C 170508PER-G 170508PER-G 170508PER-G 170516PER-G 170516PER-G 170516PER-G 170516PER-G 170508PER-H 170508PER-H 170508PER-H 170508PER-F 1	ıppen	K SM			Р			K		Ms					
170504PER-L 170508PER-L 170516PER-L 170516PER-L 170516PER-L 170516PER-L 170516PER-C 1	Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.
170508PER-L 170512PER-L 170516PER-L 170516PER-L 170504PEER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-G 170508PER-H 170508PER-H 170508PER-H 170508PER-H 170508PER-F 17050		_		_	_		_		•	_	_	_	_		1
170512PER-L 170516PER-L 170516PER-L 170516PER-G 170504PER-G 170532PER-H 170532PER-H 170532PER-H 170532PER-F 170532		-			-			-	•	-	_		-		
170516PEER-L • - □ - □ • - - 1,6 1 AOMT 170502PEER-G • □ • • • • - - 0,2 1 170504PEER-G • □ □ □ □ • • - - 0,4 1 170508PEER-G • □ □ □ □ • - - 0,8 1 170519PEER-G • □ □ □ • - - 0,8 1 170519PEER-G • □ □ □ • - - 0,8 1 170516PEER-G • □ □ □ • - - 1,0 1 170530PEER-G • □ □ □ • - - 2,24 1 170540PEER-G □ □ □ □ • - - 3,2 1 170510PEER-G □ □ □ □ □		_	3		_	0		_	•	_			•		
AOMT 170502PER-G 170504PER-G 170504PER-G 170505PER-G 170505PER-G 170508PER-G 170508PER-G 170510PEER-G 170510PEER-G 170510PEER-G 170520PEER-G 170520PEER-G 170520PEER-G 170524PEER-G 170530PEER-F 170530P		-		_	_		_	_	-	-				-	
170504PEER-G 170505PEER-G 170505PEER-G 170508PEER-G 170508PEER-G 170508PEER-G 170508PEER-G 170508PEER-G 1705010PEER-G 1705010PEER-G 170512PEER-G 170512PEER-G 170512PEER-G 170520PEER-G 170520PEER-G 170532PEER-G 170532PEER-G 170532PEER-G 170550PEER-G 170508PEER-H 170508PEER-H 170508PEER-H 170512PEER-H 170512PEER-H 170508PEER-F 170504PEER-F 170510PEER-F 170		_									_			_	
170508PEER-G 170510PEER-G 170510PEER-G 170512PEER-G 170516PEER-G 170516PEER-G 170520PEER-G 170530PEER-G 170530PEER-G 170532PEER-G 170530PEER-G 170530PEER-G 170530PEER-G 170530PEER-G 170530PEER-G 170540PEER-G 170550PEER-G 170564PEER-G 170550PEER-H 1705509PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-F 170508PEER-F 170550PEER-F 17050PEER-F 0504PEER-G	•	0	•	•	0	•	•	•	•	_	_	•		1	
170510PEER-G 170512PEER-G 170512PEER-G 170516PEER-G 170520PEER-G 170520PEER-G 170524PEER-G 170530PEER-G 170532PEER-G 170532PEER-G 170532PEER-G 170530PEER-G 170530PEER-G 170530PEER-G 170530PEER-G 170550PEER-G 170550PEER-G 170550PEER-G 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-H 170550PEER-F 170504PEER-F 170550PEER-F 17050PEER-F	•		_					•	-	_	_				
170512PER-G 170516PER-G 170516PER-G 170520PER-G 170524PER-G 170530PER-G 170532PER-G 170532PER-G 170540PER-G 170550PER-G 170564PER-G 170504PER-G 170508PER-H 170512PER-H 170510PER-F 170504			0	-	_	0	_	_	•		_		_		
170516PEER-G ● □ ● □ ● □ ● □ 1,6 1 170520PEER-G ● □ □ □ ● □ □ 2,0 1 170530PEER-G ● □ □ □ ● □ □ 2,4 1 170532PEER-G ● □ □ □ ● □ □ 3,0 1 170540PEER-G □ □ □ □ ● □ □ 4,0 1 170564PEER-G □ □ □ □ ● □ □ 0,4 1 170564PEER-G □ □ □ □ ● □ □ 0,4 1 170504PEER-H □ □ □ □ ● □ □ 0,4 1 170516PEER-H □		-		_	_		_			-	_		_		
170520PER-G ● □ ● □ ● □ 0 0 0 0 0 2,0 1 170524PER-G ● □ □ □ □ ● 0 0 0 0 0 0 1 0 1 0 0		_		_	_			_	_	-	_	_			1
170530PER-G • <td< td=""><td></td><td>•</td><td></td><td></td><td>•</td><td></td><td></td><td>•</td><td>•</td><td>•</td><td>_</td><td></td><td></td><td>2,0</td><td>1</td></td<>		•			•			•	•	•	_			2,0	1
170532PER-G ● □ □ □ ● □ 4,0 1 170540PER-G ● □ ● □ ● □ - - 4,0 1 170564PER-G □ □ □ □ □ ● - - 6,4 2 AOMT 170504PER-H ● ○ ● ● ● - - 0,4 1 170512PER-H ● □ □ □ ● - - - 0,8 1 170516PER-H ● □ □ □ ● -		•							•	•	_	_			
170540PER-G 170550PER-G 170564PER-G 170564PER-G 170508PER-H 170512PER-H 170504PER-F 170508PER-F 170508PER-F 170508PER-F 170508PER-F 170508PER-F 170508PER-F 170508PER-F 170508PER-F 170508PER-F 170508PER-F 170510PER-F 170512PER-F 170512PER-F 170512PER-F 170512PER-F 170512PER-F 170512PER-F 170512PER-F 170516PER-F 170516PER-F 170516PER-F 170516PER-F 170516PER-F 170516PER-F 170516PER-F 170516PER-F 170516PER-F 170516PER-F 170520PER-F 170524PER-F		_		_	_			-	•	-	_	_			
170550PER-G Image: Control of the c		_		_				_	•	-	_			,	
170564PER-G Image: square				_	_			-							
AOMT 170504PEER-H 170508PEER-H 170512PEER-H 170516PEER-H 170504PEER-F 170505PEER-F 170508PEER-F 170508PEER-F 170510PEER-F 170510PEER-F 170512PEER-F 170516PEER-F 170512PEER-F 170516PEER-F 170516PEER-F 170516PEER-F 170516PEER-F 170520PEER-F		_		_	-			-	-	-	_				
170512PEER-H • • • • - - - 1,2 1 170516PEER-H • • • • - - - - - 1,6 1 AOET 170502PEER-F • - - - - - - - 0,2 1 170504PEER-F • - - - - - - 0,4 1 170508PEER-F • - - - - - - 0,5 1 170510PEER-F • - - - - - - - 0,8 1 170512PEER-F • - - - - - - - - - 1,0 1 170516PEER-F • -		_	0	•		0			•	•	_	_	-	-	1
170516PER-H • • • - - - 1,6 1 AOET 170502PER-F • - - - - - - 0,2 1 170504PER-F • - - - - - - 0,4 1 170505PER-F • - - - - - - 0,5 1 170510PER-F • - - - - - - 0,8 1 170512PER-F • - - - - - - - 1,0 1 170516PER-F • -		•	0	•	•	0	•	•	•	•	_	_	_		1
AOET 170502PEER-F 170504PEER-F 170505PEER-F 170508PEER-F 170510PEER-F 170512PEER-F 170516PEER-F 170520PEER-F 170520PEER-F 170524PEER-F		-							•	•	_	_		,	
170504PER-F					•				•	•	_			_	
170505PER-F • - - - - - 0,5 1 170508PER-F • - - - - - - 0,8 1 170510PER-F • - - - - - - - 1,0 1 170516PER-F • - - - - - - - 1,6 1 170520PER-F • - - - - - - - 2,0 1 170524PER-F • - - - - - - - 2,4 1		_					_		_						
170508PER-F • - - - - - 0,8 1 170510PER-F • - - - - - - 1,0 1 170516PER-F • - - - - - - - 1,6 1 170520PER-F • - - - - - - - 2,0 1 170524PER-F • - - - - - - - 2,4 1		-							_		_				
170512PER-F		•					_		_		_				
170516PER-F	170510PEER-F	•		-			-		_		_	_	-		1
170520PEER-F		_		_			_		_		_	_			
170524PEER-F ●		-		_			-		_		_	_			
		_		_			_		_					-	
170530PEER-F ● - - - - 3.0 1	170530PEER-F	_		_			_		_			_		3,0	1
170532PEER-F • 3,2 1		•		_			_		_		_	_	_		1
170540PEER-F • 4,0 1		•		_			_		_		_	_	-		-
				_			_		_		_	_	-		2
		_										_	-	-	1
		_													1
		•		_			_		_		_	_	-		1
	170508PEER-P25	•		_			_		_		_	-	_		1
		_					-		_						1
4705000550 000		_					_		_		_		_		1
							_		_		_		_		1
				_			_		_		_	_		-	1
	170508PEER-P32	•		_			_		_		_	_	-		1
170510PEER-P32 • 1,0 1		-		-			-		-		_	-	-		
		•		_			_		_		_			-	1
					_	_		_			-				1
				_	_							-		-	1
				_	_		_	_	_		-	-	_		1
		_	-	-	-	-	-	_	_	-	•	•			1
170512PEFR-S		-	-	-	-	-	-	-	-	-	•	•		1,2	1
		-		-	-	_	-	-	-	-		-			1
		_		_	_	_		_	_	_	_	-			1
					_				_			-			1
											•				1
												-			1
170550PEFR-S 5,0 2		-	-	-	-	-	-	-	-	-	•	•	-	5,0	2
170564PEFR-S	170564PEFR-S		-	_	_	_	_	_	_	_	•	•	_	6,4	2

- L: geringe Schnittkraft G: allgemeine Anwendung H: stabile Schneidkante F: Schlichten P: Hochpräzisionsbearbeitung S: Nichteisenmetalle
- *P25 ist anwendbar für Fräserdurchmesser Ø 25 mm und Ø 28 mm. *P32 ist anwendbar für Fräserdurchmesser Ø 30 mm, Ø 32 mm and Ø 35 mm.



Walzenstirnfräser - Modular

Span-	Radial	-12°
winkel	Axial	11°

■ Fräskörper (einschraubbar)

Abmessungen (mm)

Bezeichnung	Lager	DC	АРМХ	DCSFMS	DCON	CRKS	OAL	LF	LS2	L11	Н	Gesamtzahl Zähne	Stufen	Effective Zähnezahl	Gewicht (kg)	Abb.
WEZR 11032M1627Z3	O	32	27	28,5	17	M16	73	50	5	12	24	9	3	3	0,21	1

Die Schneidplatten werden separat verkauft. Verlängerung → H5.

■ Ersatzteile

Fräserbezeichnung

	Schraul	ре	Schlüssel
Geeignete Fräser		(N·m)	P
WEZR 11	BFTX0306IP	1,5	TRDR08IP

■ Identifikation des Fräskörpers

WEZR 032 **M16**

größe durchmesser

Fräskopf-

Platten-

Einschraubgewinde

27 **Z**3 Max.

Effective Schnitt-Zähnetiefe zahl

■ Empfohlene Schnittbedingungen

ISO	Werkstückstoff	Härte (HB)	Schneidka- nenausführ.	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/t)	Schneid- stoffsorte
P	Kohlenstoffstahl Legierter Stahl	≤ 280HB > 280HB ≤ 280HB	G G G	100 –150 –200 80 –100 –120 100 –150 –80	0,08 -0,12 -0,20 0,08 -0,12 -0,20 0,08 -0,12 -0,20	ACU2500 XCU2500 ACP2000 ACP3000
M	Rostfreier Stahl	≤ 280HB	G	80 –120 –160	0,08 -0,12 -0,20	ACU2500 ACM200 ACM300
K	Grauguss/ Kugelgraphitguss	-	G	100 –150 –200	0,08 -0,12 -0,20	ACU2500 XCK2000 ACK2000 ACK3000
s	Hitzebeständige Legierungen	-	G	40 –50 –60	0,08 -0,12 -0,20	ACU2500 ACM200 ACM300
N	Aluminium-	Si ≤ 12,6%	S	300 –500 –800	0,05 –0,10 –0,15	DL2000
IN	legierung	Si >12,6%	S	100 –200 –250	0,05 –0,10 –0,15	H20

Min. - Optimum - Max.

Hinweis:
Die oben genannten Schnittbedingungen sind ein Richtwert. Die tatsächlichen Bedingungen müssen entsprechend der Maschinensteifigkeit, der Werkstückspannung, der Schnitttiefe und weiteren Faktoren angepasst werden.
Je nach Steifigkeit der Maschine und des Werkstücks kann es vorkommen, dass die Bearbeitung nicht unter den empfohlenen Bedingungen durchgeführt werden kann.

*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT11T324PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT11T330PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT11T332PEER) Standard: R = 1 mm

"Wave Mill" Serie **WEZR** 11000 M

Fräsplatten

Schruppen

Allgemeine Anwendung

AOMT 11T302PEER-G

Anwendung

Hochgeschw./ Leichtbearbeitung

Bezeichnung

11T304PEER-G

11T305PEER-G

11T308PEER-G

11T310PEER-G

11T312PEER-G

11T316PEER-G

11T320PEER-G

11T324PEER-G

11T330PEER-G

11T332PEER-G

11T308PEER-H

11T312PEER-H

11T316PEER-H

11T304PEER-F

11T305PEER-F

11T308PEER-F

11T310PEER-F

11T312PEER-F

11T316PEER-F

11T320PEER-F

11T324PEER-F

11T330PEER-F

11T332PEER-F

11T304PEFR-S

11T305PEFR-S

11T308PEFR-S

11T310PEFR-S

11T312PEFR-S

11T316PEFR-S

11T320PEFR-S

11T324PEFR-S

11T330PEFR-S

11T332PEFR-S

AOET 11T302PEFR-S

AOMT 11T304PEER-H

AOET 11T302PEER-F

Vorsichtsmaßnahmen bei der Montage → H29

Hartmetall DLC Cermet

N

DL2000 T2500A

> • 0,2 1

• 0,4 1

0,5 1

• 0,8 1

1,0 1

1,2 1

> 1,6 1

2,0 1

2.4 1

3,0 2

0,4 1

0,8 1

1,2 1

1,6 1

0,2 1

0.4 1

0,5 1

0,8

1,0 1

1.2 1

1,6 1

2,0

3,0 2

3,2 2

0,2 1

0.4 1

0,5 1

0,8 1

1,0 1

1,6 1

2,0 1

2.4 1

3,0 2

3,2 2

_ 2,4 1

• •

• • _ 1,2 1

• •

• •

•

2 3,2

N

H20

M_S

Ms

ACM300 ACM200

•

•

•

•

•

•

K

ACK3000

ACK2000

• • •

• • • •

• •

_

_

_

_

•

NP

Beschichtetes Hartmetall

K K

K

 \mathbf{c}

 \circ •

Р

ACP3000 XCK2000

ACP2000

•

• •

•

_

•

•

0 • • 0 •

 \mathbf{c}

KM P

ACU2500 XCU2500

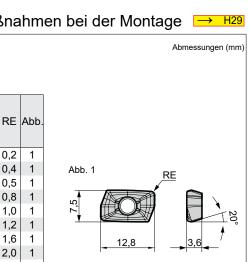
•

•

•

• 0 • • 0 • • ullet•

•


ullet

•

•

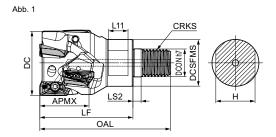
_ _

 \circ

Abb. 2	12,2	3,4

- L: geringe Schnittkraft
- G: allgemeine Anwendung
- H: stabile Schneidkante F: Schlichten
- P: Hochpräzisionsbearbeitung S: Nichteisenmetalle

Ab der zweiten Stufe sind periphere Schneidplatten mit RE ≤ 0.8 mm einzusetzen.



Walzenstirnfräser - Modular

Span-	Radial	-9°
winkel	Axial	10°

■ Fräskörper (einschraubbar)

Abmessungen (mm)

Bezeichnung	Lager	DC	APMX	DCSFMS	DCON	CRKS	OAL	LF	LS2	L11	Н	Gesamtzahl Zähne	Stufen	Effective Zähnezahl	Gewicht (kg)	Abb.
WEZR 17040M1629Z3	O	40	29	28,5	17	M16	80	57	5	12	24	6	2	3	0,29	1

Die Schneidplatten werden separat verkauft. Verlängerung → H5.

■ Ersatzteile

	Schraul	ре	Schlüssel
Geeignete Fräser		(N·m)	P
WEZR 17	BFTX0409IP	1,5	TRDR15IP

■ Identifikation des Fräskörpers

WEZR 17 040 **M16**

Platten-Fräskopf-Einschraub-Fräserbezeichnung größe durchmesser gewinde

29 **Z**3

Effective Max. Schnitt-Zähnetiefe zahl

■ Empfohlene Schnittbedingungen

ISO	Werkstückstoff	Härte (HB)	Schneidka- nenausführ.	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/t)	Schneid- stoffsorte
	Kohlenstoffstahl	≤ 280HB	G	100 –150 –200	0,10 -0,20 -0,30	ACU2500
P	Koniensionsiam	> 280HB	G	80– 100 –120	0,10 –0,20 –0,30	XCU2500 ACP2000
	Legierter Stahl	≤ 280HB	G	100 –150 –80	0,10 –0,20 –0,30	ACP3000
M	Rostfreier Stahl	≤ 280HB	G	80– 120 –160	0,10- 0,20- 0,30	ACU2500 ACM200 ACM300
K	Grauguss/ Kugelgraphitguss	-	G	100 –150 –200	0,10 -0,20 -0,30	ACU2500 XCK2000 ACK2000 ACK3000
s	Hitzebeständige Legierungen	-	G	40 –50 –60	0,10 -0,20 -0,30	ACU2500 ACM200 ACM300
N	Aluminium-	Si ≤ 12,6%	S	300 –500 –800	0,05 –0,10 –0,15	DL2000
IA	legierung	Si >12,6% S 100 –200 –250 0,05-		0,05 –0,10 –0,15	H20	
	·	-		·		

Min. - Optimum - Max.

Hinweis:
Die oben genannten Schnittbedingungen sind ein Richtwert. Die tatsächlichen Bedingungen müssen entsprechend der Maschinensteifigkeit, der Werkstückspannung, der Schnitttiefe und weiteren Faktoren angepasst werden.
Je nach Steifigkeit der Maschine und des Werkstücks kann es vorkommen, dass die Bearbeitung nicht unter den empfohlenen Bedingungen durchgeführt werden kann.

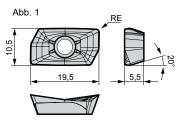
*Bei der Montage von Schneidplatten mit einem Eckenradius von ≥ 2,4 mm ist eine Modifikation des Fräskörpers erforderlich.

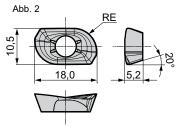
Modifizieren Sie diese Kante.

Richtlinien zur Nachbearbeitung Eckenradius = 2,4 mm: C = 1 mm (AOMT170524PEER) Eckenradius = 3,0 mm: C = 1 mm (AOMT170530PEER) Eckenradius = 3,2 mm: C = 1 mm (AOMT170532PEER) Eckenradius = 4,0 mm: C = 2 mm (AOMT170540PEER) Eckenradius = 5,0 mm: C = 5 mm (AOMT170550PEER) Eckenradius = 6,4 mm: C = 5 mm (AOMT170564PEER) Standard: R = 1 mm

C: Fase R: Radius

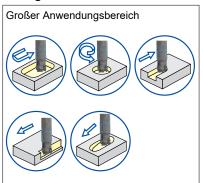
"Wave Mill" Serie **WEZR** 17000 M


■ Fräsplatten


Vorsichtsmaßnahmen bei der Montage

Abmessungen (mm)

- i raspiatteri									۷UI	310	III	IIai	SHO		eli b
Anwendung		Е	Bescl	hichte	etes	Hartr	netall	l		Hartmetall	DLC	Cermet			
Hochgeschw./ Leichtbearbeitung		₹ M	P		K	K		M/S			N	P	1		
Allgemeine Anwendung	K PM	R _M		Р	K		K	Ms	Ms	N	N				
	S.	KM		Р	Ш			<u> </u>		ш	Ш		-		
Schruppen	KSM SM			Г			K		M ∕s						
Bezeichnung	ACU2500	XCU2500	ACP2000	ACP3000	XCK2000	ACK2000	ACK3000	ACM200	ACM300	H20	DL2000	T2500A	RE	Abb.	
AOMT 170502PEER-L	•		-			_		•	•	_	_		0,2	1	
170504PEER-L	•	0	_	•	0	_	•	•	•	_	_	•	0,4	1	
170508PEER-L	•	0	-	•	0	-	•	•	•	_	_	•	0,8	1	
170512PEER-L	•		-			-		•	•	_	_		1,2	1	
170516PEER-L	•		-			-		•	•	_	_		1,6	1	
AOMT 170502PEER-G	•			•			•	•	•	_	_		0,2	1	
170504PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,4	1	
170505PEER-G	•							•	•	_	_		0,5	1	
170508PEER-G	•	0	•	•	0	•	•	•	•	_	_	•	0,8	1	
170510PEER-G	•							•	•	_	_		1,0	1	
170512PEER-G	•			•			•	•	•	_	_		1,2	1	Α
170516PEER-G	•			•			•	•	•	_	_		1,6	1	_
170520PEER-G	•			•			•	•	•	_	_		2,0	1	10,5
170524PEER-G	•							•	•	_	_		2,4	1	9
170530PEER-G	•			•			•	•	•	_	_		3,0	1	<u>*</u>
170532PEER-G	•						•	•	•	_	_		3,2	1	
170540PEER-G	•			•			•	•	•	_	_		4,0	1	
170550PEER-G	•			•			•	•	•	_	_		5,0	2	
170564PEER-G			_			_		•	•	_	_		6,4	2	
AOMT 170504PEER-H	•	0	•	•	0	•	•	•	•	_	_	_	0,4	1	
170504FEER-H	•	0	•	•	0	•	•	•		_	_	_	0,4	1	
170512PEER-H	•							•	•	_	_	_	1,2	1	
170512F EERTH	•			•				•		_	_	_	1,6	1	
AOET 170502PEER-F	•		_			_		_		_	_	_	0,2	1	Al
170504PEER-F			_					_		_	_	_	0,2	1	
170504FEER-F	•							_		_		_	0,4	1	ທູ
170508PEER-F	•		_			_		_		_	_	_	0,3	1	10,5
170500FEER-F	•										_	_	1,0	1	Ţ.
1705101 EER-F	•		_			_				_	_		1,0	1	
170512FEER-F	•							_			_	_	1,6	1	
1705701 EER-F			_			_				_	_	_	2,0	1	
170524PEER-F	•							_				_	2,4	1	
170524FEER-F 170530PEER-F	•		_			_		_		_	_	_	3,0	1	
170530PEER-F	•		_			_		_		_	_	_	3,2	1	
170532FEER-F	•		_			_		_		_	_	_	4,0	1	
			_			_		_			_	_	5,0	2	
170550PEER-F 170564PEER-F	•		_			_		_		_			,	2	
AOET 170502PEFR-S	_		_			_		_		•	•	_	6,4 0,2		
170504PEFR-S	_		-	_		-	_	_	_			_		1	
	_		_			-	_		_		•	_	0,4	1	
170505PEFR-S		_	_	_	_	-	_	_	-	-		_	0,5	1	L: ge
170508PEFR-S	-	_	_	_	_	-	_	_	_	•	-	_	0,8		G: all H: sta
170510PEFR-S	_	_	_	_	_	-	_	_	-	•	•	_	1,0	1	F: Sc
170512PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	1,2	1	P: Ho
170516PEFR-S	_	_	_	_	_	_	_	_	-	•	•	_	1,6	1	S: Nic
170520PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	2,0	1	Ab de
170524PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	2,4	1	ten m
170530PEFR-S	_	_	-	_	_	_	_	_	-	•	•	_	3,0	1	
170532PEFR-S	_	_	_	_	_	_	_	_	_	•	•	_	3,2	1	
170540PEFR-S	_	_	_	_	_	_	_	_	-	•	•	_	4,0	1	
170550PEFR-S	_	_	_	_	_	_	_	_	-	•	•	_	5,0	2	
170564PEFR-S	_	_		_	_		_	_	_	•	•	_	6,4	2	


- geringe Schnittkraft allgemeine Anwendung stabile Schneidkante
- Schlichten Hochpräzisionsbearbeitung Nichteisenmetalle

der zweiten Stufe sind periphere Schneidplatmit RE ≤ 0.8 mm einzusetzen.

"Wave Mill" Serie **WEX** - Typ

■ Allgemeine Merkmale

■ Schrägeintauchwinkel


Fräser-Ø	Max. Sc	Max. Schrägeintauchwinkel								
ØD	Typ 1000	Typ 2000	Typ 3000							
10	2°30'									
12	1°45'									
14	1°25'	1°40'								
16	1°00	1°20'								
18	0°45'	1°10'								
20	0°30'	1°00'								
25	0°30'	0°45'	1°30'							
32	0°25'	0°35'	1°00'							
40	0°20'	0°25'	0°45'							
50	0°15'	0°20'	0°30'							
63	0°10'	0°15'	0°20'							
80			0°15'							
100			_							

Der maximale Eintauchwinkel (α max.) ist vom Durchmesser des Werkzeugs abhängig.

 Präzisionsplatte mit stabiler Schneidkante und verbesserten Schnittkräften Einzigartig geschwungene Schneidkante zur Verbesserung der Schnittkräfte und erhöhter Schneidenstabilität.

Höchste Oberflächenqualität durch hochpräzise Schneiden. Weicher Schnitt auch bei Nuten und labileren Maschinen.

Verbesserte Spanabfuhr durch Druckluft- oder Emulsionszufuhr.

Große Auswahl an Platten

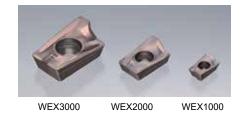
6 verschiedene Schneidengeometrien (L, G, H, E, EH und S)

9 neue Frässorten für einen großen Anwendungsbereich

- ACP100, ACP200, ACP300 (zum Fräsen von Stahl)
- ACK200, ACK300 (zum Fräsen von Grauguss)
- ACM200, ACM300
 (für rostfreien Stahl und hitzebeständige Legierungen)
- DL1000, H1 (zur Bearbeitung von Aluminium)

Hochstabiler Fräskörper

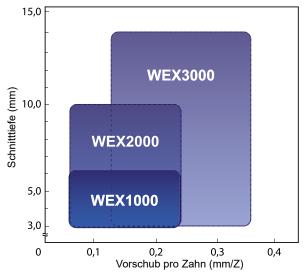
Verbesserte Haltbarkeit gegen Abrieb und Korrosion durch spezielle Oberflächenbehandlung des Fräskörpers. Größere Schrauben verbessern die Klemmkraft und die Stabilität.

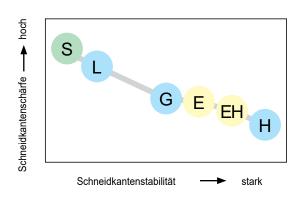

Produktpalette

Fräser Typ	Bezeichnung	Ausführungen	Durchmesserbereich (mm)	Fräser
	WEX 1000E	Standard	10 25	10
	WEX 1000EL	Lange Ausführung	10 20	
ē	WEX 2000E	Standard	14 63	//// // .
Schaftfräser	WEX 2000EL	Lange Ausführung	14 40	
haft	WEX 2000EW	Standard mit Weldon Schaft	16 20	575 /4/
S	WEX 3000E	Standard	25 63	VIN CONTRACTOR
	WEX 3000EL	Lange Ausführung	25 40	4 4 4
	WEX 3000EW	Standard mit Weldon Schaft	25 32	WEX3000 WEX2000 WEX1000
	WEX 1000F	Aufsteckfräser	32 63	
Aufsteck- fräser	WEX 2000F	Aufsteckfräser	40 63	
-	WEX 3000F	Aufsteckfräser	40 63	→ G58
Modular- fräser	WEX 2000M	Modularfräser	16 40	
Mod	WEX 3000M	Modularfräser	25 40	The state of the s

"Wave Mill" Serie **WEX** - Typ

■ WEX1000 Erweiterung

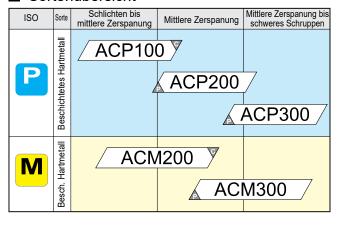

- hocheffiziente Bearbeitung durch große Zähnezahl
- präzise Wechselgenauigkeit für hohe Oberflächengüten
- hohe Schultergenauigkeit durch optimierte Schneiden
- stabile Bearbeitung auch bei geringer Maschinensteifigkeit
- sehr wirtschaftlich durch kleine AXMT06 Wendeschneidplatten

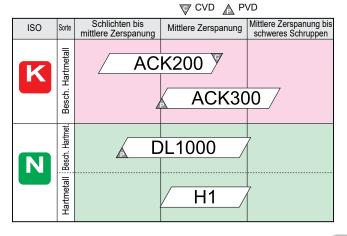


Auswahl Schneidkantenausführung

Anwendungsbereich

Schulterfräsen

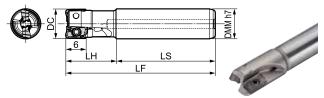




Schneidkantenausführung

Werkstückstoff		Stahl, Grauguss		Rostfreier Stahl, hitzeb	eständige Legierungen	Aluminium
	L	G	Н	E	EH	S
Schneidkanten- ausführung		0	0			
Anwendung	Niedrige Schnittkraft	Allgem. Anwendung	Stabile Schneidkante	Allgem. Anwendung	Stabile Schneidkante	Scharfe Schneide
Schneidkanten- geometrie (1000er Serie)	25°	25°	15°			
Schneidkanten- geometrie (2000er Serie)		28°	20°	17°	17°	27°
Schneidkanten- geometrie (3000er Serie)	25°	20°	5°	14°	8°	30°
Anwendungs- bereich	Leichte Bearbeitung, Fräsen in labilen Verhältnissen, weniger Gratbildung	Hauptspanbrecher allgemeines Fräsen, unterbrochener Schnitt	Schwere Bearb., unterbr. Schnitt u. stabile Verhältnisse bei härteren Materialien	Leichte Bearbeitung, und allgem. Anwendung	Stark unterbrochene Bearbeitung	Aluminiumlegierung und Nichteisenmetalle

Sortenübersicht



"Wave Mill" Serie WEX 1000 E

WEX 1000 E/EL

■ Schaftfräser

Fräskörper (E-Typ als Standard)

	-	-						
Dozeichnung	Logor	Α	bmes	Anzahl	Gewicht			
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)
WEX 1010 E	A	10	10	17	33	50	2	0,03
1012 E	A	12	12	20	60	80	3	0,06
1014 E	A	14	16	22	59	80	3	0,10
1016 E	A	16	16	20	72	90	4	0,12
1018 E	A	18	20	20	80	100	4	0,21
WEX 1020 E	▲	20	20	22	78	100	5	0,22
1025 E	A	25	20	25	90	115	7	0,27

• Fräskörper (EL-Typ als lange Ausführung)

Damaiahauma		P	bmes	sunge	n (mm)	Anzahl	Gewicht
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)
WEX 1010 EL	A	10	8	17	83	100	2	0,03
1012 EL		12	10	20	100	120	2	0,06
1014 EL		14	12	20	125	145	3	0,11
1016 EL	A	16	14	20	140	160	3	0,17
1016 EL15		16	15	20	140	160	3	0,19
1018 EL	A	18	16	20	160	180	3	0,25
WEX 1020 EL	A	20	18	25	175	200	4	0,36
1020 EL19		20	19	25	175	200	4	0,38

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Schneidplatten für WEX1000-Typ

7.20 RE										
Anwendung Beschichtetes Hartmetall Hartmet DLC										
Hochgeschw./Leichtbearb.	Р			K		M _S		K	N	
Allgemeine Anwendung		M	M	K		M _S	M _S		N	1
Schruppen		™	M		K		M _S			1
Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	ACM200	ACM300	Ŧ	DL 1000	Radius
AXMT 060204 PDER-L	<u> </u>	A	<u> </u>	<u> </u>	<u> </u>	<u> </u>	$\stackrel{\sim}{\blacktriangle}$	_	_	0,4
060208 PDER-L	A	A	A	A	A	A	A	-	_	0,8
060212 PDER-L		A			0	A	•	-	_	1,2
AXMT 060204 PDER-G	A	A	A	0	A	A	A	- 1	_	0,4
060208 PDER-G	A	A	\blacktriangle	•	A	A	•	-	_	0,8
060212 PDER-G	0		A		A	A	A	-	_	1,2
AXMT 060204 PDER-H	0	A	A		A	A	•	-	-	0,4
060208 PDER-H		A	A		A	A	•	-	-	0,8
060212 PDER-H	0	A	A		A	A	A		_	1,2
AXMT 060202 PDFR-S	_	_	_	_	_	_	_	0	0	0,2

L - geringe Schnittkraft

S - für Aluminium

G - allgemeine Anwendung H - stabile Schneidkante

Bezeichnungsschlüssel

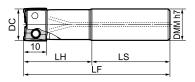
WEX	_1_	016	EL	15
Fräser-	1000er	Fräser-	Einschraub-	Schaft-
bezeichnung	Serie	durchmesser	gewinde	durchmesse

Ersatzteile

Schraube	Schlüssel	
0,5 🕅	ુક્ષોન	Geeignete Fräser
BFTX 01804 IP	TRX 06 IP	WEX 1000

"Wave Mill" Serie **WEX** 2000 **E**

"Wave Mill" Serie **WEX** 2000 M


WEX 2000 E/EL

Schaftfräser

Fräskörper (E-Typ als Standard)

•	•	٠.			,			
Damaiahaaaa		A	bmes)	Anzahl	Gewicht		
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)
WEX 2014 E	A	14	16	25	55	80	1	0,10
2016 E	A	16	16	25	75	100	2	0,13
2018 E	A	18	16	25	75	100	2	0,14
WEX 2020 E	A	20	20	30	80	110	3	0,22
2022 E	A	22	20	30	80	110	3	0,23
WEX 2025 E	A	25	25	35	85	120	4	0,38
2028 E	0	28	25	35	85	120	4	0,39
2030 E	A	30	25	35	85	120	4	0,40
WEX 2032 E	▲	32	32	40	90	130	5	0,70
2040 E	0	40	32	30	120	150	6	0,91
WEX 2050 E	0	50	32	30	120	150	7	1,02
2063 E	O	63	32	30	120	150	8	1,22

Fräskörper (EL-Typ als lange Ausführung)

Traditorper (LL-Typ ald lange / additionally)								
D ! - !			bmes	Anzahl	Gewicht			
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)
WEX 2014 EL	A	14	16	25	95	120	1	0,14
2016 EL	A	16	16	25	120	145	2	0,19
2018 EL	0	18	16	25	120	145	2	0,19
WEX 2020 EL	A	20	20	40	110	150	2	0,32
2022 EL	0	22	20	30	120	150	2	0,33
WEX 2025 EL	▲	25	25	50	120	170	2	0,55
2028 EL	0	28	25	30	140	170	2	0,59
2030 EL	0	30	25	30	140	170	2	0,60
WEX 2032 EL	0	32	32	60	120	180	2	0,99
2040 EL	O	40	32	30	150	180	2	1,12

Fräskörper (Lange Ausführung mit schlankem Schaft)

Damaiahanna		P	bmes	Anzahl	Gewicht					
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)		
WEX 2016 EL15	A	16	15	25	120	145	2	0,17		
2020 EL19	A	20	19	40	110	150	2	0,30		
2025 EL24	A	25	24	50	120	170	2	0,53		
2025 EL24Z3	A	25	24	50	120	170	3	0,50		
2032 EL30Z4	\blacksquare	32	30	60	120	180	2	0.95		

• Fräskörper (Standard mit Weldon-Schaft)

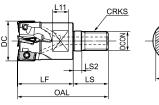
Damaiahanna		P	bmes	sunge	n (mm)	Anzahl	Gewicht
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)
WEX 2016 EW	A	16	16	25	75	100	2	0,12
2020 EW	A	20	20	30	80	110	3	0,21

Fräsplatten sind nicht im Lieferumfang enthalten.

Bezeichnungsschlüssel

۷	VEX	_2_	016	_EL_	15
	Fräser-	2000er	Fräser-	Einschraub-	Schaft-
	zeichnung	Serie	durchmesser	gewinde	durchmess

Ersatzteile


Schraube	Schlüssel				
2,0 🕅	P	Geeignete Fräser			
BFTX 0305 IP BFTX 0306 IP	TRDR 08 IP	WEX 2014 – WEX 2018 WEX 2020 – WEX 2063			

WEX 2000 M

Modularfräser

Fräskörper

D i ala	Lager			Abr	ness	ung	en (n	nm)			Anzahl
Bezeichnung	Ľa	DC	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Zähne
WEX 2016M08Z2	lack	16	8,5	M8	42	25	5	17	8	13	2
2018M08Z2	O	18	8,5	M8	42	25	5	17	8	13	2
WEX 2020M10Z3	\blacktriangle	20	10,5	M10	49	30	5	19	8	15	3
2022M10Z3	0	22	10,5	M10	49	30	5	19	8	15	3
WEX 2025M12Z4	▲	25	12,5	M12	56	35	5	21	10	19	4
2028M12Z4	0	28	12,5	M12	56	35	5	21	10	19	4
WEX 2030M16Z4	O	30	17,0	M16	63	40	5	23	10	24	4
2032M16Z5	lack	32	17,0	M16	63	40	5	23	10	24	5
2040M16Z6	O	40	17,0	M16	63	40	5	23	10	24	6

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Schneidplatten für WEX2000-Typ

700 J	12.00 3.58									
Anwendung		Besc	hicht	etes	Hartr		l	Hartmet.	DLC	
Hochgeschw./Leichtbearb.	P			K		M _S		KN	N	
Allgemeine Anwendung		M	M	K		M _S	M _S		N]
Schruppen		₽	M		K		M _S			
	00	007	300	200	900	200	300		00	Radius
Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	ACM200	ACM300	H	JL 1000	RE
AXMT 123504 PEER-G	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	_	_	_	_	0,4
123508 PEER-G	•	A	A	A	A			_	_	0,8
123512 PEER-G	A	A	lack	\blacktriangle	A			-	_	1,2
AXMT 123504 PEER-H	A	A	A	A	A			-	_	0,4
123508 PEER-H		\blacktriangle	\blacktriangle	\blacktriangle	A			-	_	0,8
123512 PEER-H	A	A	\blacktriangle	A	A			_	_	1,2
AXMT 123504 PEER-E						A	A	_	_	0,4
123508 PEER-E						A	A	-	_	0,8
123512 PEER-E						A	A	-	_	1,2
AXMT 123508 PEER-EH						A	A	_	_	0,8
AXET 123502 PEFR-S	_	_	_	_	_	_	_	A	A	0,2
123504 PEFR-S	-	_	-	_	_	-	_		•	0,4
123508 PEFR-S	_	_	_	_	_	_	_		\blacksquare	0,8
G - allgemeine Anwendung							– n	icht m	öglich	1

- stabile Schneidkante

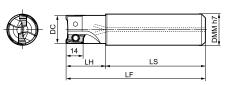
E - weicher Schnitt für rostfreien Stahl / hitzebeständige Legierungen
EH - verstärkte Ausführung für rostfreien Stahl / hitzebeständige Legier

Bezeichnungsschlüssel

WEX	2	016	M08	Z2	
Fräser- bezeichnung	2000er Serie	Fräser- durchmesser	Einschraub- gewinde	Anzahl Zähne	
	=		→ H5	=	

Ersatzteile

Schraube	Schlüssel	_	
	P	(N·m)	Geeignete Fräser
6 7			
BFTX 0305 IP	TRDR 08 IP	2,0	WEX 2016M, WEX 2018M
BFTX 0306 IP	I NDN 00 IF	2,0	WEX 2020M - WEX 2040M
BFTX 0407 IP	TRDR 15 IP	3,0	WEX 3025M - WEX 3030M
BFTX 0409 IP	I KUK 13 IP	3.0	WEX 3032M - WEX 3040M


WEX 3000 **E**

"Wave Mill" Serie WEX 3000 M

WEX 3000 E/EL

Schaftfräser

Fräskörper (E-Typ als Standard)

Damaiaharran		F	Abmes	sunge	n (mm	1)	Anzahl	Gewicht
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)
WEX 3025 E	•	25	25	35	85	120	2	0,37
3028 E	0	28	25	35	85	120	2	0,39
3030 E	0	30	25	40	90	130	3	0,42
WEX 3032 E	A	32	32	40	90	130	3	0,67
3035 E		35	32	40	90	130	3	0,69
3040 E	A	40	32	50	120	170	4	1,01
3050 E	0	50	32	50	120	170	5	1,23
3063 E	O	63	32	50	120	170	6	1,58

• Fräskörper (Standard mit schlankem Schaft)

Damaiahanna		F	Abmes	sunge	n (mm	1)	Anzahl	Gewicht
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)
WEX 3025 E20	0	25	20	35	85	120	2	0,25
3032 E25	O	32	25	40	90	130	3	0,43

Fräskörper (EL-Typ als lange Ausführung)

Damaiahaaaa								Gewicht
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)
WEX 3025 EL	•	25	25	50	120	170	2	0,54
3028 EL	0	28	25	50	120	170	2	0,56
3030 EL	0	30	25	60	120	180	2	0,60
WEX 3032 EL	A	32	32	60	120	180	2	0,95
3035 EL	A	35	32	60	120	180	2	0,98
3040 EL	A	40	32	80	140	220	2	1,38

Fräskörper (Standard mit Weldon-Schaft)

Damaiahaaaa		F	bmes	sunge	n (mm	1)	Anzahl	Gewicht
Bezeichnung	Lager	DC	DMM	LH	LS	LF	Zähne	(kg)
WEX 3025 EW	A	25	25	35	85	120	2	0,36
3032 EW	\blacksquare	32	32	40	90	130	3	0.65

Fräsplatten sind nicht im Lieferumfang enthalten.

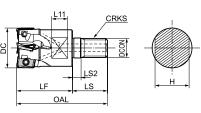
* Achtung: Fräskopf muss modifiziert werden, wenn WSP mit Radius 2,0 mm oder größer benutzt wird.

Standard Fase = 0,5 mm x 45°.

Fase = 1 mm x 45° bei Plattenradius 2,0 mm (AXMT 170520 PEER)

Fase = 1,5 mm x 45° bei Plattenradius 3,0 mm (AXMT 170530 PEER)

Ersatzteile


Schrau	ıbe	Schlüssel	
	3,0 🕏	P	Geeignete Schaftfräser
 BFTX 040	· · · · · · · · · · · · · · · · · · ·	TRDR 15 IP	WEX 3025 – WEX 3030 WEX 3032 – WEX 3063

WEX 3000 M

Modularfräser

		_		
Span-	Radial	8°-15°	14 mm	
winkel	Axial	16°–24°		90

Fräskörper

D ! - I	-ager			Abr	ness	sung	en (n	nm)			Anzahl
Bezeichnung	Ľać	DC	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Zähne
WEX 3025M12Z2	▲	25	12,5	M12	56	35	5	21	10	19	2
3028M12Z2	0	28	12,5	M12	56	35	5	21	10	19	2
WEX 3030M16Z3	O	30	17,0	M16	63	40	5	23	10	24	3
3032M16Z3	▲	32	17,0	M16	63	40	5	23	10	24	3
3035M16Z3	0	35	17,0	M16	63	40	5	23	10	24	3
3040M16Z4	\mathbf{c}	40	17,0	M16	63	40	5	23	10	24	4

Fräsplatten sind nicht im Lieferumfang enthalten.

Schneidplatten

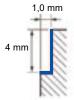
RE	+ + +												
Anwendung	I	Besc	hicht	etes	Hartr	netal	I	Hartmet.	DLC				
Hochgeschw./Leichtbearb.	Р			K		M _S		K	N				
Allgemeine Anwendung		M	M	K		M _S	Ms		N]			
Schruppen		M	M		K		M _S			1			
	8			8	8	8			0	Radius			
Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	ACM200	ACM300		DL1000				
	AC	A	A	A	A	AC	AC	Ξ	ᆸ	RE			
AXMT 170508 PEER-L	A	A	A	A	A			_	_	0,8			
AXMT 170504 PEER-G	A	A	A	A	A			_	_	0,4			
170508 PEER-G	A	A	A	A	A			_	_	0,8			
170512 PEER-G	A	A	A	A	A			-	_	1,2			
170516 PEER-G	0	A	A	A	A			_	_	1,6			
170520 PEER-G*	A	A	A	A	A			_	_	2,0			
170530 PEER-G*	_	A	A	A	A			_	_	3,0			
AXMT 170508 PEER-H	A	A	A	A	A			-	_	0,8			
170512 PEER-H	A	_	_	_	A			_	_	1,2			
AXMT 170504 PEER-E						A	A	_	_	0,4			
170508 PEER-E						A	A	_	_	0,8			
170512 PEER-E						A	A	_	_	1,2			
170516 PEER-E						A	•	_	_	1,6			
170520 PEER-E*						A	A	_	_	2,0			
170530 PEER-E*						A	A	_	_	3,0			
AXMT 170508 PEER-EH			A			A	A	_	_	0,8			
AXET 170502 PEFR-S 170504 PEFR-S	_	_	_	_	_	_	_	A	A	0,2			
170504 PEFR-S 170508 PEFR-S	_	_	_	_	_		_	A	A	0,4			
170008 PEFR-5										0,8			

- L geringe Schnittkraft
- G allgemeine Anwendung
- H stabile Schneidkante
- E weicher Schnitt für rostfreien Stahl / hitzebeständige Legierungen
- EH verstärkte Ausführung für rostfreien Stahl / hitzebeständige Legier.
- 6 für Aluminium

- nicht möglich
- Fräskörper muss modifiziert werden

■ Bezeichnungsschlüssel

WEX	_3_	025	M12	Z2
Fräser-	3000er	Fräser-	Einschraub-	Anzahl
bezeichnung	Serie	durchmesser	gewinde	Zähne


"Wave Mill " Serie WEX - Typ

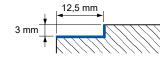
■ Empfohlene Schnittdaten

• WEX1000 Serie

Fräser: WEX1012E Platte: AXMT060208PDER -

Schnittdaten: ap = 4 mm, ae = 1,0 mm, trocken

			_								H	Hartn	neta	II, be	schi	chte	i									DLC	
			Spanbrecher	A	P1	00	A	CP2	00	A	CP3	00	A	CK2	00	AC	CK30	00	AC	M2	00	A	CM3	00	DI	_100	0
ISO	Material	НВ	pre											orscl		`		,									
			par	0,08	0,12	0,16	0,08	0,12	0,16	0,08	0,12	0,16	0,10	0,15	0,20	0,10	0,15	0,20	0,08	0,10	0,12	0,08	0,10	0,12			
			တ									Sch	nittg	jesch	nwin	digke	eit v _c	(m/r	min)								
	Unlegierter Stahl, <0, 15%C, vergütet	125	G	280	240	220	240	220	200	220	200	180															
	" , <0, 45%C, vergütet	190	G	200	180	160	180	160	140	180	160	140													ıl		
	" , <0, 45%C, angelassen	250	G	180	120	140	160	140	120	150	130	110													ıl		
	" , <0, 75%C, vergütet	270	G	160	140	120	150	130	110	130	110	110													ıl		
	" , <0, 75%C, angelassen	300	G	100	80	70	90	70	60	70	60	50													ıl		
Р	Niedrig legierter Stahl, vergütet	180	G	200	180	160	180	160	150	160	150	130													П		
	" , angelassen	275	G	130	110	90	120	100	90	100	90	80													ıl		
	" , angelassen	300	G	120	100	80	100	90	80	90	80	60													ıl		
	" , angelassen	350	G	90	80	60	80	70	60	70	60	40													ıl		
	Hoch legierter und Werkzeugstahl, vergütet	200	G	180	170	160	170	160	130	150	140	120													П		
	" , angelassen	325	G	100	80	60	80	60	50	60	50	30													ıl		
	Rostfreier Stahl, ferritisch/martensitisch, vergütet	200																	175	150	120	140	130	110	П		_
М	Martensitisch, angelassen	240	Е																140	120	100	120	100	90	ıl		
	Austenitisch	180	Е															- 1	180						ıl		
	Grauguss		G										240	220	200	220	200								\Box	\dashv	_
K	Kugelgraphitguss		G											140											i		
S	Hitzebeständige Legierungen, Fe basierend, vergütet		E																50	35		45	25		\Box		_
	Aluminiumlegierung, Si < 13%	\Box																							800	600	400
N	Aluminiumlegierung, Si > 13%																									200	
	Kupferlegierung																									300	


Die empfohlenen Schnittdaten dienen als Richtlinie. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Beim Nutfräsen ist der Vorschub auf 70 % der in der Tabelle angegebenen Werte zu reduzieren.

WEX2000 Serie

Fräser: WEX2025E Platte: AXMT123508PEER - 🗌

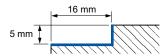
Schnittdaten: a_p = 3 mm, a_e = 12,5 mm, trocken

			_								H	Hartn	netal	II, be	schi	chtet										DLC	
			Spanbrecher	AC	CP1	00	A	CP2	00	A	CP3	00	A	CK2	00	AC	K30	00	AC	M2	00	AC	CM3	00	DL	.100	0
ISO	Material	НВ	pre										_	orscl													
			pan	0,08	0,15	0,20	0,08	0,15	0,20	0,08	0,15	0,20	0,08	0,15	0,20	0,08	0,15	0,20	0,08	0,15	0,20	0,08	0,15	0,20	0,05),15 (0,22
			<u>o</u>									Sch	nittg	esch	wind	digke	eit v _c	(m/r	nin)								
	Unlegierter Stahl, <0, 15%C, vergütet	125	G	380	350	330	350	330	315	330	315	295															
	, <0, 45%C, vergütet	190	G	285	255	235	255	235	220	235	220	220															
	, <0, 45%C, angelassen	250	G	235	210	190	210	190	170	190	170	150															
	_" , <0, 75%C, vergütet	270	G	190	162	143	171	152	133	152	133	115															
	, <0, 75%C, angelassen	300	G	145	115	95	115	95	75	95	75	55															
Р	Niedrig legierter Stahl, vergütet	180	G	265	235	220	235	220	200	220	200	180															
	" , angelassen	275	G	170	145	125	150	130	115	130	115	95															
	" , angelassen	300	G	150	125	105	135	115	95	115	95	75															
	" , angelassen	350	G	125	95	75	105	85	65	85	65	45															
	Hoch legierter und Werkzeugstahl, vergütet	200	G	235	210	190	210	190	170	190	170	150															
	" , angelassen	325	G	125	95	75	95	75	55	75	55	35															
	Rostfreier Stahl, ferritisch/martensitisch, vergütet	200	Ε																175	155	125	155	140	110			
M	Martensitisch, angelassen	240	EΗ																160	140	110	145	125	100			
	Austenitisch	180	Ε																190	170	140	170	150	125			
K	Grauguss		G										285	255	235	255	235	220									
^	Kugelgraphitguss		G										190	160	140	160	140	125									
s	Hitzebeständige Legierungen, Fe basierend, vergütet	300	Е																50	40		45	35				
3	" , angelassen	330	Ε																35	25		30	20				
	Aluminiumlegierung, Si < 13%		S																						1000	750	500
N	Aluminiumlegierung, Si > 13%		S																						250	200	170
	Kupferlegierung		S																						350	330	300

Die empfohlenen Schnittdaten dienen als Richtlinie. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Beim Nutfräsen ist der Vorschub auf 70 % der in der Tabelle angegebenen Werte zu reduzieren.

"Wave Mill" Serie


WEX - Typ

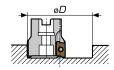
■ Empfohlene Schnittdaten

WEX3000 Serie

Fräser: WEX30325E Platte: AXMT170508PEER -

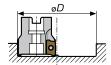
Schnittdaten: $a_p = 5 \text{ mm}$, $a_e = 16 \text{ mm}$, trocken

	initidaten. ap – 5 mm, ae – 16 mm, trocken		_								H	Hartn	neta	II, be	schi	chte	t									DLC	
			Spanbrecher	AC	P1	00	A	CP2	00	A	P3	00	A	CK2	00	A	CK3	00	AC	M2	00	AC	CM3	00	DL	_100	0
ISO	Material	НВ	pre										V	orscl	nub ((mm	/Zah	n)									
			par	0,12	0,25	0,35	0,12	0,25	0,35	0,12	0,25	0,35	0,12	0,25	0,35	0,12	0,25	0,35	0,12	0,25	0,35	0,12	0,25	0,35	0,05	0,15),25
			S									Sch	nittg	esch	nwin	digke	eit v _c	(m/ı	min)								
	Unlegierter Stahl, <0, 15%C, vergütet	125	G	400	370	350	370	350	330	350	330	310															
	" , <0, 45%C, vergütet	190	G	300	270	250	270	250	230	250	230	210															
	" , <0, 45%C, angelassen	250	G	250	220	200	220	200	180	200	180	160															
	", <0, 75%C, vergütet	270	G	200	170	150	180	160	140	160	140	120															
	" , <0, 75%C, angelassen	300	G	150	120	100	120	100	80	100	80	60															
Р	Niedrig legierter Stahl, vergütet	180	G	280	250	230	250	230	210	230	210	190															
	" , angelassen	275	G	180	150	130	160	140	120	140	120	100															
	" , angelassen	300	G	160	130	110	140	120	100	120	100	80															
	" , angelassen	350	G	130	100	80	110	90	70	90	70	50															
	Hoch legierter und Werkzeugstahl, vergütet	200		250							180	160															
	" , angelassen	325	_	130	100	80	100	80	60	80	60	40															
	Rostfreier Stahl, ferritisch/martensitisch, vergütet	200																	185	165	135	165	150	120			
M	Martensitisch, angelassen	240	EH																1		120						
	Austenitisch	180																		180	150	180	160	135		\perp	
K	Grauguss		G										300	270	250	270	250	230									
IX	Kugelgraphitguss		G										200	170	150	170	150	130									
s	Hitzebeständige Legierungen, Fe basierend, vergütet	300	Ε																50	30		45	25				
3	" , angelassen	330	Е																50	30		45	25				
	Aluminiumlegierung, Si < 13%		S																						- 1	750	
N	Aluminiumlegierung, Si > 13%		S																						250	200	170
	Kupferlegierung		S																						350	330	300


Die empfohlenen Schnittdaten dienen als Richtlinie. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

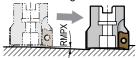
Beim Nutfräsen ist der Vorschub auf 70 % der in der Tabelle angegebenen Werte zu reduzieren.

■ Empfohlene Werte beim Zirkularfräsen und Schrägeintauchen


Zirkularfräsen

≤ Min. Durchmesser

Der ungeschnittene zentrale Bereich kann nicht mit demselben Fräser durch quer verfahren entfernt werden.


≥ Max. Durchmesser

Der ungeschnittene zentrale Bereich kann durch quer verfahren mit demselben Fräser entfernt werden.

Schrägeintauchen

Verwendung mit ≤ RMPX

• Empfohlene Werte beim Zirkularfräsen und Schrägeintauchen

Äußerer	WEX10	000 (AXM	IT06)	WEX2	000 (AX□	T12)	WEX3	000 (AX□	T17)
Fräskopf-	Zirk	ular	Schrägeintauchen	Zirk	ular	Eintauchen	Zirk	ular	Eintauchen
durchm.	Arbeitsdur	chmesser	Max. Winkel beim	Arbeitsdui	rchmesser	Max. Winkel beim	Arbeitsdu	chmesser	Max. Winkel beim
DC	Min.	Max.	Schrägeintauchen	Min.	Max.	Schrägeintauchen	Min.	Max.	Schrägeintauchen
10	16,0	18,0	2°30'						
12	20,0	22,0	1°45'						
14	24,0	26,0	1°25'	25,0	27,0	1°40'			
16	28,0	30,0	1°00'	29,0	31,0	1°20'			
18	32,0	34,0	0°45'	33,0	35,0	1°10'			
20	36,0	38,0	0°30'	37,0	39,0	1°00'			
22				41,0	43,0	0°50'			
25	46,0	48,0	0°30'	47,0	49,0	0°45'	44,5	48,0	1°30'
28				53,0	55,0	0°45'	50,5	54,0	1°10'
30				57,0	59,0	0°40'	54,5	58,0	1°10'
32	60,0	62,0	0°25'	61,0	63,0	0°35'	58,5	62,0	1°00'
35							64,5	68,0	0°50'
40	76,0	78,0	0°20'	77,0	79,0	0°25'	74,5	78,0	0°45'
50	96,0	98,0	0°15'	97,0	99,0	0°20'	94,5	98,0	0°30'
63	122,0	124,0	0°10'	123,0	125,0	0°15'	120,5	124,0	0°20'
80							154,5	158,0	0°15'
100									
125									

Die oben empfohlenen Werte gelten für einen Schneideckenradius von 0,8 mm.

"Wave Mill" Serie WAX - Typ

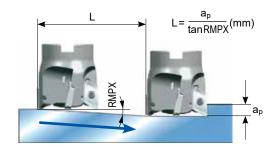
■ Überblick

Basierend auf dem bewährten Wavemill-Konzept eignen sich die neuen WAX Fräser für das Schrupp- und Schlichtfräsen von Aluminiumlegierungen und NE-Werkstoffen.

Die Werkzeuge eignen sich besonders für Bearbeitung eng tolerierter Bauteile in der Flugzeug-, Elektronik- und Automobilindustrie.

Die preisgekrönte Aurora DLC Beschichtung vermeidet Aufbauschneidenbildung und steigert Standzeit sowie Produktivität bei der Trockenbearbeitung.

■ Vorteile


- Hohe Produktivität
- Trockenbearbeitung mit MMS
- DLC (diamond like carbon) beschichtete Schneidplatten
- Exakte 90° Schultern
- Vermeidet Aufbauschneidenbildung
- Großes Schneidenprogramm mit unterschiedlichen Eckenradien

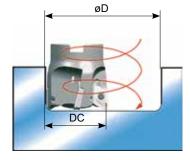
■ Schrägeintauchen

Der maximale Eintauchwinkel (α max.) ist vom Durchmesser des Werkzeugs abhängig. Der Mindestfräsweg (L min) wird benötigt um beim Schrägeintauchen die maximal zulässige Schnitttiefe (d_{ap} max) zu erreichen.

Die erforderliche Länge (L min) kann für jede Schnitttiefe nach unten aufgeführter Formel berechnet werden:

● WAX3000 E/EL Typ

(mm)


Fräserdrm.	Eintauchwinkel	Schnitttiefe	Mindestfräsweg
DC	RMPX max.	a _p max.	L min
20	8°	10	72
25	17°	10	33
32	12°	10	47
40	9°	10	64

● WAX3000 RS Typ

(mm)

Fräserdrm.	Eintauchwinkel	Schnitttiefe	Mindestfräsweg
DC	RMPX max.	a _p max.	L min
50	7°	10	82
60	5°	10	115
80	3°	10	191
100	3°	10	191
125	2°	10	287

Zirkularfräsen

Zirkularfräsen

(mm)

Fräserdrm.	Fräsdurchr	nesser øD ₁
DC	Min.	Max.
20	22	33
25	29	43
32	43	57
40	59	73
50	79	93
63	105	119
80	139	153
100	179	193
125	229	243

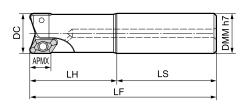
Maximal zulässige Drehzahl

	<u> </u>	
Fräserdurchmesser	Drehzahl	Schnittgeschwindigkeit
DC	n (min ⁻¹)	v _c (m/min)
20	14.000	880
25	29.000	2.200
32	25.000	2.500
40	23.000	2.900
50	20.000	3.100
63	18.000	3.500
80	16.000	4.000
100	14.000	4.400
125	13.000	5.100

■ Empfohlene Schnittbedingungen

Werkstückstoff	Aluminiumlegierung
Schnittgeschwindigkeit	600–1.200 m/min
Vorschub	0,05–0,25 mm/Zahn

"Wave Mill" Serie WAX 3000 E/EL



Axialer Spanwinkel	6°
Radialer Spanwinkel	19-25°

(Schaftausführung)

Kurzer Typ "E" Langer Typ "EL"

■ Fräskörper

(Für Schneidplatten mit Eckenradius ≤ 3,2 mm)

	Dazaiahnung	Lager		Ak	Anzahl	Gewicht			
	Bezeichnung	Layei	DC	DMM	LF	LH	LS	Zähne	(Kg)
WAX	3020 E -3.2	•	20	20	130	60	70	1	0,25
WAX	3025 E -3.2	•	25	25	140	60	80	2	0,42
	3025 EL-3.2	•	25	25	200	60	140	2	0,63
WAX	3032 E -3.2	•	32	32	150	70	80	2	0,75
	3032 EL-3.2	•	32	32	220	70	150	2	1,2
WAX	3040 E -3.2	•	40	32	160	70	90	3	1,0
	3040 EL-3.2	•	40	32	220	70	150	3	1,4

■ Fräskörper

(Für Schneidplatten mit Eckenradius ≥ 4,0 mm)

	Pozoiobnung	Lager		Al	Anzahl	Gewicht			
	Bezeichnung	Lagei	DC	DMM	LF	LH	LS	Zähne	(Kg)
WAX	3020 E -4.0		20	20	130	60	70	1	0,25
WAX	3025 E -4.0	•	25	25	140	60	80	2	0,42
	3025 EL-4.0	•	25	25	200	60	140	2	0,63
WAX	3032 E -4.0	•	32	32	150	70	80	2	0,75
	3032 EL-4.0		32	32	220	70	150	2	1,2
WAX	3040 E -4.0	0	40	32	160	70	90	3	1,0
	3040 EL-4.0	•	40	32	220	70	150	3	1,4

■ Platten für den WAX 3000 Typ

Anwendung DĻÇ Hochgeschw./Leichtbearb. N Allgemeine Anwendung Ν Schruppen DL 1000 Abmessungen (mm) Bezeichnung APMX INSL BS RE S D1 AECT 160404 PEFRA 16.4 5 18 14 0.4 4 4 160408 PEFRA 18 16,4 1,0 5 4,4 0,8 160412 PEFRA 18 16,4 0,6 1,2 4,4 160416 PEFRA 17,5 16,4 0,5 4,4 1,6 5 16,4 0,5 160420 PEFRA 17.5 2.0 5 4.4 160430 PEFRA ulletullet17 16,4 0,7 3,0 5 4,4 160432 PEFRA 16,4 0,5 3,2 5 4,4 AECT 160440 PEFRA 16,5 16,4 0,5 4,0

16

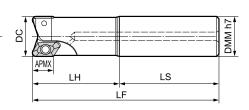
■ Ersatzteile

Schraube	Schlüssel	
		Einsetzbarer Fräser
BFTX 0408 3,	TRD 15	WAX 3000 E/EL

160450 PEFRA

16,4 0,4

"Wave Mill" Serie WAX 4000 E/EL



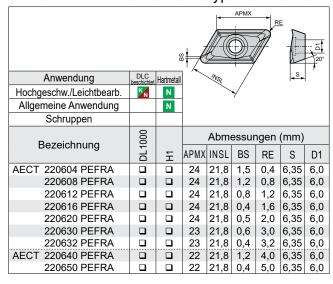
Axialer Spanwinkel	6°
Radialer Spanwinkel	19-25°

(Schaftausführung)

Kurzer Typ "E" Langer Typ "EL"

■ Fräskörper

(Für Schneidplatten mit Eckenradius ≤ 3,2 mm)


Pagaiohaung Lagar				Al	Anzahl	Gewicht			
	Bezeichnung	Lager	DC	DMM	LF	LH	LS	Zähne	(Kg)
WAX	4025E -3.2		25	25	140	60	80	1	0,41
	4025EL-3.2		25	25	200	60	140	1	0,63
WAX	4032E -3.2		32	32	150	70	80	1	0,72
	4032EL-3.2		32	32	220	70	150	1	1,2
WAX	4040E -3.2		40	32	160	70	90	2	0,88
	4040EL-3.2		40	32	220	70	150	2	1,2

Fräskörper

(Für Schneidplatten mit Eckenradius ≥ 4,0 mm)

		·								
	Dozajahnung	Logor		Α	Anzahl	Gewicht				
	Bezeichnung	Lager	DC	DC DMM LF LH LS				Zähne	(Kg)	
WAX	4025E -4.0		25	25	140	60	80	1	0,41	
	4025EL-4.0		25	25	200	60	140	1	0,63	
WAX	4032E -4.0		32	32	150	70	80	1	0,72	
	4032EL-4.0		32	32	220	70	150	1	1,2	
WAX	4040E -4.0		40	32	160	70	90	2	0,88	
	4040EL-4.0		40	32	220	70	150	2	1,2	

■ Platten für den WAX 4000 Typ

■ Ersatzteile

Schraube		Schlüssel	
	(N·m)		Einsetzbarer Fräser
BFTX 0509 N		TRD 20	Ø 25 – Ø 32
BFTX 0511 N	5,0	TRD 20	Ø 40 – Ø 125

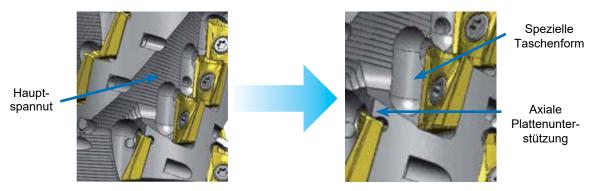
Walzenstirnfräser WRX - Typ

■ Eigenschaften

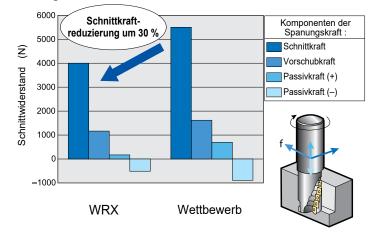
Das WRX-Walzenstirnfräsersystem verwendet die bekannten AXMT Platten. Diese werden vertikal montiert und ermöglichen so eine lange durchgängige Schneidkante für besonders große Schulterhöhen.

Konstruiert für besonders hohe Vorschübe reduziert der weiche Schnitt jedoch die auftretenden Schnittkräfte, die Vibrationen und den Lärm. Zusätzlich werden die Standzeit und Ober-flächengüte wesentlich verbessert. Augestattet mit unseren Super FF und Super ZX beschichteten Platten bietet er eine fast unschlagbare Leistung.

■ Produktbereich


- WRX2000 Serie mit AXMT12 mm Platten
- WRX3000 Serie mit AXMT17 mm Platten
- Fräskörper Abmessungen ø 20 100 mm
- Spezielle Bestelloptionen WRX Fräser als Monoblock

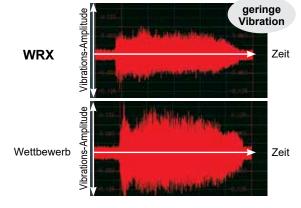
Aufsteckfräser mit auswechselbarer 1. Zahnreihe


■ Breites ISO Anwendungsgebiet - geeignet für P/M/K/N

■ Vorzüge

- Optimierte Plattenpositionen reduzieren den Schneidwiderstand und Vibrationen
- Interne Kühlung für verbesserten Spanfluß
- Leichte und schnelle Spanabfuhr durch besonders geformte Spannut
- Der optimierte Plattensitz maximiert die Stabilität
- Die Abstützung der 1. Zahnreihe erhöht die Standzeit und Schnittleistung

■ Vergleich der Schnittkräfte

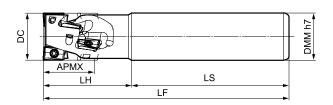

Werkstückstoff: Fräsertyp:

H64

C50 WRX2025RH27E25

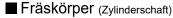
Schnittbedingungen: $v_c = 100 \text{ m/min}$, $f_z = 0,15 \text{ mm/Zahn}$ $a_p = 25 \text{ mm}$, $a_e = 10 \text{ mm}$, trocken

■ Vergleich der Vibration


Werkstückstoff: Fräsertyp:

WRX3080RH53F32

Schnittbedingungen: $v_c = 150 \text{ m/min}, f_z = 0,15 \text{ mm/Zahn}$


 $a_p = 25 \text{ mm}, a_e = 10 \text{ mm}, \text{ trocken}$

WRX 2000er - Serie mit AXMT 12 mm Platten

....

}-□-€

Bezeichnung	ager	Abmessungen (mm)							Zahn-	Effek-
Bezeichnung	La	DC	APMX	DMM	LF	LH	LS	Zähne	reihen	tive Zähne
WRX2020RH18E20	•	20	18	20	120	40	80	4	2	2
WRX2020RH36E20		20	36	20	130	45	85	4	4	1
WRX2025RH18E25	•	25	18	25	130	45	85	6	2	3
WRX2025RH27E25	•	25	27	25	130	45	85	6	3	2
WRX2032RH18E32		32	18	32	140	50	90	8	2	4
WRX2032RH27E32	•	32	27	32	130	45	85	9	3	3
WRX2040RH18E40		40	18	40	160	40	120	10	2	5
WRX2040RH36E40		40	36	40	130	45	85	16	4	4

Fräskörper (Weldonschaft)

Danaiahauma			Abmessungen (mm)							Effek-
Bezeichnung	Lageı	DC	APMX	DMM	LF	LH	LS	Zähne	reihen	tive Zähne
WRX2020RH18W20	•	20	18	20	120	40	80	4	2	2
WRX2020RH36W20		20	36	20	130	45	85	4	4	1
WRX2025RH18W25	•	25	18	25	130	45	85	6	2	3
WRX2025RH27W25	•	25	27	25	130	45	85	6	3	2
WRX2032RH18W32		32	18	32	140	50	90	8	2	4
WRX2032RH27W32	•	32	27	32	130	45	85	9	3	3
WRX2040RH18W40		40	18	40	160	40	120	10	2	5
WRX2040RH36W40		40	36	40	130	45	85	16	4	4

■ Ersatzteile (WRX 2000)

Schraube	Schlüssel
	Ø
2,0 (%m)	
BFTX 0306 IP	TRDR 08 IP

■ Bezeichnungsschlüssel

WRX	20	25	R	Н	27	W	25
							_

		<u>` </u>			
Platten- größe	Schr richt	I .	Schnitt- tiefe	Verbindun durchmes	_
	Werkzeug-	Innen-	Verb	oindungs-	
	øD	kühlung		typ	

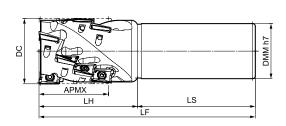
E - Zylindrischer Schaft **W** - Weldonschaft

F - Aufsteckfräser

■ Schneidplatten für WEX2000-Typ

RE TH										
Anwendung	12,0	Besc	hicht	etes	Hartr	netal		Hartmet.	DLC]
Hochgeschw./Leichtbearb.	Р			K		M _S		K	N	
Allgemeine Anwendung		₽ _M	P _M	K		Ms	M _S		N	1
Schruppen		M	M		K		Ms			1
	00			8	8	00			9	Radius
Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	ACM200	ACM300		DL1000	
	AC	PC	AC	AC	AC	AC	AC	Ŧ	占	RE
AXMT 123504 PEER-G	•	A	A	A	A			_	_	0,4
123508 PEER-G	•	A	A	A	A			_	_	0,8
123512 PEER-G	•	•	•	•	•			_	_	1,2
AXMT 123504 PEER-H	A	A	A	A	A			_	_	0,4
123508 PEER-H	•	•	A	A	A			_	_	0,8
123512 PEER-H	•	A	A	A	A			_	_	1,2
AXMT 123504 PEER-E						A	A	_	_	0,4
123508 PEER-E						A	•	_	_	0,8
123512 PEER-E						A	•	_	_	1,2
AXMT 123508 PEER-EH						A	A	_	_	0,8
AXET 123502 PEFR-S	_	_	_	_	-	_	_	A	•	0,2
123504 PEFR-S	_	-	_	_	_	_	_	A	•	0,4
123508 PEFR-S	_	-	-	_	-	-	_	•	•	0,8

- nicht möglich
- G allgemeine Anwendung
- H stabile Schneidkante
- E weicher Schnitt für rostfreien Stahl /
- hitzebeständige Legierungen


 EH verstärkte Ausführung für rostfreien
 Stahl / hitzebeständige Legier.

 S für Aluminium

■ Anwendungsbeispiele

Werkstück- stoff	Baum	Baumaschinenteil (USt.42-2)						
		Sumitomo	Wettbewerb					
	Fräskörper	WRX 2000 Weldonschaft	Ø 38,1					
	Platte	AXMT	18 mm					
Werkzeug	Plattensorte	ACP200	PVD-Typ					
	Werkzeug-Ø (mm)	38,1	38,1					
	Zähne gesamt	24	16					
	Zähne effektiv	4	4					
	Schnittgeschw. v _c (m/min)	180	137					
	Vorschub (mm/Z)	0,09	0,1					
Schnitt- daten	Axiale Schnitt- tiefe ap (mm)	38,1	38,1					
	Radiale Schnitt- tiefe a _e (mm)	3,2	3,2					
	Kühlung	Nass	Nass					
Ergebnis	Standmenge / Schneidkante	60	40					
Vorteil	1,5 fach höhere Standzeit, 30% erhöhte Produktivität							

Fräskörper (Zylinderschaft)

Bezeichnung			Abn		Anzahl	Zahn-	Effek- tive			
		DC	APMX	DMM	LF	LH	LS	Zähne rei	reihen	Zähne
WRX3032RH40E32	•	32	40	32	150	65	85	6	3	2
WRX3040RH27E40		40	27	40	180	60	120	6	2	3
WRX3040RH40E40	•	40	40	40	150	65	85	9	3	3
WRX3050RH27E40		50	27	40	180	60	120	8	2	4
WRX3050RH53E40	•	50	53	40	165	75	90	12	4	3

Fräskörper (Weldonschaft)

Bezeichnung	ager		Abn	nessur	ngen (r	nm)		Anzahl	Zahn-	Effek-
Bezeichnung		DC	APMX	DMM	LF	LH	LS	Zähne	reihen	tive Zähne
WRX3040RH27W40		40	27	40	180	60	120	6	2	3
WRX3040RH40W40	•	40	40	40	150	65	85	9	3	3
WRX3050RH27W40		50	27	40	180	60	120	8	2	4
WRX3050RH53W40	•	50	53	40	165	75	90	12	4	3

■ Ersatzteile (WRX 3000)

Schraube	Schlüssel
3,0 €	
BFTX 0409 IP	TRDR 15 IP

■ Wendeschneiplatten (gleich wie Wavemill WEX3000-Typ)

RE 17.54 5.59										
Anwendung	ı	Besc	hicht	etes	Hartr			Hartmet.	DLC	
Hochgeschw./Leichtbearb.	P			K		M _S		K	N	
Allgemeine Anwendung		Р		K		M _S	M _S		N	
Schruppen		Р	Р		K		M _S			1
Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	ACM200	ACM300	Ŧ	DL1000	Radius
AXMT 170508 PEER-L	A	A	A	A	A			_	_	0,8
AXMT 170504 PEER-G	A	A	A	A	A			-	-	0,4
170508 PEER-G	A	A	A	A	A			_	_	0,8
170512 PEER-G	A	A	A	A	A			-	-	1,2
170516 PEER-G	0	A	A	A	A			_	_	1,6
170520 PEER-G*	A	A	A	A	A			-	-	2,0
170530 PEER-G*	A	A	A	A	A			_	_	3,0
AXMT 170508 PEER-H	A	A	A	A	A			-	-	0,8
170512 PEER-H	A	A	A	A	A			_	_	1,2
AXMT 170504 PEER-E						A	A	-	-	0,4
170508 PEER-E						A	A	_	_	0,8
170512 PEER-E						A	A	_	-	1,2
170516 PEER-E 170520 PEER-E*						A	A	_	_	1,6
						A	A	_	-	2,0
170530 PEER-E*			_			_	A	_	_	3,0
AXMT 170508 PEER-EH AXET 170502 PEFR-S			A			A	_	_	_	0,8
170504 PEFR-S	_	_					_	A	A	0,2
170504 PEFR-S							_	A	1	0,4
L – geringe Schnittkraft						-	nich	nt mög	lich	10,0

L - geringe Schnittkraft
 G - allg. Anwendung
 H - stabile Schneidkante
 E - weicher Schnitt für rostfreien Stahl

EH- verstärkte Ausführung für rostfreien Stahl

S – für Aluminium

■ Anwendungsbeispiele

Beispiel 1

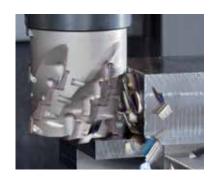
Werkstück- stoff	Automobilbauteil / Guss						
		Sumitomo	Wettbewerb				
	Fräskörper	WRX 3000 mit HSK	Ø 50				
	Platte	AXMT	18 mm				
Werkzeug	Plattensorte	ACK300	PVD-Typ				
	Werkzeug-Ø (mm)	50	50				
	Zähne gesamt	15	12				
	Zähne effektiv	3	3				
	Schnittgeschw. v _c (m/min)	78	78				
	Vorschub (mm/Z)	0,13	0,13				
Schnitt- daten	Axiale Schnitt- tiefe a _p (mm)	45	45				
	Radiale Schnitt- tiefe a _e (mm)	5	5				
	Kühlung	Trocken	Trocken				
Ergebnis	Standmenge / Schneidkante	500 min	300 min				
Vorteil	1,7 fach höhere Standzeit						

Beispiel 2

Werkstück- stoff	Maschinenbauteil / Rostfreier Stahl						
		Sumitomo	Wettbewerb				
Werkzeug	Fräskörper	WRX3040RH40E40	Ø 40				
	Platte	AXMT	18 mm				
	Plattensorte	ACP300	PVD-Typ				
	Werkzeug-Ø (mm)	40	40				
	Zähne gesamt	9	6				
	Zähne effektiv	3	2				
	Schnittgeschw. v _c (m/min)	125	125				
	Vorschub (mm/Z)	0,2	0,2				
Schnitt- daten	Axiale Schnitt- tiefe a _p (mm)	40	40				
	Radiale Schnitt- tiefe a _e (mm)	5	5				
	Kühlung	Nass	Nass				
Ergebnis	Standmenge / Schneidkante	20	5 ~ 10				
Vorteil	Stabile Bearbeitung, doppelte Standzeit ohne Schneidenbruch						

→ G59

^{*} Schneidkörper-Modifikation ist erforderlich.


Walzenstirnfräser WRX - Typ

■ Schneidkantenausführung

Werkstückstoff		Stahl, Grauguss			er Stahl	Aluminium
	L	G	Н	E	EH	S
Schneidkanten- ausführung	0	0	0	0	0	0
Anwendung	Niedrige Schnittkraft	Allgemeine Anwendung	Stabile Schneidkante	Typ-E für weichen Schnitt	Stabile Schneidkante	Scharfe Schneide
2000-Тур	_		20°	17°	17°	27°
3000-Тур	25°	20°	5°	14°	8°	30°
Anwendungs- bereich	Leichte Bearbeitung, Fräsen in labilen Verhältnissen, weniger Gratbildung	Allgemeines Fräsen Unterbrochener Schnitt	Schwere Bearb., unterbroch. Schnitt und stabile Verhältnisse bei härteren Materialien	Leichte Bearbeitung, und allg. Anwendung	Stark unterbrochene Bearbeitung	Aluminiumleg. und Nichteisenmetalle

■ Schrägeintauchwinkel

Fräser-	Max. Schräge	intauchwinkel
durchmesser	WRX 2000-Typ	WRX 3000-Typ
20	4°	
25	2°	
32	1°30'	
40	1°	2°
50	0°30'	1°
63		0°30'
80		0°30'
100		nicht möglich

■ Empfohlene Schnittbedingungen

Fräser: WRX 3050 RH53 F22, DC = 50mm, $a_p = 50$ mm

	Werkstückstoff		B)				her	Empfohlene Schnittgeschwindigkeit und Vorschub/Zahn entsprechend der Eingriffsbreite (a _e /DC) – Empfehlungen müssen an die aktuellen Maschinen- und Werkstückbedingungen angepasst werden –						
ISO		Eigenschaft, Behandlung	Härte (HB)	Schneiden- ausführung			Spanbrecher	10%		25%		>5	0%	
		Denandiding	Häi	uu.	J.u.i.u	9	Spar		Vc	fz	Vc	fz	Vc	fz
								min. (Optimum max.	min. Optimum max.	min. Optimum max.	min. Optimum max.	min. Optimum max.	min. Optimum max.
		< 0,15% C, angelassen	125	ACP 100	ACP 200	ACP 300	L-G	170 -	215 – 240	0,21 - 0,28 - 0,35	160 - 195 - 220	0,16 - 0,21 - 0,26	130 - 160 - 180	0,08 - 0,10 - 0,13
		< 0,45% C,	190	ACP 100	ACP 200	ACP 300	L-G	160 -	· 195 – 220	0,21 - 0,28 - 0,35	140 - 175 - 190	0,16 - 0,21 - 0,26	110 - 140 - 160	0,08 - 0,10 - 0,13
	Stahl. Kohlenstoffstahl	< 0,45% C,	250	ACP	ACP 200	ACP 300	L-G-H	140 -	180 – 200	0,19 - 0,26 - 0,32	130 - 165 - 180	0,14 - 0,19 - 0,24	100 - 130 - 140	0,08 - 0,10 - 0,13
	, , , , , , , , , , , , , , , , , , , ,	vergütet < 0,75% C, angelassen	270	100 ACP 100	ACP 200	ACP 300	L-G-H	140 -	170 – 190	0,19 - 0,26 - 0,32	120 - 155 - 170	0,14 - 0,19 - 0,24	100 - 130 - 140	0,07 - 0,10 - 0,12
		< 0,75% C,	300	ACP 100	ACP 200	ACP 300	L- G -H	130 -	165 – 180	0,19 - 0,26 - 0,32	120 - 150 - 170	0,14 - 0,19 - 0,24	100 - 120 - 130	0,07 - 0,10 - 0,12
P		vergütet angelassen	180	ACP 100	ACP 200	ACP 300	G-H	130 -	- 165 – 180	0,18 - 0,24 - 0,30	120 – 150 – 170	0,13 - 0,18 - 0,22	100 - 120 - 130	0,07 - 0,09 - 0,11
		vergütet	275	ACP 100	ACP 200	ACP 300	G-H	130 -	- 160 – 180	0,17 - 0,23 - 0,28	120 - 145 - 160	0,12 - 0,16 - 0,20	100 - 120 - 130	0,07 - 0,09 - 0,11
	Niedrig legierter Stahl	vergütet	300	ACP 100	ACP 200	ACP 300	G-H	110 -	· 140 – 160	0,16 - 0,22 - 0,27	100 - 130 - 140	0,11 - 0,15 - 0,19	90 - 110 - 120	0,07 - 0,09 - 0,11
		vergütet	350	ACP 100	ACP 200	ACP 300	G-H	100 -	130 – 140	0,16 - 0,21 - 0,26	100 - 120 - 130	0,11 - 0,15 - 0,19	80 - 100 - 110	0,06 - 0,08 - 0,10
	Hochlegierter und Werkzeugstahl	angelassen	200	ACP 100	ACP 200		G-H	70 –	85 – 90	0,15 - 0,21 - 0,26	60 - 80 - 90	0,11 - 0,14 - 0,18	60 - 70 - 80	0,06 - 0,08 - 0,10
		vergütet	325	ACP 100	ACP 200		G-H	30 -	35 – 40	0,14 - 0,19 - 0,24	30 - 35 - 40	0,10 - 0,14 - 0,17	20 - 30 - 30	0,06 - 0,08 - 0,10
	Rostfreier Stahl, ferritisch/martensitisch	angelassen	200		ACP 200	ACP 300	L-G-H	120 -	150 – 170	0,15 - 0,20 - 0,25	110 - 135 - 150	0,11 - 0,14 - 0,18	90 - 110 - 120	0,07 - 0,09 - 0,11
M	Rostfreier Stahl, martensitisch	vergütet	240		ACP 200	ACP 300	L- G -H	100 -	125 – 140	0,16 - 0,22 - 0,27	90 - 115 - 130	0,12 - 0,16 - 0,20	80 - 100 - 110	0,07 - 0,10 - 0,12
	Rostfreier Stahl, austenitisch	getaucht	180		ACM 200	ACM 300	L-G	80 -	95 – 110	0,15 - 0,20 - 0,25	70 - 85 - 90	0,11 - 0,14 - 0,18	60 - 70 - 80	0,06 - 0,08 - 0,10
IZ.	Grauguß	GG	180	ACK 200	ACK 300		G-H	190 -	240 – 270	0,19 - 0,26 - 0,32	180 - 220 - 240	0,14 - 0,19 - 0,24	140 - 170 - 190	0,09 - 0,12 - 0,15
K	Kugelgraphitguss	GGG	250	ACK 200	ACK 300		G-H	140 -	170 – 190	0,16 - 0,21 - 0,26	120 - 155 - 170	0,12 - 0,16 - 0,20	100 - 130 - 140	0,07 - 0,10 - 0,12
	Exotische Legierungen	Fe basiert, vergütet	200	ACK 200	ACK 300		L-G	40 -	45 – 50	0,12 - 0,16 - 0,21	30 - 40 - 45	0,08 - 0,11 - 0,14	30 - 35 - 40	0,07 - 0,09 - 0,11
S	(hitzebeständige Legierungen, Ti + Ni Legierungen)	gehärtet	280	ACK 200	ACK 300		L-G	15 -	20 – 25	0,10 - 0,14 - 0,17	10 - 15 - 20	0,07 - 0,10 - 0,12	10 - 15 - 20	0,05 - 0,07 - 0,09
	Aluminumlariarungan	Si < 13%			DL 1000	H1	S	510 -	635 – 710	0,23 - 0,31 - 0,38	460 - 580 - 640	0,17 - 0,22 - 0,28	390 - 485 - 540	0,08 - 0,12 - 0,14
N	Aluminumlegierungen	Si ≥ 13%			DL 1000	H1	S	150 -	190 – 210	0,19 - 0,25 - 0,32	140 - 175 - 190	0,14 - 0,18 - 0,23	130 - 165 - 180	0,08 - 0,10 - 0,13
	Kupferlegierungen				DL 1000	H1	S	320 -	405 – 450	0,15 - 0,21 - 0,26	300 - 370 - 410	0,13 - 0,16 - 0,22	240 - 300 - 330	0,07 - 0,10 - 0,12

⁻ Trockenbearbeitung empfohlen (Luftkühlung) - wenn Kühlmittel benutzt wird, empfehlen wir CVD beschichtete Sorten (ACP100/ACK200) oder zähe PVD Sorten (ACP300 /ACK300).

⁻ Plattengeometrie: L Typ für geringe Schnittkräfte, dünnwandige Komponenten. G: Für allg. Anwendung, H- Typ bietet hohe Schneidkantenstabilität für Schrupp- und schwere Schnittbedingungen.

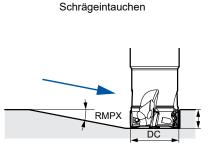
■ Allgemeine Merkmale

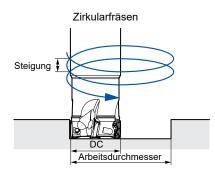
Prozesssichere hohe Standzeiten beim Schruppen von Titan Die Kombination aus dem hochzähen Werkstoff ACM300 und der optimierten Schneidkantenform führt zu einer stabilen und zuverlässigen Standzeit bei der Schruppbearbeitung von Titan.

Einsetzbar bei der Bearbeitung von Strukturteilen der Luft- und Raumfahrtindustrie

Der MTIX-Fräser ist aufgrund der großen Auswahl an Eckenradien der Schneidplatten und dank des großen Eintauchwinkels für eine vielseitige Bearbeitung von Titan-Strukturteilen in der Luft- und Raumfahrtindustrie geeignet.

Zahlreiche Einsatzmöglichkeiten


ISO	Sorte	Beschichtungsdicke (µm)	Merkmale
s	ACM300	3	Erreicht durch das hochfeste Hartmetallsubstrat und durch die absplitterungsbeständige Beschichtung eine hervorragende Stabilität bei der Bearbeitung von Titan.

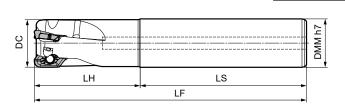

■ Empfohlene Schnittbedingungen


Min. - Optimum - Max.

ISO	Material	Schnittgeschwindigkeit (m/min)	Vorschub (mm/Z)	a _P (mm)	Sorte
s	Titan	30 -60 -90	0,05 –0,10 –0,15	<13	ACM300

■ Obergrenzen beim Schrägeintauchen / Zirkularfräsen

We	rkzeuge	Schräg- eintauchen		
DC Ø (mm)	Eckenradius (mm)	Max. Eintauch- winkel RMPX (°)		
Ø 32	RE ≥ 5,0	8,4		
Ø 32	RE ≤ 4,0	12,2		
Ø 50	RE ≥ 5,0	3,6		
Ø 50	RE ≤ 4,0	5,6		
Ø 63	RE ≥ 5,0	2,5		
w 63	RE ≤ 4,0	3,9		


We	rkzeuge		Zirkula	Bearbeitung mit Vorbohrung			
DC Ø (mm)		Max. Bearbeitungs- durchmesser (mm)		Min. Bearbeitungs- durchmesser (mm)	0	Min. Bearbeitungs- durchmesser (mm)	0 0
Ø 32	4,0	55,3	13,0	55,2	13,0	45,9	3,0
Ø 32	0,8	61,3	13,0	56,3	13,0	45,9	2,9
Ø 50	4,0	91,6	11,2	91,6	11,2	81,9	2,8
D 30	0,8	97,3	13,0	92,2	11,0	81,9	2,7
Ø 63	4,0	117,6	10,1	117,6	10,1	107,9	2,7
w 63	0,8	123,3	11,7	118,2	9,9	107,9	2,6

-9° – -6°

8° – 14°

Span-

winkel

Radial

Axial

■ MTIX-Fräskörper (Schaftfräser)

Abmessungen (mm)

13 mm

	• •		,						, , , , , , , , , , , , , , , , , , ,
Platten- radius RE	Bezeichnung	Lager	DC	DMM	LF	LH	LS	Anzahl Zähne	Gewicht (kg)
≤ 4,0	MTIX 16032E03	•	32	32	180	70	110	3	0,96
≥ 5,0	MTIX 16032E03-5,0	•	32	32	180	70	110	3	0,96

Schneidplatten bitte separat bestellen.

Ersatzteile

	Schraub	е	Schlüssel	Handgriff	Schlüssel- bart
Geeignete Fräser		(N·m)	P	Ø	J.
MTIX 16032E03(-5,0)	BFTX0409IP	3,0	TRDR15IP	_	_

→ G61

■ Identifikation des Fräskörpers

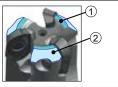

MTIX	16	032	Ε	05
Fräser-	Platten-	Fräser-	Rund-	Anzahl
bezeichnung	größe	durchmesser	schaft	Zähne

■ Schneidplatten

Anwendung	Beschicht. Hartmetall	1				Abmessungen (mm)
Hochgeschw./ Leichtbearbeitung						
Allgemeine Anwendung	S					
Schruppen	S					
Bezeichnung	ACM300	RE	Abb.	Abb. 1	Abb. 2	RE C
XOMT 160508PEER-E	•	0,8	1	=	6, -	
160512PEER-E	•	1,2	1		7 7	
160516PEER-E	•	1,6	1	21,5	5,5	
160520PEER-E	•	2,0	1	₹ 21,0	18,1	4,7
160530PEER-E	•	3,0	1		1-	
160540PEER-E	•	4,0	1			
160550PEER-E	•	5,0	2			
160560PEER-E	•	6,0	2	*Schneidplatten mit einem Eckenra	adius von R ≥ 5,0 mm sind für den Eins	atz in Fräskörpern mit
160564PEER-E	•	6,35	2	dem Suffix "-5,0" vorgesehen.	•	!

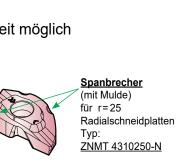
■ Vorsichtsmaßnahmen bei der Montage

- (1) Reinigen Sie den Plattensitz und die Kontaktteile.
- (2) Bringen Sie ausreichend Schmiermittel auf das Schraubengewinde und den Schraubenschaft auf, um ein Festsitzen zu vermeiden.
- (3) Während Sie die Platte fest gegen die Sitz-fläche drücken, ziehen Sie die Schrauben mit dem mitgelieferten Schraubenschlüssel und dem vorgegebenen Drehmoment an.
- (4) Nach dem Anziehen ist darauf zu achten, dass keine Lücken zwischen den Oberflächen vorhanden sind.



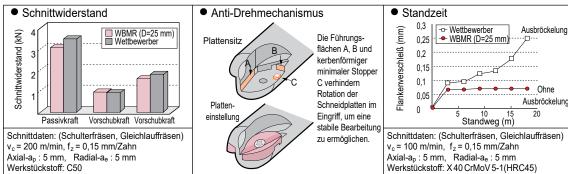
Lücke

② Fase 4,5 mm hinzufügen

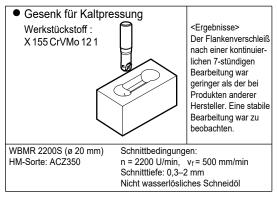

Eigenschaften

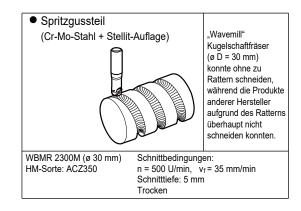
Der WBMR-Kugelbahnfräser mit auswechselbaren Schneidplatten ist besonders geeignet für die Bearbeitung von Gesenken und Formen, da er komplexe Profile effizient schruppt.

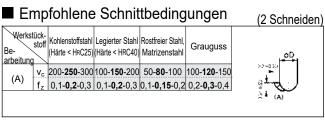
Seine hohe Vorschubgeschwindigkeit ist das direkte Ergebnis einer scharfen Schneide, die während des Bearbeitungszyklus über ein spezielles Hartmetallsubstrat aufrechterhalten wird, das parallel mit der ultraharten ZX-Beschichtung wirkt.

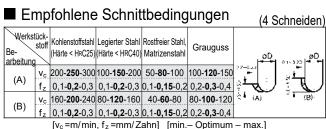

Vorzüge

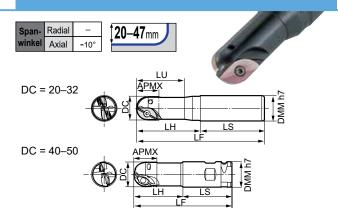
- Wellenförmige Schneide
- Wirtschaftliche Schneidplatte der M-Klasse
- Präzise Schraubspannung
- Hohe Vorschubgeschwindigkeit möglich

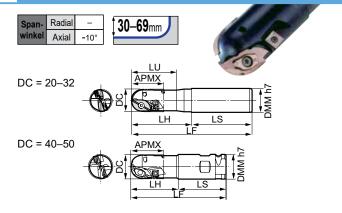





Leistungsvermögen


Anwendungsbeispiele




[v_c=m/min, f_z=mm/Zahn] [min.- Optimum - max.]

"Wave Ball Mill" zum Schruppen WBMR 2000

"Wave Ball Mill" zum Schruppen WBMR 2000 L

■ Fräskörper (Kurzer und Standard-Typ, 2 Schneiden)

Dozajahnung			Α	bmess	sunge	n (mr	n)	
Bezeichnung	Lager	DC	DMM	APMX	LH	LS	LU	LF
WBMR 2200 S	•	20	25	20	60	80	40	140
2200 M	•	20	25	20	60	140	40	200
2200 MW	•	20	25	20	60	140	40	200
WBMR 2250 S	•	25	32	23	70	80	50	150
2250 M	•	25	32	23	73	147	50	220
2250 MW	•	25	32	23	73	147	50	220
WBMR 2320 S	•	32	32	31	80	80	60	160
2320 M	•	32	32	31	85	155	60	240
2320 MW	•	32	32	31	85	155	60	240
WBMR 2400 S	O	40	42	35	100	100	-	200
2400 M	O	40	42	35	180	100	-	280
WBMR 2500 S	O	50	42	47	100	100	-	200
2500 M	O	50	42	47	180	100	-	280

S: Kurze Ausführung mit Zylinderschaft
M: Standardausführung mit Zylinderschaft

MW: Standardausführung mit Weldon-Schaft

■ Fräskörper (Extra langer Typ, 4 Schneiden)

Bezeichnung			Α	bmes	sunge	n (mr	n)	
Dezeichhung	Lager	DC	DMM	APMX	LH	LS	LU	LF
WBMR 2200 LL	•	20	25	30	80	170	40	250
2200 LLW	•	20	25	30	80	170	40	250
WBMR 2250 LL	O	25	32	38	100	200	50	300
2250 LLW	•	25	32	38	100	200	50	300
WBMR 2320 LL	•	32	32	44	120	230	60	350
2320 LLW	•	32	32	44	120	230	60	350
WBMR 2400 LL	O	40	42	50	250	100	-	350
2400 LLW		40	42	50	250	100	-	350
WBMR 2500 LL	O	50	42	69	250	100	-	350
2500 LLW		50	42	69	250	100	-	350

LL: Extra lange Ausführung mit Zylinderschaft

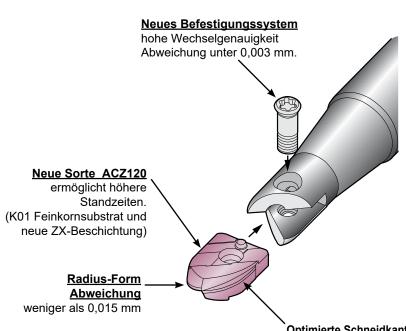
■ Wendeschneidplatten

Anwendung	Hartm	et., bes	chichtet									RE
Hochgeschw./Leichtbearb											Abb. 1	
Allgemeine Anwendung	PM	PM										1 ≥ 1 P
Schruppen	PM	PM	K									L S
Bezeichnung	ACP200	ACP300	ACK300	Abr	nessur	ngen (n		Abb.	Abb. 2	RE TO		
Bozolomiang	ACF	ACF	AC	L	W1	S	RE		der Zähne	Schaftfräser		S S
ZNMT 1804100-C	•	•	•	18,00	9,76	4,76	10,0	1	1			L S
2004100-S	•	•	•	20,00	7,50	4,37	10,0	2	1	WBMR 2200		E B
SPMT 070308	0	0		7,94	-	3,18	-	3	2		Abb. 3	
ZNMT 2205125-C	•	•	•	22,50	12,20	5,70	12,5	1	1			L S
2305125-S	•	•	•	23,00	9,38	5,56	12,5	2	1	WBMR 2250		
SPMT 09T308	•	•	•	9,53	-	3,97	-	3	2			RE
ZNMT 2907160-C	•	•	•	29,00	15,62	7,15	16,0	1	1		Abb. 4	
3006160-S	•	•	•	30,00	12,00	6,70	16,0	2	1	WBMR 2320		L S
SPMT 09T308	•	•	•	9,53	-	3,97	_	3	2			L S
ZNMT 3608200	0	0	0	36,00	19,50	6,70	20,0	4	2	WBMR 2400		RE
SPMT 09T308	•	•	•	9,53	-	3,97	-	3	2	WDIVIN 2400	Abb. 5	
ZNMT 4310250	0		0	43,00	25,70	10,15	25	4	2	·		F = 1
4310250-N	0		0	43,00	25,70	10,15	25	5	2	WBMR 2500		N N
SPMT 120408	0	O	O	12,7	-	4,76	-	3	2			L S

■ Ersatzteile

Schraube		Schlüssel	Schlüssel	
	<u> </u>			Geeignete Schaftfräser
BFTX 0307N	2,0	TRX10	-	WBMR 2200, WBMR 2200 LL
BFTX 0409N	3,4	_	TRD15	WBMR 2250, WBMR 2250LL
BFTX 0511N	5,0	_	TRD20	WBMR 2320, WBMR 2320LL
BFTX 0407N	3,0	_	TRD15	WBMR 2320LL
BFTX0619N	7,5	_	TRD25	WBMR 2400, WBMR 2500, WBMR 2400LL, WBMR 2500LL
BFTX 0409N	3,4	_	TRD15	WBMR 2500LL

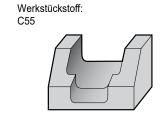
WBMF - Typ


■ Eigenschaften

Die außergewöhnlichen Ergebnisse die mit diesem Schlichtfräser erzielt werden, sind auf die Kombination aus seiner großen halbmondförmigen Schneide und seinem präzisen Einspannsystem zurückzuführen, die ihn extrem starr machen!

Mit dem WBMF wird eine ausgezeichnete Oberflächengüte erzielt, die manuelle Schlicht- und Poliervorgänge deutlich reduzieren.

■ Vorzüge


- Einzigartiges starres Einspannsystem
- Große halbmondförmige Schneide
- Gleichmäßiger Schneidvorgang
- Hohe Oberflächengüte
- Ultraharte Schneide mit ZX-Beschichtung

<u>Optimierte Schneidkantengeometrie</u> minimiert die Schnittkraft und ermöglicht eine sehr gute Oberflächengüte.

■ Anwendungs- beispiele

Spritzgussform f
 ür Sto
 ßfänger

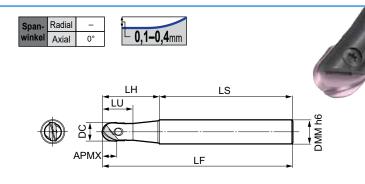
<Ergebnisse> Die Oberflächenrauheit nach 12-stündiger kontinuierlicher Bearbeitung war besser als die bei den Produkten anderer Hersteller. Der Flankenverschleiß war weniger breitflächig.

WBMF1200M (ø20mm) Plattentyp: ZPGU2471100 HM-Sorte: ACZ120 Schnittbedingungen: v_c = 88 m/min v_f = 700 mm/min (f_z = 0,25 mm/Zahn) Axiale Schnitttiefe: 0,5 mm Radiale Schnitttiefe: 0,5 mm trocken

Spritzgussform für Stoßfänger Werkstückstoff: C55

<Ergebnisse> Gleichmäßige Bearbeitung und gute Oberflächengüte nach 8-stündiger kontinuierlicher Bearbeitung.

WBMF1200M (ø20mm) Plattentyp: ZPGU2471100 HM-Sorte: ACZ120


Schnittbedingungen: v_c = 190 m/min

 $v_f = 1200 \text{ mm/min} (f_z = 0.21 \text{ mm/Zahn})$ Axiale Schnitttiefe: 0,2 mm Radiale Schnitttiefe: 0,2 mm

trocken

HOCKETT

"Wave Ball Mill" zum Schlichten WBMF 1000

■ Fräskörper

Po	zoiobnung			Α	bmess	sunge	n (mr	n)	
De.	zeichnung	Lager	DC	DMM	APMX	LH	LS	ĹU	LF
WBMF	1100 S	0	10	16	9	30	70	17	100
	1100 M	•	10	16	9	35	95	17	130
	1100 L	0	10	16	9	50	130	17	180
WBMF	1120 S	0	12	16	10,5	40	70	19,5	110
	1120 M	•	12	16	10,5	40	110	19,5	150
	1120 MM12N		12	12	10,5	40	110	19,5	150
	1120 L	O	12	16	10,5	60	140	19,5	200
WBMF	1160 S	0	16	20	12	50	80	25,5	130
	1160 M	•	16	20	12	50	130	25,5	180
	1160 MM12N		16	16	12	50	130	25,5	180
	1160 L	0	16	20	12	70	150	25,5	220
WBMF	1200 S	0	20	25	15	60	80	32	140
	1200 M	•	20	25	15	60	140	32	200
	1200 MM20N		20	20	15	60	140	32	200
	1200 L	0	20	25	15	80	170	32	250
WBMF	1250 S	O	25	32	18,5	70	80	36	150
	1250 M	•	25	32	18,5	73	147	36	220
	1250 L	O	25	32	18,5	100	200	36	300
WBMF	1300 S		30	32	22,5	80	80	43	160
	1300 M	•	30	32	22,5	85	155	43	240
	1300 L		30	32	22,5	120	230	43	350

S : Kurze Ausführung M : Standardausführung L : Lange Ausführung

■ Wendeschneidplatten

		DC*	0,02		E	RE±0,015				
Anwendung	Hartm., beschichtet		*	1	_	_				
Hochgeschw./Leichtbearb.	Р		/							
Allgemeine Anwendung				Š			APMX			
Schruppen										
Bezeichnung	ACZ120	Abmessungen (mm) Geeigne								
Bezeichhung	ACZ	DC	L	APMX	S	RE	Schaftfräser			
ZPGU 1551050	•	10	15,6	9	5,1	5,0	WBMF1100			
ZPGU 1856060	•	12	18	10,5	5,6	6,0	WBMF1120			
ZPGU 2061080	•	16	20,5	12	6,1	8,0	WBMF1160			
ZPGU 2471100	•	20	24,5	15	7,1	10,0	WBMF1200			
ZPGU 2876125	•	25	28,5	18,5	7,6	12,5	WBMF1250			
ZPGU 3486150	•	30	34,4	22,5	8,6	15,0	WBMF1300			

■ Ersatzteile

Schraube	9	Schlüssel	
	(N-m)		Geeignete Schaftfräser
BFTG0408F	3,4	TRD15	WBMF1100
BFTG0409F	3,4	TRD15	WBMF1120
BFTG0513F	5,0	TRD20	WBMF1160
BFTG0617F	7,5	TRD25	WBMF1200
BFTG0621F	7,5	TRD25	WBMF1250
BFTG0825F	7,5	TRD25	WBMF1300

■ Empfohlene Schnittbedingungen

ISO	Werkstückstoff		Schnittgeschwin- digkeit v _c (m/min)		Schneid- stoff
ь	Carbon Steel	180–280 HB	200 –250 –300	0,10 -0,20 -0,30	ACZ210
	Alloy Steel	180-280 HB	100 –150 –200	0,10 –0,20 –0,30	ACZ210

(WRCX 08000)

(WRCX 10000)

000)

E_ : Ausführung mit zylindrischem Schaft

ES: Kurze Ausführung mit zylindrischer Schaft
EM: Mittlere Ausführung mit zylindr. Schaft
EL: Lange Ausführung mit zylindr. Schaft

APMX LH LS

Axialer Spanwinkel: -3° Radialer Spanwinkel: $0 - 35^{\circ}$

■ Fräskörper

Ersatzteile

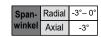
Bezeichnung			Ak	mes	sunge	n (m	m)		Anzahl	Axialer Span-	Radialer		Eintauch-																
Bezeichnung	Lager	DCX	DMM	DN	APMX	LF	LH	LS	der Zähne	winkel	Span- winkel	fräsen øBStandard	winkel		(N·m)														
WRCX 08012 ES	•	12	12	9,4	4	110	40	70	1	-3°	-35°		0°30'	BFTX 02505 IP	1 5	TRDR 08 IP													
08012 EM	l	12	12	9,4	4	150	70	80	1	-3	-33	-	0 30	DE 17 02303 IF	1,5	TINDIN 00 IF													
WRCX 08016 ES	•	16	16	14	4	120	50	70	1	-3°	-10°	24 ⁺⁷	5°30'																
08016 EM	•	16	16	14	4	150	70	80	1	-3	-10	24 - 4	3 30																
WRCX 08020 ES	•	20	20	18	4	130	50	80	2																				
08020 EM	•	20	20	18	4	180	100	80	2	-3° -3° 32 ^{±7} 13° ₅	-3° 32 ^{±7}		32 ^{±7} 13°	32 ^{±7} 13°	3° 32 ^{±7} 13° _г	32 ^{±7} 13°	32 ^{±7} 13°	DETY OSEGE ID	1 =	TDDD 00 ID									
08020 EL	•	20	20	18	4	250	130	120	2					BFTX 02506 IP	1,5	TRDR 08 IP													
WRCX 08025 ES	•	25	25	21	4	130	50	80	3			42 ^{±7} 8°20'																	
08025 EM	•	25	25	21	4	180	100	80	3	-3°	0°		8°20'	8°20'															
08025 EL	•	25	25	21	4	250	130	120	3																				
WRCX 10025 ES	•	25	25	21	5	130	50	80	2																				
10025 EM	•	25	25	21	5	180	100	80	2	-3°	0°	40 ^{±8}	13°10'																
10025 EL	•	25	25	21	5	250	130	120	2		0° 54 ^{±8}				2 0	TRDR 15 IP													
WRCX 10032 ES	•	32	32	28	5	130	50	80	3																			3,0	אטאו דו אטאו
10032 EM	•	32	32	28	5	200	120	80	3	-3°			8°																
10032 EL	•	32	32	28	5	300	180	120	3																				

■ Wendeschneidplatten für WRCX

Anwendung	Har	tmeta	all, be	eschio	chtet	Hartmetall unbesch.	Diamant beschicht.						Abb. 1	DEA DEA
Hochgeschw./Leichtbearb.	Р			K		KN	N						Abb. 1	
Allgemeine Anwendung		PM	PM	K			N							
Schruppen		PM	PM		K									
Bezeichnung	ACP100	ACP200	ACP300	ACK200	ACK300	도	1	Abmes	ssunge	n (mm) S	Abb.	Geeignete Fräser		IC 90° S
	ĕ	ĕ	ĕ	ĕ	₹	I	ᆸ	10		_			Abb. 2	
QPMT 080330 PPEN		•	•	•	•			8	3,0	3,18	1	WRCX 08000 E	ADD. Z	RE
080330 PPEN-H	•	•	•	•	•			8	3,0	3,18	1	VVKCX 00000 E		
QPMT 10T335 PPEN		•	•	•	•			10	3,5	3,97	1			
10T335 PPEN-H	•	•	•	•	•			10	3,5	3,97	1	WRCX 10000 E		IC S
QPET 10T350 PPFR-S						•	•	10	5,0	3,97	2			- C -

QPMT...: Standard-Typ (16-eckige Polygonausführung)

QPMT...-H: Stabilisierte Schneidkante

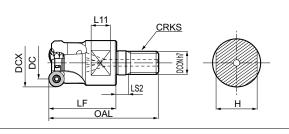

QPET...-S: Polierte, runde Wendeschneidplatte für Nicht-Eisenmetalle

■ Empfohlene Schnittbedingungen

ISO	Werkstückstoff		Schnittgeschwin- digkeit v _c (m/min)		Schneid- stoff
D	Kohlenstoffstahl	180–280 HB	80 –120 –160	0,10 –0,30 –0,40	ACP200
	Legierter Stahl	180–280 HB	60 –100 –140	0,10 –0,20 –0,30	ACP200
M	Rostfreier Stahl	-	60 –100 –120	0,10 -0,15 -0,20	ACP300
K	Grauguss	250 HB	60- 80 -120	0,10 -0,20 -0,30	ACK200
N	Nichteisenmetalle	_	200 –500 –1.000	0,10 –0,20 –0,30	DL1000

Austauschbare Fräsköpfe WRCX 800/10000/12000 M

Modularfräser



■ Fräskörper

(WRCX 08000M)

Für Schneidplattentyp: QPMT 0803

Bezeichnung				Abm	essu	nger	ո (m	m)			Anzahl
	Lager	DCX	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	der Zähne
WRCX 08020M10Z2	•	20	10,5	M10	49	30	5	19	8	15	2
WRCX 08025M12Z3	•	25	12,5	M12	56	35	5	21	10	19	3

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Fräskörper

Für Schneidplattentyp: QPOT 10T3

Bezeichnung			Abmessungen (mm) DCX DCON CRKS OAL LF LS2 LS L11 H								
bezeichnung	Lager	DCX	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	der Zähne
WRCX 10025M12Z2	•	25	12,5	M12	56	35	5	21	10	19	2
10028M12Z3		28	12,5	M12	56	35	5	21	10	19	2
WRCX 10030M16Z3		30	17,0	M16	63	40	5	23	10	24	3
10032M16Z3	•	32	17,0	M16	63	40	5	23	10	24	3

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Bezeichnungsschlüssel

WRCX
Fräser-

Bez.

08 Platten-

größe

020 Fräser-Ø

M10 Einschraub-

gewinde

Z2

Anzahl der Zähne

■ Fräskörper

Für Schneidplattentyp : QP⊖T	1204
Abmessungen (mm)	Anzahl

Fräsplatten sind nicht im Lieferumfang enthalten.

■ Wendeschneidplatten

	Anwendung	Har	tmeta	all, be	eschio	chtet	Hartmetall unbesch.	Diamant beschicht.	QPMT: 16-eckiger Typ für allg. Anwendung							
Hochge	schw./Leichtbearb.	Р			K		KN	N	QPM	QPMTH: 16-eckiger Typ mit verstärkten Schneidkanten						
Allgen	neine Anwendung		PM	PM	K			N	QPE	TS:	Rund	er Typ m	it scharfer Schneidkant	e für Aluminium		
	Schruppen		PM	M		K									254	
	Bezeichnung	ACP100	CP200	ACP300	ACK200	CK300		0	Abmes	Abb. Geeignete			Geeignete	Abb. 1		
_	bezeichhang	ACF	ACF	ACF	AC	AC	Ξ	DL1	IC	RE	S	ADD.	Fräser			
QPMT	080330 PPEN		•	•	•	•			8	3,0	3,18	1	WRCX 08000 M		IC 90° S	
	080330 PPEN-H	•	•	•	•	•			8	3,0	3,18	1	WINCX 00000 IVI		90°	
QPMT	10T335 PPEN		•	•	•	•			10	3,5	3,97	1				
	10T335 PPEN-H	•	•	•	•	•			10	3,5	3,97	1	WRCX 10000 M	Abb. 2	RE	
QPET	10T350 PPFR-S						•	•	10	5,0	3,97	2				
QPMT	120440 PPEN	•	•	•	•	•			12	4,0	4,76	1				
	120440 PPEN-H	•	•	•	•	•			12	4,0	4,76	1	WRCX 12000 M		IC .S.	
QPET	120460 PPFR-S						•	•	12	6,0	4,76	2			 	

■ Ersatzteile

ſ				
ı	Schraube		Schlüssel	
		(N) (N)		Geeignete Fräser
	BFTX 02506 IP	1,5	TRDR 08 IP	WRCX 08020M - WRCX 08025M

■ Empfohlene Schnittbedingungen

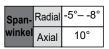
Durchmesser Ø20 – Ø32 mm

IS) Werkstückstoff		Schnittgeschwin- digkeit v _c (m/min)		Schneid- stoff
B	Kohlenstoffstahl	180–280 HB	80 –120 –160	0,10 -0,30 -0,40	ACP200
ľ	Legierter Stahl	180–280 HB	60 –100 –140	0,10 -0,20 -0,30	ACP200
N	Rostfreier Stahl	-	60 –100 –120	0,10 -0,15 -0,20	ACP300
K	Grauguss	250 HB	60- 80 -120	0,10 -0,20 -0,30	ACK200
N	Nichteisenmetalle	_	200 –500 –1.000	0,10 –0,20 –0,30	DL1000

Min.-Optimum-Max.

■ Ersatzteile

Schraube		Schlüssel	
	N·m		Geeignete Fräser
BFTX 03584 IP	3,0	TRDR 15 IP	WRCX 10025M - WRCX 10032M
BFTX 0409 IP	3,0	TRDR 15 IP	WRCX 12040M

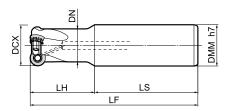

Durchmesser Ø40 mm

ISO	Werkstückstoff		Schnittgeschwin- digkeit v _c (m/min)		Schneid- stoff
Р	Kohlenstoffstahl	180–280 HB	100 –160 –200	0,20 -0,40 -0,60	ACP200
	Legierter Stahl	180–280 HB	100 –140 –180	0,20 –0,30 –0,40	ACP200
М	Rostfreier Stahl	-	80 –120 –160	0,10 –0,20 –0,30	ACP300
K	Grauguss	250 HB	80–12 0 –160	0,10 –0,20 –0,40	ACK200
N	Nichteisenmetalle	_	200- 500 -1.000	0,10 –0,30 –0,40	DL1000

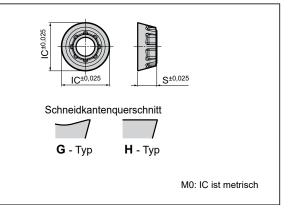
"Wave Mill" Radiusfräser RSX(F)08000/10000/12000 ES

Fräsen von Stahl, rostfreiem Stahl, Guss und hitzebeständigen Legierungen

Schaftfräser



■ RSX...ES – Standardausführung


			Abm	Anzahl	Gewicht				
Bezeichnung	Lager	DCX	DMM	DN	LH	LS	LF	Zähne	(kg)
RSX 08020 ES	•	20	20	16,9	30	70	100	2	0,3
08025 ES	•	25	25	21,9	40	80	120	3	0,4
RSX 10025 ES	•	25	25	20,3	50	80	130	2	0,4
10032 ES	•	32	32	27,1	50	80	130	3	0,7
RSX 12032 ES	•	32	32	25,6	50	80	130	2	0,7

■ RSXF...ES – Ausführung mit enger Zahnteilung

Dozeichnung	Lagar		Abm		Anzahl	Gewicht			
Bezeichnung	Lager	DCX	DMM	DN	LH	LS	LF	Zähne	(kg)
RSXF08020 ES	•	20	20	16,9	30	70	100	3	0,3
08025 ES	•	25	25	21,9	40	80	120	4	0,4
RSXF10025 ES	•	25	25	20,3	50	80	130	3	0,4
10032 ES	•	32	32	27,1	50	80	130	4	0,7
RSXF12032 ES	•	32	32	25,6	50	80	130	3	0,7

Schneidplatten

Anwendung	Sorte							
Hochgeschw./Leichtbearb.			M _S	M _S				
Allgemeine Anwendung	P _M		M _S	M _S	M _S			
Schruppen	M	K			M/S			
	200	300	100	200	300	Abm	iess.	Geeignete
Bezeichnung	ACP200	ACK300	ACM100	ACM200	ACM300	IC	s	Fräser
RDET 0803M0EN G	•	•	•	•	•	8	3,18	RSX(F) 08000ES
0803M0EN H	0	•	•	•	•	8	3,18	K3X(F) 00000E3
RDET 10T3M0EN G	•	•	•	•	•	10	3,97	RSX(F) 10000ES
10T3M0EN H	•	•	•	•	•	10	3,97	K3X(F) 10000E3
RDET 1204M0EN G	•	•	•	•	•	12 4,76		RSX(F) 12000ES
1204M0EN H	•	•	•	•	•	12	4,76	N3A(F) 12000E3

Ersatzteile

	Schlüssel	Schraube				
Geeignete Fräser		Thinks	(N·m)			
RSX(F) 08000ES	TRDR08IP	BFTX02506IP	1,5			
RSX(F) 10000ES	TRDR15IP	BFTX03584IP	3,0			
RSX(F) 12000ES	IKUKISIP	BFTX0409IP	3,0			

■ Bezeichnungsschlüssel

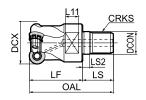
RSX	_ F	_10	025	ES
Fräser-	Enge	Platten-	Fräser-	Fräser-
bezeichnung	Zahnteilung	größe	durchmesser	ausführung

■ Empfohlene Schnittbedingungen

	•		0 0				
ISO		W	/erkstückstoff	Härte (HB)	Schnittgeschwindigkeit v _c (m/min)	Vorschub f_z (mm/Z)	Sorte
D	Kohlens	stoffstahl		180–280	100 –160 –200	0,20 -0,40 -0,60	ACP200
	Legierte	er Stahl		180–280	100 –140 –180	0,20 –0,30 –0,40	ACP200
		Cr	Ferritisch	200	150 –180 –200	0,15 –0,25 –0,35	ACM300
	Rost-	basierend	Martensitisch	200-330	80 –120 –180	0,15 –0,25 –0,35	ACM300
M	freier	Cr-Ni	Austenitisch	200	150 –180 –200	0,15 –0,25 –0,35	ACM300
	Stahl	basierend	Austenitisch, ferritisch	230–270	80 –120 –180	0,15 –0,25 –0,35	ACM200
	Starii	basierend	Ausscheidungshärtung	330	60 –100 –160	0,15 –0,25 –0,35	ACM200
K	Gussei	sen		250	80 –120 –160	0,10 –0,30 –0,40	ACK300
	Hitzebeständige Legier Titan		Ni basierendes Material	250-350	20 –30 – 40	0,10 -0,20 -0,30	ACM100
S			Reintitan	(Rm400)	60 –80 –100	0,10 -0,20 -0,30	ACM200
		ıııaıı	$\alpha + \beta$ Legierung	(Rm1050)	40 –50 –60	0,10 -0,20 -0,30	ACIVIZUU

Austauschbare Fräsköpfe RSX(F)08000/10000/12000 M

Modularfräser



(08000ES)

(10000ES)

(12000ES)

■ RSX...M - Standardausführung

Bezeichnung	-ager		-	Abme	essu	ınge	en (r	nm)			Anzahl	Gewicht
bezeichnung	Ľa	DCX	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Zähne	(kg)
RSX 08020M10Z2	•	20	10,5	M10	49	30	5	19	8	15	2	0,1
08025M12Z3	0	25	12,5	M12	56	35	5	21	10	19	3	0,1
08032M16Z4	0	32	17,0	M16	63	40	5	23	10	24	4	0,2
RSX 10025M12Z2	0	25	12,5	M12	56	35	5	21	10	19	2	0,1
10032M16Z3	•	32	17,0	M16	63	40	5	23	10	24	3	0,2
RSX 12032M16Z2	0	32	17,0	M16	63	40	5	23	10	24	2	0,2
12040M16Z3	•	40	17,0	M16	63	40	5	23	10	24	3	0,3

■ RSXF...M - Ausführung mit enger Zahnteilung

Bezeichnung	-ager		-		Anzahl	Gewicht						
Dezeichhung	La	DCX	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Zähne	(kg)
RSXF08020M10Z3	0	20	10,5	M10	49	30	5	19	8	15	3	0,1
08025M12Z4	•	25	12,5	M12	56	35	5	21	10	19	4	0,1
08032M16Z5	•	32	17,0	M16	63	40	5	23	10	24	5	0,2
RSXF 10025M12Z3	•	25	12,5	M12	56	35	5	21	10	19	3	0,1
10032M16Z4	•	32	17,0	M16	63	40	5	23	10	24	4	0,2
RSXF12032M16Z3	•	32	17,0	M16	63	40	5	23	10	24	3	0,2
12040M16Z4	•	40	17,0	M16	63	40	5	23	10	24	4	0,3

Schneidplatten

Scrineluplatter	!							
Anwendung		S	Sorte	•				
Hochgeschw./Leichtbearb.			<mark>™</mark> s	<mark>M</mark> ≤				
Allgemeine Anwendung	PM		<mark>M</mark> ≤	<mark>™</mark> s	M _S			
Schruppen	P _M	K			M _S			
	200	300	100	200	300	Abn	ness.	Geeignete
Bezeichnung	ACP200	ACK300	ACM100	ACM200	ACM300	IC	s	Fräser
RDET 0803M0EN G	•	•	•	•	•	8	3,18	DCV/E) 00000EC
0803M0EN H	0	•	•	•	•	8	3,18	RSX(F) 08000ES
RDET 10T3M0EN G	•	•	•	•	•	10	3,97	RSX(F) 10000ES
10T3M0EN H	•	•	•	•	•	10	3,97	K3A(F) 10000E3
RDET 1204M0EN G	•	•	•	•	•	12	4,76	RSX(F) 12000ES
1204M0EN H	•	•	•	•	•	12	4,76	N3A(F) 12000E3

H - Typ

Schneidkantenquerschnitt

G - Typ

M0: IC ist metrisch

Ersatzteile

	Schlüssel	Schraube	9
Geeignete Fräser		OFFICIAL	(N·m)
RSX(F) 08000M	TRDR08IP	BFTX02506IP	1,5
RSX(F) 10000M	TDDD45ID	BFTX03584IP	3,0
RSX(F) 12000M	TRDR15IP	BFTX0409IP	3,0

■ Bezeichnungsschlüssel

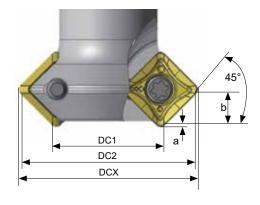
RSX	F	_10	025	M12	Z3
Fräser- bezeichnung	•		Fräser- durchmesser	Befestigungs- gewinde	Anzahl Zähne

■ Empfohlene Schnittbedingungen

			<u> </u>				•		
ISO		W	/erkstückstoff	Härte (HB)	Schnittgeschwindigkeit v _c (m/min)	Vorschub f _z (mm/Z)	Sorte		
D	Kohlens	stoffstahl		0,20 -0,40 -0,60	ACP200				
	Legierte	er Stahl		180–280	100 –140 –180	0,20 –0,30 –0,40	ACP200		
		Cr	Ferritisch	200	150 –180 –200	0,15 –0,25 –0,35	ACM300		
	Rost-	basierend	Martensitisch	200–330	80 –120 –180	0,15 –0,25 –0,35	ACM300		
M	freier	Cr-Ni	Austenitisch	200	150 –180 –200	0,15 –0,25 –0,35	ACM300		
	Stahl	basierend	Austenitisch, ferritisch	230–270	80 –120 –180	0,15 –0,25 –0,35	ACM200		
	Starii	basierend	Ausscheidungshärtung	330	60 –100 –160	0,15 –0,25 –0,35	ACM200		
K	Gussei	sen		250	80 –120 –160	0,10 –0,30 –0,40	ACK300		
			Ni basierendes Material	250-350	20 –30 –40	0,10 –0,20 –0,30	ACM100		
S			Reintitan	(Rm 400)	60 –80 –100	0,10 –0,20 –0,30	ACM100 ACM200		
		IIIaII	$\alpha + \beta$ Legierung	(Rm 1050)					

■ Allgemeine Eigenschaften

Der WaveMill WFXC-Typ ist ein hocheffizientes Werkzeug zum Anfasen mit Wendeschneidplatten der WFX-Serie. Das macht den WFXC-Typen geeignet für viele Werkstückstoffe, indem er eine Vielzahl an Schneidstoffen verwendet.

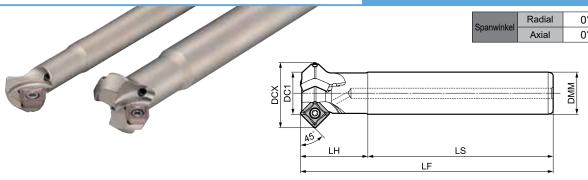

Anwendungshinweise

Da beim Anfasen der Abschnitt der geraden Schneidkante der Schneidplatte verwendet wird, ändert sich die Schneidkantenlänge zum Anfasen je nach Eckradius (RE) der genutzten Wendeschneidplatte.

Arbeitsdurchmesser: nutzbarer Bereich ≥ DC1 und ≤ DC2

Fasgröße: Das Werkstück kann mit der geraden Schneidkante zwischen den Punkten "a" und "b" gefast werden.

Fräskörper	Wendeschneidpla	atte	Min. Arbeits- durchmesser	Max. Arbeits- durchmesser	Min. Tiefe	Max. Tiefe	Max. Durch- messer
	Kat Nr.	RE	DC1	DC2	а	b	DCX
	SOMT 080304	0,4	7,5	15,8	0,1	4,1	17,8
WFXC 08008E	SOMT 080308	0,8	8,0	15,8	0,2	3,9	17,5
	SOMT 080312	1,2	8,5	15,8	0,4	3,6	17,2
	SOMT 080304	0,4	15,5	23,8	0,1	4,1	25,8
WFXC 08016E	SOMT 080308	0,8	16,0	23,8	0,2	3,9	25,5
	SOMT 080312	1,2	16,5	23,8	0,3	3,6	25,2
	SOMT 120404	0,4	24,6	38,3	0,1	6,8	41,3
WFXC 12025E	SOMT 120408	0,8	25,0	38,3	0,2	6,6	41,0
WFAC 12025E	SOMT 120412	1,2	25,6	38,3	0,4	6,3	40,7
	SOMT 120416	1,6	26,1	38,3	0,5	6,1	40,4
	SOMT 120404	0,4	31,6	45,3	0,1	6,8	48,3
WFXC 12032E	SOMT 120408	0,8	32,0	45,3	0,2	6,6	48,0
VVFAC 12032E	SOMT 120412	1,2	32,6	45,3	0,4	6,3	47,7
	SOMT 120416	1,6	33,1	45,3	0,5	6,1	47,4



Abmessungen (mm)

→ G26/G27

"Wave Mill" Serie

WFXC 08000/12000 E

■ Fräskörper WFXC 08000E (Standard-Typ)

Bezeichnung	ager		Abmessungen (mm)								
Bezeichhung	Ľá	DC1	DCX	LF	LH	LS	DMM	Zähne	(kg)		
WFXC 08008E	O	8	17,5	120	30	90	10	1	0,1		
08016E	O	16	25,5	120	30	90	16	2	0,2		

■ Fräskörper WFXC 12000E (Standard-Typ)

Dozoiehnung	ager		Abn	nessur	ngen (r	nm)		Anz. der	Gewicht
Bezeichnung	La	DC1	DCX	LF	LH	LS	DMM	Zähne	(kg)
WFXC 12025E	O	25	41,0	150	40	110	25	3	0,6
12032E	\mathbf{o}	32	48,0	150	40	110	32	3	1,0

■ Bezeichnungsschlüssel

Erweiterung

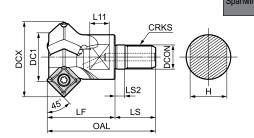
WFX	C	80	016	E_
Fräsertyp	Anfasen	Platten- größe	Fräskopf- durch-	Endmill- Typ
			messer	

■ Wendeschneidplatten

Abmessungen (mm)

	Anwendung			Н	artme	etall,	besc	hicht	tet			Hartmetall	DLC					
Hochges	chwindigkeits-/Leichtbearb.	K.		Р			K	K		M _S		K						
Allgeme	ine Anwendung	K G	RM		PM	PM	K	K		M _S	M _S		N	1				
Schrupp		N.	R _M		PM	PM			K		M _S		N	1				
	Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	H	DL1000	RE	Abb.	Geeignete Fräser		
SOMT	080304 PZER L	•	0	•	•	0	0	0	•	•	•	_	_	0,4	1		Abb. 1	
	080308 PZER L	•	0	0	•	•	0	•	•	•	•	_	_	0,8	1		ADD. I	
SOMT	080304 PZER G	•	0	•	•	•	0	•	•	•	•	_	_	0,4	1		RE RE	
	080308 PZER G	•	0	•	•	•	0	•	•	•	•	_	_	0,8	1			
	080312 PZER G	•		•	•	•		0	•	•	•	_	_	1,2	1			#-+
SOMT	080308 PZER H	•	0	•	•	•	0	•	•	•	•	_	_	0,8	1			
	080312 PZER H	•		•	•	•		0	•	0	•	_	_	1,2	1	WFXC08000E	8,0	3,175
SOET	080304 PZER G	•		0	0	0		0	•	•	0	_	_	0,4	1			1
	080308 PZER G	•		0	0	O		0	•	•	O	_	_	0,8	1		Abb. 2	
	080312 PZER G	•		0	•	0		0	•	0	O	_	_	1,2	1		ADD. 2	
SOET	080302 PZFR S	_	_	_	_	-	_	_	_	-	_	•	•	0,2	1			- F
	080304 PZFR S	_	-	-	_	-	_	_	-	_	-	•	•	0,4	1			
	080308 PZFR S	_	_	_	-	-	_	_	_	_	-	•	•	0,8	1			
SOMT	120408 PDER L	•	0	•	•	•	0	•	•	•	•	_	_	0,8	2		, (4
SOMT	120404 PDER G		0	0	•	•	0	•	•		•	_	_	0,4	2		12,7	4,76
	120408 PDER G	•	0	•	•	•	O	•	•	•	•	_	_	0,8	2			
	120412 PDER G	•		0	•	O		•	0	O	•	_	_	1,2	2	WFXC12000E		
	120416 PDER G	•		•	•	•		O	0	O	0	_	_	1,6	2			
SOMT	120408 PDER H	•	0	•	•	•	O	•	•	•	•	_	_	0,8	2			
SOET	120408 PDFR S			_	_	_		_	_	_	-	•	•	0,8	2			

■ Ersatzteile


	WSP Schrau	be	Schlüssel
Geeigneter Fräser		(S)	
WFXC08000E	BFTX0306IP	2,0	TRDR08IP
WFXC12000E	BFTX03512IP	3,0	TRDR15IP

■ Empfohlene Schnittbedingungen

ISO	Werkstoff	Härte (HB)	Schnittge- schwindigkeit	Vorschub
	Unlegierter Stahl	180–280	150 –200 –250	0,05 –0,10 –0,15
Р	Baustahl	≤180	180 –265 –350	0,10 –0,15 –0,20
	Werkzeugstahl	200–220	100 –150 –200	0,05 –0,10 –0,15
М	Rostfreier Stahl	-	150 –200 –250	0,05 –0,10 –0,15
K	Gusseisen	250	100 –175 –250	0,05 –0,10 –0,15

Modular-Typ

■ Fräskörper (WFXC 08000M)

Bezeichnung	ger		Abmessungen (mm)								Anz. der	Gewicht	
Dezelcillung	Lag	DC1	DCX	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Zähne	(kg)
WFXC08016M08Z2	0	16	25,5	8,5	M8	42	25	5	17	8	13	2	0,1


■ Bezeichnungsschlüssel

WFX	C	_08	016	M08	Z2
Fräsertyp	Anfasen	Platten- größe	Fräskopf- durch- messer	Schraubentyp	Anz. der Zähne

Radial

■ Fräskörper (WFXC 12000M)

Bezeichnung	ger		Abmessungen (mm) DC1 DCX DC0N CRKS OAL LF LS2 LS L11 H 25 41 012 5 M12 56 32 5 21 10 19								Anz. der	Gewicht	
bezeichnung	Ľá	DC1	DCX	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Zähne	(kg)
WFXC12025M12Z3	O	25	41,0	12,5	M12	56	32	5	21	10	19	3	0,1
12032M16Z3	O	32	48,0	17,0	M16	63	40	5	23	10	24	3	0,2

Wendeschneidplat	ten															Abn	nessungen (mm)
Anwendung			Н	artme	etall.	besc	hicht	et			Hartmetal	DLC					
Hochgeschwindigkeits-/Leichtbearb			Р			K	K		M _s		KN						
Allgemeine Anwendung	K S	K _M		PM	P _M	K	K		M _S	M _S		N					
Schruppen	K	R _M		PM	P _M			K		M _S		N	1				
Обларроп			0			8	0	0	00	_		0					
D : - b	25(22	5	22	ည	Š	18	8	120	33		8	RE		Geeignete		
Bezeichnung	ACU2500	XCU2500	ACP100	ACP200	ACP300	XCK2000	ACK200	ACK300	ACM200	ACM300	_	DL1000		Abb.	Fräser		
00147 000004 07501			∢	< <				< _	< _	< <	Ξ						
SOMT 080304 PZER L	•	0	•	•	0	0	0	•	•	•	_	_	0,4	1		Abb. 1	
080308 PZER L	•	0	0	•	•	0	•	•	•	•	-	_	0,8	1			<u>E_</u>
SOMT 080304 PZER G	•	0	•	•	•	0	•	•	•	•	_	_	0,4	1		1	
080308 PZER G	•	0	•	•	•	0	•	•	•	•	_	_	0,8	1			
080312 PZER G	•		•	•	•	_	0	•	•	•	_	_	1,2	1			TIT
SOMT 080308 PZER H	•	0	•	•	•	0	•	•	•	•	-	_	0,8	1		, (
080312 PZER H	•		•	•	•		0	•	0	•	_	_	1,2	_1_	WFXC08000E	8,0	3,175
SOET 080304 PZER G	•		0	0	0		0	•	•	0	_	_	0,4	1			
080308 PZER G	•		0	0	0		0	•	•	0	_	_	0,8	1		ALL 0	
080312 PZER G	•		0	•	0		0	•	O	0		_	1,2	1		Abb. 2	<u>E</u>
SOET 080302 PZFR S	-	-	-	-	_	-	-	_	_	_	•	•	0,2	1		+ (245)	
080304 PZFR S	-	-	-	-	-	-	-	-	-	-	•	•	0,4	1			
080308 PZFR S	_	_	_	_	_	_	_	_	_	_	•	•	0,8	1			
SOMT 120408 PDER L	•	0	•	•	•	0	•	•	•	•	_	_	0,8	2		, (
SOMT 120404 PDER G	•	0	0	•	•	0	•	•	•	•	-	_	0,4	2		12,7	4,76
120408 PDER G	•	0	•	•	•	0	•	•	•	•	-	_	0,8	2			
120412 PDER G	•		0	•	0		•	0	O	•	-	_	1,2	2	WFXC12000E		
120416 PDER G	•		•	•	•		O	0	0	0	_	_	1,6	2			
SOMT 120408 PDER H	•	O	•	•	•	O	•	•	•	•	-	_	0,8	2			
SOET 120408 PDFR S			_	_	_		_	_	_	_	•	•	0.8	2			

■ Ersatzteile

	Schraube	Schraube Schlüssel						
Geeigneter Fräser		(N-m)						
WFXC08000M	BFTX0306IP	2,0	TRDR08IP					
WFXC12000M	BFTX03512IP	3,0	TRDR15IP					

■ Empfohlene Schnittbedingungen

	•		0 0	
ISO	Werkstückstoffe	Härte (HB)	Schnittge- schwindigkeit	Vorschub
	Unlegierter Stahl	180–280	150 –200 –250	0,05 –0,10 –0,15
Р	Baustahl	≤180	180 –265 –350	0,10 –0,15 –0,20
	Werkzeugstahl	200–220	100 –150 –200	0,05 –0,10 –0,15
М	Rostfreier Stahl	-	150 –200 –250	0,05 –0,10 –0,15
K	Gusseisen	250HB	100 –175 –250	0,05 –0,10 –0,15
				Min - Ontimal - Max

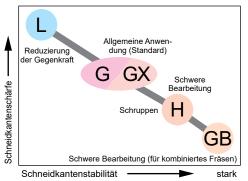
Alnex ANX - Serie

■ Eigenschaften

- Drastisch verkürzte Einstellzeit des Planlaufs Die Schraubverbindungen ermöglichen und vereinfachen die sehr leichte Feinjustierung.
- Direkte Kühlmittelzufuhr durch den Schneideinsatz Die interne Kühlmittelzufuhr führt präzise zur Schneidkante und stellt eine hervorragende Spankontrolle sicher.
- Leichter Fräskörper aus Aluminiumlegierung Durch eine Aluminiumlegierung wird bei einem Fräser vom Durchmesse Ø 125 mm mit 22 Zähnen ein Gesamtgewicht von weniger als 1,3 kg erreicht.

Produktpalette

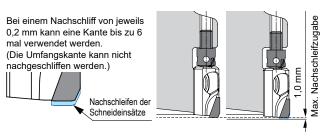
Ausfüh- rung	Bezeichnung	Material	Durchmesserbereich (mm) / Anzahl Zähne									
Aus	2 Bezelermang	iviateriai	Ø 25	Ø 30	Ø 32	Ø 40	Ø 50	Ø 63	Ø 80	Ø 100	Ø 125	Ø 160
- E	ANXA 16000RS	Aluminium- legierung		G78					6, 10, 14	8, 12, 18	10, 14, 22	12, 20, 28
Aufsteckfräser	ANXA 16000R (Inch)	Aluminium- legierung							6, 10, 14	8, 12, 18	10, 14, 22	12, 20, 28
nfstec	ANXS 16000RS	Stahl		G80		4, 6	4, 6, 9	6, 8, 12	6, 10, 14	8, 12, 18	10, 14, 22	
∢	ANXS 16000R (Inch)	Stahl						6, 8, 12	6, 10, 14	8, 12, 18	10, 14, 22	
Schaft- fräser	ANXS 16000E	Stahl	2	3, 4	3, 4	4, 6	4, 6, 9					
Modu- lar	ANXS 16000M	Stahl	2	3, 4	3, 4	4, 6						


→ M58-M69 Inch Zollbohrung

Schneideinsätze - Ausführungen

Werkstück- stoff		N											
Anwendung	Schlichten / Leicht- bearbeitung	Allgemeine Anwendung	Schruppen		Mischbearbei- tung *1	Eckenradius- fräsen Eckenradius- fräsen		Schlichten	Gratfreie / Hoch- glanzbearbeitung				
Eigenschaft	Geringe Schnittkraft	Standard	Lange Schneidkante	Stabile Ausführung	Stabile Ausführung	Eckenradius 0,4	Eckenradius 0,8	Wiper	Wiper				
Тур	L	G	GX	Н	GB	-	-	W	WS				
Schneid- kanten- geometrie	25°	² 01	20.4 R150	Stabile Schneide	Stabile Schneide	R0.4	R0.8	R150	R150				
Kantenlänge (*2)	6,0 mm	6,0 mm	9,0 mm	6,0 mm	6,0 mm	6,0 mm	6,0 mm	2,0 mm	_				

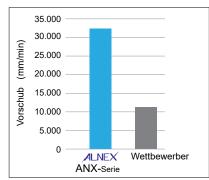
^{*1} Mischbearbeitung (Gusseisen und Aluminiumlegierung)


Schneidkantenauswahl

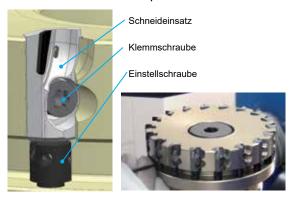
*2 Kantenlänge GX-Typ = 9,0 mm

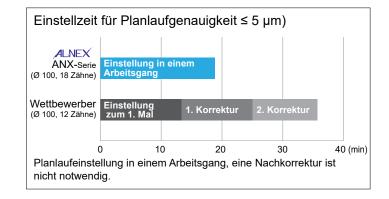
 Geringere Betriebskosten durch eine drastische Verbesserung der Schneideinsätze, Nachschleifzugabe bis 1,0 mm

Wenn Sie nachgeschliffene Schneideinsätze verwenden möchten, so nutzen Sie immer Einsätze gleicher Höhe aus nachgeschliffenen Sets, um die Balance zu halten.


Leistungen

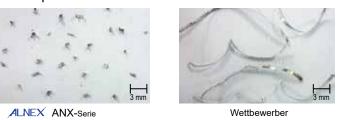
 Hochgeschwindigkeitsbearbeitung / Hocheffizientes Fräsen Bei der Bearbeitung mit vf = 30.000 mm/min wird eine sehr hohe Produktivität erzielt.




Vergleich: Fräserdurchmesser Ø 100 mm

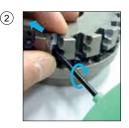
	Spindeldrehzahl min ⁻¹	Anzahl der Zähne	Vorschub v _f (mm/min)
ANX-Serie	18.000	18	32.400
Wettbe- werber	9.500	12	11.400

- Sehr kurze Einstellzeit bei bester Planlaufgenauigkeit
- Einfache Schraubklemmung
- Feineinstellungen sind leicht vorzunehmen
- Sehr stabiler Fräskörper

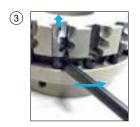


Spankontrolle

Kurze Späne durch direkte Kühlmittelzufuhr



 $v_c = 2500 \text{ m/min, } f_z = 0.05 \text{ mm/Z, } a_p = 0.5 \text{ mm, nass}$


Einstellung der Schneideinsätze, Ausrichtung des Rundlaufs

Setzen Sie den Schneideinsatz in den Plattensitz ein.

Während Sie den Schneideinsatz gegen den Sitz drücken, montieren Sie die Klemmschraube mit dem mitgelieferten Schraubenschlüssel und ziehen Sie diese leicht an. (empfohlenes Drehmoment bertägt 1 N·m)

Werkstückstoff:

Schnittdaten:


Verwenden Sie den mitgelieferten Schlüssel, um den Planlauf des Fräsers über die vorgesehene Schraube einzustellen.

Ziehen Sie die Klemmschraube vollständig an. (empfohlenes Drehmoment ist

ANXS 16000 **E**



-2 – 0°

■ ANXS-Fräskörper (Stahl)

Abmessungen (mm)

Bezeichnung	Lager	DC	DCX	DMM	LH	LS	LF	Anzahl Zähne	Gewicht (kg)
ANXS 16025E02	•	23	25	20	35	60	95	2	0,2
16030E03	•	28	30	20	35	60	95	3	0,3
16030E04	•	28	30	20	35	60	95	4	0,3
16032E03	•	30	32	20	35	60	95	3	0,3
16032E04	•	30	32	20	35	60	95	4	0,3
16040E04	•	38	40	20	40	60	100	4	0,4
16040E06	•	38	40	20	40	60	100	6	0,5
16050E04	O	48	50	32	40	80	120	4	1,0
16050E06	•	48	50	32	40	80	120	6	1,0
16050E09	•	48	50	32	40	80	120	9	1,0

Die Schneideinsätze werden separat verkauft. Bei Verwendung einer Schneide für die Eckenradiusbearbeitung (ANB1604R/ANB1608R) DC = DCX. Die Gewichtsangabe umfasst das Gewicht des Schneideinsatzes und der Ersatzteile.

■ Identifikation des Fräskörpers

ANX	S	16	032	Е	04
Fräser-	Stahl-	Schneid-	Fräser-	Schaft-	Anzahl
bezeichnung	körper	einsatzgröße	durchmesser	ausführung	Zähne

ANXS 16000 **E**

■ Schneideinsätze

Abmessungen (mm)

		_								
Anv	wendung	SUM	1IDIA	CVD						
Hochgesch	hw./Leichte Bearb.		K	N	<u>→ </u> 1	<mark>/160-</mark> I	M61			
Allgemeir	ne Anwendung	N	K							
Schruppe	en	N	K							_
Bez	zeichnung	DA1000	DA90	SCV10	Schneid- kanten- länge	RE	Form der Wiperkante	Anwendungen	Abb.	Abb. 1 Abb. 2 Abb. 3 Ab
ANB 160	00R-L	•		_	6,0	_	linear	Geringe Schnittkraft	1	
160	00R-G	•		_	6,0	_	bogenförmig	General Purpose	1	Abb. 4 16 Abb. 5 16
160	00R-GB		$ \bullet $	_	6,0	_	bogenförmig	Mischbearbeitung*	1	2,0
160	00R-H	•	-	_	6,0	_	bogenförmig	Starke Kante	1	
160	00R-GX	O		_	9,0	_	bogenförmig	Lange Schneide	2	
160)4R	O		-	6,0	0,4	linear	Eckenradius	3	Wiperschneide Wiperschneide
160)8R	O		_	6,0	0,8	linear	Eckenradius	3	
160	00R-W	O		_	2,0	_	bogenförmig	Wiper	4	
160	00R-WS	_	_		_	_	bogenförmig	Wiper	5	

^{*} Gusseisen/Aluminiumlegierung

■ Empfohlene Schnittbedingungen

Si-Gehalt ≤ 12,6 %

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
Z	Aluminiumlegierung	_	2.000 –2.500 –3.000	0,05 –0,13 –0,20	DA1000

Si-Gehalt > 12,6 %

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
N	Aluminiumlegierung	_	400 –600 –800	0,05 –0,13 –0,20	DA1000 DA90

Mischbearbeitung (Gusseisen und Aluminiumlegierung)

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
K	Aluminiumlegierung	_	300 –400 –500	0,05 –0,13 –0,20	DA90

Die oben genannten empfohlenen Schnittbedingungen sind als Richtwerte zu verstehen. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Ersatzteile

zu halten.

Separat erhältlich.

	Klemmsch	raube	Einstell- schraube	Schlüssel	Einstell- schlüssel	Montage- schlüssel
Geeignete Fräser	(a)	(N·m)		\$		F
ANXS 160E	BXA0310IP	2,0	HFJ	TRXW10IP	ANT	HFVT

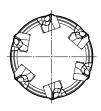
Der Einstellschlüssel (ANT) kann auch zur Höheneinstellung des Fräsers vom Typ RF für die Hochgeschwindigkeitsbearbeitung und des Fräsers vom Typ HF für die Hocheffizienzbearbeitung verwendet werden.

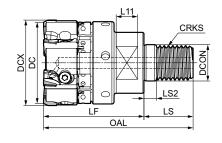
Setup der Wiperschneide Тур: **L, G, GX, H** Achten Sie bei der Verwendung der Wiperplatte darauf, dass Sie ein Schneidwerkzeug mit einer geraden Anzahl von Schneidkanten verwenden und die Wiperplatten an gegenüberliegenden Positionen DCX DCX anbringen, um das Gleichgewicht

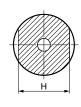
■ Max. zulässige Spindeldrehzahl

Bezeichnung	n max (min ⁻¹)
ANXS 16025E02	10.000
16030E03	10.000
16030E04	10.000
16032E03	10.000
16032E04	10.000
16040E04	10.000
16040E06	10.000
16050E04	10.000
16050E06	10.000
16050E09	10.000

ANXS 16000 M




Modularfräser


Span-	Radial	-2 – 0°
winkel	Axial	+5°

■ ANXS-Fräskörper (Stahl)

Abmessungen (mm)

Bezeichnung	Lager	DC	DCX	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Anzahl Zähne	Gewicht (kg)
ANXS 16025M12Z02	0	23	25	12,5	M12	61	40	5	21	10	19	2	0,1
16030M16Z03	0	28	30	17,0	M16	70	47	5	23	10	24	3	0,2
16030M16Z04	0	28	30	17,0	M16	70	47	5	23	10	24	4	0,2
16032M16Z03	0	30	32	17,0	M16	70	47	5	23	10	24	3	0,3
16032M16Z04	0	30	32	17,0	M16	70	47	5	23	10	24	4	0,3
16040M16Z04	0	38	40	17,0	M16	70	47	5	23	10	24	4	0,4
16040M16Z06	0	38	40	17,0	M16	70	47	5	23	10	24	6	0,4

Die Schneideinsätze werden separat verkauft. Bei Verwendung einer Schneide für die Eckenradiusbearbeitung (ANB1604R/ANB1608R) DC = DCX. Die Gewichtsangabe umfasst das Gewicht des Schneideinsatzes und der Ersatzteile.

■ Identifikation des Fräskörpers

_ 140111	mano	400 .	raskorpe	,,,
ΔΝΥ	S	16	032	M16

ANX	S	16	032	M16	Z 03		
Fräser- bezeichnung	Stahl- körper	Schneid- einsatzgröße	Fräser- durchmesser	Schrauben- größe	Anzahl Schneidein- sätze		

ANXS 16000 M

■ Schneideinsätze

Anwendung	SUN	11DIA	CVD						
Hochgeschw./Leichte Bearb.	N	K	N	→ N	<mark>/160-</mark>	M61			
Allgemeine Anwendung	N	K							
Schruppen	N	K							
Bezeichnung	DA1000	DA90	SCV10	Schneid- kanten- länge	RE	Form der Wiperkante	Anwendungen	Abb.	Abb. 1 Abb. 2 Abb. 3 Ab
ANB 1600R-L	•		_	6,0	_	linear	Geringe Schnittkraft	1	
1600R-G	•		_	6,0	_	bogenförmig	General Purpose	1	Abb. 4 16 Abb. 5 16
1600R-GB		$ \bullet $	_	6,0	_	bogenförmig	Mischbearbeitung*	1	2,0
1600R-H	•	-	_	6,0	_	bogenförmig	Starke Kante	1	
1600R-GX	0		_	9,0	_	bogenförmig	Lange Schneide	2	
1604R	0		-	6,0	0,4	linear	Eckenradius	3	Wiperschneide Wiperschneide
1608R	0		_	6,0	0,8	linear	Eckenradius	3	
1600R-W	0		_	2,0	_	bogenförmig	Wiper	4	
1600R-WS	_	-		_	_	bogenförmig	Wiper	5	

^{*} Gusseisen/Aluminiumlegierung

■ Empfohlene Schnittbedingungen

Si-Gehalt ≤ 12,6 %

Si-Gehalt ≤ 12,6 % Min Optimum - M										
	ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte				
	N	Aluminiumlegierung	_	2.000 –2.500 –3.000	0,05 –0,13 –0,20	DA1000				

Si-Gehalt > 12,6 %

Min	Optimum	-	Max
-----	---------	---	-----

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit vc (m/min)	Vorschub fz (mm/Z)	Sorte
N	Aluminiumlegierung	_	400 –600 –800	0,05 –0,13 –0,20	DA1000 DA90

Mischbearbeitung (Gusseisen und Aluminiumlegierung)

Min. - Optimum - Max.

ISO	ISO Werkstückstoff		Schnittgeschwindig- keit vc (m/min)	Vorschub fz (mm/Z)	Sorte
K	Aluminiumlegierung	_	300 –400 –500	0,05 –0,13 –0,20	DA90

Die oben genannten empfohlenen Schnittbedingungen sind als Richtwerte zu verstehen. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Ersatzteile

zu halten.

Sanarat	orhältlich

	Klemmsch	raube	Einstell- schraube	Schlüssel	Einstell- schlüssel	Montage- schlüssel
Geeignete Fräser		(N·m)		5		F
ANXS160M_Z	BXA0310IP	2,0	HFJ	TRXW10IP	ANT	HFVT

Der Einstellschlüssel (ANT) kann auch zur Höheneinstellung des Fräsers vom Typ RF für die Hochgeschwindigkeitsbearbeitung und des Fräsers vom Typ HF für die Hocheffizienzbearbeitung verwendet werden.

Setup der Wiperschneide Тур: **L, G, GX, H** Achten Sie bei der Verwendung der Wiperplatte darauf, dass Sie ein Schneidwerkzeug mit einer geraden Anzahl von Schneidkanten verwenden und die Wiperplatten an gegenüberliegenden Positionen anbringen, um das Gleichgewicht DCX

■ Max. zulässige Spindeldrehzahl

Bezeichnung	n max (min-1)
ANXS 16025M12Z02	10.000
16030M16Z03	10.000
16030M16Z04	10.000
16032M16Z03	10.000
16032M16Z04	10.000
16040M16Z04	10.000
16040M16Z06	10.000

ollhartmetall-Schaftfräser

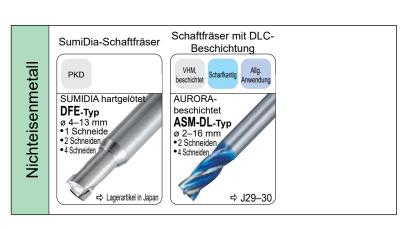
Vollhartmetall-Schaftfräser

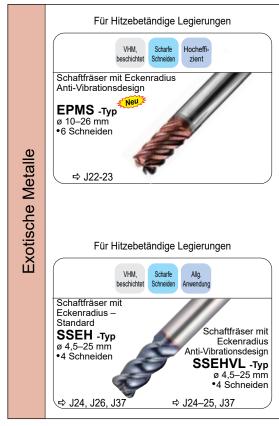
J1-J44

	Auswaiii	Nach Schaillasertyp und Werkstuckston	JZ-J
Beschichtete Schaftfräs	ser GSX MILL-Serie	Neue GSX "Global Standard"-Schaftfräser	J4–6
	GSX MILL-Serie	GSX 20000	J7–11
		GSX 30000	<mark>J12</mark> –13
	Zum Nutfräsen	GSXSLT 30000	J14
		GSX 40000	<mark>J15</mark> –19
	Anti-Vibrations-Typ	GSXVL 40000	J20–21
	Zum Hochleistungsfräsen	EPMS 4000/5000/6000	<mark>J22</mark> –23
	SSEH MILL-Serie für exotische Legierungen	SSEHVL 4000 W-R / SSEH 4000 W-R	J24-26
	"Global Standard" Typ, Zum Schruppen	GSRE 4000 SF	J27
	Zum Hartfräsen	GSH 4000/6000/8000 SF	J28
	"AURORA"-Typ Schaftfräser	ASM 2000/4000 DL / DL-R	J29–30
	"SSUP"-Typ	SSUP 4000 ZX/ZX-R	J32–33
	Zum Hartfräsen	LHHM 4000/6000/8000 ZX	J31
		EHHM 4000/6000/8000 ZX	J31
	GSX-Mill Kugelbahnfräser	GSXB 20000	J34
	"AURORA"-Kugelbahnfräser	SNB 2000 DL	
Unbeschichtete Schaftf	räser		
	Für Aluminium	ASM 2000	J36
	SSEH MILL-Serie für exotische Legierungen	SSEHVL 4000-R / SSEH 4000-R	J37
	Standard-Typ	SSM 2000/4000	J38–39
	BORON "Helical Master" für gehärteten Stahl	BNES 1000	
SUMIBORO	N "Mould Finish Master" für gehärteten Stahl	BNBP 2R4/6	
	CLIMIDIA "Manual Cinials Mantau" Disabulas	NEEDER (NEEDER)	140 40

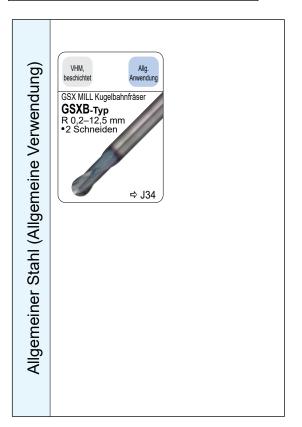
Auswahl

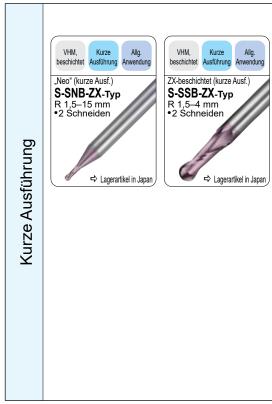

Nach Schaftfräsertyp und Werkstückstoff

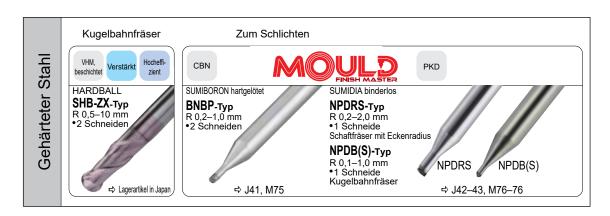

Eck-/Nutenfräser

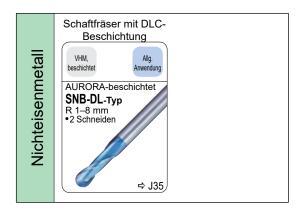

| Compound | Compound

Legende Schneidstoff Schneidkante Anwendung

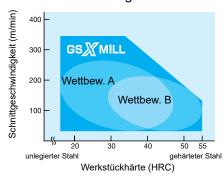


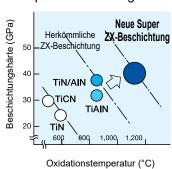

ollhartmetall Schaftfräser


Vollhartmetall-Schaftfräser **Auswahl**

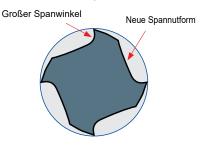

■ Nach Schaftfräsertyp und Werkstückstoff

Kugelbahnfräser

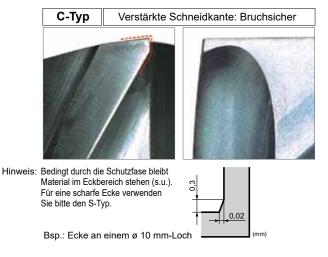

GSX MILL-Serie


Anwendungsmerkmale

- ☑ Die große Auswahl aus 2, 3 und 4 schneidigen Fräsern in 4 unterschiedlichen Schneidlängen bieten den Einsatz in einem breiten Anwendungsfeld.
- Das feine Hartmetallsubstrat mit seiner hohen Z\u00e4higkeit erlaubt die Nassbearbeitung mit exzellenter Best\u00e4ndigkeit gegen Thermoschock
- Die GSX-Beschichtung bietet eine h\u00f6here Zuverl\u00e4ssigkeit und eine l\u00e4ngere Standzeit.
- Der große Spanwinkel und das neue Design der Spannut erhöhen die Schärfe und führen zu einer besseren Spanabfuhr.
- Die gefaste Schneidenvariante bietet eine h\u00f6here Schneidenstabilit\u00e4t.
- Die scharfkantige "S" Variante wurde der Schneidenlänge L/D 2 hinzugefügt.


Verschleißbeständigkeit

Temperaturbeständigkeit


Verbesserte Spanabfuhr

Der große Spanwinkel, kombiniert mit dem neuen Design der Spannut, führt zu einer schärferen Schneidkante und ermöglicht eine bessere Spanabfuhr.

■ 2 Schneidkantenvarianten erweitern die Bearbeitungsmöglichkeiten. Schärferer S-Typ und bruchbeständiger C-Typ als neue Variante in der 2D-Serie.

Anwendungsbereich

	Р						Н		M	5	3	K		N	
	딛	اد		ΙΊ			härte Stahl	ter	_		е				
	Unlegierter Stahl	Kohlenstoffstahl	Legierter Stahl	Vergüteter Stahl	Werkzeugstahl	45 ~ 55 HRC	55 ~ 60 HRC	60 ~ 65 HRC	Rostfreier Stahl	Ti-Legierung	Hitzebeständige Legierung	Grauguss	Al-Legierung	Cu-Legierung	Graphit
	$\overline{\bigcirc}$	0	0	0	0	<u>`</u>			0						
L))		*1									

○ : Empfohlen

ohne: Nicht empfohlen *1: GSXSLT30000C wird für 50HRC oder weniger empfohlen.

Empfohlene Fräsanwendungen

Anwendung	Schulte	erfräsen	Vollnu	tfräsen	Nutfertigfräsen		
Form							
	Schruppen	Schlichten	Schruppen	Schlichten	Schruppen	Schlichten	
S-Typ		0		0		0	
С-Тур	0	0	0	0	0	0	

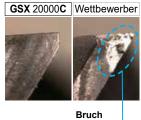
S-Typ ideal für Innenflächen

*2: Für geringe Schnitttiefen

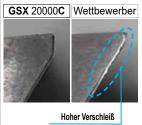
GSX MILL-Serie

Produkte

	A			Spannutlänge		
Anwendung	Anz. der Zähne	1,5 D	2	D	3 D	4 D
	Zaille	С-Тур	S-Typ	С-Тур	С-Тур	С-Тур
		GSX20000C-1.5D	GSX20000S-2D	GSX20000C-2D	GSX20000C-3D	GSX20000C-4D
	2					
		⇒ J7	⇒ J8	⇒ J9	⇒ J 10	⇒ J 11
Allg.		GSX30000C-1.5D		GSX30000C-2D		
Anwendung	3					
		⇒ J 12		⇒ J 13		
		GSX40000C-1.5D	GSX40000S-2D	GSX40000C-2D	GSX40000C-3D	GSX40000C-4D
	4		77.75	The state of the s		
		⇒ J 15	⇒ J 16	⇒ J 17	⇒ J 18	⇒ J 19
		GSXSLT30000C-1.5D				
Bohrnutfräsen	3					
		⇒ J 14				


- Mehrzweck-Nutenfräser "GSX-SLT"
- Das optimierte Nut-Design der kurzen 3-schneidigen Ausführung (1,5D) reduziert die Schnittkräfte.
 - ① Bohren und Nutfräsen sowie weitere konstante Anwendungen sind möglich.
 - ② Ideal zum Einsatz in dünnen Platten und auf kleinen Bearbeitungsmaschinen.

Anwendungsbeispiele


Nutenfräsen in Kohlenstoffstahl mit GSX20000C

Schutzfase für stärkere Schneidkante. Werkzeugabmessung ø 6 (2 Schneiden) Werkstoff C50 Schnittgeschwindigkeit vc = 87 m/min n = 4615 U/min Vorschub ft = 0.06 mm/Zahn $v_f = 553 \text{ mm/min}$ Schnitttiefe $a_0 = 3 \text{ mm}$ Schnittbreite a_e = 6 mm Kühlmittel trocken

Vertikal-Bearbeitungszentrum (BT50)

Nutenfräsen in Gusseisen mit GSX20000C

GSX-Beschichtung für verbesserte Verschleißbeständigkeit. Werkzeugabmessung ø 10 (2 Schneiden) Werkstoff GGG60 Schnittgeschwindigkeit vc = 66 m/min n = 2100 U/min Vorschub ft = 0,072 mm/Zahn $v_f = 302 \text{ mm/min}$ Schnitttiefe ap = 5 mm. 5 Durchgänge Schnittbreite a_e = 10 mm trocken Vertikal-Bearbeitungszentrum (BT40)

Bearbeitung von rostfreiem Stahl mit GSX20000C

ø 10 (2 Schneiden) Werkzeugabmessung X5 CrNi 1812 Schnittgeschwindigkeit vc = 50 m/min n = 1591 U/min Vorschub ft = 0.04 mm/Zahn $v_f = 27 \text{ mm/min}$ Schnitttiefe $a_p = 10 \text{ mm}$ Schnittbreite $a_e = 0.5 \text{ mm}$ nass Vertikal-Bearbeitungszentrum (BT50)

Oberflächenfräsen von C50 mit GSX20000S GSX 20000S Wettbewerber

S-Typ bietet optimale Schnittleistung. Werkzeugabmessung ø 6 (2 Schneiden) C50 Schnittgeschwindigkeit vc = 87 m/min n = 4615 U/min Vorschub ft = 0,06 mm/Zahn $v_f = 553 \text{ mm/min}$ Schnitttiefe $a_p = 10 \text{ mm}$ Schnittbreite $a_e = 0.3 \text{ mm}$ Mikroausbruch Vertikal-Bearbeitungszentrum (BT50)

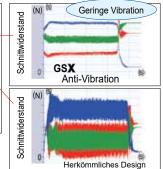
GSX MILL Anti-Vibrationsfräser (Standard/Radien Typ)

- Anwendungsmerkmale
- Ungleicher Drall und Zahnteilung führen zu:
 - weniger Vibration und höhere Bruchsicherheit
- geringeren Schnittkräften diese ermöglichen
- Hochgeschwindigkeits- und Hochvorschubfräsen
- Verrundete Schneidkanten verbessern die bearbeitete Oberflächenqualität (ab ø 4 mm)

Produkte

GSX MILL Anti-Vibrationsfräser (Standard)

		, ,	
Serie	Anz. der Zähne	Serie	DC (mm)
GSXVL4000-2.5D	4	⇒.120	ø 2 – ø 20


GSX MILL Anti-Vibrationsfräser mit Eckenradius

Serie	Anz. der Zähne	Serie	DC (mm)
GSXVL4000-R-2.5D	4	⇒ J 21	ø 3 – ø 20

■ Anwendungsbereich

V_c (m/min) Schnittwiderstand 150 (vc= 120 m/min) GSX Anti-Vibration 100 Herkömmliches Design 1D 2D 3D Schnitttiefe

■ Schnittkräfte

Anwendungsbereich

Oberflächengüte

GSX Anti-Vibration

Wettbewerber-Anti-Vibration

Kein Rattern Saubere Oberfläche

Minimales Rattern Schlechte Oberfläche Starkes Rattern

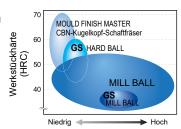
Schlechte Oberfläche

Herkömmliches Design

Werkstoff: Nutenfräsen: Werkzeugabmessungen: ø 10

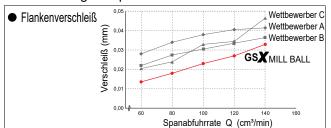
n = 4 800 U/min Schnittbedingungen: $v_f = 800 \text{ mm/min}$ Schnitttiefe $a_p = 10 \text{ mm}$ Aufnahme: BT50

GSX MILL Radiusfräser


Anwendungsmerkmale

- Neue Beschichtung in Verbindung mit einem feinkörnigen Hartmetall-Substrat führt zu besserer Temperatur- und Verschleißbeständigkeit.
- Großer Drallwinkel an der Schneidkante verringert den Schnittwiderstand.
- Neues Design der vergrößerten Spantasche begünstigt eine bessere Spanabfuhr.
- ☑ Erweiterung des Bearbeitungsbereiches von unlegierten bis zu gehärteten Stählen. Dadurch höhere Zuverlässigkeit und lange Standzeiten.

Produkte


Serie	Anz. der Zähne	Serie	DC (mm)
GSX-B 20000	2		R=ø0,2 – ø15 (DC=0,2 – 30)

Anwendungsbereich

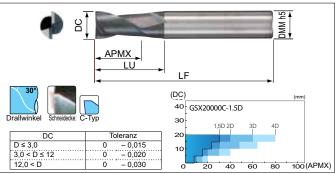
Spanabfuhrrate Q (cm³/min)

Anwendungsbeispiele

Herkömmliches Werkzeug (Schnittlänge 80 m) Nicht weiter einsetzbar

Werkstoff:

Werkzeugabmessungen: Schnittbedingungen:


X40CrVMo5-1 (50 HRC)

R3 (2 Schneiden) v_c= 179 m/min (n = 9.500 U/min) v_f = 2.250 mm/min (ft = 0,12 mm/Zahn

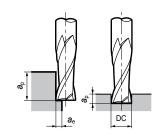
 $a_p = 0.2 \sim 1.0 \text{ mm}, \quad a_e = 0.3 \text{ mm}, \quad \text{nass}$ Ausrüstung: Vertikal-Bearbeitungszentrum BT40 Mikroausbrüche in der Mitte Starker Verschleiß an der Flankenfläche

Schaftfräser mit 2 Schneiden

Schneidstoff: ACF20

■ Fräserbezeichnung (nur GSX MILL Serie)

GSX 0100 Durchmesser Seriencode Anz. der Schneidkante Länge der Zähne Schneidkante

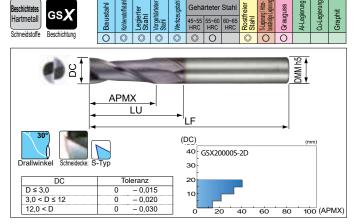

> S: Scharfe Schneidkante C: Verstärkte Schneidkante

Schaftfräser

Schailliasei						<u>(mm)</u>
Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSX 20100C-1.5D	•	1,0	1,5	2,5	40	4
GSX 20150C-1.5D	0	1,5	2,3	3,3	40	4
GSX 20200C-1.5D	•	2,0	3,0	4,0	40	4
GSX 20250C-1.5D	•	2,5	3,8	4,8	40	4
GSX 20300C-1.5D	•	3,0	4,5	6,0	45	6
GSX 20350C-1.5D	•	3,5	5,3	6,8	45	6
GSX 20400C-1.5D	•	4,0	6,0	7,5	45	6
GSX 20450C-1.5D	•	4,5	6,8	8,3	50	6
GSX 20500C-1.5D	•	5,0	7,5	9,5	50	6
GSX 20550C-1.5D		5,5	8,3	10,3	50	6
GSX 20600C-1.5D	•	6,0	9,0	_	50	6
GSX 20700C-1.5D		7,0	11,0	13,0	60	8
GSX 20800C-1.5D	•	8,0	12,0	_	60	8
GSX 20900C-1.5D	•	9,0	14,0	16,0	70	10
GSX 21000C-1.5D	•	10,0	15,0	_	70	10
GSX 21200C-1.5D	•	12,0	18,0	_	75	12
GSX 21400C-1.5D		14,0	21,0	24,5	90	16
GSX 21500C-1.5D		15,0	23,0	26,5	90	16
GSX 21600C-1.5D		16,0	24,0	_	90	16
GSX 22000C-1.5D		20,0	30,0	_	100	20

■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.


Schulterfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütet Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	ıhl,
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	19.600	250	19.600	250	19.600	250	18.300	180	12.700	100	9.000	60	11.000	70	9.000	50
2,0	11.200	340	11.200	340	11.200	340	10.500	240	7.300	130	5.300	80	6.400	90	5.300	70
4,0	6.400	460	6.400	460	6.400	460	6.000	320	4.200	180	3.000	110	3.600	120	3.000	90
6,0	4.600	560	4.600	560	4.600	560	4.300	400	3.000	210	2.200	130	2.700	140	2.200	100
8,0	3.400	560	3.400	560	3.400	560	3.200	400	2.200	210	1.600	130	2.000	140	1.600	100
10,0	2.800	560	2.800	560	2.800	560	2.600	400	1.800	210	1.300	130	1.600	140	1.300	100
12,0	2.300	560	2.300	560	2.300	560	2.200	400	1.500	210	1.100	130	1.300	140	1.100	100
16,0	1.700	450	1.700	450	1.700	450	1.600	320	1.100	180	800	100	1.000	110	800	85
20,0	1.350	380	1.350	380	1.350	380	1.300	280	900	160	650	90	800	100	650	75
Schulterfräsen a	p	1,5 DC 1,0 DC														
a	е				0,05	DC		·					0,02	DC		

■ Mutfräcen

	Nulli	as	EII															
	Werksto	off	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütet Gehärte (35 bis 4	ter Stahl	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanle	ahl,
	DC (mm)		Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	
	1,0		19.600	200	19.600	250	19.600	250	18.300	180	12.700	100	9.000	60	11.000	50	4.500	20
1	2,0		11.200	270	11.200	340	11.200	340	10.500	240	7.300	130	5.300	80	6.400	65	2.650	25
	4,0		6.400	370	6.400	460	6.400	460	6.000	320	4.200	180	3.000	110	3.600	80	1.500	35
١	6,0		4.600	450	4.600	560	4.600	560	4.300	400	3.000	210	2.200	130	2.700	100	1.100	40
	8,0		3.400	450	3.400	560	3.400	560	3.200	400	2.200	210	1.600	130	2.000	100	800	40
1	10,0		2.800	450	2.800	560	2.800	560	2.600	400	1.800	210	1.300	130	1.600	100	650	40
ĺ	12,0		2.300	450	2.300	560	2.300	560	2.200	400	1.500	210	1.100	130	1.300	100	500	40
١	16,0		1.700	360	1.700	450	1.700	450	1.600	320	1.100	180	800	100	1.000	80	400	35
1	20,0		1.350	300	1.350	380	1.350	380	1.300	280	900	160	650	90	800	70	320	30
	Nutfräsen	a _p	0,2 DC 0,5 DC								0,2	DC	0,05	DC		0,2	DC	

GSX 20000S-2D-Typ

Schneidstoff: ACF20

■ Fräserbezeichnung (nur GSX MILL Serie)

GSX 2 0050 S

Seriencode Anz. der Zähne

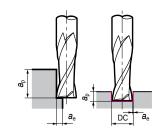
. der Durchmesser

<u>S - 20</u>

Schneidkante

Länge der Schneidkante

S: Scharfe Schneidkante C: Verstärkte Schneidkante


■ Schaftfräser

(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSX 20030S-2D	0	0,3	0,6	1,0	40	4
GSX 20040S-2D	0	0,4	0,8	1,2	40	4
GSX 20050S-2D	0	0,5	1,3	1,7	40	4
GSX 20080S-2D	0	0,8	1,6	2,1	40	4
GSX 20100S-2D	•	1,0	2,5	3,5	40	4
GSX 20150S-2D	•	1,5	3,8	4,8	40	4
GSX 20200S-2D	•	2,0	5,0	6,0	40	4
GSX 20250S-2D	•	2,5	6,3	7,3	40	4
GSX 20300S-2D	•	3,0	7,5	9,0	45	6
GSX 20350S-2D	•	3,5	8,8	10,3	45	6
GSX 20400S-2D	•	4,0	11,0	14,0	45	6
GSX 20450S-2D	•	4,5	11,3	12,8	50	6
GSX 20500S-2D	•	5,0	13,0	19,6	50	6
GSX 20550S-2D		5,5	13,0	19,6	50	6
GSX 20600S-2D	•	6,0	13,0	_	50	6
GSX 20700S-2D	•	7,0	16,0	21,1	60	8
GSX 20800S-2D	•	8,0	19,0	_	60	8
GSX 20900S-2D	•	9,0	19,0	24,1	70	10
GSX 21000S-2D	•	10,0	22,0	_	70	10
GSX 21200S-2D	•	12,0	26,0	-	75	12
GSX 21600S-2D	0	16,0	32,0	_	90	16
GSX 22000S-2D	0	20,0	40,0	_	100	20

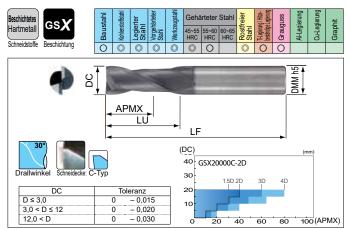
■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- 5. Diese Serie wird nicht zum Nutenfräsen empfohlen.
- 6. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.

Schulterfräsen

Werksto	off	Baust	tahl	Kohlenst (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Sta	ständiger ahl, gierung
DC (mm)	Spinde	deldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(r	rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	16	6.600	180	16.600	180	16.600	180	15.500	130	10.500	70	7.500	45	9.400	50	7.500	35
2,0	9	9.500	250	9.500	250	9.500	250	9.000	200	6.200	100	4.500	60	5.400	70	4.500	50
4,0	5	5.400	330	5.400	330	5.400	330	5.000	250	3.400	120	2.500	75	3.000	90	2.500	65
6,0	4	1.000	400	4.000	400	4.000	400	3.700	300	2.550	150	1.900	100	2.300	110	1.900	80
8,0	3	3.000	400	3.000	400	3.000	400	2.800	300	1.900	150	1.400	100	1.700	110	1.400	80
10,0	2	2.400	400	2.400	400	2.400	400	2.200	300	1.500	150	1.100	100	1.300	110	1.100	80
12,0	2	2.000	400	2.000	400	2.000	400	1.850	300	1.300	150	950	100	1.100	110	950	80
16,0	1	1.500	330	1.500	330	1.500	330	1.400	250	950	120	700	75	850	85	700	60
20,0	1	1.200	280	1.200	280	1.200	280	1.100	220	750	110	550	65	650	75	550	55
Schulterfräsen -	a p													1,0	DC		
OUTUILETTIASETT	a _e		·		·	0,05	DC				·			0,02	DC		

Nutfräsen


Werkstoff Bed.	Baus	stahl	Kohlens (150 bis	toffstahl 250 HB)	Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtel (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	ıhl,
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl		Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl	Vorschub
	(rpm)	(mm/min)	(rpm)	,	(rpm)	(mm/min)	(rpm)	. ,	(rpm)	. ,	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	16.600	180	16.600	180	16.600	180	15.500	130	10.500	70	7.500	45	9.400	50	7.500	35
2,0	9.500	250	9.500	250	9.500	250	9.000	200	6.200	100	4.500	60	5.400	70	4.500	50
4,0	5.400	330	5.400	330	5.400	330	5.000	250	3.400	120	2.500	75	3.000	90	2.500	65
6,0	4.000	400	4.000	400	4.000	400	3.700	300	2.550	150	1.900	100	2.300	110	1.900	80
8,0	3.000	400	3.000	400	3.000	400	2.800	300	1.900	150	1.400	100	1.700	110	1.400	80
10,0	2.400	400	2.400	400	2.400	400	2.200	300	1.500	150	1.100	100	1.300	110	1.100	80
12,0	2.000	400	2.000	400	2.000	400	1.850	300	1.300	150	950	100	1.100	110	950	80
16,0	1.500	330	1.500	330	1.500	330	1.400	250	950	120	700	75	850	85	700	60
20,0	1.200	280	1.200	280	1.200	280	1.100	220	750	110	550	65	650	75	550	55
Nutfräsen a	0							1,	5 DC				•		•	
a	е							-0,0	2 DC							

Schaftfräser

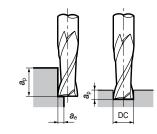
Schaftfräser mit 2 Schneiden

GSX 20000C-2D-Typ

(mm)

Schneidstoff: ACF20

■ Fräserbezeichnung (nur GSX MILL Serie)

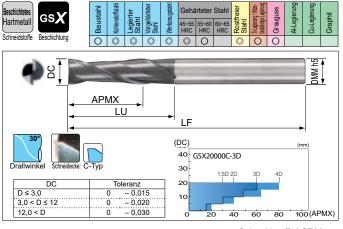

GSX 0050 Seriencode Anz. der Durchmesser Schneidkante Länge der Zähne Schneidkante

> S: Scharfe Schneidkante C: Verstärkte Schneidkante

Bezeichnung Lager DC **APMX** LU LF **DMM** GSX 20050C-2D 4 0 0,5 1,0 1,4 GSX 20100C-2D 40 1,0 2,0 3,0 4 GSX 20150C-2D 0 1,5 3,0 4,0 40 4 GSX 20200C-2D • 2,0 4,0 5,0 40 4 GSX 20250C-2D 2,5 5,0 40 4 6.0 GSX 20300C-2D • 3,0 6,0 7,5 45 6 GSX 20350C-2D 6 35 7.0 8.5 45 GSX 20400C-2D 4,0 8,0 9,5 45 6 GSX 20450C-2D 50 4.5 9.0 10.5 6 GSX 20500C-2D 5,0 10,0 12,0 50 6 GSX 20550C-2D 50 6 5.5 11.0 13,0 GSX 20600C-2D 6,0 12,0 50 6 GSX 20700C-2D 7,0 14,0 16,0 60 8 GSX 20800C-2D 8,0 16,0 60 8 GSX 20900C-2D 20,0 0 9.0 18,0 70 10 GSX 21000C-2D 70 10 10,0 20,0 GSX 21200C-2D 12.0 24,0 75 12 GSX 21400C-2D 14,0 28,0 31,5 90 16 GSX 21500C-2D 15,0 30,0 33,5 90 16 GSX 21600C-2D 16.0 32.0 90 16 GSX 22000C-2D 20,0 40,0 100 20

■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- 5. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.



Schulterfräsen

Werkstof Bed.	f Baus	stahl	Kohlens (150 bis	toffstahl 250 HB)	Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleo	ıhl, Ö
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	19.600	250	19.600	250	19.600	250	18.300	180	12.700	100	9.000	60	11.000	70	9.000	50
2,0	11.200	340	11.200	340	11.200	340	10.500	240	7.300	130	5.300	80	6.400	90	5.300	70
4,0	6.400	460	6.400	460	6.400	460	6.000	320	4.200	180	3.000	110	3.600	120	3.000	90
6,0	4.600	560	4.600	560	4.600	560	4.300	400	3.000	210	2.200	130	2.700	140	2.200	100
8,0	3.400	560	3.400	560	3.400	560	3.200	400	2.200	210	1.600	130	2.000	140	1.600	100
10,0	2.800	560	2.800	560	2.800	560	2.600	400	1.800	210	1.300	130	1.600	140	1.300	100
12,0	2.300	560	2.300	560	2.300	560	2.200	400	1.500	210	1.100	130	1.300	140	1.100	100
16,0	1.700	450	1.700	450	1.700	450	1.600	320	1.100	180	800	100	1.000	110	800	85
20,0	1.350	380	1.350	380	1.350	380	1.300	280	900	160	650	90	800	100	650	75
Schulterfräsen a	р	1,5 DC 1,0 DC														
a	le				0,05	DC							0,02	DC		

Werkstof			Kohlens	toffstahl			Legierte	er Stahl	Vergütet		Gehärtet	er Stahl	D (6)	01.11	Hitzebes	
Bed.	Bau	stani	(150 bis	250 HB)	Grau	guss	(25 bis 3		Gehärtet (35 bis 4		(45 bis 5	5 HRC)	Rostfrei	er Stani	Sta Titanle	
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (IIIIII)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	19.600	200	19.600	250	19.600	250	18.300	180	12.700	100	9.000	60	11.000	50	4.500	20
2,0	11.200	270	11.200			340	10.500	240	7.300	130	5.300	80	6.400	65	2.650	25
4,0	6.400	370	6.400	6.400 460		460	6.000	320	4.200	180	3.000	110	3.600	80	1.500	35
6,0	4.600	450	4.600			560	4.300	400	3.000	210	2.200	130	2.700	100	1.100	40
8,0	3.400	450	3.400	560	3.400	560	3.200	400	2.200	210	1.600	130	2.000	100	800	40
10,0	2.800	450	2.800	560	2.800	560	2.600	400	1.800	210	1.300	130	1.600	100	650	40
12,0	2.300	450	2.300	560	2.300	560	2.200	400	1.500	210	1.100	130	1.300	100	500	40
16,0	1.700	360	1.700	450	1.700	450	1.600	320	1.100	180	800	100	1.000	80	400	35
20,0	1.350	300	1.350 380		1.350	380	1.300	280	900	160	650	90	800	70	320	30
Nutfräsen a	0,2	DC			0,5	DC			0,2	DC	0,05	DC		0,2	DC	

GSX 20000C-3D-Typ

Schneidstoff: ACF20

■ Schaftfräser

(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSX 20100C-3D	•	1,0	3,0	4,0	40	4
GSX 20150C-3D	•	1,5	4,5	5,5	40	4
GSX 20200C-3D	•	2,0	6,0	7,0	40	4
GSX 20250C-3D	•	2,5	7,5	8,5	40	4
GSX 20300C-3D	•	3,0	9,0	10,5	50	6
GSX 20400C-3D	•	4,0	12,0	13,5	50	6
GSX 20500C-3D	•	5,0	15,0	17,0	50	6
GSX 20600C-3D	•	6,0	18,0	_	50	6
GSX 20800C-3D	•	8,0	24,0	_	70	8
GSX 21000C-3D	•	10,0	30,0	_	90	10
GSX 21200C-3D	•	12,0	36,0	_	90	12
GSX 21600C-3D	•	16,0	48,0	_	110	16
GSX 22000C-3D	0	20,0	60,0	_	120	20

■ Fräserbezeichnung (nur GSX MILL Serie)

GSX

Seriencode

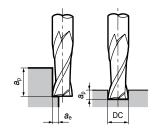
<u>2</u>

0100

C -

_

Anz. der Durchmesser Zähne

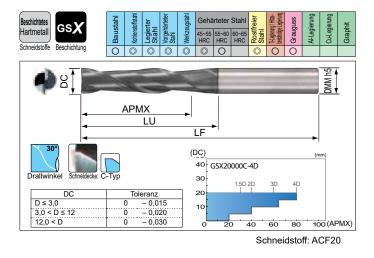

Schneidkante

Länge der Schneidkante

- S: Scharfe Schneidkante
- C: Verstärkte Schneidkante

■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.


Schulterfräsen

Werksto		austah	nl	Kohlenst (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	ıhl,
DC (mm)	Spindeldre	nzahl Voi	rschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm) (mı	ım/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	16.60	00 1	190	16.600	190	16.600	190	15.500	140	10.500	70	7.500	45	9.400	50	7.500	35
2,0	9.50	00 2	250	9.500	250	9.500	250	9.000	200	6.200	120	4.500	60	5.200	70	4.500	50
4,0	5.20	00 3	330	5.200	330	5.200	330	4.800	200	3.400	150	2.250	75	2.600	90	2.250	65
6,0	3.50	00 3	360	3.500	360	3.500	360	3.200	250	2.550	170	1.500	90	1.700	100	1.500	80
8,0	2.60	00 3	320	2.600	320	2.600	320	2.400	240	1.900	170	1.100	90	1.300	105	1.100	80
10,0	2.10	00 3	300	2.100	300	2.100	300	1.900	230	1.500	170	900	90	1.000	100	900	80
12,0	1.75	50 2	280	1.750	280	1.750	280	1.600	230	1.250	170	750	90	850	100	750	80
16,0	1.30	00 2	240	1.300	240	1.300	240	1.200	200	950	150	550	75	650	85	550	65
20,0	1.05	1.050 220 1.050 220 1.050 220							180	750	140	450	70	500	75	450	60
Schulterfräsen	a p												2,0	DC			
Schullerhasen	a _e			< ø3: 0	,05 DC	, ≤ ø3:	0,1 DC						0,02	2 DC			

Nutfräsen

• Nullia	3011															
Werkstoff	Baus	stahl	Kohlens		Grau	unee	Legierte		Vergütet Gehärte		Gehärtet		Rostfrei	er Stahl	Hitzebes Sta	
Bed.	\ Bau.	J.C.I.II	(150 bis	250 HB)	Orau	guss	(25 bis 3	5 HRC)	(35 bis 4		(45 bis 5	55 HRC)	Rostilei	or otarii	Titanleg	,
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	16.600	70	16.600	80	16.600	80	15.500	50	10.500	50	7.500	35	9.400	30	3.750	10
2,0	9.500	80	9.500	100	9.500	100	9.000	90	6.200	60	4.500	45	5.200	40	2.250	15
4,0	5.200	120	5.200	150	5.200	150	4.800	120	3.400	80	2.200	50	2.600	50	1.250	20
6,0	3.500	140	3.500	170	3.500	170	3.200	130	2.550	100	1.500	50	1.700	60	950	25
8,0	2.600	140	2.600	160	2.600	160	2.400	130	1.900	100	1.100	50	1.300	60	700	25
10,0	2.100	130	2.100	150	2.100	150	1.900	120	1.500	90	900	50	1.000	60	550	25
12,0	1.750	130	1.750	150	1.750	150	1.600	120	1.250	90	750	50	850	60	450	25
16,0	1.300	110	1.300	130	1.300	130	1.200	110	950	80	550	45	650	50	350	20
20,0	1.050	100	1.050	120	1.050	120	950	100	750	70	450	40	500	40	280	15
Nutfräsen a		DC				0,2	DC				0,05	DC		0,	1 <i>D</i>	

- = Eurolager
- = Japanlager

■ Schaftfräser

(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSX 20100C-4D	•	1,0	4,0	5,0	40	4
GSX 20150C-4D	•	1,5	6,0	7,0	40	4
GSX 20200C-4D	•	2,0	8,0	9,0	40	4
GSX 20250C-4D	•	2,5	10,0	11,0	50	4
GSX 20300C-4D	•	3,0	12,0	13,5	50	6
GSX 20400C-4D	•	4,0	16,0	17,5	50	6
GSX 20500C-4D	•	5,0	20,0	22,0	60	6
GSX 20600C-4D	•	6,0	24,0	_	60	6
GSX 20800C-4D	•	8,0	32,0	_	80	8
GSX 21000C-4D	•	10,0	40,0	_	90	10
GSX 21200C-4D	0	12,0	48,0	_	100	12
GSX 21600C-4D	0	16,0	64,0	_	120	16
GSX 22000C-4D	O	20,0	80,0	_	140	20

■ Fräserbezeichnung (nur GSX MILL Serie)

GSX

Serien-Code Zähne

Anz. der

Durchmesser

Schneidkante

Länge der Schneidkante

S: Scharfe Schneidkante

C: Verstärkte Schneidkante

■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. In seltenen Fällen kann es in den frühen Stadien des Fräsens zum Rattern kommen, das aber nach 2 m Schneiden wieder verschwindet.
- 5. Wenn das Rattern ein Problem ist, sollten Sie die Spindeldrehzahl und den Vorschub laut folgender Tabelle um dasselbe Verhältnis reduzieren oder die Schnitttiefe reduzieren.
- 6. Diese Serie wird nicht zum Nutenstechen empfohlen.
- 7. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.

Schulterfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	ahl,
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	9.000	130	9.000	130	9.000	130	7.000	95	6.500	50	4.500	30	5.400	40	4.500	25
2,0	4.500	180	4.500	180	4.500	180	3.500	120	3.200	70	2.300	40	2.700	50	2.300	35
4,0	2.250	240	2.250	240	2.250	240	1.750	160	1.600	95	1.200	60	1.350	65	1.200	40
6,0	1.500	300	1.500	300	1.500	300	1.150	170	1.050	110	800	70	900	70	800	50
8,0	1.100	260	1.100	260	1.100	260	850	170	800	110	600	70	660	70	600	50
10,0	900	250	900	250	900	250	700	160	650	110	460	70	540	70	460	50
12,0	750	240	750	240	750	240	580	160	520	110	400	70	450	70	400	50
16,0	550	200	550	200	550	200	440	140	400	95	300	55	330	60	300	45
20,0	450	180	450	180	450	180	350	120	320	85	240	45	270	50	240	40
Schulterfräsen a _p					3,5	DC							3,0	DC		
a _e			0,08	DC							0,04	DC				

GSX 30000C-1,5D-Typ

Schneidstoff: ACF20

■ Fräserbezeichnung (nur GSX MILL Serie)

0.030

GSX 0100

Serien-Code

12,0 < D

Anz. der Zähne

Durchmesser

Schneidkante

Länge der Schneidkante

100 (APMX)

S: Scharfe Schneidkante C: Verstärkte Schneidkante

■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- 5. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.

Schulterfräsen

Werkstoff Bed.	Baus	stahl	Kohlensi (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	er Stahl	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebesi Sta Titanleg	ıhl, Ö
DC (mm)	Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	19.600	300	19.600	300	19.600	300	18.300	210	12.700	130	9.000	80	11.000	90	9.000	65
2,0	11.200	410	11.200	410	11.200	410	10.500	280	7.300	170	5.300	100	6.400	120	5.300	90
4,0	6.400	550	6.400	550	6.400	550	6.000	370	4.200	230	3.000	140	3.600	150	3.000	120
6,0	4.600	670	4.600	670	4.600	670	4.300	460	3.000	270	2.200	170	2.700	180	2.200	130
8,0	3.400	670	3.400	670	3.400	670	3.200	460	2.200	270	1.600	170	2.000	180	1.600	130
10,0	2.800	670	2.800	670	2.800	670	2.600	460	1.800	270	1.300	170	1.600	180	1.300	130
12,0	2.300	670	2.300	670	2.300	670	2.200	460	1.500	270	1.100	170	1.300	180	1.100	130
16,0	1.700	550	1.700	550	1.700	550	1.600	370	1.100	230	800	140	1.000	150	800	100
20,0	1.350	490	1.350	490	1.350	490	1.300	330	900	210	650	120	800	130	650	90
Schulterfräsen a _p					DC								DC			
a _e				0,05	5 DC							0,02	2 DC			

Nutfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis	toffstahl 250 HB)	Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	ıhl, Ö
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl	Vorschub
DO (IIIII)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	19.600	240	19.600	300	19.600	300	18.300	210	12.700	130	9.000	80	11.000	65	4.500	25
2,0	11.200	320	11.200	410	11.200	410	10.500	280	7.300	170	5.300	100	6.400	85	2.650	35
4,0	6.400	450	6.400	550	6.400	550	6.000	370	4.200	230	3.000	140	3.600	100	1.500	50
6,0	4.600	540	4.600	670	4.600	670	4.300	460	3.000	270	2.200	170	2.650	130	1.150	55
8,0	3.400	540	3.400	670	3.400	670	3.200	460	2.200	270	1.600	170	2.000	130	800	55
10,0	2.800	540	2.800	670	2.800	670	2.600	460	1.800	270	1.300	170	1.600	130	650	55
12,0	2.300	540	2.300	670	2.300	670	2.200	460	1.500	270	1.100	170	1.300	130	500	55
16,0	1.700	440	1.700	550	1.700	550	1.600	370	1.100	230	800	140	1.000	110	400	45
20,0	1.350	390	1.350	490	1.350	490	1.300	330	900	210	650	120	800	90	320	40
Nutfräsen a_p	0,2	DC				0,5	DC				0,05	DC		0,2	DC	

Bezeichnung

GSX 30100C-1.5D

GSX 30150C-1.5D

GSX 30200C-1.5D

GSX 30250C-1.5D

GSX 30300C-1.5D

GSX 30400C-1.5D

GSX 30500C-1.5D

GSX 30600C-1.5D

GSX 30700C-1.5D

GSX 30800C-1.5D

GSX 30900C-1.5D

GSX 31000C-1.5D

GSX 31200C-1.5D

GSX 31600C-1.5D

GSX 32000C-1.5D

DC

1,0

1,5

2,0

2,5

3,0

4,0

5.0

6,0

7,0

8,0

9.0

10,0

12,0

16,0

20,0

Lager

0

APMX

1,5

2,3

3,0

3,8

4,5

6,0

7.5

9,0

11.0

12,0

14,0

15,0

18,0

24,0

30,0

LU

2,5

3,3

4,0

4,8

6,0

7,5

9,5

13,0

16,0

LF

40

40

40

40

45

45

50

50

60

60

70

70

75

90

100

4

4

4

6

6

6

6

8

8

10

10

12

16

20

e d		
_	a _e	DC

Schaftfräser

GSX 30100C-2D

GSX 30150C-2D

GSX 30200C-2D

GSX 30250C-2D

GSX 30300C-2D

GSX 30400C-2D

GSX 30500C-2D

GSX 30600C-2D

GSX 30700C-2D

GSX 30800C-2D

GSX 30900C-2D

GSX 31000C-2D

GSX 31200C-2D

GSX 31600C-2D

GSX 32000C-2D

Bezeichnung

(mm)

DMM

4

4

4

4

6

6

6

6

8

8

10

10

12

16

20

LF

40

40

40

40

45

45

50

50

60

60

70

70

75

90

100

LU

3,5

4,8

6,0

7,3

9,0

12,5

15,0

18,0

21,0

DC

1,0

1,5

2,0

2,5

3,0

4,0

5.0

6,0

7,0

8,0

9.0

10,0

12,0

16,0

20,0

APMX

2,5

3,8

5,0

6,3

7.5

11,0

13.0

13,0

16,0

19,0

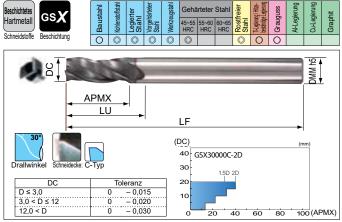
19.0

22,0

26,0

32,0

40,0


Lager

0

•

•

•

Schneidstoff: ACF20

■ Fräserbezeichnung (nur GSX MILL Serie)

GSX 0100

Seriencode

Anz. der Zähne

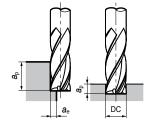
Durchmesser

Schneidkante

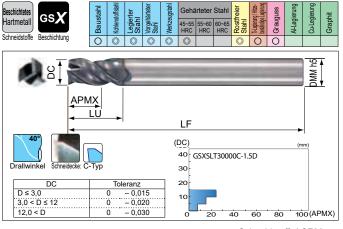
Länge der Schneidkante

- S: Scharfe Schneidkante
- C: Verstärkte Schneidkante

■ Empfohlene Schnittbedingungen


- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- 5. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.

Schulterfräsen

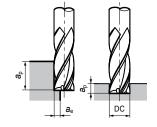

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter StahÍ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleç	ahl,
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	19.600	300	19.600	300	19.600	300	18.300	210	12.700	130	9.000	80	11.000	90	9.000	65
2,0	11.200	410	11.200	410	11.200	410	10.500	280	7.300	170	5.300	100	6.400	120	5.300	90
4,0	6.400	550	6.400	550	6.400	550	6.000	370	4.200	230	3.000	140	3.600	150	3.000	120
6,0	4.600	670	4.600	670	4.600	670	4.300	460	3.000	270	2.200	170	2.700	180	2.200	130
8,0	3.400	670	3.400	670	3.400	670	3.200	460	2.200	270	1.600	170	2.000	180	1.600	130
10,0	2.800	670	2.800	670	2.800	670	2.600	460	1.800	270	1.300	170	1.600	180	1.300	130
12,0	2.300	670	2.300	670	2.300	670	2.200	460	1.500	270	1.100	170	1.300	180	1.100	130
16,0	1.700	550	1.700	550	1.700	550	1.600	370	1.100	230	800	140	1.000	150	800	100
20,0	1.350	490	1.350	490	1.350	490	1.300	330	900	210	650	120	800	130	650	90
Schulterfräsen a _p	l '				1,5	DC					l '		1,0	DC		
$a_{\rm e}$					0,05	DC							0,02	DC		

Nutfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahl	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	
DC (mm)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)
1,0	19.600	240	19.600	300	19.600	300	18.300	210	12.700	130	9.000	80	11.000	65	4.500	25
2,0	11.200	320	11.200	410	11.200	410	10.500	280	7.300	170	5.300	100	6.400	85	2.650	35
4,0	6.400	450	6.400	550	6.400	550	6.000	370	4.200	230	3.000	140	3.600	100	1.500	50
6,0	4.600	540	4.600	670	4.600	670	4.300	460	3.000	270	2.200	170	2.650	130	1.150	55
8,0	3.400	540	3.400	670	3.400	670	3.200	460	2.200	270	1.600	170	2.000	130	800	55
10,0	2.800	540	2.800	670	2.800	670	2.600	460	1.800	270	1.300	170	1.600	130	650	55
12,0	2.300	540	2.300	670	2.300	670	2.200	460	1.500	270	1.100	170	1.300	130	500	55
16,0	1.700	440	1.700	550	1.700	550	1.600	370	1.100	230	800	140	1.000	110	400	45
20,0	1.350	390	1.350	490	1.350	490	1.300	330	900	210	650	120	800	90	320	40
Nutfräsen a _p	0,2	DC			0,5	DC			0,2	DC	0,05	DC		0,2	DC	

GSXSLT 30000C-1,5D-Typ

Schneidstoff: ACF20


■ Schaftfräser

(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSXSLT 30100C-1.5D	•	1,0	1,5	2,5	40	4
GSXSLT 30150C-1.5D	•	1,5	2,3	3,3	40	4
GSXSLT 30200C-1.5D		2,0	3,0	4,0	40	4
GSXSLT 30250C-1.5D	0	2,5	3,8	4,8	40	4
GSXSLT 30300C-1.5D	•	3,0	4,5	6,0	45	6
GSXSLT 30400C-1.5D	•	4,0	6,0	7,5	45	6
GSXSLT 30500C-1.5D	•	5,0	7,5	9,5	50	6
GSXSLT 30600C-1.5D	•	6,0	9,0	_	50	6
GSXSLT 30700C-1.5D	•	7,0	11,0	13,0	60	8
GSXSLT 30800C-1.5D	•	8,0	12,0	_	60	8
GSXSLT 30900C-1.5D	•	9,0	14,0	16,0	70	10
GSXSLT 31000C-1.5D	•	10,0	15,0	_	70	10
GSXSLT 31200C-1.5D	•	12,0	18,0	_	75	12
GSXSLT 31600C-1.5D		16,0	24,0	_	90	16

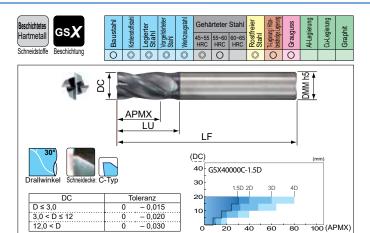
■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- 5. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.
- 6. Setzen Sie beim Bohrenvon Rostfreiem Stahl, hitzebeständigen Legierungen und Titanlegierungen Bearbeitungsschritte von 0,1 ap ein.

Schulterfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis	toffstahl 250 HB)	Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanles	ıhl, Ö
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	19.600	300	19.600	300	19.600	300	18.300	210	12.700	130	9.000	80	11.000	90	9.000	65
2,0	11.200	410	11.200	410	11.200	410	10.500	280	7.300	170	5.300	100	6.400	120	5.300	90
4,0	6.400	550	6.400	550	6.400	550	6.000	370	4.200	230	3.000	140	3.600	150	3.000	120
6,0	4.600	670	4.600	670	4.600	670	4.300	460	3.000	270	2.200	170	2.700	180	2.200	130
8,0	3.400	670	3.400	670	3.400	670	3.200	460	2.200	270	1.600	170	2.000	180	1.600	130
10,0	2.800	670	2.800	670	2.800	670	2.600	460	1.800	270	1.300	170	1.600	180	1.300	130
12,0	2.300	670	2.300	670	2.300	670	2.200	460	1.500	270	1.100	170	1.300	180	1.100	130
16,0	1.700	550	1.700	550	1.700	550	1.600	370	1.100	230	800	140	1.000	150	800	100
Schulterfräsen a _F	,				1.5	DC							1.0	DC		
a _e					0.05	DC							0.02	DC		

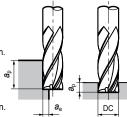
Nutfräsen


Werkstoff			Kohlens	toffstahl			Legierte	er Stahl	Vergütet		Gehärtet	er Stahl	D	0, 11	Hitzebes	
Bed.	Baus	stahl		250 HB)	Grau	guss	(25 bis 3		Gehärtet (35 bis 4		(45 bis 5		Rostfrei	er Stahl	Sta Titanle	
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	19.600	240	19.600	300	19.600	300	18.300	210	12.700	130	9.000	80	11.000	65	4.500	25
2,0	11.200	320	11.200	410	11.200	410	10.500	280	7.300	170	5.300	100	6.400	85	2.650	35
4,0	6.400	450	6.400	550	6.400	550	6.000	370	4.200	230	3.000	140	3.600	100	1.500	50
6,0	4.600	540	4.600	670	4.600	670	4.300	460	3.000	270	2.200	170	2.650	130	1.150	55
8,0	3.400	540	3.400	670	3.400	670	3.200	460	2.200	270	1.600	170	2.000	130	800	55
10,0	2.800	540	2.800	670	2.800	670	2.600	460	1.800	270	1.300	170	1.600	130	650	55
12,0	2.300	540	2.300	670	2.300	670	2.200	460	1.500	270	1.100	170	1.300	130	500	55
16,0	1.700	440	1.700	550	1.700	550	1.600	370	1.100	230	800	140	1.000	110	400	45
Nutfräsen a _r	0,2	DC			0,5	DC			0,2	DC	0,05	DC		0,2	DC	

Bohrnutfräsen

Donnin	ıllıasell															
Werkstoff		stahl	Kohlens		Grau	unss		er Stahl		er Stahl, ter Stahl		ter Stahl	Rostfrei	er Stahl	Hitzebes Sta	
Bed.	Juan	J.Cariii	(150 bis	250 HB)	Orac	guoo	(25 bis 3	35 HRC)		45 HRC)	(45 bis 5	55 HRC)	rtootiroi	or otarii	Titanleg	
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm) \	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	19.600	70	19.600	90	19.600	90	18.300	60	12.700	40	9.000	25	11.000	20	4.500	10
2,0	11.200	90	11.200	120	11.200	120	10.500	80	7.300	50	5.300	30	6.400	25	2.650	15
4,0	6.400	130	6.400	160	6.400	160	6.000	110	4.200	70	3.000	40	3.600	30	1.500	20
6,0	4.600	160	4.600	200	4.600	200	4.300	130	3.000	80	2.200	50	2.650	40	1.150	20
8,0	3.400	160	3.400	200	3.400	200	3.200	130	2.200	80	1.600	50	2.000	40	800	20
10,0	2.800	160	2.800	200	2.800	200	2.600	130	1.800	80	1.300	50	1.600	40	650	20
12,0	2.300	160	2.300	200	2.300	200	2.200	130	1.500	80	1.100	50	1.300	40	500	20
16.0	1.700	130	1.700	160	1.700	160	1.600	110	1.100	70	800	40	1.000	35	400	15

Beschichtet Schaftfräse


GSX 40000C-1,5D-Typ

Schneidstoff: ACF20

■ Empfohlene Schnittbedingungen

- Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
 Die Needbearbeitung wird für rectfreien Stabl.
- Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.

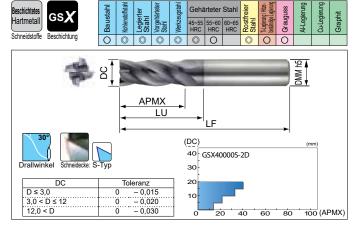
■ Schaftfräser

(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSX 40100C-1.5D	•	1,0	1,5	2,5	40	4
GSX 40150C-1.5D	•	1,5	2,3	3,3	40	4
GSX 40200C-1.5D	•	2,0	3,0	4,0	40	4
GSX 40250C-1.5D	•	2,5	3,8	4,8	40	4
GSX 40300C-1.5D	•	3,0	4,5	6,0	45	6
GSX 40350C-1.5D	•	3,5	5,3	6,8	45	6
GSX 40400C-1.5D	•	4,0	6,0	7,5	45	6
GSX 40450C-1.5D	•	4,5	6,8	8,3	50	6
GSX 40500C-1.5D	•	5,0	7,5	9,5	50	6
GSX 40550C-1.5D	0	5,5	8,3	10,3	50	6
GSX 40600C-1.5D	•	6,0	9,0	_	50	6
GSX 40700C-1.5D	•	7,0	11,0	13,0	60	8
GSX 40800C-1.5D	•	8,0	12,0	_	60	8
GSX 40900C-1.5D	•	9,0	14,0	16,0	70	10
GSX 41000C-1.5D	•	10,0	15,0	_	70	10
GSX 41200C-1.5D	•	12,0	18,0	_	75	12
GSX 41400C-1.5D	O	14,0	21,0	24,5	90	16
GSX 41500C-1.5D	0	15,0	23,0	26,5	90	16
GSX 41600C-1.5D	•	16,0	24,0	_	90	16
GSX 42000C-1.5D	O	20,0	30,0	-	100	20

Schulterfräsen

Werksto		ıstahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütet Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Sta	tändiger ahl, gierung
DC (mm)	Spindeldrehzah (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)
1,0	24.000	470	24.000	470	24.000	470	21.000	290	14.500	180	10.500	120	12.600	120	10.500	85
2,0	12.800	570	12.800	570	12.800	570	12.000	380	8.300	230	6.000	150	7.200	160	6.000	110
4,0	6.800	730	6.800	730	6.800	730	6.400	490	4.400	300	3.200	200	3.800	210	3.200	130
6,0	4.600	780	4.600	780	4.600	780	4.300	520	3.000	320	2.200	210	2.650	220	2.200	150
8,0	3.400	780	3.400	780	3.400	780	3.200	520	2.200	320	1.600	210	2.000	220	1.600	150
10,0	2.800	780	2.800	780	2.800	780	2.600	520	1.800	320	1.300	210	1.500	220	1.300	150
12,0	2.300	780	2.300	780	2.300	780	2.200	520	1.500	320	1.100	210	1.300	220	1.100	150
16,0	1.700	650	1.700	650	1.700	650	1.600	420	1.100	280	800	170	1.000	180	800	120
20,0	1.350	600	1.350	600	1.350	600	1.300	900	260	650	150	800	160	650	100	
Cabultorfräson	a _p				1,5	DC		·		1,0	DC					
Schulterfräsen-	a e				0,05	DC							0,02	DC		


Schulterfräsen (Hochgeschwindigkeits-Bearbeitungszentrum)

111 1 1 6		`	<u> </u>						Vargiitat	or Ctobl					Llitzahaa	tändiner
Werkstoff	Baus	stabl	Kohlens		Grau	ance	Legierte		Vergütet Gehärtet		Gehärtet		Rostfrei	or Stabl	Hitzebes Sta	
Bed.	Daus	olai II	(150 bis	250 HB)	Grau	yuss	(25 bis 3	35 HRC)	(35 bis 4		(45 bis 5	55 HRC)	Rosillei	ei Siaili	Titanle	
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	60.000	1.200	60.000	1.200	60.000	1.200	60.000	850	60.000	720	48.000	500	32.000	300	_	_
2,0	47.800	2.200	47.800	2.200	47.800	2.200	47.800	1.600	39.800	1.200	31.800	900	15.900	400	-	-
4,0	23.900	2.600	23.900	2.600	23.900	2.600	23.900	1.900	19.900	1.400	15.900	1.100	8.000	490	_	_
6,0	16.000	2.700	16.000	2.700	16.000	2.700	16.000	2.000	13.300	1.500	10.600	1.200	5.300	520	_	_
8,0	12.000	2.700	12.000	2.700	12.000	2.700	12.000	2.000	10.000	1.500	8.000	1.200	4.000	520	_	_
10,0	9.600	2.700	9.600	2.700	9.600	2.700	9.600	2.000	8.000	1.500	6.400	1.200	3.200	520	_	_
12,0	8.000	2.700	8.000	2.700	8.000	2.700	8.000	2.000	6.700	1.500	5.300	1.200	2.700	520	_	_
16,0	6.000	2.200	6.000	2.200	6.000	2.200	6.000	1.600	5.000	1.200	4.000	900	2.000	450	_	-
20,0	4.800	2.000	4.800	2.000	4.800	2.000	4.800	4.000	1.100	3.200	750	1.600	380	_	-	
Schulterfräsen a _r)				1,5	DC				1,0	DC					
a _e	•				0.05	DC							0.02	DC		

Nutenfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	ıhl, Ö
DC (mm)	Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl	Vorschub
- () ((rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	24.000	380	24.000	470	24.000	470	21.000	290	14.500	180	10.500	120	12.600	85	5.200	30
2,0	12.800	460	12.800	570	12.800	570	12.000	380	8.300	230	6.000	150	7.200	110	3.000	40
4,0	6.800	580	6.800	730	6.800	730	5.400	490	4.400	300	3.200	200	3.800	130	1.600	55
6,0	4.600	620	4.600	.600 780 4.600 780				520	3.000	320	2.200	210	2.650	160	1.100	65
8,0	3.400	620	3.400	780	3.400	780	3.200	520	2.200	320	1.600	210	2.000	160	800	65
10,0	2.800	620	2.800	780	2.800	780	2.600	520	1.800	320	1.300	210	1.600	160	650	65
12,0	2.300	620	2.300	780	2.300	780	2.200	520	1.500	320	1.100	210	1.300	160	550	65
16,0	1.700	520	1.700	560	1.700	560	1.600	420	1.100	280	800	170	1.000	130	400	55
20,0	1.350	480	1.350	600	1.350	600	1.300	380	900	260	650	150	800	110	320	50
Nutfräsen a _p	0,2	DC			0,5	DC			0,2	DC	0,05	DC		0,2	DC	

GSX 40000S-2D-Typ

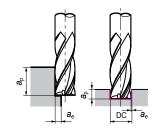
Schneidstoff: ACF20

Schneidkante

■ Fräserbezeichnung (nur GSX MILL Serie)

Zähne

S: Scharfe Schneidkante C: Verstärkte Schneidkante


■ Schaftfräser

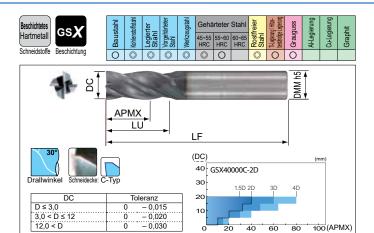
(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSX 40100S-2D	•	1,0	2,5	3,5	40	4
GSX 40150S-2D	0	1,5	3,8	4,8	40	4
GSX 40200S-2D	•	2,0	5,0	6,0	40	4
GSX 40250S-2D	•	2,5	6,3	7,3	40	4
GSX 40300S-2D	•	3,0	7,5	9,0	45	6
GSX 40350S-2D	•	3,5	8,8	10,0	45	6
GSX 40400S-2D	•	4,0	11,0	14,0	45	6
GSX 40450S-2D	0	4,5	11,3	12,8	50	6
GSX 40500S-2D	•	5,0	13,0	19,6	50	6
GSX 40550S-2D	0	5,5	13,0	19,6	50	6
GSX 40600S-2D	•	6,0	13,0	_	50	6
GSX 40700S-2D	•	7,0	16,0	21,1	60	8
GSX 40800S-2D	•	8,0	19,0	_	60	8
GSX 40900S-2D	0	9,0	19,0	24,1	70	10
GSX 41000S-2D	•	10,0	22,0	_	70	10
GSX 41200S-2D	•	12,0	26,0	_	75	12
GSX 41600S-2D	•	16,0	32,0	_	90	16
GSX 42000S-2D	•	20,0	40,0	_	100	20

■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- 5. Diese Serie wird nicht zum Nutenfräsen empfohlen.
- 6. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.

Schulterfräsen


Werkstoff Bed.	Baus	stahl	Kohlenst (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	er Stahl	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	hl,
DC (mm)	Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	22.000	360	22.000	360	22.000	360	19.000	220	13.000	140	9.500	90	11.300	90	9.500	65
2,0	11.500	440	11.500	440	11.500	440	11.000	290	7.500	180	5.400	110	6.500	120	5.400	85
4,0	6.000	560	6.000	560	6.000	560	5.800	370	4.000	230	2.900	150	3.400	160	2.900	100
6,0	4.200	600	4.200	600	4.200	600	4.000	400	2.700	240	2.000	160	2.400	170	2.000	120
8,0	3.000	600	3.000	600	3.000	600	2.800	400	2.000	240	1.450	160	1.800	170	1.450	120
10,0	2.500	600	2.500	600	2.500	600	2.350	400	1.600	240	1.200	160	1.450	170	1.200	120
12,0	2.100	600	2.100	600	2.100	600	2.000	400	1.350	240	1.000	160	1.200	170	1.000	120
16,0	1.500	500	1.500	500	1.500	500	1.450	320	1.000	210	750	130	900	140	750	90
20,0	1.200 460 1.200 460 1.200 460 1.150 290 800 200 6												700	120	600	75
Schulterfräsen a	0							2,0	DC							
a	e				0,03	DC							0,01	DC		

Nutfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis	toffstahl 250 HB)	Grau	guss	Legierte (25 bis 3		Vergütet Gehärtet (35 bis 4	ter Stahĺ	Gehärtel (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	ıhl,
DC (mm)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)
1,0	22.000	360	22.000	360	22.000	360	19.000	220	13.000	140	9.500	90	11.300	90	9.500	65
2,0	11.500	440	11.500	440	11.500	440	11.000	290	7.500	180	5.400	110	6.500	120	5.400	85
4,0	6.000	560	6.000	560	6.000	560	5.800	370	4.000	230	2.900	150	3.400	160	2.900	100
6,0	4.200	600	4.200	600	4.200	600	4.000	400	2.700	240	2.000	160	2.400	170	2.000	120
8,0	3.000	600	3.000	600	3.000	600	2.800	400	2.000	240	1.450	160	1.800	170	1.450	120
10,0	2.500	600	2.500	600	2.500	600	2.350	400	1.600	240	1.200	160	1.450	170	1.200	120
12,0	2.100	600	2.100	600	2.100	600	2.000	400	1.350	240	1.000	160	1.200	170	1.000	120
16,0	1.500	500	1.500	500	1.500	500	1.450	320	1.000	210	750	130	900	140	750	90
20,0	1.200	460	1.200	460	1.200	460	1.150	290	800	200	600	110	700	120	600	75
Nutfräsen a)							1,	5 DC							
a	9							-0,0	2 DC							

Schaftfräser mit 4 Schneiden

GSX 40000C-2D-Typ

■ Empfohlene Schnittbedingungen

- Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
 Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige-
- und Titan-Legierungen empfohlen.

 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.

■ Schaftfräser

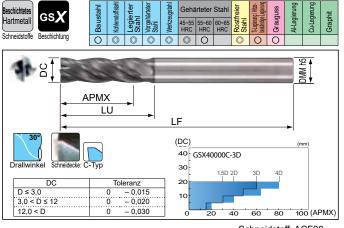
(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSX 40100C-2D	•	1,0	2,0	3,0	40	4
GSX 40150C-2D	•	1,5	3,0	4,0	40	4
GSX 40200C-2D	•	2,0	4,0	5,0	40	4
GSX 40250C-2D	•	2,5	5,0	6,0	40	4
GSX 40300C-2D	•	3,0	6,0	7,5	45	6
GSX 40350C-2D	O	3,5	7,0	8,5	45	6
GSX 40400C-2D	•	4,0	8,0	9,5	45	6
GSX 40450C-2D	•	4,5	9,0	10,5	50	6
GSX 40500C-2D	•	5,0	10,0	12,0	50	6
GSX 40550C-2D	•	5,5	11,0	13,0	50	6
GSX 40600C-2D	•	6,0	12,0	_	50	6
GSX 40700C-2D	•	7,0	14,0	16,0	60	8
GSX 40800C-2D	•	8,0	16,0	_	60	8
GSX 40900C-2D	•	9,0	18,0	20,0	70	10
GSX 41000C-2D	•	10,0	20,0	_	70	10
GSX 41200C-2D	•	12,0	24,0	_	75	12
GSX 41400C-2D	0	14,0	28,0	31,5	90	16
GSX 41500C-2D		15,0	30,0	33,5	90	16
GSX 41600C-2D	•	16,0	32,0	_	90	16
GSX 42000C-2D	•	20,0	40,0	_	100	20

Schulterfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	er Stahl	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleç	ıhl,
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl	Vorschub
DC (IIIII) \	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	24.000	470	24.000	470	24.000	470	21.000	290	14.500	180	10.500	120	12.600	120	10.500	85
2,0	12.800	570	12.800	570	12.800	570	12.000	380	8.300	230	6.000	150	7.200	160	6.000	110
4,0	6.800	730	6.800	730	6.800	730	6.400	490	4.400	300	3.200	200	3.800	210	3.200	130
6,0	4.600	780	4.600	780	4.600	780	4.300	520	3.000	320	2.200	210	2.650	220	2.200	150
8,0	3.400	780	3.400	780	3.400	780	3.200	520	2.200	320	1.600	210	2.000	220	1.600	150
10,0	2.800	780	2.800	780	2.800	780	2.600	520	1.800	320	1.300	210	1.500	220	1.300	150
12,0	2.300	780	2.300	780	2.300	780	2.200	520	1.500	320	1.100	210	1.300	220	1.100	150
16,0	1.700	650	1.700	650	1.700	650	1.600	420	1.100	280	800	170	1.000	180	800	120
20,0	1.350	600	1.350	600	1.350	600	1.300	380	900	260	650	150	800	160	650	100
Schulterfräsen a _p					1,5	DC				1,0	DC					
a _e				, and the second	0,05	DC							0,02	DC		

Schneidstoff: ACF20


● Schulterfräsen (Hochgeschwindigkeits-Bearbeitungszentrum)

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	er Stahl	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleo	
DC (mm)	Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl		Spindeldrehzahl	Vorschub
` ′ ′	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	60.000	1.200	60.000	1.200	60.000	1.200	60.000	850	60.000	720	48.000	500	32.000	300	-	-
2,0	47.800	2.200	47.800	2.200	47.800	2.200	47.800	1.600	39.800	1.200	31.800	900	15.900	400	_	_
4,0	23.900	2.600	23.900	2.600	23.900	2.600	23.900	1.900	19.900	1.400	15.900	1.100	8.000	490	_	_
6,0	16.000	2.700	16.000	2.700	16.000	2.700	16.000	2.000	13.300	1.500	10.600	1.200	5.300	520	_	_
8,0	12.000	2.700	12.000	2.700	12.000	2.700	12.000	2.000	10.000	1.500	8.000	1.200	4.000	520	_	-
10,0	9.600	2.700	9.600	2.700	9.600	2.700	9.600	2.000	8.000	1.500	6.400	1.200	3.200	520	- 1	-
12,0	8.000	2.700	8.000	2.700	8.000	2.700	8.000	2.000	6.700	1.500	5.300	1.200	2.700	520	_	-
16,0	6.000	2.200	6.000	2.200	6.000	2.200	6.000	1.600	5.000	1.200	4.000	900	2.000	450	_	_
20,0	4.800	2.000	4.800	2.000	4.800	2.000	4.800	1.400	4.000	1.100	3.200	750	1.600	380	_	_
Schulterfräsen a _p					1,5					1,0						
a _e					0,05	DC							0,02	DC		

Nutenfräsen

• Nuter	masen															
Werkstot Bed.		stahl	Kohlens (150 bis	toffstahl 250 HB)	Grau	guss	Legierte (25 bis 3		Vergütet Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanle	ıhl,
	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl		Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	24.000	380	24.000	470	24.000	470	21.000	290	14.500	180	10.500	120	12.600	85	5.200	30
2,0	12.800	460	12.800	570	12.800	570	12.000	380	8.300	230	6.000	150	7.200	110	3.000	40
4,0	6.800	580	6.800	730	6.800	730	5.400	490	4.400	300	3.200	200	3.800	130	1.600	55
6,0	4.600	620	4.600	780	4.600	780	4.300	520	3.000	320	2.200	210	2.650	160	1.100	65
8,0	3.400	620	3.400	780	3.400	780	3.200	520	2.200	320	1.600	210	2.000	160	800	65
10,0	2.800	620	2.800	780	2.800	780	2.600	520	1.800	320	1.300	210	1.600	160	650	65
12,0	2.300	620	2.300	780	2.300	780	2.200	520	1.500	320	1.100	210	1.300	160	550	65
16,0	1.700	520	1.700	560	1.700	560	1.600	420	1.100	280	800	170	1.000	130	400	55
20,0	1.350	480	1.350	600	1.350	600	1.300	380	900	260	650	150	800	110	320	50
Nutfräsen a	a _p 0,2	DC			0,5	DC			0,2	DC	0,05	DC		0,2	DC	

GSX 40000C-3D-Typ

Schneidstoff: ACF20

■ Schaftfräser

(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSX 40100C-3D	0	1,0	3,0	4,0	40	4
GSX 40150C-3D	•	1,5	4,5	5,5	40	4
GSX 40200C-3D	•	2,0	6,0	7,0	40	4
GSX 40250C-3D	0	2,5	7,5	8,5	40	4
GSX 40300C-3D	•	3,0	9,0	10,5	50	6
GSX 40400C-3D	•	4,0	12,0	13,5	50	6
GSX 40500C-3D	•	5,0	15,0	17,0	50	6
GSX 40600C-3D	•	6,0	18,0	_	50	6
GSX 40800C-3D	•	8,0	24,0	_	70	8
GSX 41000C-3D	•	10,0	30,0	_	90	10
GSX 41200C-3D	•	12,0	36,0	_	90	12
GSX 41600C-3D	•	16,0	48,0	_	110	16
GSX 42000C-3D	0	20,0	60,0	_	120	20

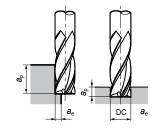
■ Fräserbezeichnung (nur GSX MILL Serie)

GSX

Seriencode

Anz. der Zähne

Durchmesser

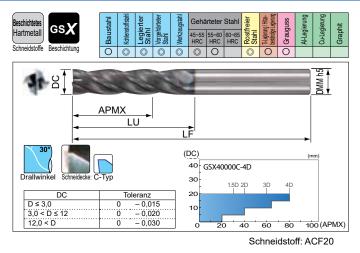

Schneidkante

Schneidkante

S: Scharfe Schneidkante C: Verstärkte Schneidkante

■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- 5. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.


Schulterfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	hl, Ö
DC (mm)	Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl	Vorschub (mm/min)	Spindeldrehzahl	Vorschub (mm/min)
1.0	(rpm)	, ,	(rpm)	,	(rpm)	, ,	(rpm)	, ,	(rpm)	, ,	(rpm)	, ,	(rpm)	,	(rpm)	,
1,0	21.000	360	21.000	360	21.000	360	19.000	220	13.000	140	9.000	90	10.500	90	9.000	65
2,0	10.500	360	10.500	360	10.500	360	9.600	290	7.500	180	4.500	110	5.200	120	4.500	85
4,0	5.200	500	5.200	500	5.200	500	4.800	370	4.000	280	2.250	150	2.600	160	2.250	100
6,0	3.500	560	3.500	560	3.500	560	3.200	400	2.700	300	1.500	160	1.700	170	1.500	120
8,0	2.600	520	2.600	520	2.600	520	2.400	400	2.000	300	1.100	160	1.300	170	1.100	120
10,0	2.100	500	2.100	500	2.100	500	1.900	400	1.600	300	900	160	1.000	160	900	120
12,0	1.750	500	1.750	500	1.750	500	1.600	400	1.350	300	750	150	850	160	750	120
16,0	1.300	420	1.300	420	1.300	420	1.200	330	1.000	260	550	120	650	140	550	100
20,0	1.050	380	1.050	380	1.050	380	950	290	800	230	450	110	500	120	450	90
Schulterfräsen a _p					2,5	DC							2,0	DC		
a _e	e < ø3: 0,05 DC , ≤ ø3< ø8: 0,1 DC , ≤ ø8: 0,15 DC 0,02 DC															

Nutfräsen

• Nutific	10011															
Werkstof Bed.		stahl	Kohlens (150 bis		Grau	guss	Legierto (25 bis 3		Vergütete Gehärtet (35 bis 4	er Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	ahl,
DC (mm)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)
1,0	16.600	140	16.600	140	16.600	140	15.500	100	10.500	100	7.500	70	9.400	60	3.750	20
2,0	9.500	160	9.500	160	9.500	160	9.000	180	6.200	120	4.500	90	5.200	80	2.250	30
4,0	5.200	160	5.200	180	5.200	180	4.800	160	3.400	110	2.200	65	2.600	70	1.250	25
6,0	3.500	160	3.500	200	3.500	200	3.200	160	2.550	120	1.500	65	1.700	70	950	25
8,0	2.600	160	2.600	200	2.600	200	2.400	160	1.900	120	1.100	65	1.300	70	700	25
10,0	2.100	160	2.100	200	2.100	200	1.900	160	1.500	120	900	65	1.000	70	550	25
12,0	1.750	160	1.750	200	1.750	200	1.600	160	1.250	120	750	65	850	70	450	25
16,0	1.300	160	1.300	200	1.300	200	1.200	160	950	120	550	65	650	70	350	25
20,0	1.050	160	1.050	200	1.050	200	950	160	750	120	450	65	500	70	280	25
Nutfräsen a	0,1	DC				0,2	DC				0,05	DC		0,1	DC	

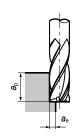
GSX 40000C-4D-Typ

■ Fräserbezeichnung (nur GSX MILL Serie)

Zähne

GSX 0100 Länge der Schneidkante Anz. der Durchmesser Seriencode Schneidkante

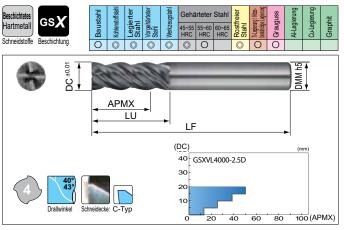
> S: Scharfe Schneidkante C: Verstärkte Schneidkante


■ Schaftfräser

(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
GSX 40100C-4D	•	1,0	4,0	5,0	40	4
GSX 40150C-4D	•	1,5	6,0	7,0	40	4
GSX 40200C-4D	•	2,0	8,0	9,0	40	4
GSX 40250C-4D	•	2,5	10,0	11,0	50	4
GSX 40300C-4D	•	3,0	12,0	13,5	50	6
GSX 40400C-4D	•	4,0	16,0	17,5	50	6
GSX 40500C-4D	•	5,0	20,0	22,0	60	6
GSX 40600C-4D	•	6,0	24,0	_	60	6
GSX 40800C-4D	•	8,0	32,0	_	80	8
GSX 41000C-4D	•	10,0	40,0	_	90	10
GSX 41200C-4D	•	12,0	48,0	-	100	12
GSX 41600C-4D	•	16,0	64,0	_	120	16
GSX 42000C-4D	O	20,0	80,0	_	140	20

■ Empfohlene Schnittbedingungen


- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Bei auftretendem Rattern sollten Umdrehungszahl und Vorschub entsprechend der Tabellen im gleichen Verhältnis reduziert oder die Schnitttiefe heruntergesetzt werden.
- 5. Diese serie wird nicht zum Nutenfräsen empfohlen.
- 6. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.

Schulterfräsen

Werkstoff Bed.	Baus	stahl	Kohlens (150 bis		Grau	guss	Legierte (25 bis 3		Vergütete Gehärtet (35 bis 4	ter Stahĺ	Gehärtet (45 bis 5		Rostfrei	er Stahl	Hitzebes Sta Titanleg	ıhl, Ö
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)
1,0	9.000	140	9.000	140	9.000	140	7.000	80	6.500	60	4.500	40	5.400	40	4.500	40
2,0	4.500	140	4.500	140	4.500	140	3.500	100	3.200	80	2.300	55	2.700	55	2.300	40
4,0	2.250	200	2.250	200	2.250	200	1.750	120	1.600	100	1.200	60	1.350	50	1.200	35
6,0	1.500	250	1.500	250	1.500	250	1.150	160	1.050	140	800	65	900	45	800	35
8,0	1.100	220	1.100	220	1.100	220	850	160	800	130	600	65	660	45	600	35
10,0	900	210	900	210	900	210	700	140	650	120	460	65	540	45	460	35
12,0	750	200	750	200	750	200	580	140	520	110	400	65	450	45	400	35
16,0	550	170	550	170	550	170	440	120	400	95	300	55	330	45	300	35
20,0	450	150	450	150	450	150	350	100	320	80	240	50	270	45	240	35
Schulterfräsen a _p					3,5	DC							3,0	DC		
a _e	< ø3: 0,04 DC , 3 ≤ øD< 8: 0,08 DC , 8 ≤ øD: 0,1 DC 0,02 DC															

HAIMER SAFE-LOCK[™]-Kompatibel

Schneidstoff: ACF20

Schaftfräser (mm) Bezeichnung DC **APMX** LU LF DMM Lager GSXVL 4020-2.5D 2,0 6,5 50 GSXVL 4030-2.5D 3,0 8 50 6 9,5 GSXVL 4040-2.5D 4,0 10 11,5 50 6 GSXVL 4050-2.5D 5,0 13 14,5 60 6 GSXVL 4060-2.5D 6,0 15 60 6 GSXVL 4070-2.5D 20,0 0 7,0 18 70 8 GSXVL 4080-2.5D 8,0 20 80 8 GSXVL 4090-2.5D 25,0 9,0 23 90 10 GSXVL 4100-2.5D 10.0 25 90 10 GSXVL 4110-2.5D 11,0 28 30,5 90 12 GSXVL 4120-2.5D 30 90 12 12,0 GSXVL 4140-2.5D 14,0 35 37,5 110 16 GSXVL 4150-2.5D 41,0 15.0 38 110 16 GSXVL 4160-2.5D 16,0 40 115 16 GSXVL 4180-2.5D 45 48,0 18,0 120 20 GSXVL 4200-2.5D 20,0 50 125 20 GSXVL 4250-2.5D 25,0 63 140 25

SAFE- À□ C K™ Kompatible Schaftfräser

■ Schaftfräser Bezeichnung

Lager DC APMX III IF DMM

(mm)

DCZCICI	inding	Lager	ЪО	AI WIX	LU		DIVIIVI
GSXVL 4120)S-2.5D	O	12,0	30	_	90	12
GSXVL 4140)S-2.5D	0	14,0	35	37,5	110	16
GSXVL 4150)S-2.5D	O	15,0	38	41,0	110	16
GSXVL 4160)S-2.5D	0	16,0	40	_	115	16
GSXVL 4180)S-2.5D	O	18,0	45	48,0	120	20
GSXVL 4200)S-2.5D		20,0	50	-	125	20
GSXVL 4250)S-2.5D	O	25,0	63	_	140	25

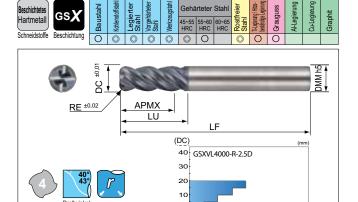
■ Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Falls bei der Bearbeitung nicht die empfohlene Umdrehungszahl erreicht werden kann, sollte die maximale Spindeldrehzahl der Maschine genutzt werden.

Schulterfräsen

Werkstoff Bed.	Kohlenst Gusse (150 bis	eisen	Legierte (25 bis 3		Vergütet Gehärte (40 bis 5	ter Stahĺ	Rostfrei	er Stahl	Hitzebestän Titanleo (20 bis 4	gierung
DC (mm)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)
2,0	13.000	1.000	10.000	800	8.000	700	10.000	580	5.000	200
4,0	9.600	1.200	8.000	1.000	6.000	800	5.500	650	3.000	230
6,0	6.800	1.500	5.600	1.200	4.200	900	3.800	680	2.100	240
8,0	5.200	1.600	4.400	1.300	3.200	950	2.800	650	1.600	250
10,0	4.200	1.500	3.500	1.200	2.600	800	2.300	600	1.300	210
12,0	3.500	1.400	3.000	1.200	2.200	700	1.900	550	1.100	180
14,0	3.000	1.200	2.600	1.100	1.800	600	1.600	500	900	150
16,0	2.700	1.100	2.200	1.000	1.600	600	1.400	480	760	130
18,0	2.400	1.000	2.000	900	1.400	570	1.300	450	680	120
20,0	2.200	900	1.700	800	1.200	550	1.100	400	600	100
25,0	1.700	680	1.400	630	1.000	450	890	310	480	82
Schulterfräsen a _p					1,5	DC				
a _e		0,1	DC		0,05	DC	0,1	DC	0,05	DC

Nutenfräsen


	Vogetieter Ctabl									
Werkstoff Bed.	Kohlens Guss (150 bis	eisen	Legierte (25 bis 3		Vergütet Gehärtet (40 bis 5	ter Stahl	Rostfrei	er Stahl	Hitzebestän Titanleo (20 bis 4	gierung
DC (mm)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)
2,0	13.000	750	10.000	550	8.400	500	6.500	300	4.000	140
4,0	8.200	800	6.000	600	5.200	500	4.000	330	2.000	130
6,0	6.100	1.100	4.000	600	3.500	580	2.700	350	1.350	150
8,0	4.600	1.000	3.000	580	2.600	570	2.000	330	1.000	140
10,0	3.600	1.000	2.400	550	2.100	510	1.600	200	800	130
12,0	3.100	920	2.000	500	1.700	450	1.300	280	660	110
14,0	2.600	750	1.700	450	1.500	400	1.100	250	570	100
16,0	2.300	670	1.500	420	1.300	350	1.000	230	500	90
18,0	2.000	620	1.300	380	1.100	330	900	200	430	80
20,0	1.900	600	1.200	360	1.000	320	800	180	380	70
25,0	1.500	470	1.000	300	790	250	640	140	300	55
Nutenfräsen a _p		1,0	DC		0,2	DC	0,3	DC	0,2	DC

Anti-Vibrations-Typ mit 4 Schn. und Eckenradius

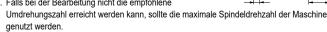
HAIMER SAFE-LOCK™ Kompatibel

GSXVL 4000-R-2,5D-Typ

		0	20	40 6	80 8	0 100	(APMX)
■ Schaftfräser							(mm)
Bezeichnung	Lager	DC	RE	APMX	LU	LF	DMM
GSXVL 4030-R02-2.5D	•	3,0	0,2	8	9,5	50	6
GSXVL 4030-R05-2.5D	•	3,0	0,5	8	9,5	50	6
GSXVL 4040-R02-2.5D	0	4,0	0,2	10	11,5	50	6
GSXVL 4040-R05-2.5D	•	4,0	0,5	10	11,5	50	6
GSXVL 4040-R10-2.5D	0	4,0	1,0	10	11,5	50	6
GSXVL 4050-R02-2.5D	•	5,0	0,2	13	14,5	60	6
GSXVL 4050-R05-2.5D	•	5,0	0,5	13	14,5	60	6
GSXVL 4050-R10-2.5D		5,0	1,0	13	14,5	60	6
GSXVL 4060-R03-2.5D	O	6,0	0,3	15	-	60	6
GSXVL 4060-R05-2.5D	•	6,0	0,5	15	_	60	6
GSXVL 4060-R10-2.5D	•	6,0	1,0	15	_	60	6
GSXVL 4060-R15-2.5D	0	6,0	1,5	15	_	60	6
GSXVL 4080-R03-2.5D	•	8,0	0,3	20	_	80	8
GSXVL 4080-R05-2.5D	•	8,0	0,5	20	_	80	8
GSXVL 4080-R10-2.5D	•	8,0	1,0	20	_	80	8
GSXVL 4080-R15-2.5D	•	8,0	1,5	20	_	80	8
GSXVL 4080-R20-2.5D	0	8,0	2,0	20	_	80	8
GSXVL 4100-R03-2.5D	•	10,0	0,3	25	_	90	10
GSXVL 4100-R05-2.5D	•	10,0	0,5	25	_	90	10
GSXVL 4100-R10-2.5D	•	10,0	1,0	25	_	90	10
GSXVL 4100-R15-2.5D		10,0	1,5	25	_	90	10
GSXVL 4100-R20-2.5D	0	10,0	2,0	25	_	90	10
GSXVL 4120-R05-2.5D	•	12,0	0,5	30	_	90	12
GSXVL 4120-R10-2.5D	•	12,0	1,0	30	_	90	12
GSXVL 4120-R15-2.5D	•	12,0	1,5	30	_	90	12
GSXVL 4120-R20-2.5D	0	12,0	2,0	30	_	90	12
GSXVL 4120-R30-2.5D	0	12,0	3,0	30	_	90	12
GSXVL 4160-R10-2.5D	•	16,0	1,0	40	_	115	16
GSXVL 4160-R15-2.5D	•	16,0	1,5	40	_	115	16
GSXVL 4160-R20-2.5D	•	16,0	2,0	40	_	115	16
GSXVL 4160-R30-2.5D		16,0	3,0	40	_	115	16
GSXVL 4200-R10-2.5D	•	20,0	1,0	50	_	125	20
GSXVL 4200-R15-2.5D	0	20,0	1,5	50	_	125	20
GSXVL 4200-R20-2.5D	0	20,0	2,0	50	_	125	20
GSXVL 4200-R30-2.5D	•	20,0	3,0	50	_	125	20
GSXVL 4250-R10-2.5D	O	25,0	1,0	63	_	140	25
GSXVL 4250-R15-2.5D	0	25,0	1,5	63	_	140	25
GSXVL 4250-R20-2.5D	0	25,0	2,0	63	_	140	25
GSXVL 4250-R30-2.5D	O	25,0	3,0	63	_	140	25
					Schne	idstoff:	ACF20

SAFE->OCK™

Kompatible Schaftfräser


Schaftfräser

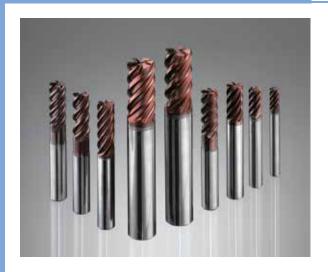
- Ocharinasei							(mm)
Bezeichnung	Lager	DC	RE	APMX	LU	LF	DMM
GSXVL 4120S-R05-2.5D	0	12,0	0,5	30	_	90	12
GSXVL 4120S-R10-2.5D		12,0	1,0	30	_	90	12
GSXVL 4120S-R15-2.5D		12,0	1,5	30	_	90	12
GSXVL 4120S-R20-2.5D		12,0	2,0	30	_	90	12
GSXVL 4120S-R30-2.5D		12,0	3,0	30	_	90	12
GSXVL 4160S-R10-2.5D		16,0	1,0	40	_	115	16
GSXVL 4160S-R15-2.5D		16,0	1,5	40	_	115	16
GSXVL 4160S-R20-2.5D		16,0	2,0	40	_	115	16
GSXVL 4160S-R30-2.5D		16,0	3,0	40	_	115	16
GSXVL 4200S-R10-2.5D		20,0	1,0	50	-	125	20
GSXVL 4200S-R15-2.5D		20,0	1,5	50	_	125	20
GSXVL 4200S-R20-2.5D		20,0	2,0	50	_	125	20
GSXVL 4200S-R30-2.5D		20,0	3,0	50	_	125	20
GSXVL 4250S-R10-2.5D		25,0	1,0	63	_	140	25
GSXVL 4250S-R15-2.5D		25,0	1,5	63	_	140	25
GSXVL 4250S-R20-2.5D		25,0	2,0	63	_	140	25
GSXVL 4250S-R30-2.5D	O	25,0	3,0	63	-	140	25

Schneidstoff: ACF20

■Empfohlene Schnittbedingungen

- 1. Für eine stabile und exakte Bearbeitung sollten starre und präzise Halter und Maschinen verwendet werden.
- 2. Bei der Trockenbearbeitung sollte Druckluft zugeführt werden.
- 3. Die Nassbearbeitung wird für rostfreien Stahl, hitzebeständige- und Titan-Legierungen empfohlen.
- 4. Falls bei der Bearbeitung nicht die empfohlene

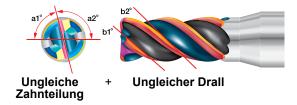
Schulter- und Nuten-Fräsen


• Cond	Will find Nutrin I Idadii										
Werksto	ff	Kohlenst Gusse (150 bis	eisen	Legierte (25 bis 3		Vergütete Gehärtet (40 bis 5	er Stahl	Rostfrei	er Stahl	Hitzebestän Titanleo (20 bis 4	gierung
DC (mm)	V 1	indeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)	Spindeldrehzahl (rpm)	Vorschub (mm/min)
2,0		9.000	720	6.000	430	4.000	320	5.500	320	2.600	120
4,0		6.600	800	4.500	450	3.000	380	4.000	320	2.000	120
6,0		4.800	960	3.000	480	2.500	380	3.000	480	1.200	120
8.0		3.600	1.000	2.200	610	2.000	400	2.000	520	1.000	140
10,0		2.800	1.000	1.800	610	1.500	400	1.700	550	800	160
12,0		2.400	950	1.500	550	1.200	380	1.500	500	700	140
14,0		2.200	880	1.300	490	1.000	360	1.200	430	600	130
16,0		1.800	650	1.100	420	800	300	1.000	360	500	120
18,0		1.600	580	1.000	360	750	270	900	340	450	110
20,0		1.400	500	900	330	700	250	820	300	400	100
0-1114-11	a p					1,5	DC				
Schulterfräsen	a _e		0,1	DC		0,05	DC	0,1	DC	0,05	DC
Nutfräsen	a _p		1,0	DC		0,2	DC	0,3	DC	0,2	DC

■Auswahl Eckenradius

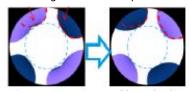
DC	RE0,2	RE0,3	RE0,5	RE1,0	RE1,5	RE2,0	RE3,0
3							
4							
5							
6							
8							
10							
12							
16							
20							
25							

EPMS - Serie



■ Merkmale

- Vollhartmetallfräser der EPMS-Serie (Ex Performance Mill S) einsetzbar im Hochleistungsfräsen
- höhere Effizienz und längere Standzeit durch die neueste Technologie eines weiterentwickelten Hartmetallsubstrats und einer neuen Beschichtung in Kombination mit einem optimierten Werkzeugdesign
- lieferbar mit 4/5/6 Schneiden, verschiedenen Durchmessern und Kantenradien
- exzellente Leistung bei der Bearbeitung von exotischen Legierungen wie Ti-Legierungen, Superlegierungen und hitzebeständigen Stählen
- ideal für Titanbauteile im Flugzeugbau
- Antivibrationsdesign für eine zuverlässige und effiziente Bearbeitung in einem breiten Anwendungsbereich


Antivibrationsdesign

Reduziert die Vibrationen drastisch, insbesondere bei instabil geklemmten Werkstücken und dünnwandigen Geometrien. Erhöht die Genauigkeit und Oberflächenqualität.

■ Optimierte Spannutgeometrie

Wirkungsbereiche der Spanabfuhr

Herkömmlich Neues Design

Eine reibungslose Spanabfuhr sorgt für einen stabilen und sicheren Bearbeitungsprozess beim Kunden.

■ Vergleich mit anderen Fräsern

Bezeichnung	Beschichtung	Durchmesser	Spanwinkel	Freiwinkel	Drallwinkel	Kerndurch- messer	Anzahl Schneiden	Radius- toleranz
GSXVL4000-R	GXS (TiAlCrN)	1–25	3–5	16	40/43	0,6D	4	-0,01/0,01
SSEHVL4000-R	GS Hard (TiAlCrSiCN)	4,5–25	5–7	17	42/45	0,65D	5	-0,01/0,01
EPMS4000-R	TiAISiN	10–26	5–7	14	42/45	0,7D	6	-0,01/0,01

Fräsanwendungen

Schulterfräsen

Vollnutfräsen

Trochoidalfräsen

Planfräsen

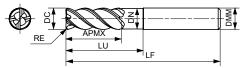
Zirkularfräsen

Schrägeintauchen

Konturfräsen

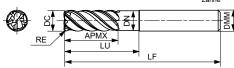
Vollhartmetallfräser

EPMS 4000/5000/6000 Typ


■ Fräsertypen

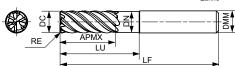
EPMS 4000

Bezeichnung	Lager	DC	RE	APMX	LU	DN	LF	DMM
EPMS 4100U2.5R10	•	10	1,0	25	32	9,5	72	10
4100U2.5R30	•	10	3,0	25	32	9,5	72	10
EPMS 4120U2.5R10	•	12	1,0	30	38	11,5	83	12
4120U2.5R30	•	12	3,0	30	38	11,5	83	12
4120U2.5R40	•	12	4,0	30	38	11,5	83	12
EPMS 4160U2.5R30	•	16	3,0	40	50	15,5	100	16
4160U2.5R40	•	16	4,0	40	50	15,5	100	16


HM-Sorte: ECS300

EPMS 5000

Bezeichnung	Lager	DC	RE	APMX	LU	DN	LF	DMM
EPMS 5100U2.5R025	•	10	0,25	25	32	9,5	72	10
5100U2.5R15	•	10	1,5	25	32	9,5	72	10
5100U2.5R25	•	10	2,5	25	32	9,5	72	10
EPMS 5120U2.5R025	•	12	0,25	30	38	11,5	83	12
5120U2.5R05	•	12	0,5	30	38	11,5	83	12
5120U2.5R15	•	12	1,5	30	38	11,5	83	12
5120U2.5R20	•	12	2,0	30	38	11,5	83	12
5120U2.5R25	•	12	2,5	30	38	11,5	83	12
EPMS 5160U2.5R30	•	16	3,0	40	50	15,5	100	16
5160U2.5R40	•	16	4,0	40	50	15,5	100	16
EPMS 5200U2.5R30	•	20	3,0	50	62	19,5	125	20
5200U2.5R40	•	20	4,0	50	62	19,5	125	20


HM-Sorte: ECS300

EPMS 6000

Bezeichnung	Lager	DC	RE	APMX	LU	DN	LF	DMM
EPMS 6100U2.5R10	•	10	1,0	25	32	9,5	72	10
6100U2.5R30	•	10	3,0	25	32	9,5	72	10
EPMS 6120U2.5R10	•	12	1,0	30	38	11,5	83	12
6120U2.5R30	•	12	3,0	30	38	11,5	83	12
6120U2.5R40	•	12	4,0	30	38	11,5	83	12
EPMS 6160U2.5R15	•	16	1,5	40	50	15,5	100	16
6160U2.5R30	•	16	3,0	40	50	15,5	100	16
6160U2.5R40	•	16	4,0	40	50	15,5	100	16
EPMS 6200U2.5R30	•	20	3,0	50	62	19,5	125	20
6200U2.5R40	•	20	4,0	50	62	19,5	125	20

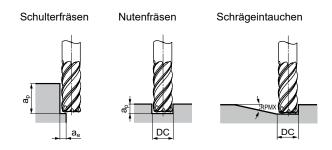
HM-Sorte: ECS300

■ Schnittwerte

Schulterfräsen

Werkstückstoff		Titanlegierung, rostfreier Stahl						
	Spindeldreh-	Vorschub (mm/min)						
DC (mm)	zahl (min ⁻¹)	EPMS4000	EPMS5000	EPMS6000				
10,0	3.200	1.280	1.920	3.840				
12,0	2.700	1.080	1.620	3.240				
16,0	2.000	800	1.200	2.400				
20,0	1.600	640	960	1.920				
ae (mm), Sta	ndard-Max.	0,2 –0,4 DC	0,1 –0,3 DC 0,06 –0,1 [
ap (mm), Sta	ndard-Max.	2,0 –2,5 DC						

		,						
Werkstückstoff		Hitzebeständige Legierung						
	Spindeldreh-	Vorschub (mm/min)						
DC (mm)	zahl (min ⁻¹)	EPMS4000	EPMS5000	EPMS6000				
10,0	1.600	380	640	960				
12,0	1.300	310	520	780				
16,0	1.000	240	400	600				
20,0	800	190	320	480				
ae (mm), Sta	ndard-Max.	0,2 –0,4 DC 0,1 –0,3 DC 0,06 –0,1 DC						
ap (mm), Sta	ndard-Max.	2,0 –2,5 DC						


Nutenfräsen

Werkstückstoff	Titanlegierung, rostfreier Stahl						
	Spindeldreh-	Vorschub (mm/min)					
DC (mm)	zahl (min-1)	EPMS4000 EPMS5000		EPMS6000			
10,0	1.900	460	570				
12,0	1.600	380	480	Nicht			
16,0	1.200	290	360	empfohlen			
20,0	960	230	290	Cimpionion			
ap (mm), Sta	ndard-Max.	1,0 –1,5 DC	0,5 –1,0 DC				

Werkstückstoff		Hitzebeständige Legierung					
Beding.	Spindeldreh-	Vorschub (mm/min)					
DC (mm)	zahl (min ⁻¹)	EPMS4000	EPMS5000	EPMS6000			
10,0	960	230	290				
12,0	800	190	240	Nicht			
16,0	600	140	180	empfohlen			
20,0	480	120	140	emplomen			
ap (mm), Sta	ndard-Max.	0,3 –0,5 DC	0,2 –0,4 DC				

Schrägeintauchen / Zirkularfräsen

Fräsertyp	EPMS4000	EPMS5000	EPMS6000
RPMX, Standard-Max.		2,0° –3,0°	

■ Bezeichnungsschlüssel

anzahl

messer

EPMS	4	100	U2.5		R10	CS300
Serienbe-	Schneiden-	Durch-	Halstypen	Weitere	Eckenradius	Schneidstoff
zeichnung	anzahl	messer	U: under neck	Optionen*	R10: = 1 mm	

S: gerade+LxD

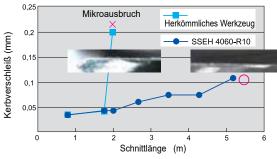
* Auf Anfage

zeichnung

Weitere Optionen* W: Weldon

Eckenradius R10: = 1 mm

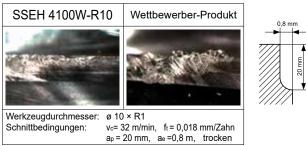
SSEH-Serie


SSEH Schaftfräser mit Eckenradius

Merkmale

- Exzellente Zerspanung und Spanabfuhr. Der große Drallwinkel von 45 Grad erhöht die Zerspanungsleistung und bewirkt einen glatten Schnitt und eine leichtere Spanabfuhr.
- Maximale Werkzeugstabilität. Die größere Kerndicke und optimierte Spanraumgestaltung bieten maximale Werkzeugstabilität und exzellenten Spanfluss.
- Hoher Adhäsionswiderstand, hoher Adhäsionswiderstand und Verschleißfestigkeit durch die sehr glatte Oberfläche und die Spezialbeschichtung.
- Verbesserter Bruchwiderstand. Die tangierende Ausprägung des Radius ohne Absatz verbessert den Widerstand gegen Ausbrüche.
- Einsatz einer neuen Beschichtung. Die neue, sehr glatte Beschichtung mit wesentlich größerer Härte und Hitzebeständigkeit führt zu einer längeren Standzeit bei der Bearbeitung von hitzebeständigen Legierungen.

Anwendungsbeispiele

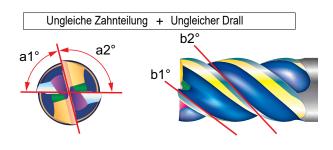

Inconel 718 (Nutfräsen)

Werkzeugdurchmesser: ø 6 × R1

Schnittbedingungen: $v_c = 20 \text{ m/min}, \text{ ft} = 0.025 \text{ mm/Zahn},$ $a_p = 5 \text{ mm}, a_e = 0.5 \text{ mm}, \text{ nass}$

Inconel 713 (Schulterfräsen)

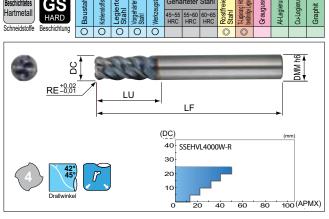
In von Sumitomo Electric Hardmetal durchgeführten Tests bewirkte die Spezialbeschichtung mit exzellenter Haftbeständigkeit eine geringere Adhäsion der Schneidkante als das Wettbewerber-Produkt und ermöglichte eine bruchfreie Bearbeitung. Beim Wettbewerber-Produkt trat Kantenadhäsion auf, die zum Bruch führte.


= Eurolager O = Japanlager

SSEH Antivibrationstyp mit Eckenradius

Merkmale

- Der neue Antivibrationsfräser vom Typ SSEH wurde als Erweiterung der Standardserie SSEH für den Einsatz in exotischen Materialien entwickelt.
- Im Unterschied zum Standardtyp verfügt der neue Antivibrationsfräser SSEH über einen ungleichen Drall zur Vibrationsreduzierung.
- SSEH ist geeignet zum Fräsen von exotischen Materialien, einschließlich rostfreiem Stahl, Inconel und Titan.
- Der SSEHVL Schaftfräser reduziert Rattern beim Einsatz mit hoher Geschwindigkeit und hohem Vorschub.
- Sowohl beschichtete als auch unbeschichtete Typen sind ab Lager erhältlich, die sich für die unterschiedlichsten Bedingungen eignen.



Anti-Vibrations-Typ mit 4 Schn. und Eckenradius

HAIMER SAFE-LOCK™ Kompatibel

SSEHVL 4000W-R-Typ

Schneidstoff: ACW52

(mm)

■ Schaftfräser

SSEHVL 4250W-R10

SSEHVL 4250W-R30

Bezeichnung	Lager	DC	RE	LU	LF	DMM
SSEHVL 4045W-R05	•	4,5	0,5	12	50	6
SSEHVL 4045W-R10	0	4,5	1,0	12	50	6
SSEHVL 4050W-R05		5,0	0,5	13	60	6
SSEHVL 4050W-R10	•	5,0	1,0	13	60	6
SSEHVL 4060W-R10	0	6,0	1,0	13	60	6
SSEHVL 4080W-R10	•	8,0	1,0	19	80	8
SSEHVL 4100W-R10	•	10,0	1,0	22	90	10
SSEHVL 4100W-R30	•	10,0	3,0	22	90	10
SSEHVL 4120W-R10	•	12,0	1,0	26	90	12
SSEHVL 4120W-R30	•	12,0	3,0	26	90	12
SSEHVL 4160W-R10	•	16,0	1,0	32	115	16
SSEHVL 4160W-R30	•	16,0	3,0	32	115	16
SSEHVL 4200W-R10		20,0	1,0	40	125	20
SSEHVL 4200W-R30	0	20,0	3,0	40	125	20

25,0

25,0

1,0

3,0

SAFE->OCK™

Kompatible Schaftfräser

(mm)

Schaftfräser

						(111111)
Bezeichnung	Lager	DC	RE	LU	LF	DMM
SSEHVL 4120WS-R10		12,0	1,0	26	90	12
SSEHVL 4120WS-R30		12,0	3,0	26	90	12
SSEHVL 4160WS-R10		16,0	1,0	32	115	16
SSEHVL 4160WS-R30		16,0	3,0	32	115	16
SSEHVL 4200WS-R10		20,0	1,0	40	125	20
SSEHVL 4200WS-R30		20,0	3,0	40	125	20
SSEHVL 4250WS-R10		25,0	1,0	50	140	25
SSEHVL 4250WS-R30		25,0	3,0	50	140	25
SSEHVL 4200WS-R10 SSEHVL 4200WS-R30 SSEHVL 4250WS-R10		20,0 20,0 25,0	1,0 3,0 1,0	40 40 50	125 125 140	20 20 25

■ Auswahlbereich Durchmesser und Eckenradius

DC	RE0,5	RE1,0	RE3,0
4,5	•	0	
5		•	
6		0	
8		•	
10		•	•
12		•	•
16		•	•
20			
25			

50

50

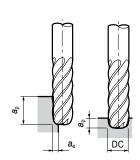
140

140

25

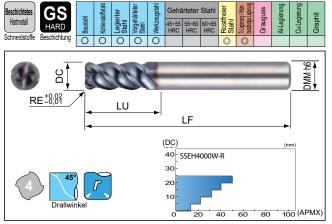
25

■ Empfohlene Schnittbedingungen


- 1. Zur stabilen Bearbeitung wird eine Maschine mit hoher Steifigkeit empfohlen.
- 2. Für Anwendungen in rostfreiem Stahl und hitzebeständigen Legierungen wird die Nassbearbeitung empfohlen.
- 3. Beim Auftreten von Schneidgeräuschen und Vibration sollten Sie die Schnittbedingungen entsprechend ändern.

Schulterfräsen

Werkstoff	Rostfrei	or Stabl	Titanled	rioruna	Hitzebeständiger Stahl			
Bed.	Rostilei	ei Staili	Hitanie	gierung	niizebesiai	Hilzebestandiger Starii		
DC (mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub		
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)		
4,5	3.500	350	3.500	280	2.100	170		
5,0	3.200	380	3.200	320	1.900	190		
6,0	2.700	430	2.700	320	1.600	190		
8,0	2.000	400	2.000	280	1.200	170		
10,0	1.600	380	1.600	260	1.000	160		
12,0	1.300	360	1.300	230	800	140		
16,0	1.000	320	1.000	200	600	120		
20,0	800	260	800	160	480	100		
25,0	640	200	640	130	380	80		
Schulterfräsen a _p			1,5	DC				
Schulterfrasen $a_{\rm e}$	0,1	DC	0,05	DC	0,05 DC			


●Nutenfräsen

- Nuleillaseii									
Werkstoff	Rostfrei	or Stabl	Titanled	riorung	Hitzebeständiger Stahl				
Bed.	Nostrie	ei Staili	Hitariie	gierung	i iiiZebesiai	idiger Starii			
DC _(mm)	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub			
DC(mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)			
4,5	4,200	200	3,900	270	1,400	100			
5,0	3,800	240	3,500	300	1,300	120			
6,0	3,200	260	2,900	300	1,100	140			
8,0	2,400	240	2,200	270	800	120			
10,0	1,900	220	1,700	250	650	110			
12,0	1,600	200	1,400	230	550	100			
16,0	1,200	130	1,100	200	400	80			
20,0	950	95	890	90	320	60			
25,0	760 75		700	70	250	250 50			
Nutenfräsen a _p	0,3	DC	0,2	DC	0,15 DC				

SSEH 4000**W-R**-Typ

HAIMER SAFE-LOCK™ Kompatibel

Schneidstoff: ACW52

(mm)

■ Schaftfräser

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
SSEH 4045W-R05		4,5	0,5	12	50	6
SSEH 4050W-R05	O	5,0	0,5	13	60	6
SSEH 4060W-R10	•	6,0	1,0	13	60	6
SSEH 4080W-R10	•	8,0	1,0	19	80	8
SSEH 4100W-R10	•	10,0	1,0	22	90	10
SSEH 4100W-R30	O	10,0	3,0	22	90	10
SSEH 4120W-R10	•	12,0	1,0	26	90	12
SSEH 4120W-R30		12,0	3,0	26	90	12
SSEH 4160W-R10	•	16,0	1,0	32	115	16
SSEH 4160W-R30		16,0	3,0	32	115	16
SSEH 4200W-R10	O	20,0	1,0	40	125	20
SSEH 4200W-R30	O	20,0	3,0	40	125	20
SSEH 4250W-R10		25,0	1,0	50	140	25
SSEH 4250W-R30	O	25,0	3,0	50	140	25

Schaftfräser

-/	-	-

- Contantinacon						(111111)
Bezeichnung	Lager	DC	APMX	LU	LF	DMM
SSEH 4120WS-R10		12,0	1,0	26	90	12
SSEH 4120WS-R30		12,0	3,0	26	90	12
SSEH 4160WS-R10		16,0	1,0	32	115	16
SSEH 4160WS-R30		16,0	3,0	32	115	16
SSEH 4200WS-R10		20,0	1,0	40	125	20
SSEH 4200WS-R30		20,0	3,0	40	125	20
SSEH 4250WS-R10		25,0	1,0	50	140	25
SSEH 4250WS-R30		25,0	3,0	50	140	25

■ Auswahlbereich Durchmesser und Eckenradius

DC	RE0,5	RE1,0	RE3,0
4,5			
5	•		
6		•	
8		•	
10		•	O
12		•	
16		•	
20		0	0
25			O

■ Empfohlene Schnittbedingungen

- 1. Zur stabilen Bearbeitung wird eine Maschine mit hoher Steifigkeit empfohlen.
- 2. Für Anwendungen in rostfreiem Stahl und hitzebeständigen Legierungen wird die Nassbearbeitung empfohlen.
- 3. Beim Auftreten von Schneidgeräuschen und Vibration sollten Sie die Schnittbedingungen entsprechend ändern.

Schulterfräsen

Werkstoff	Rostfrei	or Stabl	Titanle	rioruna	Hitzebeständiger Stahl		
Bed.	Rosulei	ei Starii	Hitanie	gierung			
DC.	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	
4,5	3.500	350	3.500	280	2.100	170	
5,0	3.200	380	3.200	320	1.900	190	
6,0	2.700	430	2.700	320	1.600	190	
8,0	2.000	400	2.000	280	1.200	170	
10,0	1.600	380	1.600	260	1.000	160	
12,0	1.300	360	1.300	230	800	140	
16,0	1.000	320	1.000	200	600	120	
20,0	800	260	800	160	480	100	
25,0	640	200	640	130	380	80	
Schulterfräsen a _p			1,5	DC			
Schulterirasen $a_{\rm e}$	0,1	DC	0,05	DC	0,05 DC		

Nutfräsen

Werkstoff					Hitzebeständiger Stahl		
Bed.	Rostfi	eier Stahl	Titanle	gierung			
DC (mm)	Spindeldrehza	hl Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	
DC (mm)	(rpm)	(mm/min)	(rpm)	(mm/min)	(rpm)	(mm/min)	
4,5	4,200	200	3,900	270	1,400	100	
5,0	3,800	240	3,500	300	1,300	120	
6,0	3,200	260	2,900	300	1,100	140	
8,0	2,400	240	2,200	270	800	120	
10,0	1,900	220	1,700	250	650	110	
12,0	1,600	200	1,400	230	550	100	
16,0	1,200	130	1,100	200	400	80	
20,0	950	95	890	90	320	60	
25,0	760	75	700	700 70		50	
Nutfräsen a	_p 0	0,3 DC 0,2 DC 0,15				DC	

= Eurolager

GSRE 4000SF-Typ

"GS MILL"- Serie

TiAIN-beschichtete Schaftfräser mit Verzahnung

■ Schaftfräser

1			٠,	
(m	ın	ทา	۱

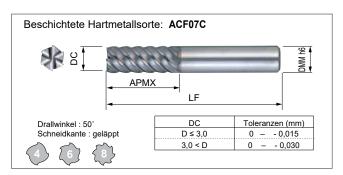
Bezeichnung	Lager	DC	APMX	LF	CHW	DMM
GSRE 4060 SF	•	6,0	13	50	0,3	6
4070 SF	•	7,0	16	60	0,3	8
4080 SF	•	8,0	19	60	0,4	8
4090 SF	•	9,0	19	70	0,4	10
4100 SF	•	10,0	22	70	0,5	10
GSRE 4110 SF	•	11,0	22	75	0,5	12
4120 SF	•	12,0	26	75	0,6	12
4140 SF	•	14,0	26	90	0,6	16
4160 SF	•	16,0	32	90	0,8	16
4180 SF	•	18,0	32	100	0,8	20
GSRE 4200 SF	•	20,0	38	100	1,0	20

Empfehlung:

- (1) Durch eine stabile Maschine ist eine Hochleistungszerspanung gewährleistet.
- (2) Wenn während der Bearbeitung übermäßige Vibrationen oder starke Geräusche auftreten, sollten die Geschwindigkeiten und Vorschübe reduziert werden.

d_B

■ Empfohlene Schnittbedingungen


Schulterfräsen

	stück- stoff	Kohlens	toffstahl	Grauguss				ROSTITALAT STANL		Hitzebestän Titan-Le			
Schnii Fräser-ø	too	(HB150	0–250)			(HRC2	25–35)	(HRC4	0–50)			I IIIaII-LE	glerung
	den	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub
(mm)		(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)
1		4.800	1.200	5.800	1.500	3.200	380	2.600	400	4.300	250	1.600	90
2		4.100	1.200	5.000	1.500	2.700	380	2.200	400	4.500	250	1.350	90
3		3.600	1.200	4.500	1.500	2.400	380	2.000	400	4.000	250	1.250	90
4		3.200	1.200	4.000	1.500	2.100	380	1.800	400	3.500	250	1.050	90
5		2.800	1.200	2.500	1.500	1.900	380	1.600	400	3.200	250	1.000	100
6		2.600	1.200	3.000	1.400	1.700	380	1.500	400	2.900	250	900	100
8		2.400	1.200	2.900	1.400	1.600	400	1.300	400	2.600	250	800	100
10		2.200	1.100	2.600	1.300	1.300	380	1.100	350	2.200	200	700	100
12		1.800	900	2.200	1.100	1.200	380	1.000	350	2.000	180	600	100
16		1.400	700	1.800	900	1.000	380	900	350	1.800	150	550	100
20		1.400	700	1.700	800	850	380	800	350	1.600	150	500	100
Schulter-	ap			1,5	DC					1,5	DC		
fräsen	ae			0,5	DC					0,3	DC		

Nutfräsen

Werkstück- stof Schnittoater Fräser-ø (mm)	.i Koniensi	toffstahl 0–250)	Grau	guss	Legierte		Gehärtet (HRC4		Rostfrei	er Stahl	Hitzebestän Titan-Le	,
Fräser-ø	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub
(mm)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)
1	3.600	900	4.300	1.100	2.400	300	1.700	260	4.200	250	1.100	60
2	3.000	900	3.700	1.100	2.000	280	1.500	260	3.600	250	900	60
3	2.700	900	3.400	1.100	1.800	280	1.350	260	3.200	250	800	60
4	2.400	900	3.000	1.100	1.600	280	1.200	260	2.800	250	700	60
5	2.100	900	2.600	1.100	1.400	280	1.100	270	2.500	250	650	65
6	2.000	900	2.300	1.100	1.300	280	1.000	270	2.300	250	600	70
8	1.800	900	2.200	1.100	1.200	300	900	270	2.100	250	550	70
10	1.600	800	2.000	1.100	1.000	290	750	240	1.800	180	450	65
12	1.350	650	1.650	850	900	280	700	240	1.600	160	400	65
16	1.200	550	1.500	750	800	280	600	230	1.400	140	350	60
20	1.050	500	1.350	700	700	280	550	210	1.250	125	300	60
Nutenfräsen ap			1,0	DC					0,5	DC		

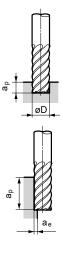
"GS MILL"- Serie GSH 4000/6000/8000 SF Typ

■ Schaftfräser (mm)

Ве	Bezeichnung		DC	APMX	LF	DMM
GSH	4010 SF	•	1,0	3	50	6
	4015 SF	•	1,5	4	50	6
	4020 SF	•	2,0	6	50	6
GSH	6030 SF	•	3,0	8	50	6
	6040 SF	•	4,0	11	50	6
	6050 SF	•	5,0	12	50	6
	6060 SF	•	6,0	13	50	6
	6080 SF	•	8,0	19	60	8
	6100 SF	•	10,0	22	70	10
	6120 SF	•	12,0	26	75	12
GSH	8160 SF	•	16,0	32	90	16
	8200 SF	•	20,0	38	100	20

Empfehlung:

- (1) Durch eine stabile Maschine ist eine Hochleistungszerspanung gewährleistet.
- (2) Wenn während der Bearbeitung übermäßige Vibrationen oder starke Geräusche auftreten, sollten die Geschwindigkeiten und Vorschübe reduziert werden.


■ Empfohlene Schnittbedingungen

Herkömmliche Fräsbearbeitung

	stück- stoff	Legierte	er Stahl	Vergütet gehärtet		Gehärtet	er Stahl	Gehärtet	er Stahl	Gehärtet	er Stahl	Gehärtet	ter Stahl
och r	Vitter	(–HR Umdrehung (U/min)	C35)	(HRC3	5-45)	(HRC4	5-55)	(HRC5	5-60)	(HRC6	0-65)	(HRC	65–)
Fräser-ø`	"Vaten	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub
(mm)		(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)
1		20.000	540	20.000	390	15.600	260	12.300	160	11.100	140	7.800	95
2		19.000	1.100	17.200	770	13.400	530	10.500	320	9.500	270	6.700	190
3		15.000	2.150	13.400	1.540	10.400	1.050	8.200	650	7.400	540	5.200	380
4		11.200	2.400	10.000	1.740	7.800	1.180	6.100	730	5.600	600	3.900	420
5		9.000	2.700	8.000	1.930	6.200	1.300	4.900	810	4.400	670	3.100	470
6		7.500	2.700	6.700	1.930	5.200	1.300	4.100	810	3.700	670	2.600	470
8		5.600	2.700	5.000	1.930	3.900	1.300	3.050	810	2.800	670	1.950	470
10		4.500	2.700	4.000	1.930	3.100	1.300	2.450	810	2.200	670	1.550	470
12		3.750	2.700	3.350	1.930	2.600	1.300	2.050	810	1.850	670	1.300	470
16		2.800	2.500	2.500	1.800	1.950	1.220	1.530	760	1.400	630	980	440
20		2.250	2.100	2.000	1.540	1.550	1.050	1.230	650	1.100	540	780	380
Schulter-	ap		1–1,	5 DC			1–1,	5 DC			1–1,	5 DC	
fräsen	a _e			DC			0,05 DC			0,02 DC			
Nutenfräsen	ap		0,1	DC			0,05	5 DC			–0,05 DC	(Max 0,5)	

HSC Fräsbearbeitung

Werkstück-	Legierter Stani		Vergüteter Stahl, gehärteter Stahl		Gehärteter Stahl		Gehärteter Stahl		Gehärteter Stahl	
Fräser-ø	(-HR	C35)	(HRC35-45)		(HRC45-55)		(HRC5	5–60)	(HRC60-65)	
Fräser-ø	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub
(mm)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)
1	48.000	1.250	48.000	1.250	48.000	1.250	48.000	930	38.000	700
2	48.000	2.850	48.000	2.850	48.000	2.850	36.000	1.600	24.000	1.000
3	32.000	4.900	32.000	4.900	32.000	4.900	24.000	2.740	16.000	1.700
4	24.000	5.200	24.000	5.200	24.000	5.200	18.000	2.900	12.000	1.800
5	19.200	5.800	19.200	5.800	19.200	5.800	14.300	3.200	9.600	2.000
6	16.000	5.800	16.000	5.800	16.000	5.800	12.000	3.200	8.000	2.000
8	12.000	5.800	12.000	5.800	12.000	5.800	9.000	3.200	6.000	2.000
10	9.600	5.800	9.600	5.800	9.600	5.800	7.200	3.200	4.800	2.000
12	8.000	5.800	8.000	5.800	8.000	5.800	6.000	3.200	4.000	2.000
16	6.000	5.400	6.000	5.400	6.000	5.400	4.500	3.000	3.000	1.900
20	4.800	4.600	4.800	4.600	4.800	4.600	3.600	2.580	2.400	1.600
Schulter- ap	1–1,5	5 DC		1–1,	5 DC		1–1,5 DC		1–1,5 DC	
fräsen a _e	0,1	DC		0,05	5 DC		0,02	DC	0,12	DC

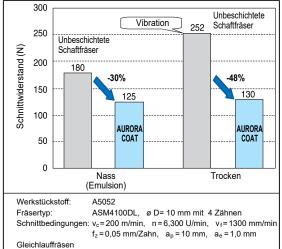
DLC (Diamond Like Carbon) Schaftfräser mit AURORA-Beschichtung

■ Eigenschaften

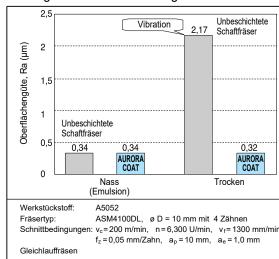
Sumitomos neue Sorte DL1000 mit "AURORA"-Beschichtung "Diamond Like Carbon" (DLC) ist eine ultra dünne, diamant-ähnliche Beschichtung.

Bedingt durch extrem niedrige Reibungskoeffizienten und geringe Schneidkantenverrundung eignet sich diese Beschichtung besonders zur Bearbeitung von Aluminiumlegierungen und NE-Metallen. Auch Trockenbearbeitung ist möglich.

■ Vorzüge / Anwendung


- Die DLC-Beschichtung minimiert Grat- und Aufbauschneidenbildung wodurch hohe Oberflächengüten am Werkstück erzielt werden.
- Ein feinkörniges Grundsubstrat und hohe Schichthaftung garantieren hohe Schneidkantenstabilität und Verfahrenssicherheit auch bei der Schruppbearbeitung.
- Lieferbar in Eck-/Nutenfräsertyp mit 2 und 4 Zähnen auch in Typ von Kugelbahnschaftfräser.

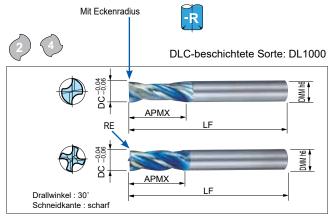
■ Produkt-Serie


Serie	Zähnezahl	Abbildung	Durchmesser
ASM2000DL	2	Schaftfräser	ø 2 – ø 16
ASM4000DL	4	Schaftfräser	ø 2 – ø 16
SNB2000DL	2	Kugelbahnschaftfräser	ø 2 – ø 16 (R1 – R8)

■ Leistung der DLC -Beschichtung

Vergleich des Schnittwiderstands

Vergleich der Oberflächengüte


Schaftfräser mit AURORA-Beschichtung **ASM 2000/4000 DL - Typ**

Schaftfräser mit AURORA-Beschichtung ASM 2000/4000 DL-R Typ

Drallwinkel: 30° Schneidkante: scharf									
Schaftfräser					(mm)				
Bezeichnung	Lager	DC	APMX	LF	DMM				
ASM 2020 DL	•	2,0	6	40	4				
2030 DL	•	3,0	10	45	6				
2040 DL	•	4,0	12	45	6				
2050 DL	•	5,0	15	50	6				
ASM 2060 DL	•	6,0	15	50	6				
2080 DL	•	8,0	18	60	8				
2100 DL	•	10,0	22	71	10				
ASM 2120 DL	•	12,0	25	75	12				
2160 DL	•	16,0	32	90	16				

ASM	2060 DL	•	6,0	15	50	6
	2080 DL	•	8,0	18	60	8
	2100 DL	•	10,0	22	71	10
ASM	2120 DL	•	12,0	25	75	12
	2160 DL	•	16,0	32	90	16
ASM	4020 DL	•	2,0	6	40	4
	4030 DL	•	3,0	10	45	6
	4040 DL	•	4,0	12	45	6
	4050 DL	•	5,0	15	50	6
ASM	4060 DL	•	6,0	15	50	6
	4080 DL	•	8,0	18	60	8
	4100 DL	•	10,0	22	71	10
ASM	4120 DL	•	12,0	25	75	12
	4160 DL	•	16,0	32	90	16

■ Schaftfräser (mm)										
Bezeichnung	Lager	DC	RE	APMX	LF	DMM				
ASM 2080 DL-R10	•	8,0	1,0	18	60	8				
2080 DL-R20		8,0	2,0	18	60	8				
ASM 2100 DL-R10	□	10,0	1,0	22	71	10				
2100 DL-R20		10,0	2,0	22	71	10				
ASM 2120 DL-R20		12,0	2,0	25	75	12				
2120 DL-R30		12,0	3,0	25	75	12				
ASM 2160 DL-R30		16,0	3,0	32	90	16				
ASM 4080 DL-R10		8,0	1,0	18	60	8				
4000 DL D00		0.0	2.0	40	C0	0				

ASM 4080 DL-R10		8,0	1,0	18	60	8
4080 DL-R20		8,0	2,0	18	60	8
ASM 4100 DL-R10	•	10,0	1,0	22	71	10
4100 DL-R20		10,0	2,0	22	71	10
ASM 4120 DL-R20		12,0	2,0	25	75	12
4120 DL-R30		12,0	3,0	25	75	12
ASM 4160 DL-R30	•	16,0	3,0	32	90	16

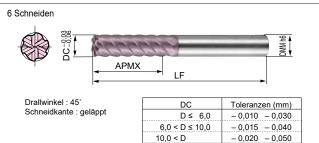
■ Empfohlene Schnittbedingungen

Empfehlung:

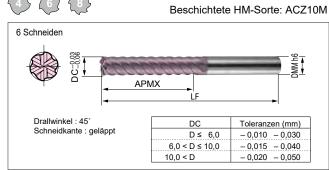
- (1) Durch eine stabile Maschine ist eine Hochleistungszerspanung gewährleistet.
- (2) Wenn während der Bearbeitung übermäßige Vibrationen oder starke Geräusche auftreten, sollten die Geschwindigkeiten und Vorschübe reduziert werden.
- (3) Bei auftretendem Rattern sollten zunächst die Schnittdaten überprüft werden.

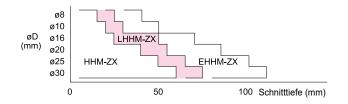
Werkstückstoff		Aluminium-Legierungen									
Schnitt-		Nass (E	mulsion)			Trod	ken				
daten	Seitenfräsen (mit 4 Zähnen)		Nutenfräsen (mit 4 Zähnen)		Seitenfräsen (mit 4 Zähnen)		Nutenfräsen (mit 4 Zähnen)				
DC	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub			
(mm)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)			
2,0	40.000	1.400	28.000	280	40.000	980	28.000	200			
3,0	32.000	2.000	22.000	400	32.000	1.400	22.000	280			
4,0	26.000	2.600	18.000	520	26.000	1.800	18.000	360			
5,0	20.000	2.600	14.000	520	20.000	1.800	14.000	360			
6,0	17.000	2.700	12.000	540	17.000	1.900	12.000	370			
8,0	13.000	2.700	9.000	540	13.000	1.900	9.000	370			
10,0	11.000	2.800	7.200	560	11.000	2.000	7.200	390			
12,0	8.500	2.800	6.000	560	8.500	2.000	6.000	390			
16,0	6.400	2.800	4.500	560	6.400	2.000	4.500	390			
Sabaittiofo ap	1,5	DC	1,0	DC	1,5 DC		0,5 DC				
Schnitttiefe a _e	0,2	DC	(D	C)	0,2	DC	(D	C)			

□ = Auf Anfrage


ZX-beschichtete Schaftfräser mit hohem Drallwinkel (lang)

LHHM 4000/6000/8000 ZX -Typ


EHHM 4000/6000/8000 ZX -Typ


Beschichtete HM-Sorte: ACZ10M

		10,0 < L	,	- 0,020 - 0	7,030					
■ Schaftfräser (mm)										
Bezeichnung	Lager	DC	APMX	LF	DMM					
LHHM 4030 ZX	0	3,0	12	55	6					
4040 ZX	0	4,0	15	60	6					
4050 ZX	0	5,0	18	60	6					
LHHM 6060 ZX	0	6,0	18	60	6					
6080 ZX	0	8,0	25	75	8					
6100 ZX	0	10,0	30	80	10					
6120 ZX	0	12,0	30	100	12					
LHHM 8160 ZX	0	16,0	50	105	16					
8200 ZX	0	20,0	55	120	20					
8250 ZX	0	25,0	65	140	25					
8300 ZX		30,0	75	160	32					

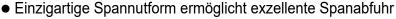
■ Schaftfräser	■ Schaftfräser (mm)										
Bezeichnung	Lager	DC	APMX	LF	DMM						
EHHM 4030 ZX	0	3,0	20	60	6						
4040 ZX	0	4,0	25	65	6						
4050 ZX	0	5,0	30	70	6						
EHHM 6060 ZX	0	6,0	30	70	6						
6080 ZX	0	8,0	40	90	8						
6100 ZX	0	10,0	50	100	10						
6120 ZX	0	12,0	50	120	12						
EHHM 8160 ZX	0	16,0	70	140	16						
8200 ZX	0	20,0	85	165	20						
8250 ZX	0	25,0	100	185	25						
8300 ZX	0	30,0	110	205	32						
8320 ZX	0	32,0	110	205	32						

ø8 ø10 øD ø16 (mm) ø20 ø25 ø30	HHM-ZX	HM-ZX	EHHM-ZX
C)	50	100 Schnitttiefe (mm)

Empfohlene Schnittdaten			(Schulterfr		a _p = 1,5 x øD C56~65) ~ 0,2 (ι	ınter HRC25) x øD
Werkstück-		Kohlenstoff- &	legierter Stahl	Gehärteter Stahl	0	1
DC	stoff		(unter HRC45)		Grauguss	
	Vc	200 –250 –300	100 –150 –200	80 –100 –120	60 –75 –90	
3,0–5,0	fz	0,030-0,060	0,022-0,037	0,007-0,015	0,030-0,060	
	Vc	200 –250 –300	100 –150 –200	80 –100 –120	40 –50 –60	777
6,0–12,0	fz	0,061-0,090	0,037-0,067	0,015-0,028	0,060-0,165	a a
40.0.00.0	Vc	200 –250 –300	100 –150 –200	80 –100 –120	40 –50 –60	/ dC
16,0–32,0	fz	0,090-0,098	0,067-0,075	0,028-0,038	0,187-0,262	a _e
	Vc=	m/min f _z =m	m/Zahn			

Empfohlene Schnittdaten			(Schulterfr a	er HRC25) x øD		
Werkst	ück- stoff	Kohlenstoff- &	legierter Stahl	Gehärteter Stahl	0	1
DC	SIOII	(unter HRC25)	(unter HRC45)	(unter HRC65)	Grauguss	
	Vc	200 –250 –300	100 –150 –200	80 –100 –120	100 –120 –150	
3,0–5,0	fz	0,020-0,040	0,015–0,025	0,005–0,010	0,020-0,040	
0.0.40.0	Vc	200 –250 –300	100 –150 –200	80 –100 –120	100 –120 –150	- I
6,0–12,0	fz	0,041-0,060	0,025-0,045	0,01 0-0,019	0,040–0,110	g
40.0.00.0	Vc	200 –250 –300	100 –150 –200	80 –100 –120	100– 120 –150	/ / I→DC
16,0–32,0	fz	0,060-0,065	0,045-0,050	0,019–0,025	0,125–0,175	a _e
	V _C =	m/min f _z =m	m/Zahn			

Hocheffizienter Schaftfräser SSUP - Typ

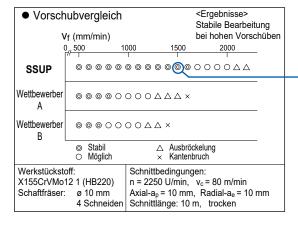

■ Eigenschaften

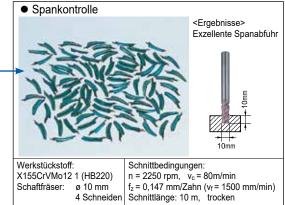
ZX-beschichteter universeller Vollhartmetallschaftfräser für wirtschaftliches Nut- und Schulterfräsen von rostfreien und hitzebeständigen Stählen und Gußeisen.

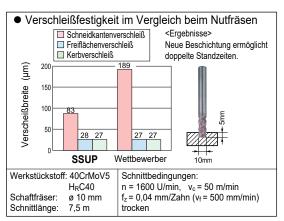
Das einzigartige Design in Verbindung mit stabilen Schneidkanten ermöglicht sehr gute Spanabfuhr sogar beim Schruppfräsen von Nuten.

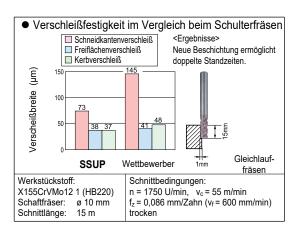
Vorschub bis zu 2000 mm/min mit und ohne Kühlmittel.

■ Vorzüge

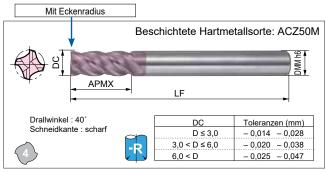

- Sehr stabile und bruchsichere Schneidkante
- 40° Drallwinkel ermöglicht sehr hohe Vorschübe
- Lange Standzeit durch hohe Verschleißfestigkeit
- Weicher Schnitt
- Hohe Steifigkeit durch das einzigartige Design




SSUP 4000ZX-R Auswahl eines Schaftfräsers mit Eckenradius

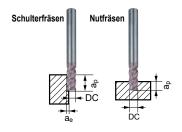

DCRE	RE0,2	RE0,3	RE0,5	RE1,0	RE1,5	RE2.0	RE3.0			
3	•		•							
4	•		•	•						
5	•		•	•						
6		•	•	•	•					
8		•	•	•	•					
10		•	•	•	•	•				
12			•	•	•	•	•			
16				•	•	•	•			
20				•	•	•	•			

■ Leistungsvermögen

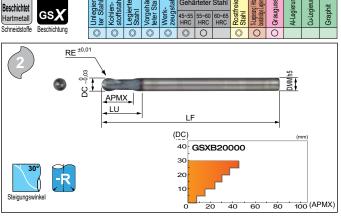

SSUP 4000ZX - Typ

Schaftfräser (mm) Bezeichnung Lager DC **APMX** LF DMM SSUP 4020 ZX • 2,0 6 50 4 4030 ZX 3,0 8 50 6

4040 ZX 4,0 • 11 50 6 4050 ZX 5,0 13 60 6 SSUP 4060 ZX 60 6 6.0 13 4070 ZX • 7,0 16 70 8 4080 ZX 8.0 19 80 8 4090 ZX 9,0 19 90 10 4100 ZX 10.0 22 90 10 **SSUP 4110 ZX** 22 90 12 11,0 4120 ZX 26 12 12,0 90 4140 ZX 14,0 26 110 16 26 4150 ZX 0 15,0 110 16 SSUP 4160 ZX 16,0 32 115 16 4180 ZX \circ 18,0 32 120 20 4200 ZX 20,0 38 125 20


Beschichtete Schaftfräser SSUP 4000ZX-R - Typ

■ Schaftfräser						(mm)
Bezeichnung	Lager	DC	RE	APMX	LF	DMM
SSUP 4030 ZX-R02	•	3,0	0,2	8	50	6
4030 ZX-R05	0	3,0	0,5	8	50	6
SSUP 4040 ZX-R02	•	4,0	0,2	11	50	6
4040 ZX-R05	•	4,0	0,5	11	50	6
4040 ZX-R10		4,0	1,0	11	50	6
SSUP 4050 ZX-R02	•	5,0	0,2	13	60	6
4050 ZX-R05	•	5,0	0,5	13	60	6
4050 ZX-R10	0	5,0	1,0	13	60	6
SSUP 4060 ZX-R03	•	6,0	0,3	13	60	6
4060 ZX-R05	•	6,0	0,5	13	60	6
4060 ZX-R10	•	6,0	1,0	13	60	6
4060 ZX-R15	0	6,0	1,5	13	60	6
SSUP 4080 ZX-R03	•	8,0	0,3	13	80	8
4080 ZX-R05	•	8,0	0,5	13	80	8
4080 ZX-R10	•	8,0	1,0	19	80	8
4080 ZX-R15	0	8,0	1,5	19	80	8
4080 ZX-R20	0	8,0	2,0	19	80	8
SSUP 4100 ZX-R03	•	10,0	0,3	22	90	10
4100 ZX-R05	•	10,0	0,5	22	90	10
4100 ZX-R10	•	10,0	1,0	22	90	10
4100 ZX-R15	0	10,0	1,5	22	90	10
4100 ZX-R20	0	10,0	2,0	22	90	10
SSUP 4120 ZX-R05	•	12,0	0,5	26	90	12
4120 ZX-R10	•	12,0	1,0	26	90	12
4120 ZX-R15	•	12,0	1,5	26	90	12
4120 ZX-R20	0	12,0	2,0	26	90	12
4120 ZX-R30	0	12,0	3,0	26	90	12
SSUP 4160 ZX-R10	•	16,0	1,0	32	115	16
4160 ZX-R15	•	16,0	1,5	32	115	16
4160 ZX-R20		16,0	2,0	32	115	16
4160 ZX-R30	0	16,0	3,0	32	115	16
SSUP 4200 ZX-R10	•	20,0	1,0	38	125	20
4200 ZX-R15		20,0	1,5	38	125	20
4200 ZX-R20	0	20,0	2,0	38	125	20
4200 ZX-R30		20,0	3,0	38	125	20


■ Empfohlene Schnittbedingungen

Werkstück-		Kohlenstoffstahl, Grauguss			Legierter Stahl, vorvergüteter Stahl		Gehärteter Stahl		er Stahl	Hitzebeständiger Stahl, Titan-Legierung		
Chnie	Stoff Grauguss (HB150–250 Umdrehung Vors)–250)	(HRC25-35)		(HrC40-50)				(HrC20-45)		
DC	Alex 1	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	Umdrehung	Vorschub	
(mm)	\\	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	(U/min)	(mm/min)	
2		9000	720	6000	430	4000	320	5500	320	2600	120	
4		6600	800	4500	450	3000	380	4000	320	2000	120	
6		4800	960	3000	480	2500	380	3000	480	1200	120	
8		3600	1000	2200	610	2000	400	2000	520	1000	140	
10		2800	1000	1800	610	1500	400	1700	550	800	160	
12		2400	950	1500	550	1200	380	1500	500	700	140	
14		2200	880	1300	490	1000	360	1200	430	600	130	
16		1800	650	1100	420	800	300	1000	360	500	120	
18		1600	580	1000	360	750	270	900	340	450	110	
20		1400	500	900	330	700	250	820	300	400	100	
Schulter-	a_p					1,5	DC					
fräsen	a _e		0,1	DC		0,05	0,05 DC		0,1 DC		0,05 DC	
Nutenfräsen	a _D		1,0	DC		0,2 DC		0,3 DC		0,2 DC		

- Durch eine stabile Maschine ist eine Hochleistungszerspanung gewährleistet.
- (2) Zum Nutenfräsen von einigen rostfreien Stählen werden angegebene n - und v_f - Werte verringert.
- (3) Bei auftretendem Rattern sollten zunächst die Schnittdaten überprüft werden.

"GSX Mill"-Serie, Kugelbahnfräser **GSXB 20000 - Typ**

Beschichteter Hartmetall-Schneidstoff: ACB20

■ Fräserbezeichnung (nur GSXB-Typ)

2 0200 **GSXB**

Serien-Code

Anz Zähne

Radius des Kugelkopfs

Neue "Global Standard"-Kugelbahnfräser mit 2 Schneiden

■ Schaftfräser

Bezeichnung

GSXB 20020

GSXB 20030

GSXB 20050

GSXB 20075

GSXB 20100

GSXB 20125

GSXB 20150

GSXB 20200

GSXB 20250

GSXB 20300

GSXB 20350

GSXB 20400

GSXB 20500

GSXB 20600

GSXB 20700

GSXB 20800

GSXB 20900

GSXB 21000

GSXB 21250

GSXB 21500

Lager

RE

0,20

0,30

0,50

0,75

1.00

1,25

1 50

2,00

2,50

3,00

3.50

4,00

5,00

6,00

7.00 14,0

8,00

9,00

10,00

12,50

15,00

APMX

0,6

0,9

1.5

2,5

3,0

4,0

4.5

6,0

7,5

11,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

38,0

45,0

LU

0,8

1,2

2,0

3,0

4,0

5,0

6.0

8,0

10,0

20,0

38,0

50,0

80,0

DC

0,4

0,6

1,0

1,5

2,0

2,5

3,0

4,0

5.0

6,0

7,0

8,0

10,0

12,0

16,0

18,0

20,0

25,0

30,0

(mm)

DMM

4

4

4

6

6

6

6

6

8

8

10

12

16

16

20

20

25

32

LF

50

50

50

50

60

60

60

70

80

80

90

90

100

110

110

140

140

160

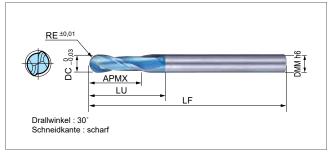
180

180

■ Empfohlene Schnittbedingungen

- (1) Beim Auftreten von Schneidgeräuschen und Vibration sollten Sie die Schnittbedingungen entsprechend ändern.
- (2) Wenn die Maschine nicht für die empfohlene Spindeldrehzahl ausgelegt ist, verwenden Sie bitte die jeweils maximal mögliche Spindeldrehzahl.

Radienfräsen

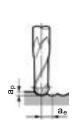

Werkstoff Schnittbedingunge	n	Kohlenstoffstahl, Legierungsstahl (Unter 25HRC)			Kohlenstoffstahl, Legierungsstahl (Unter 50HRC)		Guss Spezialguss		Rostfreier Stahl Titanlegierung	
RE (mm)		Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	
0,20		50.000	2.100	35.000	1.150	50.000	2.100	50.000	1.750	
0,30		50.000	2.500	35.000	1.350	50.000	2.500	50.000	2.100	
0,50		50.000	3.000	35.000	1.600	50.000	3.000	50.000	2.500	
0,75		35.000	3.000	24.000	1.650	35.000	3.200	34.000	2.500	
1,00		27.500	3.000	19.000	1.700	35.000	3.900	26.000	2.500	
1,25		22.500	3.000	15.500	1.700	28.000	3.900	21.000	2.500	
1,50		19.000	3.000	13.000	1.700	24.000	3.900	17.500	2.500	
2,00		17.000	3.800	12.000	2.100	20.000	4.100	15.000	2.700	
2,50		15.500	4.300	11.000	2.200	18.000	4.600	12.000	2.500	
3,00		14.000	4.700	10.500	2.500	16.500	5.300	10.500	2.500	
3,50		12.500	4.200	9.000	2.100	14.000	4.500	9.000	2.200	
4,00		11.000	3.500	7.900	1.900	12.500	4.000	7.800	1.900	
5,00		9.000	2.800	6.300	1.500	10.500	3.300	6.300	1.500	
6,00		7.500	2.400	5.200	1.250	8.700	2.800	5.200	1.250	
7,00		6.400	2.100	4.500	1.100	7.400	2.400	4.500	1.100	
8,00		5.600	1.800	3.900	950	6.500	2.100	3.900	950	
9,00		5.000	1.600	3.500	850	5.800	1.900	3.500	850	
10,00		4.500	1.450	3.100	750	5.200	1.700	3.150	750	
12,50		3.600	1.150	2.500	600	4.200	1.350	2.500	600	
15,00		3.000	960	2.100	500	3.500	1.150	2.100	500	
	a p	0,02		- , -	0,02 DC		0,02 DC		0,02 DC	
a _e		0,05	DC	0,05	DC	0,05	DC	0,05	DC	

SNB 2000DL-Typ

DLC (Diamond Like Carbon) - Beschichtung

2

DLC-beschichtete Sorte: DL1200

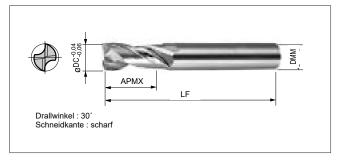

Schaftfräser

(mm)

Bezeichnung	Lager	RE	DC	APMX	LU	LF	DMM
SNB 2020 DL	•	1,0	2,0	3	5	60	6
2030 DL	•	1,5	3,0	4,5	8	80	6
SNB 2040 DL	•	2,0	4,0	6	12	80	6
2050 DL	•	2,5	5,0	7,5	14	90	6
SNB 2060 DL	•	3,0	6,0	9	-	100	6
2080 DL	•	4,0	8,0	12	-	100	8
2100 DL	•	5,0	10,0	15	-	120	10
SNB 2120 DL	•	6,0	12,0	18	-	120	12
2160 DL	•	8,0	16,0	24	-	160	16

■ Vorzüge / Anwendung

- Die DLC-Beschichtung minimiert Grat- und Aufbauschneidenbildung wodurch hohe Oberflächengüten am Werkstück erzielt werden.
- Ein feinkörniges Grundsubstrat und hohe Schichthaftung garantieren hohe Schneidkantenstabilität und Verfahrenssicherheit auch bei der Schruppbearbeitung.

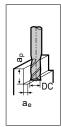

■ Empfohlene Schnittbedingungen

= Emplement commuscamgangen									
Werkstüc	kstoff		Aluminum-L	egierungen					
Schnit	ttdaten	Nas (Emuls		Troc	Trocken				
		Umdrehung (U/min)	Vorschub (mm/min)	Umdrehung (U/min)	Vorschub (mm/min)				
1,0		48.000	1.500	48.000	1.000				
1,5		48.000	2.100	48.000	1.500				
2,0		31.000	2.800	31.000	2.000				
2,5		24.000	2.800	24.000	2.000				
3,0		20.000	2.800	20.000	2.000				
4,0		15.000	2.800	15.000	2.000				
5,0		13.000	3.000	13.000	2.100				
6,0		10.000	3.000	10.000	2.100				
8,0		7.700	3.000	7.700	2.100				
0-1:-	ap	1,5 [C	1,0 DC					
Schnitttiefe	ae	0,2	DC	(DC)					

ASM 2000-Typ

Hartmetallsorte: H1 (Feinkorn)

■ Schaftfräser

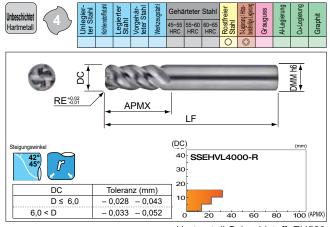

(mm)

KatNr.	Lager	DC	APMX	LF	DMM
ASM 2020	0	2,0	6	40	4
2030	O	3,0	10	45	6
2040	0	4,0	12	45	6
2050	0	5,0	15	50	6
ASM 2060	0	6,0	15	50	6
2080	0	8,0	18	60	8
2100	0	10,0	22	71	10
ASM 2120	0	12,0	25	75	12
2140	0	14,0	32	90	16
2150	0	15,0	32	90	16
2160	O	16,0	32	90	16

Empfohlene Schnittdaten

(Schulterfräsen) $a_p = 1,5 \times DC$ $a_e = 0,2 \times DC$

Werkst	ück- stoff	Aluminium- legierungen	Grauguss					
1 –	V _C	100 -200 -300	100 -120 -150					
2,5	fz	0,004-0,017	0,008-0,020					
3 –	Vc	100- 200 -300	100- 120 -150					
5	fz	0,018-0,036	0,027-0,060					
6 –	Vc	100- 200 -300	100- 120 -150					
12	fz	0,038-0,070	0,065-0,157					
14 –	Vc	100- 200- 300	100 -120 -150					
16	f-	0.075_0.125	0.160_0.250					



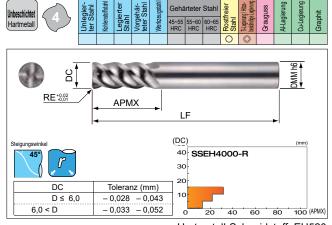
v_c=m/min f_z=mm/Zahn

= Eurolager⊃ = Japanlager

Antivibrationstyp Schaftfräser mit Eckenradius

SSEHVL 4000-**R** - Typ

Hartmetall-Schneidstoff: EH520


■ Schaftfräser

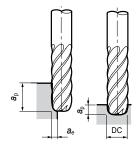
(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
SSEHVL 4045-R05		4,5	0,5	12	50	6
SSEHVL 4045-R10		4,5	1,0	12	50	6
SSEHVL 4050-R05		5,0	0,5	13	60	6
SSEHVL 4050-R10	O	5,0	1,0	13	60	6
SSEHVL 4060-R10	O	6,0	1,0	13	60	6
SSEHVL 4080-R10	0	8,0	1,0	19	80	8
SSEHVL 4100-R10	0	10,0	1,0	22	90	10
SSEHVL 4100-R30	O	10,0	3,0	22	90	10
SSEHVL 4120-R10	•	12,0	1,0	26	90	12
SSEHVL 4120-R30	•	12,0	3,0	26	90	12
SSEHVL 4160-R10	0	16,0	1,0	32	115	16
SSEHVL 4160-R30	•	16,0	3,0	32	115	16

Standard-Typ Schaftfräser mit Eckenradius

SSEH 4000-**R** - Typ

Hartmetall-Schneidstoff: EH520


■ Schaftfräser

(mm)

Bezeichnung	Lager	DC	APMX	LU	LF	DMM
SSEH 4045-R05		4,5	0,5	12	50	6
SSEH 4045-R10		4,5	1,0	12	50	6
SSEH 4050-R05		5,0	0,5	13	60	6
SSEH 4050-R10		5,0	1,0	13	60	6
SSEH 4060-R10	O	6,0	1,0	13	60	6
SSEH 4080-R10		8,0	1,0	19	80	8
SSEH 4100-R10		10,0	1,0	22	90	10
SSEH 4100-R30	0	10,0	3,0	22	90	10
SSEH 4120-R10	O	12,0	1,0	26	90	12
SSEH 4120-R30	0	12,0	3,0	26	90	12
SSEH 4160-R10		16,0	1,0	32	115	16
SSEH 4160-R30	•	16,0	3,0	32	115	16

■ Eigenschaften / Anwendung

- 1. Zur stabilen Bearbeitung wird eine Maschine mit hoher Steifigkeit empfohlen.
- 2. Für Anwendungen in rostfreiem Stahl und hitzebeständigen Legierungen wird die Nassbearbeitung empfohlen.
- 3. Beim Auftreten von Schneidgeräuschen und Vibration sollten Sie die Schnittbedingungen entsprechend ändern.

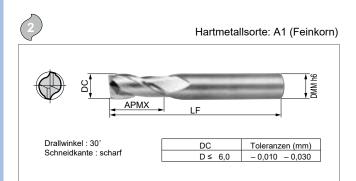
Schulterfräsen

Werksto	off	Rostfrei	or Stabl	Titanled	rioruna	Hitzebeständiger Stahl		
Bed.	\setminus	Rostilei	ei Staili	Hitanie	gierung			
DC (mm)	7	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	
DC (mm)	'\	min-1	(mm/min)	min-1	(mm/min)	min-1	(mm/min)	
4.5		2.300	120	4.600	370	1.600	130	
5.0		2.000	130	4.100	410	1.500	150	
6.0		1.700	130	3.400	400	1.200	140	
8.0		1.300	130	2.600	360	900	130	
10.0		1.000	130	2.100	340	700	110	
12.0		800	110	1.700	300	600	100	
16.0		600	90	1.300	260	500	100	
Eckschneiden	a _p			1,5	DC			
Envertillenden	a e	0,1	DC	0,05	DC	0,05 DC		

●Nutfräsen

Werksto	off	Rostfreier Stahl		Titanled	gierung	Hitzebestär	Hitzebeständiger Stahl		
Bed.				,					
DC (mm)		Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub		
DO (IIIIII)	\	min-1	(mm/min)	min-1	(mm/min)	min-1	(mm/min)		
4,5		1.800	50	3.200	250	1.300	110		
5,0		1.600	50	2.900	290	1.200	120		
6,0		1.400	50	2.400	290	1.000	120		
8,0		1.000	50	1.800	250	700	90		
10,0		800	50	1.400	230	600	100		
12,0		600	50	1.200	210	500	90		
16,0		500	40	900	180	400	80		
Nutfräsen	a p	0,3	DC	0,2	DC	0,15 DC			

Schulterfräsen

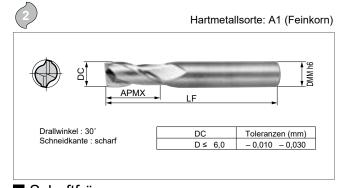

Werksto	ff	Rostfrei	or Stobl	Titanled	rioruna	Litzohootön	Hitzebeständiger Stahl		
Bed.	\setminus	restroior starii		Hitanie	gierung	nitzebestandiger Stanii			
DC (mm)		Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub		
DC (mm)	\	min-1	(mm/min)	min-1	(mm/min)	min-1	(mm/min)		
4,5		1.800	90	3.500	280	1.400	110		
5,0		1.600	100	3.200	320	1.300	130		
6,0		1.300	100	2.700	320	1.100	130		
8,0		1.000	100	2.000	280	800	110		
10,0		800	100	1.600	260	600	100		
12,0		700	100	1.300	230	500	90		
16,0		500	80	1.000	200	400	80		
Eckschneiden	a_p	1,5 DC							
ECKSCIIIEIUEII	a _e	0,1	DC	0,05	DC	0,05 DC			

●Nutfräsen

	• Hatii	uc	011						
	Werksto	off	Rostfrei	or Ctobl	Titople	-ia	Hitzebeständiger Stahl		
Ī	Bed.	\setminus	Rosurei	er Stani	Titanle	gierung			
	DC (mm)	\int_{0}^{∞}	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	Spindeldrehzahl	Vorschub	
		min-1	(mm/min)	min-1	(mm/min)	min-1	(mm/min)		
	4,5		1.400	40	2.500	200	1.100	90	
١	5,0		1.300	40	2.200	220	1.000	100	
	6,0		1.100	40	1.900	230	800	100	
١	8,0		800	40	1.400	200	600	80	
	10,0		600	40	1.100	180	500	80	
Ì	12,0		500	40	900	160	400	70	
	16,0		400	30	700	140	300	60	
	Nutfräsen	a p	0,3 DC		0,2 DC		0,15 DC		

Unbeschichtete VHM-Schaftfräser SSM 2000 - Typ (Ø0,2-Ø4,3)

Unbeschichtete VHM-Schaftfräser **SSM 2000 - Typ** (Ø4,4-Ø8,5)


S	chaftfräse	: F				(mm
Ве	ezeichnung	Lager	DC	APMX	LF	DMM
SSM	2002	0	0,2	0,5	40	3
	2003	•	0,3	1,0	40	3
	2004	•	0,4	1,0	40	3
	2005	•	0,5	1,5	40	3
SSM	2006	•	0,6	1,5	40	3
	2007	•	0,7	1,5	40	3
	2008	•	0,8	2,0	40	3
	2009		0,9	2,0	40	3
	2010	•	1,0	3,0	40	4
SSM	2011	0	1,1	3,0	40	4
	2012	0	1,2	3,0	40	4
	2013		1,3	3,0	40	4
	2014	0	1,4	3,0	40	4
	2015	•	1,5	5,0	40	4
SSM	2016	0	1,6	5,0	40	4
	2017		1,7	5,0	40	4
	2018	0	1,8	5,0	40	4
	2019	0	1,9	5,0	40	4
	2020	•	2,0	6,0	40	4
SSM	2021		2,1	6,0	40	4
	2022	0	2,2	6,0	40	4
	2023	0	2,3	6,0	40	4
	2024	0	2,4	6,0	40	4
	2025	•	2,5	8,0	40	4
SSM	2026	0	2,6	8,0	40	4
COIVI	2027	•	2,7	8,0	40	4
	2028		2,8	8,0	40	4
	2029		2,9	8,0	40	4
	2030	•	3,0	8,0	45	6
SSM	2031		3,1	8,0	45	6
OOW	2032	0	3,2	8,0	45	6
	2032	,	3,3	8,0	45	6
	2034	0	3,4	8,0	45	6
	2035	•	3,5	8,0	45	6
SSM				10,0	45	
JUIVI	2036 2037		3,6 3,7	10,0	45	6 6
	2037	0	3,8	10,0	45	6
	2039	0	3,8	10,0	45	6
	2039	•	3,9 4,0	10,0	45	6
SSM						
SSIVI	2041		4,1	10,0	45	6
	2042	0	4,2 4.3	10,0	45 45	6 6
	704.3		4.3	100	45	h

	203	37		3	3,7	10,	0	45		6
	203	88	0	3	3,8	10,	0	45		6
	203	89	0	3	3,9	10,	0	45		6
	204	10	•	4	1,0	10,	0	45		6
SSM	204	1		4	1,1	10,	0	45		6
	204	2	0	4	1,2	10,	0	45		6
	204	13		4	1,3	10,	0	45		6
Empfohlene (Nutfräsen) DC < $\emptyset 3$; $a_p = 0.5 \times DC$ Schnittdaten DC $\geq \emptyset 3$; $a_p = 1.0 \times DC$										
Werkst		Kohlens	toffstahl, l	egier	ter Stal	nl	_			
DC	stoff	(unter HRC30)	(unter HRC40) (unter HRC45			HRC45)	Gra	auguss		do.
	Vc	40- 50- 60	30- 40-	- 50	20 –3	0– 40	40-	- 50- 60		

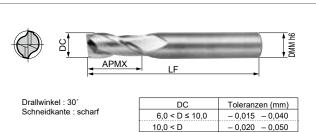
Werkst		Kohlenst	toffstahl, legier	ter Stahl	0	
DC	Stoll	(unter HRC30)	(unter HRC40)	(unter HRC45)	Grauguss	
0.3.00 V ₀		40- 50- 60	30- 40- 50	20- 30- 40	40– 50– 60	
0,2–0,9 f	fz	-0,002	-0,002	-0,001	0,002-0,004	
4 0 0 0	Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60	_
1,0–2,9	V _c 40- 50 -60 30- 40 -50 20- 30 -40 f _z -0,002 -0,002 -0,001	0,005-0,017	L			
0 0 4 0	Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60	
3,0–4,9	f_	0.012_0.024	0.012_0.024	0.006_0.011	0.018_0.040	

 $v_c = m/min f_z = mm/Zahn$ • = Eurolager

○ = Japanlager

■ Sc	chaftfräser			(mm)		
Ве	zeichnung	Lager	DC	APMX	LF	DMM
SSM	2044	O	4,4	10	45	6
	2045	0	4,5	10	45	6
SSM	2046		4,6	12	50	6
	2047		4,7	12	50	6
	2048	0	4,8	12	50	6
	2049	0	4,9	12	50	6
	2050	•	5,0	12	50	6
SSM	2051	0	5,1	12	50	6
	2052	0	5,2	12	50	
	2053		5,3		50	
	2054		5,4	12	50	6
	2055		5,5	12	50	6
SSM	2056		5,6	12	50	6
	2057		5,7	12	50	6
	2058		5,8	12	50	6
	2059		5,9	12	50	6
	2060	•	6,0	12	50	6
SSM	2061		6,1	12	50	6
	2062	0	6,2	12	50	6
	2063	0	6,3	12	50	6
	2064	0	6,4	12		6
	2065	0	6,5	12	50	8
SSM	2066	0	6,6		55	8
	2067		6,7	15	55	8
	2068		6,8	15	55	8
	2069		6,9	15	55	8
	2070	•	7,0	15	55	8
SSM	2071	0	7,1	15	55	8
	2072		7,2	15	55	8
	2073		7,3	15	55	8
	2074		7,4	15	55	8
	2075	•	7,5	15	55	8
SSM	2076		7,6	15	55	8
	2077		7,7	15	55	8
	2078		7,8	15	55	8
	2079		7,9	15	55	8
	2080	•	8,0	15	55	8
SSM	2081	0	8,1	15	55	8
	2082	0	8,2	15	55	8
	2083		8,3	15	55	8
	2084		8,4	15	55	8
	2085	•	8,5	15	55	10
	2085		8,5	15	55	10

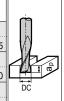
Empfo Schnitt	Empfohlene (Nutfräsen) DC ≥ ø3; Schnittdaten					
Werkst	ück- stoff	Kohlens	Kohlenstoffstahl, legierter Stahl			
DC	SIUII	(unter HRC30)	(unter HRC40) (unter HRC45)		Grauguss	
5 5 0	Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60	
5–5,9	fz	0,012-0,024	0,012-0,024	0,006-0,011	0,018-0,040	Ц
0.00	Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60	
6–8,9	fz	0,025-0,050	0,025-0,050	0,013-0,025	0,045-0,105	



Unbeschichtete VHM-Schaftfräser **SSM 2000 - Typ** (Ø8,6-Ø30)

Unbeschichtete VHM-Schaftfräser SSM 4000 - Typ (ø1,5-ø25)

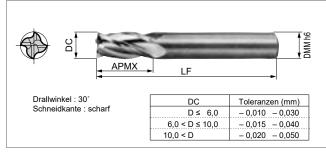
Hartmetallsorte: A1 (Feinkorn)


Schaftfräser

	chaftfräser	•			(mm)	
Ве	zeichnung	Lager	DC	APMX	LF	DMM
SSM	2086	0	8,6	15	55	10
	2087		8,7	15	55	10
	2088		8,8	15	55	10
	2089		8,9	15	55	10
	2090	•	9,0	15	55	10
SSM	2091		9,1	15	55	10
	2092	0	9,2	15	55	10
	2093		9,3	15	55	10
	2094		9,4	15	55	10
	2095		9,5	15	55	10
SSM	2096		9,6	18	65	10
	2097		9,7	18	65	10
	2098		9,8	18	65	10
	2099		9,9	18	65	10
	2100	•	10,0	18	65	10
SSM	2105		10,5	18	70	12
	2110		11,0	18	70	12
	2115	0	11,5	18	70	12
	2120	•	12,0	18	70	12
	2125		12,5	20	80	16
SSM	2130		13,0	20	80	16
	2135	0	13,5		80	16
	2140	•	14,0	20	80	16
	2145		14,5	25	80	16
	2150		15,0	25	80	16
SSM	2155		15,5	35	90	16
	2160	•	16,0	35	90	16
	2165		16,5	35	90	20
	2170	•	17,0	35	90	20
	2175	0	17,5	40	105	20
SSM	2180		18,0	40	105	20
	2185		18,5	40	105	20
	2190		19,0	40	105	20
	2195		19,5	40	105	20
	2200	•	20,0	40	105	20
SSM	2210	0	21,0	40	105	25
	2220		22,0	40		25
	2230		, ,	45	115	25
	2240		24,0	45	115	25
	2250	0	, ,	50		25
SSM	2300			55	130	32

Lucusta blace	
Empfohlene	
Schnittdaten	

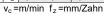
(Nutfräsen) DC ≥ ø3; a_p =1,0 x DC


ck-	Kohlenst	0		
LOII	(unter HRC30)	(unter HRC40)	(unter HRC45)	Grauguss
Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60
fz	0,025-0,050	0,025-0,050	0,013-0,025	0,045-0,105
Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60
fz	0,055-0,085	0,055-0,085	0,030-0,050	0,110-0,170
Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60
fz	0,095-0,120	0,095-0,120	0,055-0,070	0,185-0,260
	V _c f _z V _c f _z V _c	toff (unter HRC30) V _C 40 -50 -60 f _Z 0,025-0,050 V _C 40 -50 -60 f _Z 0,055-0,085 V _C 40 -50 -60	toff (unter HRC30) (unter HRC40) v _c 40- 50 -60 30- 40 -50 f _z 0,025-0,050 0,025-0,050 v _c 40- 50 -60 30- 40 -50 f _z 0,055-0,085 0,055-0,085 v _c 40- 50 -60 30- 40 -50	toff (unter HRC30) (unter HRC40) (unter HRC45) v _c 40- 50 -60 30- 40 -50 20- 30 -40 f _z 0,025-0,050 0,025-0,050 0,013-0,025 v _c 40- 50 -60 30- 40 -50 20- 30 -40 f _z 0,055-0,085 0,055-0,085 0,030-0,050 v _c 40- 50 -60 30- 40 -50 20- 30 -40

 $v_c = m/min f_z = mm/Zahn$

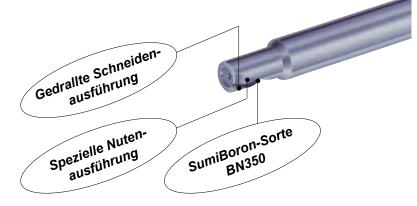
Hartmetallsorte: A1 (Feinkorn)

■ Schaftfräser

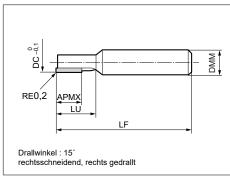

(mm)

	mantinasci					(111111)
Ве	zeichnung	Lager	DC	APMX	LF	DMM
SSM	4015	•	1,5	5	40	4
	4020	•	2,0	6	40	4
	4025	0	2,5	8	40	4
	4030	•	3,0	8	45	6
	4035		3,5	8	45	6
SSM	4040	•	4,0	10	45	6
	4045		4,5	10	45	6
	4050	•	5,0	12	50	6
	4055		5,5	12	50	6
	4060	•	6,0	12	50	6
SSM	4065		6,5	12	50	8
	4070	•	7,0	15	55	8
	4075	•	7,5	15	55	8
	4080	•	8,0	15	55	8
	4085	O	8,5	15	55	10
SSM	4090	•	9,0	15	55	10
	4095	•	9,5	15	55	10
	4100	•	10,0	18	65	10
	4105		10,5	18	65	12
	4110		11,0	18	70	12
SSM	4120	•	12,0	18	70	12
	4130		13,0	20	80	16
	4140	•	14,0	20	80	16
	4150		15,0	25	80	16
	4160	•	16,0	35	90	16
SSM	4170		17,0	35	90	20
	4180		18,0	40	105	20
	4190		19,0	40	105	20
	4200	•	20,0	40	105	20
	4210		21,0	40	105	25
SSM	4220		22,0	40	105	25
	4230		23,0	45	115	25
	4240		24,0	45	115	25
	4250		25,0	50	120	25

Empfohlene Schnittdaten (Schulterfräsen) $a_p = 1,5 \times DC$

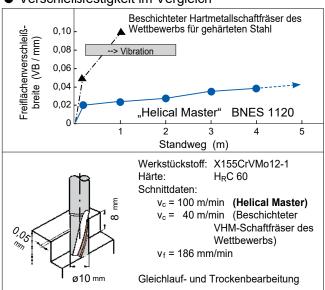

 $a_e = 0.1 \times DC$

Werksti	ück-	Kohlens	toffstahl, legier	ter Stahl	
DC	stoff		(unter HRC40)		Grauguss
1~	V _c	40 –50 –60	30 –0 –50	20- 30 -40	40 –50 –60
2,9	fz	0,004-0,017	0,004-0,017	0,002-0,008	0,008-0,020
3~	Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60
5,9	fz	0,018-0,036	0,018-0,036	0,009-0,018	0,027-0,060
6~	Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60
12,9	fz	0,038-0,070	0,038-0,070	0,019-0,035	0,065–0,157
13 ~	Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60
19,9	fz	0,075-0,125	0,075–0,125	0,040-0,075	0,160-0,250
20 ~	Vc	40 –50 –60	30 –40 –50	20 –30 –40	40 –50 –60
20~	fz	0,135-0,170	0,135-0,170	0,085-0,110	0,257-0,390

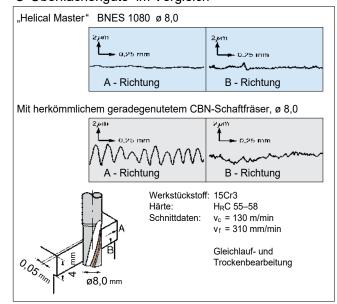


■ Schaftfräser BNES-Typ mit gedrallter CBN-Schneide

Bezeichnung	Lager		Abme	essungen	(mm)	
Bezeichnung	BN350	DC	DMM	APMX	LU	LF
BNES 1060	0	6,0	10	7,0	11	60
1080	0	8,0	10	10,0	14	70
1100	O	10,0	12	12,0	17	75
1120	0	12,0	12	14,0	20	80
1140	O	14,0	16	16,0	21,5	80

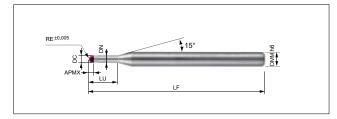

■ Empfohlene Schnittbedingungen

Schnittgeschwindigkeit: v_c (m/min), Umdrehung: n (U/min), Vorschub pro Zahn: f_z (mm/Zahn), Tischvorschub: v_f (mm/min)


Anwendungsbeispiel	DC		eter Stahl (H _R C		Gehärteter Stahl (H _R C 58–65)				
3 1		$v_c = 100-170 \text{ m/min}$			$v_c = 80-150 \text{ m/min}$				
M	6–8	$a_e \le 0.1 \text{ mm}$ $n = 4000-900$		v _{f (mm/min)} = 240–540	a _e ≤ 0,08 _{mm}	n = 3200–8000	v _{f (mm/min)} = 150–370		
, e	10–12	$a_e \le 0.15 \text{ mm}$ $n = v_f \text{ (mm/min)} = 2700-5400$ $180-360$		a _e ≤ 0,12 _{mm}	n = 2100–4800	V _{f (mm/min)} 120–270			
	14–16	a _e ≤ 0,2 _{mm}	n = 2000–3800	V _{f (mm/min)} = 140–260	a _e ≤ 0,15 _{mm}	n = 1600–3400	v _{f (mm/min)} = 110–230		
Schnitttiefe : a _p ≤ D	Empfohlen wird	Trockenbearbe Gleichlauffräse mit kurzem Üb in stabilen Mas	en erhang der Schn	0,					

Leistung

• Verschleißfestigkeit im Vergleich



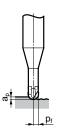
• Oberflächengüte im Vergleich

■ Schaftfräser

■ Vorzüge / Anwendung

- Hochpräzisionsbearbeitung von gehärtetem Stahl (~ HRC70) mit einer hohen Standzeit
- Extrem zähe Sorte SUMIBORON BN350 verhindert Schneidkantenausbröckelung
- RE Genauigkeit: ±0,005 mm
- Bezeichnungsschlüssel

Anzahl der Zähne BNBP 2 R020 - 012 4 Schaft - Ø Halslänge (LU) Radius der Schneide

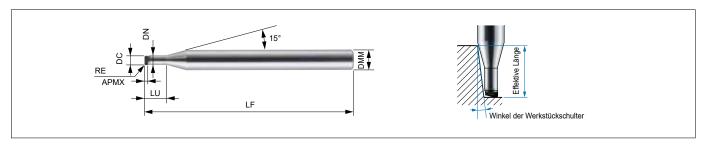

Abmessungen (mm)

Bezeichnung	Lager	RE	DC	APMX	LU	LF	DN	DMM
BNBP 2R0200124	•	0,20	0,4	0,3	1,2	50	0,37	4
2R0200126	•	0,20	0,4	0,3	1,2	50	0,37	6
2R0200204	0	0,20	0,4	0,3	2,0	50	0,37	4
2R0200304	0	0,20	0,4	0,3	3,0	50	0,37	4
2R0200404	0	0,20	0,4	0,3	4,0	50	0,37	4
BNBP 2R0300154	•	0,30	0,6	0,4	1,5	50	0,57	4
2R0300156	•	0,30	0,6	0,4	1,5	50	0,57	6
2R0300304	0	0,30	0,6	0,4	3,0	50	0,57	4
2R0300404	0	0,30	0,6	0,4	4,0	50	0,57	4
2R0300504	0	0,30	0,6	0,4	5,0	50	0,57	4
2R0300604	0	0,30	0,6	0,4	0,6	50	0,57	4
BNBP 2R0500254	•	0,50	1,0	0,6	2,5	50	0,97	4
2R0500256	•	0,50	1,0	0,6	2,5	50	0,97	6
2R0500304	0	0,50	1,0	0,6	3,0	50	0,97	4
2R0500404	0	0,50	1,0	0,6	4,0	50	0,97	4
2R0500604	0	0,50	1,0	0,6	0,6	50	0,97	4
2R0500804	0	0,50	1,0	0,6	8,0	50	0,97	4
BNBP 2R0750404	0	0,75	1,5	0,9	4,0	50	1,47	4
2R0750406	•	0,75	1,5	0,9	4,0	50	1,47	6
BNBP 2R1000554	•	1,00	2,0	1,4	5,5	50	1,97	4
2R1000556	•	1,00	2,0	1,4	5,5	50	1,97	6
2R1000804	O	1,00	2,0	1,4	8,0	50	1,97	4

Sorte: BN350

■ Empfohlene Schnittbedingungen

	. ۳۰۰۰	01110110			941.90	··							
Werl	kstoff	STAVA	X, NAK80,	SKD61 (< 5	2HRC)	ELMA	X, DC53, S	KD11 (< 62	HRC)	,	YXR3, SKH	(< 70HRC))
RE (mm)	LU (mm)	Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	ap (mm)	pf (mm)	Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	ap (mm)	pf (mm)	Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	ap (mm)	pf (mm)
	1,2	40.000	1.000	0,005	0,010	40.000	800	0,005	0,010	40.000	600	0,005	0,005
0,2	2,0	40.000	800	0,005	0,010	40.000	600	0,005	0,010	40.000	400	0,005	0,005
0,2	3,0	40.000	600	0,005	0,010	40.000	500	0,005	0,010	40.000	300	0,005	0,005
	4,0	40.000	500	0,005	0,010	40.000	400	0,005	0,005	40.000	200	0,005	0,005
	1,5	40.000	1.600	0,020	0,020	40.000	1.400	0,010	0,020	40.000	1.200	0,010	0,020
	2,0	40.000	1.500	0,010	0,020	40.000	1.300	0,010	0,020	40.000	1.100	0,010	0,010
0,3	3,0	40.000	1.400	0,010	0,020	40.000	1.200	0,010	0,020	40.000	1.000	0,010	0,010
0,3	4,0	30.000	1.200	0,010	0,010	30.000	1.000	0,010	0,010	30.000	700	0,005	0,010
	5,0	30.000	800	0,010	0,010	30.000	700	0,005	0,010	30.000	600	0,005	0,005
	6,0	30.000	600	0,005	0,010	30.000	500	0,005	0,005	30.000	400	0,005	0,005
	2,5	40.000	2.800	0,040	0,050	40.000	2.800	0,030	0,040	40.000	2.200	0,020	0,030
	3,0	40.000	2.600	0,040	0,050	40.000	2.600	0,030	0,040	40.000	2.100	0,020	0,030
0,5	4,0	40.000	2.400	0,030	0,050	40.000	2.400	0,020	0,030	40.000	2.000	0,020	0,020
	6,0	25.000	1.500	0,020	0,030	25.000	1.500	0,010	0,020	25.000	1.300	0,010	0,010
	8,0	16.000	1.200	0,020	0,020	16.000	1.100	0,010	0,020	16.000	850	0,010	0,010
0,75	4,0	32.000	2.400	0,030	0,030	32.000	2.200	0,020	0,030	32.000	2.000	0,020	0,020
1,0	5,5	40.000	4.000	0,050	0,050	40.000	4.000	0,030	0,030	40.000	3.000	0,020	0,030
1,0	8,0	32.000	3.000	0,030	0,050	32.000	2.600	0,020	0,030	32.000	2.200	0,010	0,020


Wichtige Hinweise

- (1) Durch eine stabile Maschine ist eine Hochleistungszerspanung gewährleistet.
- (2) Luftkühlung oder MMS (Minimalmengenschmierung) wird empfohlen.
- (3) Möglich kürzere Ausladung halten, um Vibration zu vermeiden.

NPDRS - Typ

SUMIDIA Binderless - Schaftfräser mit Eckenradius Typ NPDRS

■ NPDRS Schaftfräser (für Standard-Schlichtanwendungen)

	`						Ο,						
Bezeichnung	Lager			Abme	ssungen	(mm)			Effektive Länge bei entsprechendem Winkel der Werkstückschulter				
	NPD10	DC	RE	APMX	LU	LF	DN	DMM	0,5°	1°	1,5°	2°	3°
NPDRS 1020 R002-006	0	0,2	0,02	0,10	0,6	40	0,175	4	0,61	0,62	0,63	0,64	0,66
1020 R005-006	0	0,2	0,05	0,10	0,6	40	0,175	4	0,61	0,62	0,63	0,64	0,66
1030 R002-010	0	0,3	0,02	0,15	1,0	40	0,27	4	1,01	1,03	1,04	1,06	1,09
1030 R005-010	0	0,3	0,05	0,15	1,0	40	0,27	4	1,01	1,03	1,04	1,06	1,09
1050 R005-015	O	0,5	0,05	0,25	1,5	40	0,47	4	1,61	1,66	1,72	1,78	1,92
NPDRS 1050 R010-015	0	0,5	0,10	0,25	1,5	40	0,47	4	1,61	1,66	1,71	1,77	1,91
1100 R005-030	0	1,0	0,05	0,55	3,0	40	0,95	4	3,40	3,52	3,65	3,78	4,08
1100 R010-030	0	1,0	0,10	0,55	3,0	40	0,95	4	3,40	3,52	3,64	3,77	4,07
1100 R020-030	0	1,0	0,20	0,55	3,0	40	0,95	4	3,40	3,51	3,63	3,76	4,05
1200 R005-040	0	2,0	0,05	0,55	4,0	40	1,95	4	4,44	4,59	4,75	4,93	5,33
NPDRS 1200 R010-040	O	2,0	0,10	0,55	4,0	40	1,95	4	4,43	4,59	4,75	4,92	5,31
1200 R020-040	C	2,0	0,20	0,55	4,0	40	1,95	4	4,43	4,58	4,74	4,91	5,29

Bezeichnungsschlüssel

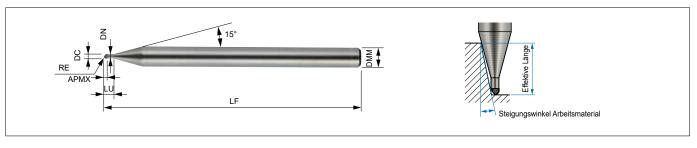
■ Mögliche Kombinationen von Fräserdurchmesser und Eckenradius

DC	RE 0,02	RE 0,05	RE 0,1	RE 0,2
0,2	0	•		
0,3	0	0		
0,5		•	0	
1,0		0	0	0
2,0		•	0	0

■ Empfohlene Schnittbedingungen

- Nutzen Sie hochsteife Maschinen zur Erzielung guter Ergebnisse.
- Luftkühlung oder MMS (Minimalmengenschmierung) empfohlen. Als MMS-Sprühnebel oder als externes Schmiermittel zuführen.
 Brandschutzmaßnahmen treffen, um Brandgefahren durch Funkenbildung bei der Bearbeitung oder durch Bruch des Werkzeugs zu vermeiden.
- Werkzeugauskragung so weit wie möglich reduzieren.
- Schnittbedingungen an Stabilität der Maschine und andere Bedingungen anpassen.
- In der Tabelle angegebene Werte zeigen maximale Schnitttiefen. Die tatsächliche Schnitttiefe und Schnittbreite an die gewünschte Oberflächengüte anpassen.

Werksti	ückstoff		Hartmetall									
DC (mm)	LU (mm)	Spindeldreh- zahl (min ⁻¹)	Vorschub (mm/min)	a _p (mm)	p _f (mm)							
0,2	0,10	40.000	100	0,001	0,001							
0,3	0,15	40.000	150	0,002	0,001							
0,5	0,25	40.000	200	0,003	0,001							
1,0	0,55	40.000	400	0,005	0,003							
2,0	0,55	40.000	600	0,010	0,005							



SUMIDIA "MOULD Finish Master"

NPDB(S) - Typ

SUMIDIA Binderless Kugelkopf-Schaftfräser Typ NPDBS / Typ NPDB

■ NPDBS Schaftfräser (für Standard-Schlichtanwendungen)

Bezeichnung	Lager	Abmessungen (mm)						Echte effektive Länge bezüglich des Steigungswinkels des Arbeitsmaterials					
Bozolomiang	NPD10	RE	DC	APMX	LU	LF	DN	DMM	0,5°	1°	1,5°	2°	3°
NPDBS 1010-004	O	0,1	0,2	0,1	0,4	40	0,18	4	0,44	0,45	0,46	0,47	0,49
1020-008	0	0,2	0,4	0,2	0,8	40	0,38	4	0,83	0,84	0,85	0,86	0,89
1030-010	O	0,3	0,6	0,3	1,0	40	0,58	4	1,05	1,08	1,10	1,13	1,20
1050-020	0	0,5	1,0	0,5	2,0	40	0,95	4	2,08	2,13	2,19	2,24	2,38
1100-030	C	1,0	2,0	1,0	3,0	40	1,95	4	3,13	3,20	3,27	3,35	3,53

■ NPDB Schaftfräser (für hochpräzise Schlichtanwendungen)

Bezeichnung	Lager	Abmessungen (mm)							Echte effektive Länge bezüglich des Steigungswinkels des Arbeitsmaterials				
Bozolomiang	NPD10	RE	DC	APMX	LU	LF	DN	DMM	0,5°	1°	1,5°	2°	3°
NPDB 1010-004	O	0,1	0,2	0,1	0,4	40	0,18	4	0,44	0,45	0,46	0,47	0,49
1020-008	0	0,2	0,4	0,2	0,8	40	0,38	4	0,83	0,84	0,85	0,86	0,89
1030-010	0	0,3	0,6	0,3	1,0	40	0,58	4	1,05	1,08	1,10	1,13	1,20
1050-020	0	0,5	1,0	0,5	2,0	40	0,95	4	2,08	2,13	2,19	2,24	2,38
1100-030	0	1,0	2,0	1,0	3,0	40	1,95	4	3,13	3,20	3,27	3,35	3,53

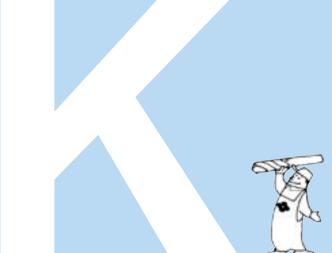
■ Bezeichnungsschlüssel

■ Empfohlene Schnittbedingungen

- Für eine stabile Schnittleistung eine Maschine mit hoher Stabilität verwenden.
- Nicht-wasserlösliches Kühlmittel empfohlen. Als Kühlnebel oder externes Kühlmittel zuführen.
 Brandschutzmaßnahmen treffen, um Brandgefahren durch Funkenbildung bei der Bearbeitung oder durch Bruch des Werkzeugs zu vermeiden.
- Werkzeugüberhang so weit wie möglich reduzieren.
- Schnittbedingungen wie erforderlich anpassen, da sich die Stabilität der Maschine und andere Bedingungen verändern können.
- In der Tabelle angegebene Schnitttiefen sind als maximale Tiefenangaben zu verstehen. Die tatsächliche Schnitttiefe an die gewünschte Oberflächengüte anpassen.

Schlichten von Flächen

Werksti	ückstoff	Hartmetall						
RE (mm)	LU (mm)	Spindeldreh- zahl (min ⁻¹)	Vorschub (mm/min)	a _p (mm)	p _f (mm)			
0,1	0,4	40.000	100	0,001	0,001			
0,2	0,8	40.000	150	0,001	0,001			
0,3	1,0	40.000	200	0,001	0,001			
0,5	2,0	40.000	400	0,001	0,003			
1,0	3,0	40.000	600	0,001	0,005			


Kopierfräsen

Werksti	ückstoff	Hartmetall						
RE (mm)	LU (mm)	Spindeldreh- zahl (min ⁻¹)	Vorschub (mm/min)	a _p (mm)	p _f (mm)			
0,1	0,4	40.000	0 100 0,001		0,001			
0,2	0,8	40.000	150	0,002	0,001			
0,3	1,0	40.000	200	0,003	0,001			
0,5	2,0	40.000	400	0,005	0,003			
1,0	3,0	40.000	600	0,010	0,005			

Multi-Drills

Multi-Drills

K1-K68

11.	11/2
John Contraction of the second	
Ca.	

Auswahl	MULTI-DRILLs	K2-5
VHM-Bohrer	SDP U3/5/7- HAK	
	SDM U3/5 - HAK	K14-19
	MDW GS 2/4	K20-23
Flachbohrer	MDF	K24-31
Extra lange Tieflochbohrer	MDW XHG S / PHT	K32-33
für Stahl	MDW XHG S	K34
für Aluminium	MDW XHT A	K35
Pilot-Bohrer	MDW PHT	
"AURORA COAT"-Bohrer	MDW NHGS	
"MINI Multi-Drills"	MLDH L/P	
	MDUS / MDSS	
"SUMIDIA COAT"-Bohrer	MDS SDC	K41
Vollbohrer mit auswechselbarem HM-Bohrkopf	SMD	K43
Bohrerkörper	SMDH (D)	K44/48/51
Bohrkopf für Stahl	SMDTD MTL	K45
Bohrkopf für rostfreien Stahl	SMDTD MEL	K46-47
für Flachbohrungen	SMDTMFS	K48-49
für große Bohrdurchmesser	SMDTMTL	K50-51
<u>.</u>	weiterung	
Vollbohrer mit auswechselbaren Schneidplatten	WDX (2D, 3D, 4D, 5D)	
Exzenter Buchse	WAS	
Multifunktionsbohrer	PDL (2D, 3D)	
Bohrnutenschaftfräser	PCT (3D, 5D)	NO7-08

"Multi-Drill"- Serie

■ Eigenschaften

"Multi-Drill" ist die Markenbezeichnung für die Hochleistungsbohrer von Sumitomo, welche mit einer speziellen Schneidkantenausführung und mit fortschrittlichen Beschichtungen versehen sind.

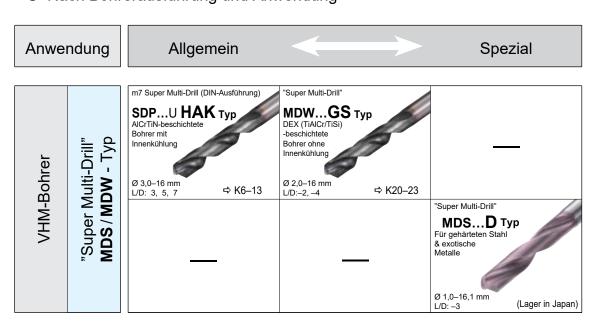
Die Serie umfasst eine vollständige Auswahl im Durchmesserund Längenbereich. Somit kann ein großer Bereich an Werkstoffen, Anforderungen bei großer Effizienz, höchster Genauigkeit und Kosteneffektivität erreicht werden.

■ Auswahl Vollhartmetallbohrer

Serie	SDP	SDM	MDW	MD	F		MDW OO)	MLDH	MDUS / MDSS	MDS
Тур	U3/5/7 -HAK (DIN)	U3/5 - HAK (DIN)	GS 2/4	S2I H3I	D, L2D D, H5D	PHT	XHGS XHTA	NHGS	P / L	-	SDC
Seite	⇔ K 6–13	⇔ K 14–19	⇒ K20–23		24–31	s K	32–35	⇒ K36–37	⇒ K38–39	⇒ K40	⇒ K41
						Pilot	Bohrer		Pilot-Bohrer		
Anwendung	PK	PM	P	_	2		<mark>/KN</mark>	N	PMK	PMKH	N
Form	m7-Bo DIN-		h8-Bohr. zylindr.	h8- zyli	Bohrer, ndrisch	Extra DIN	a lang I-Typ	Super Multi-Drill	Mikro-Bohrer, lang	Mini Multi-Drill	Diamant beschichtet
Ausführung, Nutzlänge (L/D)	3D/5D/7D	3D / 5D	2 / 4D	S2D/ L2D	H3D/ H5D	3D	10D-30D	3D/5D/10D	5/12/20/30 D	10D	3D
Kühlkanäle	J	a	Nein	Nein	Ja		Ja	Ja	Ja	Nein	Nein
Beschichtung	AlCr	TiN	DEX (TiAlCr/TiSi)	P	VD	TiAIN	_	DLC	TiAIN	TiAIN / ZX	SUMIDIA
Durchmesser- bereich	3,0-	16,0	2,0–16,0	0,3–20,0	3,0–16,0	4,0-8,0	3,0–12,0	3,0–16,0	0,8–2,0	0,03–1,0	2,0–10,0

"Multi-Drill"- Serie

■ Vorzüge

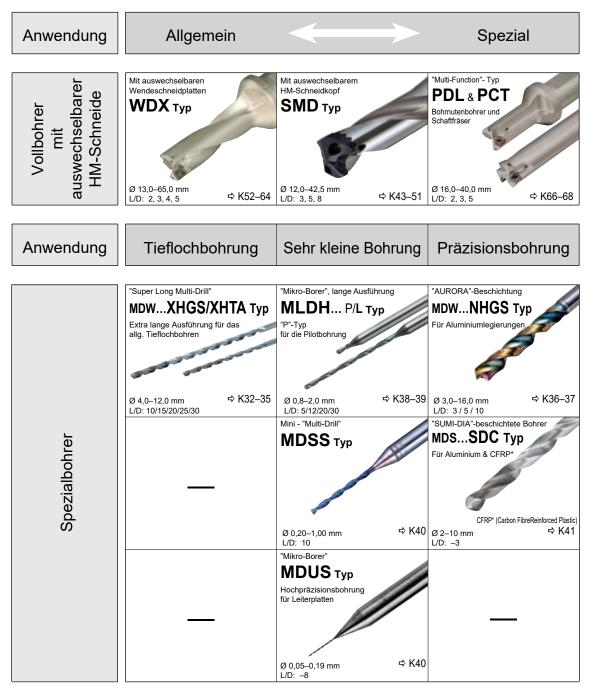

- Eine einzigartige Schneidengeometrie und Spannutenform ermöglichen eine optimale Spanbildung und Spanabfuhr. Dadurch erreichen Sie deutlich engere Bohrungstoleranzen.
- Eine optimierte Kombination aus Substrat und PVD Beschichtung ermöglicht eine effiziente Bearbeitung und hohe Standzeiten.
- Großer Anwendungsbereich und Produktpalette (Durchmesser: 0,03–65 mm, Nutzlänge L/D: 2–30)

Auswahl von eingelöteter und auswechselbarer Hartmetallschneide

Serie	SMD ⇒ K43	WDXOO		
Тур	SMDT(D) MTL	WAS	PDL00	PCT00
Seite	SMDTD MEL	⇒ K52–66	⇒ K66–68	⇒ K67–68
	SMDT MFS			
	SMDHM-3/5/8			
	SMDH M/L/D			
Anwendung	P M K		K N Gerade ge-	Schaftfräser
Form	Mit SMDT-Typ HM-Schneidkopf	Vollbohrer mit WSP	nutete Bohrer	mit WSP
Nutzlänge (L/D - Verhältnis)	1.5D / 3D / 5D / 8D / 12D	2D / 3D / 4D / 5D	2D / 3D	3D / 5D
Kühlkanäle	Ja	J	a	
Beschichtung	TiAIN	Mit WDXT	-Typ WSP	
Durchmesser- bereich	12,0–42,5	13,0–65,0	16,0-	-40,0

Nach Bohrerausführung und Anwendung

■ Empfohlene Schnittbedingungen

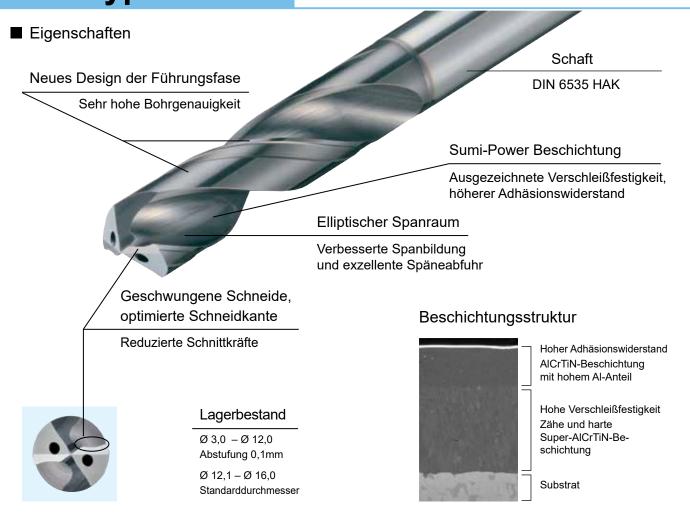

Werkstückstoff Ausführung	Stahl	Rostfreier Stahl	Grauguss	Nichteisen-Metalle
SDPu HAK MDWGS	50 120 0,35 0,2 	15 70 0,1 0,2	50 110 0,35 0,2 	

Schnittgeschw. v_c (m/min)

Vorschub f (mm/U)

"Multi-Drill"- Serie **Auswahl**

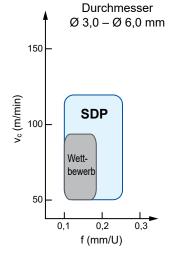
Nach Bohrerausführung und Anwendung

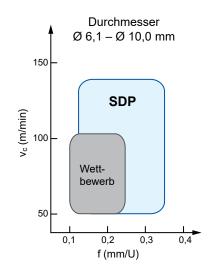


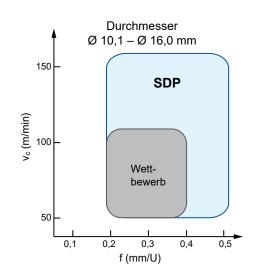
■ Empfohlene Schnittbedingungen

Werkstückstoff Ausführung	Stahl	Rostfreier Stahl	Grauguss	Nichteisenmetalle
SMD (Ø 20)	50 120 0,12 0,35	50 90 0,1 0,25	50 100 0,2 	100 180 _{0,4}
WDX (Ø 18)	100 220	80 180	120 200	100 200
	0,15 0,25	0,06 0,18	0,1 0,32	0,1 0,25
MDWXHT (Ø 5)	80 120	30 60	50 90	80 160
	0,15 0,25	0,08 0,15	0,15 0,3	0,12 0,35

Schnittgeschw. v_c (m/min)
Vorschub f (mm/U)

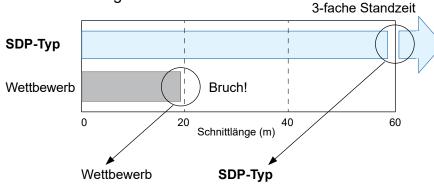

SumiDrill Power-Serie SDP-Typ




■ Vorzüge

- Speziell und optimal f
 ür einen großen Anwendungsbereich
- Hervorragende Leistungsparameter, maximale Vorschübe und stabile, lange Standzeiten
- Neues Design der Führungsfase für hochpräzise Bohrungen
- Gute Ausgewogenheit von Z\u00e4higkeit und Verschlei\u00ddfestigkeit
- Geschwungene Schneiden ermöglichen eine ideale Späneabfuhr
- Zuverlässig und hoch produktiv

Anwendungsbereich


SDP-Typ

■ Vergleich Bruchzähigkeit

Vorschub (mm/U)	0,30	0,40	0,50	0,55	0,60	0,65	0,70	0,75	0,80
SDP-Typ	OK	OK	ОК	OK	ок	OK	OK	ОК	9
Wettbewerb	ОК	Bru	ch!						

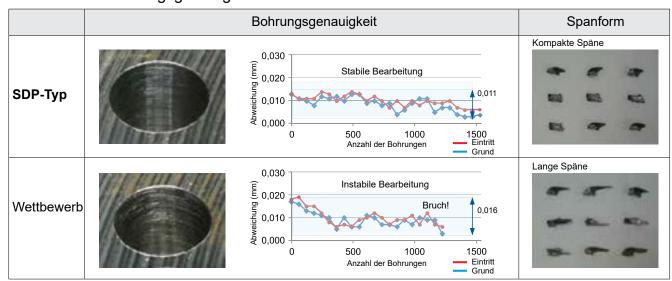
Interner Belastungstest

■ Standzeitvergleich

500 Bohrungen Werkstückstoff: C50, Bohrer: Ø 8 mm, L/D = 5 2000 Bohrungen

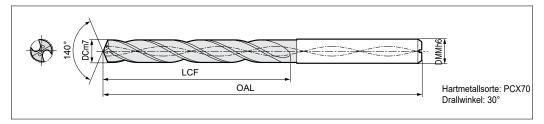
Bohrer: Ø 8, L/D = 5 Werkstückstoff: Unlegierter Stahl (C50) Schnittdaten: v_c=80 m/min, f=0,15 mm/U, a_p=38 mm, Durchgangsbohrung, Innenkühlung

SDP-Typ


SumiDrill Power-Serie

Wettbewerb

■ Exzellente Bohrungsgenauigkeit



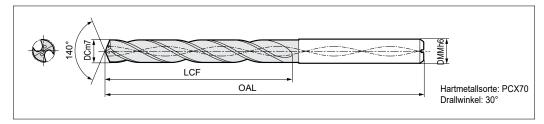
Bohrer: & Werkstückstoff: L Schnittdaten: v

 \emptyset 8, L/D = 5 Unlegierter Stahl (C50) v_c =80 m/min, f=0,25 mm/U, a_p =24 mm, Sacklochbohrung, Innenkühlung

SumiDrill Power-Serie SDP (DIN) - Typ

■ Vollhartmetallbohrer mit Innenkühlung, Ø 3,0–5,6 mm, 3D / 5D /7D

3 SDP 0300 U3 HAK	DC	L/D	Bezeichnung	Lager	LU	LCF	OAL	PL	DCON
7		3	SDP 0300 U3 HAK	•	15,0	19,5	61,5		
3	3,0	5	0300 U5 HAK	•	22,0	26,5	65,5	0,5	6,0
3,1 5 0310 U5 HAK • 22,0 26,6 65,6 0,6 6,0 3,2 SDP 0320 U3 HAK • 14,8 19,6 61,6 0,6 6,0 3,2 5 0320 U5 HAK • 21,8 26,6 65,6 0,6 6,0 3,2 5 0320 U7 HAK • 21,8 26,6 65,6 0,6 6,0 3,2 5 0325 U3 HAK • 14,7 19,6 61,6 6,0 3,2 5 0325 U3 HAK • 14,7 19,6 61,6 6,0 3,3 5DP 0330 U3 HAK • 14,7 19,6 61,6 6,0 3,3 5DP 0340 U3 HAK • 14,7 19,6 61,6 6,0 3,4 5 0340 U3 HAK • 14,5 19,6 61,6 6,0 3,4 5 0350 U3 HAK • 14,4 19,6 61,6 6,0 3,5 5 0350		7	0300 U7 HAK	•	26,0	30,5	69,5		
7		3	SDP 0310 U3 HAK	•	15,0	19,6	61,6		
3 SDP 0320 U3 HAK	3,1	5	0310 U5 HAK	•	22,0	26,6	65,6	0,6	6,0
3.2 5 0320 U5 HAK 0 21,8 26,6 65,6 0,6 6,0 0320 U7 HAK 0 25,8 30,6 69,6		7	0310 U7 HAK	•	26,0	30,6	69,6		
7 0320 U7 HAK • 25,8 30,6 69,6		3	SDP 0320 U3 HAK	•	14,8	19,6	61,6		
3 SDP 0325 U3 HAK	3,2	5	0320 U5 HAK	•	21,8	26,6	65,6	0,6	6,0
3 SDP 0325 U3 HAK		7	0320 U7 HAK	•	25,8	30,6	69,6		
3.25		3	SDP 0325 U3 HAK	•	14,7		61,6		
7	3,25	5	0325 U5 HAK	•		26,6		0,6	6,0
3 SDP 0330 U3 HAK 0 14,7 19,6 61,6 7 0330 U5 HAK 0 21,7 26,6 65,6 0,6 6,0 0330 U7 HAK 0 25,7 30,6 69,6 0,6 6,0 0340 U3 HAK 0 14,5 19,6 61,6 7 0340 U7 HAK 0 21,5 26,6 65,6 0,6 6,0 0340 U7 HAK 0 31,0 36,1 74,6 0 350 U5 HAK 0 21,4 26,6 65,6 0,6 6,0 0350 U5 HAK 0 30,9 36,1 74,6 0 350 U7 HAK 0 30,9 36,1 74,6 0 350 U7 HAK 0 30,9 36,1 74,6 0 360 U7 HAK 0 30,8 36,2 74,7 0 360 U7 HAK 0 30,8 36,2 74,7 0 360 U7 HAK 0 30,7 36,2 74,7 0 370 U7 HAK 0 30,7 36,2 74,7 0 370 U7 HAK 0 30,7 36,2 74,7 0 370 U7 HAK 0 30,7 36,2 74,7 0 380 U7 HAK 0 30,7 36,2 74,7 0 380 U7 HAK 0 30,7 36,2 74,7 0 380 U7 HAK 0 30,7 36,2 74,7 0 380 U7 HAK 0 30,7 36,2 74,7 0 380 U7 HAK 0 32,5 38,2 74,7 0 380 U7 HAK 0 32,5 38,2 74,7 0 390 U7 HAK 0 32,5 38,2 74,7 0 390 U7 HAK 0 32,5 38,2 74,7 0 390 U7 HAK 0 32,4 38,2 74,7 0 390 U7 HAK 0 32,4 38,2 74,7 0 390 U7 HAK 0 32,4 38,2 74,7 0 390 U7 HAK 0 32,4 38,2 74,7 0 390 U7 HAK 0 32,3 35,7 73,7 0,7 6,0 390 U7 HAK 0 32,4 38,2 74,7 0 390 U7 HAK 0 32,4 38,2 74,7 0 390 U7 HAK 0 32,2 38,2 74,7 0 390 U7 HAK 0 32,3 35,7 73,7 0,7 6,0 390 U7 HAK 0 32,4 38,2 74,7 0 390 U7 HAK 0 32,2 38,2 74,7 0 390 U7 HAK 0 32,2 38,2 74,7 0 390 U7 HAK 0 32,2 38,2 74,7 0 390 U7 HAK 0 32,2 38,2 74,7 0 390 U7 HAK 0 32,3 35,7 73,7 0,7 6,0 0 390 U7 HAK 0 32,3 35,7 73,7 0,7 6,0 0 390 U7 HAK 0 32,3 38,2 74,7 0 390 U7 HAK 0 32,3 35,7 73,7 0,7 6,0 0 390 U7 HAK 0 32,3 38,2 74,7 0,7 6,0 0 390 U7 HAK 0 32,3 38,2 74,7 0,7 6,0 0 390 U7 HAK 0 32,3 38,2 74,7 0,7 6,0 0 390 U7 HAK 0 32,3 38,2 74,7 0,7 6,0 0 390 U7 HAK 0 32,3 38,2 74,7 0,7 6,0 0 390 U7 HAK 0 32,3 38,3 74,8 0,8 6,0 0 30 U5 HAK 0 29,5 35,8 73,8 0,8 6,0 0 30 U5 HAK 0 29,5 35,8 73,8 0,8 6,0 0 30 U5 HAK 0 29,4 35,8 73,8 0,8 6,0 0 30 U5 HAK 0 29,4 35,8 73,8 0,8 6,0		7	0325 U7 HAK	•					
3,3 5 0330 U5 HAK • 21,7 26,6 65,6 0,6 6,0 7 0330 U7 HAK • 25,7 30,6 69,6 6 6,0 3 SDP 0340 U3 HAK • 14,5 19,6 61,6 0,6 6,0 3 SDP 0350 U3 HAK • 21,5 26,6 65,6 0,6 6,0 3,5 5 0350 U3 HAK • 14,4 19,6 61,6 0,6 6,0 3,5 5 0350 U3 HAK • 21,4 26,6 65,6 0,6 6,0 3,5 5 0350 U3 HAK • 14,3 19,7 61,7 0,6 6,0 3,6 5 0360 U3 HAK • 14,3 19,7 61,7 0,7 6,0 3,7 5 0370 U3 HAK • 14,2 19,7 61,7 0,7 6,0 3,7 5 0370 U3 HAK • 14,2 19,7 61,7 0,7 6,0 3,8 5 0380 U3 HAK • 18,0 23,7 <td></td> <td>3</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>		3		•					
7 0330 U7 HAK • 25,7 30,6 69,6 3 SDP 0340 U3 HAK • 14,5 19,6 61,6 7 0340 U5 HAK • 21,5 26,6 65,6 0,6 6,0 3 SDP 0350 U3 HAK • 14,4 19,6 61,6 6,0 6,0 3,5 5 0350 U5 HAK • 21,4 26,6 65,6 0,6 6,0 3 SDP 0360 U3 HAK • 14,3 19,7 61,7 0,7 6,0 3,6 5 0360 U5 HAK • 21,3 26,7 65,7 0,7 6,0 3,6 5 0360 U5 HAK • 21,3 26,7 65,7 0,7 6,0 3,7 5 0370 U5 HAK • 14,2 19,7 61,7 0,7 6,0 3,7 5 0370 U5 HAK • 21,2 26,7 65,7 0,7 6,0 3,8 5 0380 U5 HAK • 30,0 35,7 73,7 0,7 6,0 3,8 5 0380 U5 HAK • 30,0 35,7 73,7 0,7 6,0	3.3			•				0.6	6.0
3 SDP 0340 U3 HAK 0 14,5 19,6 61,6 0,6 6,0 0340 U5 HAK 0 21,5 26,6 65,6 0,6 6,0 0340 U7 HAK 0 31,0 36,1 74,6 0350 U3 HAK 0 14,4 19,6 61,6 0,6 6,0 0350 U5 HAK 0 21,4 26,6 65,6 0,6 6,0 0350 U7 HAK 0 30,9 36,1 74,6 0350 U7 HAK 0 30,9 36,1 74,6 0360 U7 HAK 0 30,9 36,1 74,6 0360 U7 HAK 0 30,8 36,2 74,7 0,7 6,0 0370 U7 HAK 0 30,8 36,2 74,7 0,7 6,0 0370 U7 HAK 0 30,8 36,2 74,7 0,7 6,0 0370 U7 HAK 0 30,7 36,2 74,7 0,7 6,0 0370 U7 HAK 0 30,7 36,2 74,7 0,7 6,0 0370 U7 HAK 0 30,0 35,7 73,7 0,7 6,0 0380 U7 HAK 0 30,0 35,7 73,7 0,7 6,0 0380 U7 HAK 0 32,5 38,2 74,7 0,7 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9	, , ,			•				, , ,	, , ,
3,4 5 0340 U5 HAK • 21,5 26,6 65,6 0,6 6,0 3 SDP 0350 U3 HAK • 14,4 19,6 61,6 0,6 6,0 3,5 5 0350 U5 HAK • 21,4 26,6 65,6 0,6 6,0 3,6 5 0360 U5 HAK • 21,3 26,7 65,7 0,7 6,0 3,6 5 0360 U5 HAK • 21,3 26,7 65,7 0,7 6,0 3,6 5 0360 U5 HAK • 21,3 26,7 65,7 0,7 6,0 3,7 5 0370 U5 HAK • 21,2 26,7 65,7 0,7 6,0 3,7 5 0370 U5 HAK • 21,2 26,7 65,7 0,7 6,0 3,7 5 0370 U5 HAK • 21,2 26,7 65,7 0,7 6,0 3,8 5 0380 U5 HAK • 30,0 35,7 73,7 0,7 6,0 3,9 5 0390 U5 HAK <				•					
7 0340 U7 HAK	34			•				0.6	6.0
3 SDP 0350 U3 HAK	0,4			•				0,0	0,0
3,5 5 0350 U5 HAK • 21,4 26,6 65,6 0,6 6,0 7 0350 U7 HAK • 30,9 36,1 74,6 74,6 3 SDP 0360 U3 HAK • 14,3 19,7 61,7 0,7 6,0 3,6 5 0360 U5 HAK • 21,3 26,7 65,7 0,7 6,0 3,7 5 0370 U5 HAK • 21,2 26,7 65,7 0,7 6,0 3,7 5 0370 U5 HAK • 21,2 26,7 65,7 0,7 6,0 3,7 5 0370 U5 HAK • 21,2 26,7 65,7 0,7 6,0 3,8 5 0380 U5 HAK • 30,0 35,7 73,7 0,7 6,0 3,9 5 0380 U5 HAK • 30,2 35,7 73,7 0,7 6,0 3,9 5 0390 U5 HAK • 29,9 35,7 73,7 0,7 6,0 4,0 5 0400 U5 HAK • 29,7 <									
7 0350 U7 HAK • 30,9 36,1 74,6 3 SDP 0360 U3 HAK • 14,3 19,7 61,7 3,6 5 0360 U5 HAK • 21,3 26,7 65,7 0,7 6,0 7 0360 U7 HAK • 30,8 36,2 74,7	3.5							0.6	6.0
3 SDP 0360 U3 HAK	3,3							0,0	0,0
3,6 5 0360 U5 HAK 030,8 36,2 74,7 0,7 6,0 0360 U7 HAK 030,8 36,2 74,7 0,7 6,0 0370 U3 HAK 04,2 19,7 61,7 0,7 6,0 0370 U7 HAK 030,7 36,2 74,7 0,7 6,0 0370 U7 HAK 030,7 36,2 74,7 0,7 6,0 0370 U7 HAK 030,7 36,2 74,7 0,7 6,0 0380 U5 HAK 030,0 35,7 73,7 0,7 6,0 0380 U7 HAK 032,5 38,2 74,7 0,7 6,0 0380 U7 HAK 032,5 38,2 74,7 0,7 6,0 0390 U3 HAK 017,9 23,7 65,7 0,7 6,0 0390 U7 HAK 032,4 38,2 74,7 0,7 6,0 0390 U7 HAK 032,4 38,2 74,7 0,7 6,0 0390 U7 HAK 032,4 38,2 74,7 0,7 6,0 0390 U7 HAK 032,4 38,2 74,7 0,7 6,0 0390 U7 HAK 032,4 38,2 74,7 0,7 6,0 0400 U5 HAK 029,7 35,7 73,7 0,7 6,0 0400 U7 HAK 032,2 38,2 74,7 0,7 6,0 0400 U7 HAK 032,2 38,2 74,7 0,7 6,0 0410 U5 HAK 029,6 35,7 73,7 0,7 6,0 0410 U5 HAK 029,6 35,7 73,7 0,7 6,0 0410 U7 HAK 032,1 38,2 74,7 0,7 6,0 0410 U7 HAK 032,1 38,2 74,7 0,7 6,0 0410 U7 HAK 032,1 38,2 74,7 0,7 0,410 U7 HAK 032,1 38,2 74,7 0,7 6,0 0410 U7 HAK 032,1 38,2 74,7 0,7 6,0 0410 U7 HAK 032,1 38,2 74,7 0,7 6,0 0420 U7 HAK 032,0 38,3 74,8 0,8 6,0 0420 U7 HAK 032,0 38,3 74,8 0,8 6,0 0430 U5 HAK 017,4 23,8 65,8 0,8 6,0 0430 U5 HAK 017,4 23,8 65,8 0,8 6,0									
7 0360 U7 HAK ● 30,8 36,2 74,7 3 SDP 0370 U3 HAK ● 14,2 19,7 61,7 3,7 5 0370 U5 HAK ● 21,2 26,7 65,7 0,7 6,0 7 0370 U7 HAK ● 30,7 36,2 74,7 0,7 6,0 3 SDP 0380 U3 HAK ● 18,0 23,7 65,7 0,7 0,7 6,0 3 SDP 0380 U5 HAK ● 30,0 35,7 73,7 0,7 7,7 0,7 6,0 0,7 6,0 7 0380 U7 HAK ● 17,9 23,7 65,7 0,7 6,0 3,9 5 0390 U5 HAK ● 29,9 35,7 73,7 0,7 6,0 0,7 6,0 7 0390 U7 HAK ● 32,4 38,2 74,7 0,7 6,0 3 SDP 0400 U3 HAK ● 17,7 23,7 65,7 0,7 6,0 4,0 5 0400 U5 HAK ● 29,7 35,7 73,7 0,7 6,0 6,0 7 0400 U7 HAK ● 32,2 38,2 74,7 0,7 6,0 3 SDP 0410 U3 HAK ● 17,6 23,7 65,7 0,7 6,0 4,1 5 0410 U5 HAK ● 29,6 35,7 73,7 0,7 0,7 6,0 6,0 7 0410 U7 HAK ● 32,1 38,2 74,7 0,7 6,0 4,2 5 0420 U5 HAK ● 17,5 23,8 65,8 0,8 6,0 7									
3 SDP 0370 U3 HAK	3,6							0,7	6,0
3,7 5 0370 U5 HAK • 21,2 26,7 65,7 0,7 6,0 7 0370 U7 HAK • 30,7 36,2 74,7 7 6,0 3 SDP 0380 U3 HAK • 18,0 23,7 65,7 0,7 6,0 3,8 5 0380 U5 HAK • 30,0 35,7 73,7 0,7 6,0 3,9 5 0390 U3 HAK • 17,9 23,7 65,7 0,7 6,0 3,9 5 0390 U5 HAK • 29,9 35,7 73,7 0,7 6,0 4,0 5 0400 U3 HAK • 17,7 23,7 65,7 0,7 6,0 4,0 5 0400 U5 HAK • 29,7 35,7 73,7 0,7 6,0 4,0 5 0400 U5 HAK • 29,7 35,7 73,7 0,7 6,0 4,1 5 0410 U5 HAK • 29,6 35,7 73,7 0,7 6,0 4,2 5 0420 U3 HAK • 1									
7 0370 U7 HAK 0 30,7 36,2 74,7 3 SDP 0380 U3 HAK 0 30,0 35,7 73,7 0,7 6,0 0380 U7 HAK 0 32,5 38,2 74,7 3,9 5 0390 U5 HAK 29,9 35,7 73,7 0,7 6,0 7 0390 U7 HAK 29,9 35,7 73,7 0,7 6,0 7 0390 U7 HAK 29,7 35,7 73,7 0,7 6,0 7 0390 U7 HAK 29,7 35,7 73,7 0,7 6,0 7 0400 U7 HAK 29,7 35,7 73,7 0,7 6,0 7 0400 U7 HAK 29,6 35,7 73,7 0,7 6,0 7 0410 U3 HAK 17,6 23,7 65,7 73,7 0,7 6,0 7 0410 U5 HAK 29,6 35,7 73,7 0,7 6,0 0410 U5 HAK 29,6 35,7 73,7 0,7 6,0 0410 U7 HAK 29,6 35,7 73,7 0,7 6,0 0410 U7 HAK 29,6 35,7 73,7 0,7 6,0 0410 U7 HAK 29,6 35,7 73,7 0,7 6,0 0410 U7 HAK 29,6 35,7 73,7 0,7 6,0 0410 U7 HAK 29,6 35,7 73,7 0,7 6,0 0410 U7 HAK 29,5 35,8 73,8 0,8 6,0 0420 U7 HAK 29,5 35,8 73,8 0,8 6,0 0430 U5 HAK 17,4 23,8 65,8 0430 U5 HAK 29,4 35,8 73,8 0,8 6,0									
3 SDP 0380 U3 HAK	3,7							0,7	6,0
3,8 5 0380 U5 HAK 030,0 35,7 73,7 0,7 6,0 0380 U7 HAK 032,5 38,2 74,7 3,7 0,7 6,0 32,5 38,2 74,7 3,7 0,7 6,0 32,5 38,2 74,7 3,7 0,7 6,0 32,5 38,2 74,7 3,7 0,7 6,0 32,5 38,2 74,7 3,7 0,7 6,0 32,5 38,2 74,7 3,7 0,7 6,0 32,5 38,2 74,7 3,7 0,7 6,0 7 0400 U5 HAK 029,7 35,7 73,7 0,7 6,0 7 0400 U7 HAK 032,2 38,2 74,7 3,7 0,7 6,0 7 0400 U7 HAK 032,2 38,2 74,7 3,7 0,7 6,0 7 0410 U5 HAK 029,6 35,7 73,7 0,7 6,0 7 0410 U7 HAK 032,1 38,2 74,7 3,7 0,7 6,0 0410 U7 HAK 032,1 38,2 74,7 3,7 0,7 6,0 0410 U7 HAK 032,1 38,2 74,7 3,7 0,7 6,0 0410 U7 HAK 032,1 38,2 74,7 3,1 0,7 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1									
7 0380 U7 HAK									
3 SDP 0390 U3 HAK	3,8							0,7	6,0
3,9 5 0390 U5 HAK 0 29,9 35,7 73,7 0,7 6,0 0390 U7 HAK 0 32,4 38,2 74,7 3 0,7 65,0 32,4 38,2 74,7 3 0,7 6,0 32,4 38,2 74,7 3 0,7 6,0 0400 U5 HAK 0 29,7 35,7 73,7 0,7 6,0 0400 U7 HAK 0 32,2 38,2 74,7 3 0,7 6,0 0410 U5 HAK 0 29,6 35,7 73,7 0,7 6,0 0410 U7 HAK 0 32,1 38,2 74,7 0,7 6,0 0410 U7 HAK 0 32,1 38,2 74,7 0,7 6,0 0410 U7 HAK 0 32,1 38,2 74,7 0,7 6,0 0410 U7 HAK 0 32,1 38,2 74,7 0,7 6,0 0410 U7 HAK 0 32,1 38,2 74,7 0,7 6,0 0410 U7 HAK 0 32,1 38,2 74,7 0,7 6,0 0420 U5 HAK 0 29,5 35,8 73,8 0,8 6,0 0420 U7 HAK 0 32,0 38,3 74,8 0,8 6,0 0430 U5 HAK 0 17,4 23,8 65,8 0,8 6,0 0430 U5 HAK 0 29,4 35,8 73,8 0,8 6,0				•					
7 0390 U7 HAK				•					
3 SDP 0400 U3 HAK 0 17,7 23,7 65,7 73,7 0,7 6,0 0400 U7 HAK 0 32,2 38,2 74,7 3 0,7 6,0 0410 U5 HAK 0 29,6 35,7 73,7 0,7 6,0 7 0410 U7 HAK 0 32,1 38,2 74,7 0,7 6,0 7 0410 U7 HAK 0 32,1 38,2 74,7 0,7 6,0 7 0410 U7 HAK 0 32,1 38,2 74,7 3 SDP 0420 U3 HAK 0 17,5 23,8 65,8 7,0 0420 U7 HAK 0 29,5 35,8 73,8 0,8 6,0 0420 U7 HAK 0 32,0 38,3 74,8 3 SDP 0430 U3 HAK 0 17,4 23,8 65,8 7,8 0,8 6,0 0430 U5 HAK 0 29,4 35,8 73,8 0,8 6,0	3,9							0,7	6,0
4,0 5 0400 U5 HAK 0 29,7 35,7 73,7 0,7 6,0 7 0400 U7 HAK 32,2 38,2 74,7 37, 0,7 6,0 32,2 38,2 74,7 38,1 0,7 6,0 32,2 38,2 74,7 38,1 0,7 6,0 32,1 38,2 74,7 38,1 0,7 6,0 32,1 38,2 74,7 38,1 0,7 6,0 32,1 38,2 74,7 38,1 0,7 6,0 32,1 38,2 74,7 38,1 0,8 6,0 32,1 38,2 74,7 38,1 0,8 6,0 32,0 38,3 74,8 38,1 0,8 6,0 32,0 38,3 74,8 38,1 0,8 6,0 38,3 50,8 6,0 0,430 U5 HAK 29,4 35,8 73,8 0,8 6,0				•					
7 0400 U7 HAK				•					
3 SDP 0410 U3 HAK 0 17,6 23,7 65,7 0,7 6,0 0410 U5 HAK 0 29,6 35,7 73,7 0,7 6,0 0410 U7 HAK 32,1 38,2 74,7 33 SDP 0420 U3 HAK 17,5 23,8 65,8 74,2 5 0420 U5 HAK 29,5 35,8 73,8 0,8 6,0 0420 U7 HAK 32,0 38,3 74,8 3 SDP 0430 U3 HAK 17,4 23,8 65,8 4,3 5 0430 U5 HAK 29,4 35,8 73,8 0,8 6,0	4,0	5		•	29,7	35,7	73,7	0,7	6,0
4,1 5 0410 U5 HAK • 29,6 35,7 73,7 0,7 6,0 7 0410 U7 HAK • 32,1 38,2 74,7 74,7 3 SDP 0420 U3 HAK • 17,5 23,8 65,8 6,0 4,2 5 0420 U5 HAK • 29,5 35,8 73,8 0,8 6,0 7 0420 U7 HAK • 32,0 38,3 74,8 3 SDP 0430 U3 HAK • 17,4 23,8 65,8 4,3 5 0430 U5 HAK • 29,4 35,8 73,8 0,8 6,0		7	0400 U7 HAK	•	32,2	38,2	74,7		
7 0410 U7 HAK		3	SDP 0410 U3 HAK	•	17,6	23,7	65,7		
3 SDP 0420 U3 HAK	4,1	5	0410 U5 HAK	•	29,6	35,7	73,7	0,7	6,0
4,2 5 0420 U5 HAK • 29,5 35,8 73,8 0,8 6,0 7 0420 U7 HAK • 32,0 38,3 74,8 74,8 3 SDP 0430 U3 HAK • 17,4 23,8 65,8 65,8 4,3 5 0430 U5 HAK • 29,4 35,8 73,8 0,8 6,0		7	0410 U7 HAK	•	32,1	38,2	74,7		
7 0420 U7 HAK ● 32,0 38,3 74,8 3 SDP 0430 U3 HAK ● 17,4 23,8 65,8 4,3 5 0430 U5 HAK ● 29,4 35,8 73,8 0,8 6,0		3	SDP 0420 U3 HAK	•	17,5	23,8	65,8		
3 SDP 0430 U3 HAK	4,2	5	0420 U5 HAK	•	29,5	35,8	73,8	0,8	6,0
4,3 5 0430 U5 HAK • 29,4 35,8 73,8 0,8 6,0		7	0420 U7 HAK	•	32,0	38,3	74,8		
4,3 5 0430 U5 HAK • 29,4 35,8 73,8 0,8 6,0		3	SDP 0430 U3 HAK	•	17,4	23,8	65,8		
	4,3	5	0430 U5 HAK	•				0,8	6,0
		7	0430 U7 HAK	•	40,4	46,8	84,8		


DC	L/D	Bezeichnung	Lager	LU	LCF	OAL	PL	DCON
	3	SDP 0440 U3 HAK	•	17,2	23,8	65,8		
4,4	5	0440 U5 HAK	•	29,2	35,8	73,8	0,8	6,0
.,.	7	0440 U7 HAK	•	40,2	46,8	84,8	0,0	0,0
	3	SDP 0450 U3 HAK	•	17,1	23,8	65,8		
4,5	5	0450 U5 HAK	•	29,1	35,8	73,8	0,8	6,0
.,0	7	0450 U7 HAK	•	40,1	46,8	84,8	0,0	,,,
	3	SDP 0460 U3 HAK	•	16,9	23,8	65,8		
4,6	5	0460 U5 HAK	•	28,9	35,8	73,8	0,8	6,0
1,0	7	0460 U7 HAK	•	39,9	46,8	84,8	0,0	0,0
	3	SDP 0465 U3 HAK	•	16,8	23,8	65,8		
4,65	5	0465 U5 HAK	•	28,8	35,8	73,8	0,8	6,0
.,00	7	0465 U7 HAK	•	39,8	46,8	84,8	0,0	,,,
	3	SDP 0470 U3 HAK	•	16,9	23,9	65,9		
4,7	5	0470 U5 HAK	•	28,9	35,9	73,9	0.9	6,0
.,,,	7	0470 U7 HAK	•	39,9	46,9	84,9	0,0	0,0
	3	SDP 0480 U3 HAK	•	20,7	27,9	65,9		
4,8	5	0480 U5 HAK	•	36,7	43,9	81,9	0,9	6,0
4,0	7	0480 U7 HAK	•	44,7	51,9	89,	0,5	0,0
	3	SDP 0490 U3 HAK	•	20,6	27,9	65,9		
4,9	5	0490 U5 HAK	•	36,6	43,9	81,9	0,9	6,0
7,5	7	0490 U7 HAK	•	44,6	51,9	89,9	0,5	0,0
	3	SDP 0500 U3 HAK	•	20,4	27,9	65,9		
5,0	5	0500 U5 HAK	•	36,4	43,9	81,9	0,9	6,0
0,0	7	0500 U7 HAK	•	44,4	51,9	89,9	0,0	0,0
	3	SDP 0510 U3 HAK	•	20,3	27,9	65,9		
5,1	5	0510 U5 HAK	•	36,3	43,9	81,9	0,9	6,0
0, 1	7	0510 U7 HAK	•	44,3	51,9	89,9	0,0	0,0
	3	SDP 0520 U3 HAK	•	20,1	27,9	65,9		
5,2	5	0520 U5 HAK	•	36,1	43,9	81,9	0,9	6,0
0,2	7	0520 U7 HAK	•	44,1	51,9	89,9	0,5	0,0
	3	SDP 0530 U3 HAK	•	20,1	28,0	66,0		
5,3	5	0530 U5 HAK	•	36,1	44,0	82,0	1,0	6,0
0,0	7	0530 U7 HAK	•	44,1	52,0	90,0	1,0	0,0
	3	SDP 0540 U3 HAK	•	19,9	28,0	66,0		
5,4	5	0540 U5 HAK	•	35,9	44,0	82,0	1,0	6,0
5,4	7	0540 U7 HAK	•	50,9	59,0	97,0	1,0	0,0
	3	SDP 0550 U3 HAK	•	19,8	28,0	66,0		
5,5	5	0550 U5 HAK	•	35,8	44,0	82,0	1,0	6,0
0,0	7	0550 U7 HAK	•	50,8	59,0		1,0	0,0
	3	SDP 0555 U3 HAK	•	19,7	28,0	97,0 66,0		
5,55	5	0555 U5 HAK	•	35,7	44,0		1,0	6,0
5,55	7	0555 U7 HAK	•	50,7		82,0 97.0	1,0	0,0
	3	SDP 0560 U3 HAK			59,0 28,0	97,0 66,0		
5,6	5	0560 U5 HAK	•	19,6 35,6	44,0	82,0	1,0	6,0
5,0				35,6			1,0	0,0
	7	0560 U7 HAK	•	50,6	59,0	97,0		

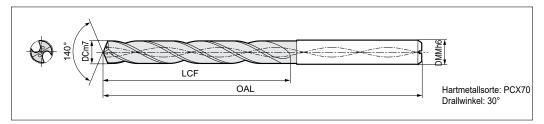
Nicht im Katalog angegebene Durchmesser können auf Kundenwunsch gefertigt werden. Die Mindestbestellmenge beträgt 30 Stück.

Bemerkung:

SumiDrill Power-Serie SDP (DIN) - Typ

■ Vollhartmetallbohrer mit Innenkühlung, Ø 5,7–8,6 mm, 3D / 5D /7D

DC L/D Bezeichnung	L PL D	CON
3 SDP 0570 U3 HAK • 19,5 28,0 66,	0	
5,7 5 0570 U5 HAK • 35,5 44,0 82,	0 1,0	6,0
7 0570 U7 HAK • 50,5 59,0 97	0	
3 SDP 0580 U3 HAK ● 19,4 28,1 66,	1	
5,8 5 0580 U5 HAK • 35,4 44,1 82,	1 1,1	6,0
7 0580 U7 HAK • 50,4 59,1 97		
3 SDP 0590 U3 HAK ● 19,3 28,1 66,		
5,9 5 0590 U5 HAK • 35,3 44,1 82,		6,0
7 0590 U7 HAK • 50,3 59,1 97		
3 SDP 0600 U3 HAK • 19,1 28,1 66,		
6,0 5 0600 U5 HAK • 35,1 44,1 82,		6,0
7 0600 U7 HAK • 50,1 59,1 97,		
3 SDP 0610 U3 HAK • 25,0 34,1 79,		
6,1 5 0610 U5 HAK • 44,0 53,1 91,		8,0
7 0610 U7 HAK • 59,0 68,1 106		
3 SDP 0620 U3 HAK ● 24,8 34,1 79,		
6,2 5 0620 U5 HAK • 43,8 53,1 91,		8,0
7 0620 U7 HAK • 58,8 68,1 106		
3 SDP 0630 U3 HAK • 24,7 34,1 79,		
6,3 5 0630 U5 HAK • 43,7 53,1 91,		8,0
7 0630 U7 HAK • 58,7 68,1 106		
3 SDP 0640 U3 HAK ● 24,6 34,2 79,		
6,4 5 0640 U5 HAK • 43,6 53,2 91,		8,0
7 0640 U7 HAK • 58,6 68,2 106		
3 SDP 0650 U3 HAK • 24,5 34,2 79,		0.0
6,5 5 0650 U5 HAK • 43,5 53,2 91,		8,0
7 0650 U7 HAK • 58,5 68,2 106 3 SDP 0660 U3 HAK • 24,3 34,2 79,		
		o 0
6,6 5 0660 U5 HAK • 43,3 53,2 91, 7 0660 U7 HAK • 58,3 68,2 106		8,0
3 SDP 0670 U3 HAK • 24,2 34,2 79,		
6,7 5 0670 U5 HAK • 43,2 53,2 91,		8,0
7 0670 U7 HAK • 58,2 68,2 106		0,0
3 SDP 0680 U3 HAK • 24,0 34,2 79,		
6,8 5 0680 U5 HAK • 43,0 53,2 91		8,0
7 0680 U7 HAK • 58,0 68,2 106		0,0
3 SDP 0690 U3 HAK • 24,0 34,3 79,		
6,9 5 0690 U5 HAK • 43,0 53,3 91		8,0
7 0690 U7 HAK • 68,0 78,3 116		,-
3 SDP 0700 U3 HAK • 23,8 34,3 79,		
7,0 5 0700 U5 HAK • 42,8 53,3 91,		8,0
		, -
7 0700 U7 HAK ● 67,8 78,3 116	,3	
	3	8,0


DC	L/D	Bezeichnung	Lager	LU	LCF	OAL	PL	DCON
7,2	3	SDP 0720 U3 HAK	•	29,5	40,3	79,3	1,3	8,0
	5	0720 U5 HAK	•	42,5	53,3	91,3		
	7	0720 U7 HAK	•	67,5	78,3	116,3		
7,3	3	SDP 0730 U3 HAK	•	29,4	40,3	79,3		
	5	0730 U5 HAK	•	42,4	53,3	91,3	1,3	8,0
	7	0730 U7 HAK	•	67,4	78,3	116,3		
7,4	3	SDP 0740 U3 HAK	•	29,2	40,3	79,3		
	5	0740 U5 HAK		42,2	53,3	91,3	1,3	8,0
	7	0740 U7 HAK	•	67,2	78,3	116,3		
7,5	3	SDP 0750 U3 HAK	•	29,2	40,4	79,4	1,4	8,0
	5	0750 U5 HAK	•	42,2	53,4	91,4		
	7	0750 U7 HAK	•	67,2	78,4	116,4		
7,6	3	SDP 0760 U3 HAK	•	29,0	40,4	79,4	1,4	8,0
	5	0760 U5 HAK	$ \bullet $	42,0	53,4	91,4		
	7	0760 U7 HAK	•	67,0	78,4	116,4		
7,7	3	SDP 0770 U3 HAK	•	28,9	40,4	79,4		
	5	0770 U5 HAK	•	41,9	53,4	91,4	1,4	8,0
	7	0770 U7 HAK	•	66,9	78,4	116,4		
7,8	3	SDP 0780 U3 HAK	•	28,7	40,4	79,4		
	5	0780 U5 HAK	•	41,7	53,4	91,4	1,4	8,0
	7	0780 U7 HAK	•	66,7	78,4	116,4		
7,9	3	SDP 0790 U3 HAK	•	28,6	40,4	79,4		
	5	0790 U5 HAK	•	41,6	53,4	91,4	1,4	8,0
	7	0790 U7 HAK	•	66,6	78,4	116,4		
8,0	3	SDP 0800 U3 HAK	•	28,5	40,5	79,5		
	5	0800 U5 HAK	•	41,5	53,5	91,5	1,5	8,0
	7	0800 U7 HAK	•	66,5	78,5	116,5		
8,1	3	SDP 0810 U3 HAK	•	34,4	46,5	88,5		
	5	0810 U5 HAK	•	48,4	60,5	102,5		10,0
	7	0810 U7 HAK	•	76,4	88,5	130,5		
8,2	3	SDP 0820 U3 HAK	•	34,2	46,5	88,5		
	5	0820 U5 HAK	•	48,2	60,5	102,5	1,5	10,0
	7	0820 U7 HAK	•	76,2	88,5	130,5		
8,3	3	SDP 0830 U3 HAK	•	34,1	46,5	88,5		
	5	0830 U5 HAK	•	48,1	60,5	102,5	1,5	10,0
	7	0830 U7 HAK	•	76,1	88,5	130,5		
8,4	3	SDP 0840 U3 HAK	•	33,9	46,5	88,5		
	5	0840 U5 HAK	•	47,9	60,5	102,5	1,5	10,0
	7	0840 U7 HAK	•	75,9	88,5	130,5		
8,5	3	SDP 0850 U3 HAK	•	33,8	46,5	88,5	1,5	10,0
	5	0850 U5 HAK	•	47,8	60,5	102,5		
	7	0850 U7 HAK	•	75,8	88,5	130,5		
8,6	3	SDP 0860 U3 HAK	•	33,7	46,6	88,6	1,6	10,0
	5	0860 U5 HAK	•	47,7	60,6	102,6		
	7	0860 U7 HAK	•	75,7	88,6	130,6		

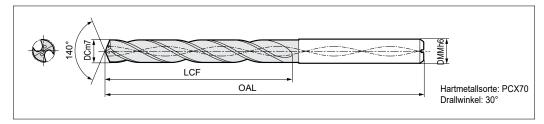
[※] Bemerkung

Nicht im Katalog angegebene Durchmesser können auf Kundenwunsch gefertigt werden. Die Mindestbestellmenge beträgt 30 Stück.

SumiDrill Power-Serie SDP (DIN) - Typ

■ Vollhartmetallbohrer mit Innenkühlung, Ø 8,7–11,5 mm, 3D / 5D /7D

DC	L/D	Bezeichnung	Lager	LU	LCF	OAL	PL	DCON
	3	SDP 0870 U3 HAK	•	33,6	46,6	88,6		
8,7	5	0870 U5 HAK	•	47,6	60,6	102,6	1,6	10,0
	7	0870 U7 HAK	•	75,6	88,6	130,6		
	3	SDP 0880 U3 HAK	•	33,4	46,6	88,6		
8,8	5	0880 U5 HAK	•	47,4	60,6	102,6	1,6	10,0
	7	0880 U7 HAK	•	75,4	88,6	130,6		
	3	SDP 0890 U3 HAK	•	33,3	46,6	88,6		
8,9	5	0890 U5 HAK	•	47,3	60,6	102,6	1,6	10,0
	7	0890 U7 HAK	•	75,3	88,6	130,6		
	3	SDP 0900 U3 HAK	•	33,1	46,6	88,6		
9,0	5	0900 U5 HAK	•	47,1	60,6	102,6	1,6	10,0
, -	7	0900 U7 HAK	•	75,1	88,6	130,6	, -	, ,
	3	SDP 0910 U3 HAK	•	33,1	46,7	88,7		
9,1	5	0910 U5 HAK	•	47,1	60,7	102,7	1,7	10,0
0,1	7	0910 U7 HAK	•	83,1	96,7	138,7	.,,	10,0
	3	SDP 0920 U3 HAK	•	32,9	46,7	88,7		
9,2	5	0920 U5 HAK	•	46,9	60,7	102,7	1,7	10,0
3,2	7	0920 U7 HAK	•	82,9	96,7	138,7	1,7	10,0
	3							
0.25		SDP 0925 U3 HAK	•	32,8	46,7 60,7	88,7	17	10.0
9,25	5	0925 U5 HAK	•	46,8		102,7	1,7	10,0
	7	0925 U7 HAK	•	82,8	96,7	138,7		
	3	SDP 0930 U3 HAK	•	32,8	46,7	88,7	4 7	40.0
9,3	5	0930 U5 HAK	•	46,8	60,7	102,7	1,7	10,0
	7	0930 U7 HAK	•	82,8	96,7	138,7		
	3	SDP 0940 U3 HAK	•	32,6	46,7	88,7		
9,4	5	0940 U5 HAK	•	46,6	60,7	102,7	1,7	10,0
	7	0940 U7 HAK	•	82,6	96,7	138,7		
	3	SDP 0950 U3 HAK	•	32,5	46,7	88,7		
9,5	5	0950 U5 HAK	•	46,5	60,7	102,7	1,7	10,0
	7	0950 U7 HAK	•	82,5	96,7	138,7		
	3	SDP 0960 U3 HAK	•	32,3	46,7	88,7		
9,6	5	0960 U5 HAK	•	46,3	60,7	102,7	1,7	10,0
	7	0960 U7 HAK	•	82,3	96,7	138,7		
	3	SDP 0970 U3 HAK	•	32,3	46,8	88,8		
9,7	5	0970 U5 HAK	•	46,3	60,8	102,8	1,8	10,0
	7	0970 U7 HAK	•	82,3	96,8	138,8		
	3	SDP 0980 U3 HAK	•	32,1	46,8	88,8		
9,8	5	0980 U5 HAK	•	46,1	60,8	102,8	1,8	10,0
	7	0980 U7 HAK	•	82,1	96,8	138,8		
	3	SDP 0990 U3 HAK	•	32,0	46,8	88,8		
9,9	5	0990 U5 HAK	•	46,0	60,8	102,8	1,8	10,0
	7	0990 U7 HAK	•	82,0	96,8	138,8		
	3	SDP 1000 U3 HAK	•	31,8	46,8	88,8		
10,0	5	1000 U5 HAK	•	45,8	60,8	102,8	1,8	10,0
	7	1000 U7 HAK	•	81,8	96,8	138,8	,-	
	•	.555 57 11/11		0.,0	100,0			


			<u>.</u>					
DC	L/D	Bezeichnung	Lager	LU	LCF	OAL	PL	DCON
	3	SDP 1010 U3 HAK	•	39,7	54,8	101,8		
10,1	5	1010 U5 HAK	•	55,7	70,8	117,8	1,8	12,0
	7	1010 U7 HAK	•	92,7	107,8	154,8		
	3	SDP 1020 U3 HAK	•	39,6	54,9	101,9		
10,2	5	1020 U5 HAK	•	55,6	70,9	117,9	1,9	12,0
	7	1020 U7 HAK	•	92,6	107,9	154,9		
	3	SDP 1030 U3 HAK	•	39,5	54,9	101,9		
10,3	5	1030 U5 HAK	•	55,5	70,9	117,9	1,9	12,0
	7	1030 U7 HAK	•	92,5	107,9	154,9		
	3	SDP 1040 U3 HAK	•	39,3	54,9	101,9		
10,4	5	1040 U5 HAK	•	55,3	70,9	117,9	1,9	12,0
	7	1040 U7 HAK	•	92,3	107,9			
	3	SDP 1050 U3 HAK	•	39,2	54,9	101,9		
10,5	5	1050 U5 HAK	•	55,2	70,9	117,9	1,9	12,0
,	7	1050 U7 HAK	•	92,2	107,9		,	,
	3	SDP 1060 U3 HAK	•	39,0	54,9	101,9		
10,6	5	1060 U5 HAK	•	55,0	70,9	117,9	1,9	12,0
. 0,0	7	1060 U7 HAK	•	92,0		154,9	.,,	,
	3	SDP 1070 U3 HAK	•	38,9	54,9	101,9		
10,7	5	1070 U5 HAK	•	54,9	70,9	117,9	1,9	12,0
10,7	7	1070 U7 HAK	•	91,9	107,9	154,9	1,0	12,0
	3	SDP 1080 U3 HAK	•	38,8	55,0	102,0		
10,8	5	1080 U5 HAK	•	54,8	71,0	118,0	2,0	12,0
10,0	7	1080 U7 HAK	•	91,8	108,0		2,0	12,0
	3	SDP 1090 U3 HAK	•	38,7	55,0	102,0		
10,9	5	1090 U5 HAK	•	54,7	71,0	118,0	2,0	12,0
10,3	7	1090 U7 HAK	•	91,7	108,0		2,0	12,0
	3	SDP 1100 U3 HAK	•	38,5	55,0	102,0		
11,0	5	1100 U5 HAK	•	54,5	71,0	118,0	2.0	12,0
11,0	7	1100 U7 HAK	•	91,5	108,0		2,0	12,0
	3	SDP 1110 U3 HAK	•	38,4	55,0	102,0		
11,1	5	1110 U5 HAK	•	-		118,0	2,0	12,0
11,1	7	1110 U7 HAK	•	54,4 99,4	71,0 116,0		2,0	12,0
	3	SDP 1120 U3 HAK	•			163,0		
11 0	-			38,2	55,0	102,0	l .	12.0
11,2	5	1120 U5 HAK	•	54,2	71,0	118,0	2,0	12,0
	7	1120 U7 HAK	•	99,2	116,0	163,0		
44.0	3	SDP 1130 U3 HAK	•	38,2	55,1	102,1		400
11,3	5	1130 U5 HAK	•	54,2	71,1	118,1	2,1	12,0
	7	1130 U7 HAK	•	99,2	116,1	163,1		
	3	SDP 1140 U3 HAK	•	38,0	55,1	102,1		
11,4	5	1140 U5 HAK	•	54,0	71,1	118,1	2,1	12,0
	7	1140 U7 HAK	•	99,0	116,1	163,1		
	3	SDP 1150 U3 HAK	•	37,9	55,1	102,1		
11,5	5	1150 U5 HAK	•	53,9	71,1	118,1	2,1	12,0
	7	1150 U7 HAK	•	98,9	116,1	163,1		

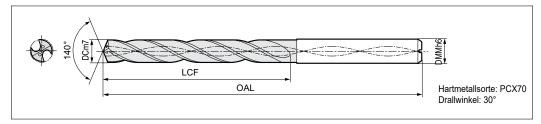
Nicht im Katalog angegebene Durchmesser können auf Kundenwunsch gefertigt werden. Die Mindestbestellmenge beträgt 30 Stück.

[※] Bemerkung:

SumiDrill Power-Serie SDP (DIN) - Typ

■ Vollhartmetallbohrer mit Innenkühlung, Ø 11,6–14,5 mm, 3D / 5D /7D

DC	L/D	Bezeichnung	Lager	LU	LCF	OAL	PL	DCON
	3	SDP 1160 U3 HAK	•	37,7	55,1	102,1		
11,6	5	1160 U5 HAK	•	53,7	71,1	118,1	2,1	12,0
	7	1160 U7 HAK	•	98,7	116,1	163,1		
	3	SDP 1170 U3 HAK	•	37,6	55,1	102,1		
11,7	5	1170 U5 HAK	•	53,6	71,1	118,1	2,1	12,0
	7	1170 U7 HAK	•	98,6	116,1	163,1		
	3	SDP 1180 U3 HAK	•	37,4	55,1	102,1		
11,8	5	1180 U5 HAK	•	53,4	71,1	118,1	2,1	12,0
	7	1180 U7 HAK	•	98,4	116,1	163,1		
44.0	3	SDP 1190 U3 HAK	•	37,4	55,2	102,2	0.0	40.0
11,9	5	1190 U5 HAK	•	53,4	71,2	118,2	2,2	12,0
	7	1190 U7 HAK	•	98,4	116,2			
10.0	3	SDP 1200 U3 HAK	•	37,2	55,2	102,2	0.0	40.0
12,0	5	1200 U5 HAK	•	53,2	71,2	118,2	2,2	12,0
	7	1200 U7 HAK	•	98,2	116,2	163,2		
10.1	3	SDP 1210 U3 HAK 1210 U5 HAK		42,1	60,2	107,2	2.2	14,0
12,1	5 7		•	59,1	77,2	124,2	2,2	14,0
	3	1210 U7 HAK SDP 1220 U3 HAK		117,1 41,9	135,2			
12,2	5	1220 U5 HAK	•	58,9	60,2 77,2	107,2 124,2	2,2	14,0
12,2	7	1220 U7 HAK	•	116,9	135,2	182,2	2,2	14,0
	3	SDP 1230 U3 HAK		41,8	60,2	107,2		
12,3	5	1230 U5 HAK	•	58,8	77,2	124,2	2,2	14,0
12,0	7	1230 U7 HAK			135,2		2,2	14,0
	3	SDP 1240 U3 HAK		41,7	60,3	107,3		
12,4	5	1240 U5 HAK	•	58,7	77,3	124,3	2,3	14,0
,	7	1240 U7 HAK		116,7	135,3		,-	,-
	3	SDP 1250 U3 HAK	•	41,6	60,3	107,3		
12,5	5	1250 U5 HAK	•	58,6	77,3	124,3	2,3	14,0
	7	1250 U7 HAK	•	116,6	135,3	182,3		
	3	SDP 1260 U3 HAK	٥	41,4	60,3	107,3		
12,6	5	1260 U5 HAK	•	58,4	77,3	124,3	2,3	14,0
	7	1260 U7 HAK		116,4	135,3	182,3		
	3	SDP 1270 U3 HAK		41,3	60,3	107,3		
12,7	5	1270 U5 HAK	•	58,3	77,3	124,3	2,3	14,0
	7	1270 U7 HAK		116,3	135,3	182,3		
	3	SDP 1280 U3 HAK		41,1	60,3	107,3		
12,8	5	1280 U5 HAK	•	58,1	77,3	124,3	2,3	14,0
	7	1280 U7 HAK	□	116,3	135,3	182,3		
	3	SDP 1290 U3 HAK		41,0	60,3	107,3		
12,9	5	1290 U5 HAK	•	58,0	77,3	124,3	2,3	14,0
	7	1290 U7 HAK		116,0				
	3	SDP 1300 U3 HAK	•	40,9	60,4	107,4		
13,0	5	1300 U5 HAK	•	57,9	77,4	124,4	2,4	14,0
	7	1300 U7 HAK	•	115,9	135,4	182,4		


DC	L/D	Bezeichnung	Lager	LU	LCF	OAL	PL	DCON
	3	SDP 1310 U3 HAK		40,8	60,4	107,4		
13,1	5	1310 U5 HAK	•	57,8	77,4	124,4	2,4	14,0
	7	1310 U7 HAK		115,8	135,4	182,4		
	3	SDP 1320 U3 HAK		40,6	60,4	107,4		
13,2	5	1320 U5 HAK	•	57,6	77,4	124,4	2,4	14,0
	7	1320 U7 HAK		115,6	135,4	182,4		
	3	SDP 1330 U3 HAK		40,5	60,4	107,4		
13,3	5	1330 U5 HAK	•	57,5	77,4	124,4	2,4	14,0
	7	1330 U7 HAK		115,5	135,4	182,4		
	3	SDP 1340 U3 HAK		40,3	60,4	107,4		
13,4	5	1340 U7 HAK	•	57,3	77,4	124,4	2,4	14,0
	7	1340 U7 HAK		115,3	135,4	182,4		
	3	SDP 1350 U3 HAK	•	40,3	60,5	107,5		
13,5	5	1350 U5 HAK	•	57,3	77,5	124,5	2,5	14,0
	7	1350 U7 HAK	•	115,3	135,5	182,5		
	3	SDP 1360 U3 HAK		40,1	60,5	107,5		
13,6	5	1360 U5 HAK	•	57,1	77,5	124,5	2,5	14,0
	7	1360 U7 HAK		115,1	135,5	182,5		
	3	SDP 1370 U3 HAK	•	40,0	60,5	107,5		
13,7	5	1370 U5 HAK	•	57,0	77,5	124,5	2,5	14,0
	7	1370 U7 HAK	•	115,0	135,5	182,5		
	3	SDP 1380 U3 HAK		39,8	60,5	107,5		
13,8	5	1380 U5 HAK	•	56,8	77,5	124,5	2,5	14,0
	7	1380 U7 HAK		114,8	135,5	182,5		
	3	SDP 13900 U3 HAK		39,7	60,5	107,5		
13,9	5	1390 U5 HAK	•	56,7	77,5	124,5	2,5	14,0
	7	1390 U7 HAK		114,7	135,5	182,5		
	3	SDP 1400 U3 HAK	•	39,5	60,5	107,5		
14,0	5	1400 U5 HAK	•	56,5	77,5	124,5	2,5	14,0
	7	1400 U7 HAK	•	114,5	135,5	182,5		
	3	SDP 1410 U3 HAK		43,5	64,6	114,6		
14,1	5	1410 U5 HAK	•	61,5	82,6	132,6	2,6	16,0
	7	1410 U7 HAK		132,5	153,6	203,6		
	3	SDP 1420 U3 HAK	•	43,3	64,6	114,6		
14,2	5	1420 U5 HAK	•	61,3	82,6	132,6	2,6	16,0
	7	1420 U7 HAK	•		153,6	203,6		
	3	SDP 1430 U3 HAK		43,2	64,6	114,6		
14,3	5	1430 U5 HAK	•	61,2	82,6	132,6	2,6	16,0
	7	1430 U7 HAK		132,2				
	3	SDP 1440 U3 HAK		43,0	64,6	114,6		
14,4	5	1440 U5 HAK	•	61,0	82,6	132,6	2,6	16,0
-	7	1440 U7 HAK			153,6			'
	3	SDP 1450 U3 HAK	•	42,9	64,6	114,6		
14,5	5	1450 U5 HAK	•	60,9	82,6	132,6	2,6	16,0
	7	1450 U7 HAK	•	131,9				

[※] Bemerkung:

[□] Nicht im Katalog angegebene Durchmesser können auf Kundenwunsch gefertigt werden. Die Mindestbestellmenge beträgt 30 Stück.

SumiDrill Power-Serie SDP (DIN) - Typ

■ Vollhartmetallbohrer mit Innenkühlung, Ø 14,6–16,0 mm, 3D / 5D / 7D

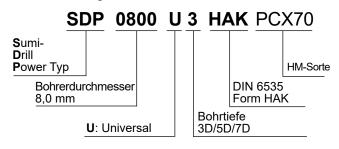
DC	L/D	Bezeichnung	Lager	LU	LCF	OAL	PL	DCON
	3	SDP 1460 U3 HAK		42,8	64,7	114,7		
14,6	5	1460 U5 HAK	•	60,8	82,7	132,7	2,7	16,0
	7	1460 U7 HAK		131,8	153,7	203,7		
	3	SDP 1470 U3 HAK	•	42,7	64,7	114,7		
14,7	5	1470 U5 HAK	•	60,7	82,7	132,7	2,7	16,0
	7	1470 U7 HAK	•		153,7	203,7		
	3	SDP 1480 U3 HAK		42,5	64,7	114,7		
14,8	5	1480 U5 HAK	•	60,5	82,7	132,7	2,7	16,0
	7	1480 U7 HAK	_	131,5	153,7	203,7		
	3	SDP 1490 U3 HAK		42,4	64,7	114,7		
14,9	5	1490 U5 HAK	•	60,4	82,7	132,7	2,7	16,0
	7	1490 U7 HAK		131,4		203,7		
45.0	3	SDP 1500 U3 HAK	•	42,2	64,7	114,7	0.7	40.0
15,0	5	1500 U5 HAK	•	60,2	82,7	132,7	2,7	16,0
	7	1500 U7 HAK	•	131,2	153,7	203,7		
15 1	3	SDP 1510 U3 HAK 1510 U5 HAK	•	42,1 60,1	64,7	114,7	2.7	16.0
15,1	5 7	1510 U3 HAK 1510 U7 HAK		131,1	82,7 153,7	132,7 203,7	2,7	16,0
	3	SDP 1520 U3 HAK	•	42,0	64,8	114,8		
15,2	5	1520 U5 HAK	•	60,0	82,8	132,8	2,8	16,0
10,2	7	1520 U7 HAK	•	131,0	153,8		2,0	10,0
	3	SDP 1530 U3 HAK		41,9	64,8	114,8		
15,3	5	1530 U5 HAK	•	59,9	82,8	132,8	2,8	16,0
. 0,0	7	1530 U7 HAK			153,8		_,0	. 0,0
	3	SDP 1540 U3 HAK		41,7	64,8	114,8		
15,4	5	1540 U5 HAK	•	59,7	82,8	132,8	2,8	16,0
	7	1540 U7 HAK		130,7	153,8	203,8		
	3	SDP 1550 U3 HAK	•	41,6	64,8	114,8		
15,5	5	1550 U5 HAK	•	59,6	82,8	132,8	2,8	16,0
	7	1550 U7 HAK	•	130,6	153,8	203,8		
	3	SDP 1560 U3 HAK		41,4	64,8	114,8		
15,6	5	1560 U5 HAK	•	59,4	82,8	132,8	2,8	16,0
	7	1560 U7 HAK		130,4	153,8	203,8		
	3	SDP 1570 U3 HAK	•	41,4	64,9	114,9		
15,7	5	1570 U5 HAK	•	59,4	82,9	132,9	2,9	16,0
	7	1570 U7 HAK	•		153,9			
	3	SDP 1580 U3 HAK		41,2	64,9	114,9		
15,8	5	1580 U5 HAK	•	59,2	82,9	132,9	2,9	16,0
	7	1580 U7 HAK	_	130,2	153,9	203,9		
	3	SDP 1590 U3 HAK		41,1	64,9	114,9		
15,9	5	1590 U5 HAK	•	59,1	82,9	132,9	2,9	16,0
	7	1590 U7 HAK		130,1	153,9	203,9		
40.0	3	SDP 1600 U3 HAK	•	40,9	64,9	114,9	0.0	40.0
16,0	5	1600 U5 HAK	•	58,9	82,9	132,9	2,9	16,0
	7	1600 U7 HAK	•	129,9	153,9	203,9		

[※] Bemerkung:

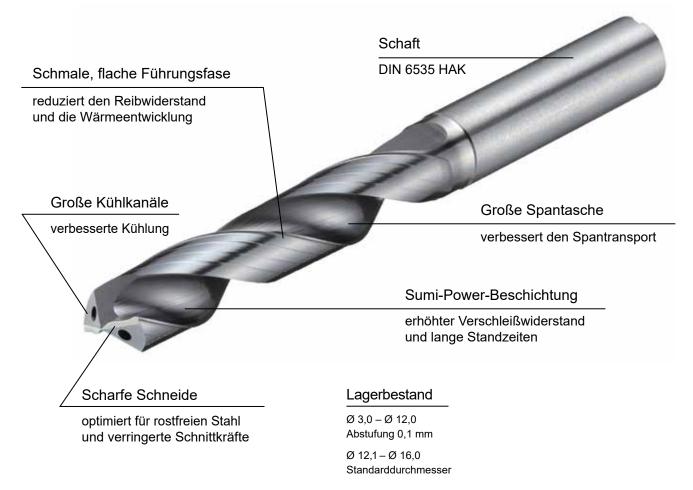
[□] Nicht im Katalog angegebene Durchmesser können auf Kundenwunsch gefertigt werden. Die Mindestbestellmenge beträgt 30 Stück.

SumiDrill Power-Serie SDP (DIN) - Typ

■ Empfohlene Schnittdaten

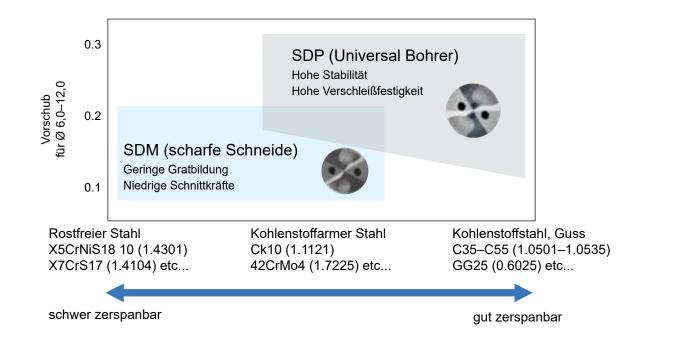

	Mate	erialgruppe									
ISO			R _m	Härte	gur	Ø 3,0)–6,0 mm	Ø 6,1	–10,0 mm	Ø 10,1	–16,0 mm
513	Werkstoff	Typ/Struktur	N/mm²		Eignung	v _c = m/min	Vorschub (mm/U)	v _c = m/min	Vorschub (mm/U)	v _c = m/min	Vorschub (mm/U)
			420	125	0	50– 80 –120	0,15 –0,20 –0,31	70– 110 –140	0,20 -0,25 -0,42	80– 120 –160	0,25 –0,30 –0,53
	Halaniantan Otabi	Automatenstahl Baustahl	650	190	0	50– 80 –120	0,15 –0,20 –0,31	70– 110 –140	0,20 -0,25 -0,42	80 –120 –160	0,25 –0,30 –0,53
	Unlegierter Stahl Stahlguss	Kohlenstoffstahl	850	250	0	50- 80 -120	0,15 –0,20 –0,31	70– 110 –140	0,20 -0,25 -0,42	80 –120 –160	0,25 –0,30 –0,53
	-	Vergütungsstahl Federstahl	750	270	0	50 –80 –120	0,15 –0,20 –0,31	70– 110 –140	0,20 -0,25 -0,42	80 –120 –160	0,25 –0,30 –0,50
			1000	300	0	10– 20 –30	0,05 –0,06 –0,11	15– 22 –30	0,08 –0,09 –0,14	20– 28 –35	0,08 –0,09 –0,16
P		Einsatzstahl	600	180	0	50 –70 –90	0,10 -0,14 -0,24	60 –80 –110	0,15 -0,20 -0,32	70 –100 –120	0,20 -0,25 -0,40
	Niedriglegierter Stahl	Wälzlagerstahl	930	275	0	45– 65 –85	0,10 -0,14 -0,24	60 –80 –110	0,15 -0,22 -0,34	65– 95 –120	0,20 -0,25 -0,37
\$	Stahlguss	Nitrierstahl Kaltarbeitsstahl	1000	300	0	40 –60 –80	0,10 -0,15 -0,26	60 –80 –110	0,15 –0,20 –0,32	60- 90 -120	0,20 –0,25 –0,37
			1200	350	0	35 –55 –75	0,10 -0,15 -0,26	55– 75 –110	0,15 -0,22 -0,32	55– 80 –110	0,20 -0,27 -0,38
H	Hochlegierter Stahl	Werkzeugstahl	680	200	0	30 –40 –50	0,10 -0,15 -0,25	30- 40 -50	0,12 -0,20 -0,28	30 –40 –50	0,12 -0,20 -0,32
	Stahlguss	Warmarbeitsstahl	1100	325	0	20 –30 –40	0,10 -0,12 -0,23	20 –30 – 40	0,12 -0,15 -0,27	20 –30 –40	0,14 -0,18 -0,32
		martensitisch/ferritisch	680	200	0	40 –55 –70	0,08 –0,10 –0,21	40 –60 –75	0,10- 0,12 -0,25	50– 70 –80	0,10 -0,12 -0,25
n f	Rostbeständiger Stahl	martensitisch	820	240	•	30 -45 -60	0,08 -0,10 -0,20	40 –60 –70	0,10- 0,12 -0,24	50- 60 -80	0,10 -0,12 -0,24
M s	Stahlguss	austenitisch	600	180	•	30 -45 -60	0,08 -0,10 -0,20	40 –60 –70	0,10- 0,12 -0,24	50- 60 -80	0,10 –0,12 –0,24
		Duplex	740	230	•	30 –45 –60	0,06 –0,08 –0,18	40 –60 –70	0,08 –0,10 –0,23	50– 60 –80	0,10 -0,10 -0,23
	0 00	ferritisch/perlitisch		180	0	50- 70 -90	0,15 –0,20 –0,36	60 –80 –100	0,20 -0,25 -0,40	70 –100 –120	0,25- 0,30 -0,42
K	Grauguss GG	perlitisch		260	0	40 –60 –80	0,15 –0,20 –0,36	50- 70 -90	0,20 -0,25 -0,40	60- 80 -100	0,25 -0,30 -0,42
	Sphäroguss GGG	ferritisch		160	0	50- 70 -90	0,15 –0,18 –0,31	60 –80 –100	0,20 -0,25 -0,40	70 –100 –120	0,25- 0,30 -0,42
	, ,	perlitisch		250	0	40 –60 –80	0,15 –0,18 –0,31	50- 70 -90	0,20 -0,25 -0,40	70 –80 –100	0,25 -0,30 -0,42
1	Warmfeste	Fe-Basis			0	10– 20 –30	0,08 –0,09 –0,13	15– 22 –32	0,08 –0,10 –0,15	20– 28 –35	0,10 –0,12 –0,19
S	Legierungen	Ni / Co-Basis			0	10– 20 –30	0,08 –0,09 –0,13	15– 22 –32	0,08 –0,10 –0,15	20– 28 –35	0,10 –0,12 –0,19
	Titan	Reintitan	430								
	Titan Legierungen	Ti-Basis			0	10– 20 –30	0,05 -0,06 -0,12	15– 22 –32	0,08 –0,09 –0,17	20– 28 –35	0,08 -0,09 -0,17
		Reinaluminium									
/	Aluminium	Knetlegierung									
		Si ≤ 12%									
	Aluminium Gusslegierungen	Si ≥ 12%			0	70 –90 –100	0,15 –0,20 –0,25	80 –100 –120	0,20 -0,25 -0,30	100 –120 –140	0,25 -0,30 -0,35
N	- 3 3	AI - Mg Legierungen									
7	Zink Druckguss	Zn Legierungen									
		Kupfer									
H	Kupferlegierungen	Messing			0	80 –100 –120	0,15 –0,20 –0,25	110– 130 –180	0,20 -0,25 -0,30	160– 180 –200	0,25 -0,30 -0,35
		Bronze									
		45 HRC			0	10- 20 -30	0,08 –0,09 –0,10	15– 22 –32	0,08 –0,10 –0,12	20– 28 –35	0,12- 0,15 -0,20
	0 1 1	55 HRC									
	Gehärteter Stahl	60 HRC									
		> 60 HRC									

© Erste Empfehlung

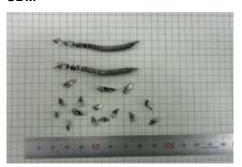

O Geeignet

Möglich

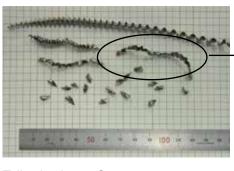
■ Bezeichnungsschlüssel



■ Eigenschaften


Leistungsmerkmale

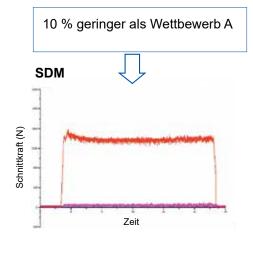
- Hohe prozesssichere Standzeiten in rostfreien und kohlenstoffarmen Stählen.
- Einsetzbar auf leistungsschwachen Maschinen! (→ vermeidet Überlast!)
- Erzielt hohe Oberflächengüten in der Bohrung
- Scharfe Schneide
- Hoher Adhäsionswiderstand durch die Sumi Power Beschichtung

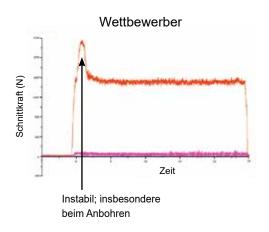

■ Sichere Spankontrolle

SDM

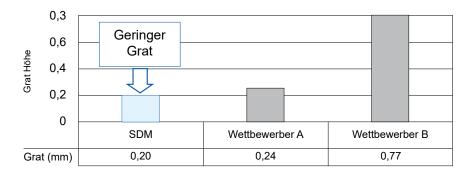
Günstiger kurzer Spanbruch, guter Spantransport

Wettbewerber A




Teilweise lange Späne, Gefahr von Werkzeugbruch durch schlechte Spanabfuhr

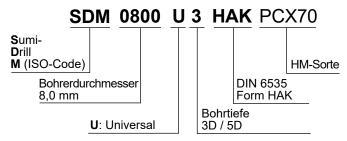
Bohrer: Werkstückstoff: X5CrNiS18 10 (1.4301) Vc=60 m/min, f=0,10 mm/U, a_p=19 mm Innenkühlung (2,0 MPa)



■ Optimale Schnittkräfte

■ Geringere Gratbildung

SDM

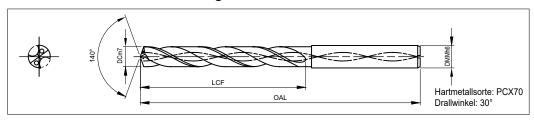

■ Eigenschaften

	Mat	erialgruppe					SI	DMU_H	HAK PCX70		
ISO			R _m	Härte	ıng	Ø 3,0	-6,0 mm	Ø 6,1-	-10,0 mm	Ø 10,1	–16,0 mm
513		Typ/Struktur		HB30	Eignung	v _c = m/min	Vorschub (mm/U)	v _c = m/min	Vorschub (mm/U)	v _c = m/min	Vorschub (mm/U)
			420	125	0	80 -100 -120	0,08- 0,11 -0,14	80- 100 -120	0,10- 0,15 -0,20	80- 100 -120	0,20- 0,25 -0,30
	Linia nia mtan Otabi	Automatenstahl Baustahl	650	190	0	80 -100 -120	0,08- 0,11 -0,14	80- 100 -120	0,10- 0,15 -0,20	80- 100 -120	0,20- 0,25 -0,30
	Unlegierter Stahl Stahlguss	Kohlenstoffstahl Vergütungsstahl	850	250	0	80- 100 -120	0,08- 0,11 -0,14	80- 100 -120	0,10- 0,15 -0,20	80- 100 -120	0,20- 0,25 -0,30
	,	Federstahl	750	270	0	40- 60 -100	0,08- 0,10 -0,12	40- 60 -100	0,10- 0,12 -0,16	40- 60 -100	0,15- 0,17 -0,20
			1000	300							
P		Einsatzstahl	600	180	0	80 -100 -120	0,08- 0,11 -0,14	80- 100 -120	0,10- 0,15 -0,20	80- 100 -120	0,20- 0,25 -0,30
	Niedriglegier-	Wälzlagerstahl	930	275	0	40- 60 -100	0,08- 0,10 -0,12	40- 60 -100	0,10- 0,12 -0,16	40- 60 -100	0,15- 0,17 -0,20
	ter Stahl Stahlguss	Nitrierstahl Kaltarbeitsstahl	1000	300							
		raiaibolootaiii	1200	350							
	Hochlegierter Stahl	Werkzeugstahl	680	200	0	40- 60 -100	0,08- 0,10 -0,12	40- 60 -100	0,10- 0,12 -0,16	40- 60 -100	0,15- 0,17 -0,20
	Stahlguss	Warmarbeitsstahl	1100	325							
		martensitisch/ferritisch	680	200	•	40- 60 -100	0,08- 0,10 -0,12	40- 60 -100	0,10- 0,14 -0,18	40- 60 -100	0,15- 0,20 -0,25
		martensitisch/ferritisch		>200	•	30- 50 -80	0,08- 0,10 -0,12	30- 50 -80	0,10- 0,14 -0,18	30- 50 -80	0,15- 0,20 -0,25
	D " " " O' II	martensitisch	820	240	•	30- 50 -80	0,08- 0,10 -0,12	30- 50 -80	0,10- 0,14 -0,18	30- 50 -80	0,15- 0,20 -0,25
М	Rostbeständiger Stahl Stahlguss	austenitisch	600	180	•	40- 60 -100	0,08- 0,10 -0,12	40- 60 -100	0,10- 0,14 -0,18	40- 60 -100	0,15- 0,20 -0,25
	ŭ	austenitisch		>200	•	30- 50 -80	0,08- 0,10 -0,12	30- 50 -80	0,10- 0,14 -0,18	30- 50 -80	0,15- 0,20 -0,25
		Duplex	740	230	•	30 – 45 –70	0,08- 0,10 -0,12	30- 45 -70	0,10- 0,14 -0,18	30- 45 -70	0,15- 0,20 -0,25
		Ausscheidungsgehärtet		≤450	•	30 - 45 -70	0,08- 0,10 -0,12	30- 45 -70	0,10- 0,14 -0,18	30- 45 -70	0,15- 0,20 -0,25
	Grauguss GG	ferritisch/perlitisch		180							
K	Gradgado GG	perlitisch		260							
, K	Sphäroguss GGG	ferritisch		160							
	opriaroguss 000	perlitisch		250							
	Warmfeste	Fe-Basis			0	20- 30 -40	0,06- 0,08 -0,10	20- 30 -40	0,08- 0,10 -0,12	20- 30 -40	0,10- 0,12 -0,15
s	Legierungen	Ni / Co-Basis			0	20- 30 -40	0,06- 0,08 -0,10	20- 30 -40	0,08- 0,10 -0,12	20- 30 -40	0,10- 0,12 -0,15
3	Titan	Reintitan	430								
	Titan Legierungen	Ti-Basis			0	20- 30 -40	0,06- 0,08 -0,10	20- 30 -40	0,08- 0,10 -0,12	20- 30 -40	0,10- 0,12 -0,15
	Aluminium	Reinaluminium									
	7 tidrillilarii	Knetlegierung									
		Si≤12%									
	Aluminium Gusslegierungen	Si≥12%									
N	gg	AI - Mg Legierungen									
	Zink Druckguss	Zn Legierungen									
		Kupfer									
	Kupferlegierungen	Messing									
		Bronze									
		45 HRC									
	Cobërtator Stabi	55 HRC									
Н	Gehärteter Stahl	60 HRC									
		>60 HRC									

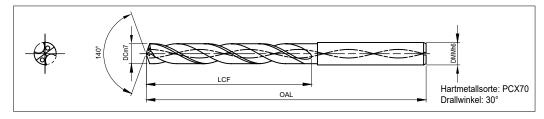

Erste Empfehlung

O Geeignet

■ Bezeichnungsschlüssel



■ Vollhartmetallbohrer mit Innenkühlung, Ø 3,0–7,5 mm, 3D / 5D

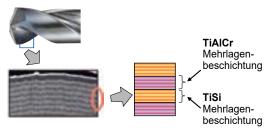

DC	DMM	Bezeichnung		3D-Typ			5D-Typ	
(mm)	(mm)	(L/D) 3/5 ——	Lager	Abmaß	e (mm)	Lager	Abmaß	e (mm)
, ,	(11111)	` ′ ▼	3	OAL	LCF	5	OAL	LCF
3,0		SDM 0300 U □ HAK	•			•		
3,1		SDM 0310 U □ HAK	•			•		
3,2		SDM 0320 U □ HAK	•			•		
3,25		SDM 0325 U □ HAK						
3,3		SDM 0330 U □ HAK	•	62	17	•	66	24
3,4		SDM 0340 U □ HAK	•			•		
3,5		SDM 0350 U □ HAK	•			•		
3,6		SDM 0360 U □ HAK	•			•		
3,7		SDM 0370 U □ HAK	•			•		
3,8		SDM 0380 U □ HAK	•			•		
3,9		SDM 0390 U □ HAK	•			•		
4,0		SDM 0400 U □ HAK	•			•		
4,1		SDM 0410 U □ HAK	•			•		
4,2		SDM 0420 U □ HAK	•			•		
4,3		SDM 0430 U □ HAK	•		21	•	74	33
4,4		SDM 0440 U □ HAK	•			•		
4,5	6	SDM 0450 U □ HAK	•			•		
4,6		SDM 0460 U □ HAK	•			•		
4,65		SDM 0465 U □ HAK						
4,7		SDM 0470 U □ HAK	•			•		
4,8		SDM 0480 U □ HAK	•			•		
4,9		SDM 0490 U □ HAK	•	66		•		
5,0		SDM 0500 U □ HAK	•			•		
5,1		SDM 0510 U □ HAK	•			•		
5,2		SDM 0520 U □ HAK	•			•		
5,3		SDM 0530 U □ HAK	•			•		
5,4		SDM 0540 U □ HAK	•		25	•	82	41
5,5		SDM 0550 U □ HAK	•			•	02	
5,55		SDM 0555 U □ HAK						
5,6		SDM 0560 U □ HAK	•			•		
5,7		SDM 0570 U □ HAK	•			•		
5,8		SDM 0580 U □ HAK	•			•		
5,9		SDM 0590 U □ HAK	•			•		
6,0		SDM 0600 U □ HAK	•			•		
6,1		SDM 0610 U □ HAK	•			•		
6,2		SDM 0620 U □ HAK	•			•		
6,3		SDM 0630 U □ HAK	•			•		
6,4		SDM 0640 U □ HAK	•			•		
6,5		SDM 0650 U □ HAK	•		31	•		
6,6		SDM 0660 U □ HAK	•			•		
6,7		SDM 0670 U □ HAK				•		
6,8	8	SDM 0680 U □ HAK	•	79		•	91	50
6,9		SDM 0690 U □ HAK	•			•		
7,0		SDM 0700 U □ HAK	•			•	1	
7,1		SDM 0710 U □ HAK	•			•		
7,2		SDM 0720 U □ HAK	•			•		
7,3		SDM 0730 U □ HAK	•		37	•		
7,4		SDM 0740 U □ HAK	•			•		
7,5		SDM 0750 U □ HAK	•			•		

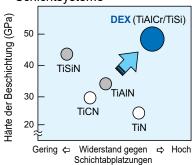
■ Vollhartmetallbohrer mit Innenkühlung, Ø 7,6–12,0 mm, 3D / 5D

DC	DMM	Bezeichnung		3D-Typ			5D-Typ	
(mm)	(mm)	(L/D) 3/5 ——	Lager	Abmaß	e (mm)	Lager	Abmaß	
()	(11111)	\(\bar{\pi}\)	3	OAL	LCF	5	OAL	LCF
7,6		SDM 0760 U □ HAK	•			•		
7,7		SDM 0770 U □ HAK	•			•		
7,8	8	SDM 0780 U □ HAK	•	79	37	•	91	50
7,9		SDM 0790 U □ HAK	•			•		
8,0		SDM 0800 U □ HAK	•			•		
8,1		SDM 0810 U □ HAK	•			•		
8,2		SDM 0820 U □ HAK	•			•		
8,3		SDM 0830 U □ HAK	•			•		
8,4		SDM 0840 U □ HAK	•			•		
8,5		SDM 0850 U □ HAK	•			•		
8,6		SDM 0860 U □ HAK	•			•		
8,7		SDM 0870 U □ HAK	•			•		
8,8		SDM 0880 U □ HAK	•			•		
8,9		SDM 0890 U □ HAK	•			•		
9,0		SDM 0900 U □ HAK	•			•		
9,1	10	SDM 0910 U □ HAK	•	89	43	•	103	57
9,2		SDM 0920 U □ HAK	•			•		
9,25		SDM 0925 U □ HAK						
9,3		SDM 0930 U □ HAK	•			•		
9,4		SDM 0940 U □ HAK	•			•		
9,5		SDM 0950 U □ HAK	•			•		
9,6		SDM 0960 U □ HAK	•			•		
9,7		SDM 0970 U □ HAK	•			•		
9,8		SDM 0980 U □ HAK	•			•		
9,9		SDM 0990 U □ HAK	•			•		
10,0		SDM 1000 U □ HAK	•			•		
10,1		SDM 1010 U □ HAK	•			•		
10,2		SDM 1020 U □ HAK	•			•		
10,3		SDM 1030 U □ HAK	•			•		
10,4		SDM 1040 U □ HAK	•			•		
10,5		SDM 1050 U □ HAK	•			•		
10,6		SDM 1060 U □ HAK	•			•		
10,7		SDM 1070 U □ HAK	•			•		
10,8		SDM 1080 U □ HAK	•			•		
10,9		SDM 1090 U □ HAK	-			•		
11,0	12	SDM 1100 U □ HAK	•	102	51	•	118	67
11,1		SDM 1110 U HAK				•		
11,2		SDM 1120 U HAK				•		
11,3		SDM 1130 U □ HAK						
11,4		SDM 1140 U □ HAK	•					
11,5		SDM 1150 U HAK	•					
11,6		SDM 1160 U □ HAK	•			•		
11,7		SDM 1170 U □ HAK	•					
11,8		SDM 1180 U □ HAK	•					
11,9		SDM 1190 U □ HAK				•		
12,0		SDM 1200 U □ HAK						

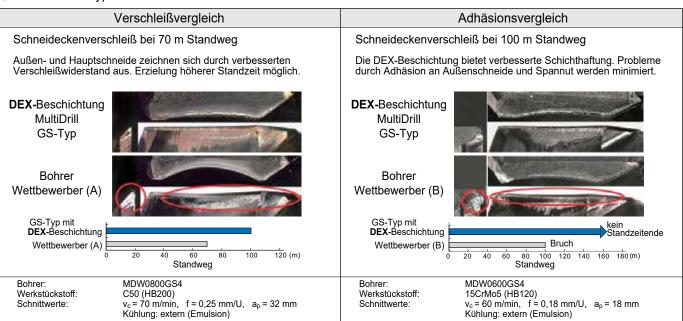
■ Vollhartmetallbohrer mit Innenkühlung, Ø 12,0–16,0 mm, 3D / 5D

DO.	DMM	Bezeichnung		3D-Typ			5D-Typ	
DC (mm)	DMM (mm)	(L/D) 3/5 ——	Lager	Abmaß	e (mm)	Lager	Abmaß	e (mm)
(mm)	(111111)	(E/D) 9/3	3	OAL	LCF	5	OAL	LCF
12,1		SDM 1210 U □ HAK						
12,2		SDM 1220 U □ HAK						
12,3		SDM 1230 U □ HAK						
12,4		SDM 1240 U □ HAK						
12,5		SDM 1250 U □ HAK	•			•		
12,6		SDM 1260 U □ HAK						
12,7		SDM 1270 U □ HAK						
12,8		SDM 1280 U □ HAK						
12,9		SDM 1290 U □ HAK						
13,0	14	SDM 1300 U □ HAK	•	107	56	•	124	73
13,1	'-	SDM 1310 U □ HAK		107			127	'0
13,2		SDM 1320 U □ HAK						
13,3		SDM 1330 U □ HAK						
13,4		SDM 1340 U □ HAK						
13,5		SDM 1350 U □ HAK	•			•		
13,6		SDM 1360 U □ HAK						
13,7		SDM 1370 U □ HAK						
13,8		SDM 1380 U □ HAK						
13,9		SDM 1390 U D HAK						
14,0		SDM 1400 U □ HAK	_			•		
14,1		SDM 1410 U □ HAK						
14,2		SDM 1420 U □ HAK						
14,3		SDM 1430 U □ HAK						
14,4		SDM 1440 U □ HAK						
14,5		SDM 1450 U □ HAK	•			•		
14,6		SDM 1460 U □ HAK						
14,7		SDM 1470 U □ HAK						
14,8		SDM 1480 U □ HAK						
14,9		SDM 1490 U □ HAK	•			•		
15,0	16	SDM 1500 U □ HAK	_	115	60	_	133	78
15,1		SDM 1510 U HAK						
15,2		SDM 1520 U □ HAK						
15,3		SDM 1530 U HAK						
15,4		SDM 1540 U □ HAK	•			•		
15,5		SDM 1550 U □ HAK						
15,6		SDM 1560 U □ HAK						
15,7		SDM 1570 U □ HAK						
15,8 15,9		SDM 1580 U □ HAK						
16,0		SDM 1590 U □ HAK	•			•		
10,0		SDM 1600 U □ HAK	_			•		

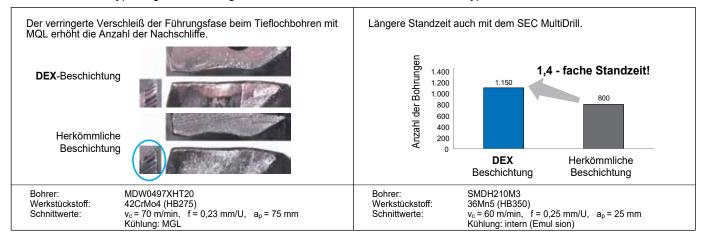

Bohrerbeschichtung **DEX-Beschichtung**


- Eigenschaften
- Durch die Nanotechnoloie der neuen Generation der Bohrerbeschichtung von Sumitomo verdoppelt sich die Standzeit gegenüber gängigen Beschichtungen.
- Silizium und Chrom verbessern die Verschleiß- und Hitzebeständigkeit und reduzieren die Adhäsionsneigung.
- Die neu entwickelte, komplex aufgebaute Mehrlagenbeschichtung bietet erhöhten Widerstand gegen Schichtabplatzungen.

- Vorzüge
- Beschichtungsmerkmale


Die einzigartige Mehrlagenstruktur vereint abwechselnd super dünne Schichten aus TiAlCr und TiSi.

Schichtsysteme



- Anwendungsbeispiele für DEX-Beschichtung
- MultiDrill GS-Typ

MultiDrill XHT-Typ, lange Ausführung

MultiDrill SMD-Typ

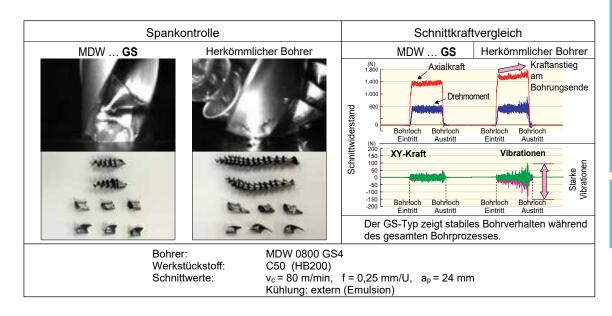
SUPER MULTI-DRILLS GS - Typ

■ Eigenschaften

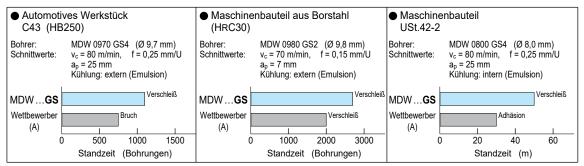
Die MultiDrill Typen GS aus zähem Hartmetall verfügen über ein neues Design der Spannut und eine weite Spantasche, die für problemlose und bessere Spanabfuhr sorgen. Die DEX-Beschichtung ermöglicht den Einsatz in einem breiten Anwendungsbereich und in verschiedenen Werkstoffen mit einer stabilen und langen Standzeit.

■ Vorzüge

Lange Standzeit

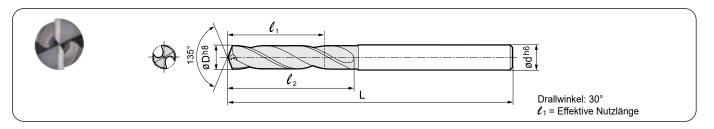

Die neue Schneidenausführung und die DEX-Beschichtung erzielen eine längere Standzeit in unterschiedlichen Werkstoffen.

- Exzellente Spanabfuhr
 - Durch die neue Spannut wird eine deutlich verbesserte Spanabfuhr erreicht.
- Ruhiger Schnitt und stabiles Verschleißverhalten
 Stabiles Bohren ist auch auf leistungsschwächeren Maschinen problemlos möglich.
- Umweltfreundlich Kompatibel mit dem MQL-System (Minimalmengenschmierung).


Ausführungen

Kühlung	Тур	Durchmesser- bereich (mm)	Bohrtiefe (L/D)
Extern	MDW □□□□ GS2	Ø 0 9 16 0	-2
GS-Typ	MDW 🗆 🗆 GS4	Ø 0,8 – 16,0	-4

■ Leistungsmerkmale


Anwendungsbeispiele

GS-Typ Super Multi-Drills MDW ... GS - Typ

Ohne Innenkühlung (2D/4D)

"Super Multi-Lagen" DEX (TiAlCr/TiSi) - beschichtete VHM-Bohrer

● Durchmesser Ø 2.0–6.0 mm

טי	urc	hmesser Ø 2	,0-	b,U	mm	1				(mm)
Abmess	sungen		Κι	ırzer 1	Гур (2	D)	La	nger 7	Typ (4D)	
DC	~ ~	KatNr.	Lager	Abm	essun	igen	Lager	Abm	essun	gen
DC	ød	2, 4 ▽	2	L	ℓ_1	ℓ_2	4	L	ℓ_1	ℓ_2
2,0	3,0	MDW 0200 GS□	0	45,4	6,0	8,4	0	49,4	13,0	15,4
2,1		MDW 0210 GS□	0				0			
2,2		MDW 0220 GS□	0				0			
2,3		MDW 0230 GS□	O		7,3	10,5	0		14,5	17,5
2,4		MDW 0240 GS□	0				0			
2,5	3,0	MDW 0250 GS□	•	45,6			0	49,6		
2,6	3,0	MDW 0260 GS□	•	45,0			0	43,0		
2,7		MDW 0270 GS□	0				O			
2,8		MDW 0280 GS□	•		9,8	13,6	0		16,0	19,6
2,9		MDW 0290 GS□	0				0			
3,0		MDW 0300 GS□	•				0			
3,1		MDW 0310 GS□	•				0			
3,2		MDW 0320 GS□	0				0			
3,3		MDW 0330 GS□	0		15,5	19,7	0		20,5	24,7
3,4		MDW 0340 GS□	•				0			
3,5	4,0	MDW 0350 GS□	•	54,8			0	60,8		
3,6	MDW 0360 GS□ O			0	00,0					
3,7		MDW 0370 GS□	0				0			
3,8		MDW 0380 GS□	0		17,0	21,8	0		23,0	27,8
3,9		MDW 0390 GS□	0				0			
4,0		MDW 0400 GS□	•				0			
4,1		MDW 0410 GS□	0				0			
4,2		MDW 0420 GS□	0				0			
4,3		MDW 0430 GS□	0		18,5	23,9	0		25,5	31,9
4,4		MDW 0440 GS□	0				0			
4,5	5.0	MDW 0450 GS□	0	62,0			0	77,0		
4,6	0,0	MDW 0460 GS□	0	02,0			0	,0		
4,7		MDW 0470 GS□	0				0			
4,8		MDW 0480 GS□	0		20,0	26,0	0		33,0	39,0
4,9		MDW 0490 GS□	0				0			
5,0		MDW 0500 GS□	•				•			
5,1		MDW 0510 GS□	0				•			
5,2		MDW 0520 GS□	0				0			
5,3		MDW 0530 GS□	0		19,5	26,1	0		33,5	40,1
5,4		MDW 0540 GS□	0				0			
5,5	6,0	MDW 0550 GS□	•	66,2			•	82,2		
5,6	, 5,5	MDW 0560 GS□	0	50,=			0			
5,7		MDW 0570 GS□	0				0			
5,8		MDW 0580 GS□	0		21,0	28,2	0		35,0	42,2
5,9		MDW 0590 GS□	0		21,0	_1,0 20,2		0		
6,0		MDW 0600 GS□	•				•			

● Durchmesser Ø 6.1–10.0 mm

	Durchmesser Ø 6, 1–10,0 mm										
Abmess	sungen		Κι	ırzer 7	Гур (2	D)	La	anger Typ (4D)			
DC	ød	KatNr.	Lager	Abm	essun	gen	Lager	Abm	essun	gen	
DC	βü	2, 4 🍑	2	L	e_1	ℓ_2	4	L	e_1	ℓ_2	
6,1		MDW 0610 GS□	0				0				
6,2		MDW 0620 GS□	0				O				
6,3		MDW 0630 GS□	0		24,5	32,3	0		35,5	43,3	
6,4		MDW 0640 GS□	O				O				
6,5	7,0	MDW 0650 GS□	•	71 5			0	04.2			
6,6	1,0	MDW 0660 GS□	0	74,5				84,3			
6,7		MDW 0670 GS□	0				0				
6,8		MDW 0680 GS□	0		26,1	34,5	•		36,1	44,5	
6,9		MDW 0690 GS□	0				0				
7,0		MDW 0700 GS□	•				0				
7,1		MDW 0710 GS□	0				0				
7,2		MDW 0720 GS□	O				0				
7,3		MDW 0730 GS□	0		25,6	34,6	0		37,6	46,6	
7,4		MDW 0740 GS□	O				0				
7,5	8.0	MDW 0750 GS□	•	70.7			0	04.7			
7,6	0,0	MDW 0760 GS□	O	79,7			0	91,7			
7,7		MDW 0770 GS□	0				0				
7,8		MDW 0780 GS□	0		28,1	37,7	O		40,1	49,7	
7,9		MDW 0790 GS□	0				0				
8,0		MDW 0800 GS□	•				•				
8,1		MDW 0810 GS□	0				0				
8,2		MDW 0820 GS□	0				O				
8,3		MDW 0830 GS□	0		27,4	37,8	0		34,4	54,8	
8,4		MDW 0840 GS□	0				O				
8,5	9.0	MDW 0850 GS□	0	02.0			•	00.0			
8,6	9,0	MDW 0860 GS□	0	83,9			0	99,9			
8,7		MDW 0870 GS□	0				0				
8,8		MDW 0880 GS□	0		29,1	39,9	O		46,1	56,9	
8,9		MDW 0890 GS□	0				0				
9,0		MDW 0900 GS□	0				O				
9,1		MDW 0910 GS□	0				0				
9,2		MDW 0920 GS□	0				O				
9,3		MDW 0930 GS□	0		28,6	40,0	0		48,6	60,0	
9,4		MDW 0940 GS□	0				O				
9,5	10,0	MDW 0950 GS□		00.0			0	107.0			
9,6	10,0	MDW 0960 GS□	O	89,0			O	107,0			
9,7		MDW 0970 GS□	0				0				
9,8		MDW 0980 GS□	O		30,0	42,0	O		50,0	62,0	
9,9		MDW 0990 GS□	0				0				
10,0		MDW 1000 GS□	•				•				

■ Empfohlene Schnittbedingungen für Multi-Drills GS-Typ

Bohrer-ø (mm)		Stahl (–200 HB)	Allg. Stahl (–300 HB)	Rostfreier Stahl (–200 HB)	Grauguss	Kugelgraphit- guss
−Ø 3	Vc	30 –50 –70	30 –45 –60	10 –30 –40	40 –70 –90	35 –55 –75
-63	f	0,12-0,20	0,10-0,20	0,06-0,12	0,15–0,30	0,12-0,20
−Ø 5	Vc	40 –70 –100	40 –60 –80	15 –40 –55	40 –70 –90	40 –60 –80
-w 5	f	0,15-0,25	0,15-0,25	0,08-0,15	0,15–0,30	0,15-0,25
−Ø 10	Vc	50 –80 –130	50 –70 –110	15 –45 –60	50 –80 –120	50 –70 –100
U 10	f	0,20-0,35	0,20-0,35	0,10-0,20	0,20-0,35	0,20-0,35
−Ø 16	Vc	60 –90 –140	60 –80 –120	20 –50 –60	60 –90 –120	50 –70 –100
-Ø 10	f	0,25–0,35	0,25–0,35	0,10–0,20	0,25–0,35	0,25–0,35

vc: Schnittgeschwindigkeit (m/min), f: Vorschub (mm/U), (Min - Standard - Max)

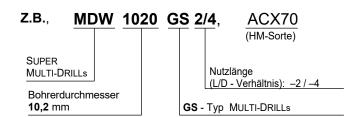
GS-Typ Super Multi-Drills MDW ... GS - Typ

GS - Typ für das allg. Hochleistungsbohren von Stahl

● Durchmesser Ø 10,1–13,0 mm

			-, -,-				(mm			
Abmess	ungen		Κι	ırzer 1	Гур (2	D)	Langer Typ (4D)			
DC	~~	KatNr.	Lager	Abm	essun	igen	Lager	Abm	essun	gen
(mm)	ød	2, 4 ▽	2	L	ℓ_1	ℓ_2	4	L	ℓ_1	ℓ_2
10,1		MDW 1010 GS□	O				O			
10,2		MDW 1020 GS□	•				•			
10,3		MDW 1030 GS□	O		30,6	43,2	O		55,6	68,2
10,4		MDW 1040 GS□	0				0			
10,5	11,0	MDW 1050 GS□	•	95,3				116,2		
10,6	11,0	MDW 1060 GS□	0	30,0			0	110,2		
10,7		MDW 1070 GS□	0				0			
10,8		MDW 1080 GS□	0		34,1	47,3	0		57,1	70,3
10,9		MDW 1090 GS□	0				0			
11,0		MDW 1100 GS□	O				•			
11,1		MDW 1110 GS□	0				0			
11,2		MDW 1120 GS□	0				0			
11,3		MDW 1130 GS□	0		33,6	47,4	0		59,6	73,4
11,4		MDW 1140 GS□	0				0			
11,5	12,0	MDW 1150 GS□		102,5				123,5		
11,6	12,0	MDW 1160 GS□	0	102,3			0	120,0		
11,7		MDW 1170 GS□	0				0			
11,8		MDW 1180 GS□	0		35,1	49,5	0		61,1	75,5
11,9		MDW 1190 GS□	0				0			
12,0		MDW 1200 GS□	•				•			
12,1		MDW 1210 GS□	0				0			
12,2		MDW 1220 GS□	0				0			
12,3		MDW 1230 GS□	O		34,6	49,6	O		63,6	78,6
12,4		MDW 1240 GS□	0				0			
12,5	13,0	MDW 1250 GS□	O	102,7			O	139,7		
12,6	13,0	MDW 1260 GS□	0	102,1			0	1,55,1		
12,7		MDW 1270 GS□	O				O			
12,8		MDW 1280 GS□	O		36,1	51,7	O		65,1	80,7
12,9		MDW 1290 GS□	O				O			
13,0		MDW 1300 GS□	O				O			

● Durchmesser Ø 13.1–16.0 mm


טש	urc	nmesser Ø i	ح, i-	-10	,U I	nm				(mm)
Abmess	sungen		Κι	ırzer 1	Гур (2	D)	La	nger ⁻	Гур (4	D)
DC		KatNr.	Lager	Abm	essun	igen	Lager	Abm	essun	gen
(mm)	ød	2, 4 🍑	2	L	ℓ_1	ℓ_2	4	L	ℓ_1	ℓ_2
13,1		MDW 1310 GS□	0			_	0			
13,2		MDW 1320 GS□	O				O			
13,3		MDW 1330 GS□	0		36,6	52,8	0		70,2	86,8
13,4		MDW 1340 GS□	O				O			
13,5	14,0	MDW 1350 GS□	0	107.0			O	140.0		
13,6	14,0	MDW 1360 GS□	0	107,9			0	149,9		
13,7		MDW 1370 GS□	O				O			
13,8		MDW 1380 GS□	0		38,1	54,9	0		72,1	88,9
13,9		MDW 1390 GS□	O				O			
14,0		MDW 1400 GS□	O				O			
14,1		MDW 1410 GS□	0				0			
14,2		MDW 1420 GS□	O				O			
14,3		MDW 1430 GS□	O		37,6	55,0	O		74,6	92,0
14,4		MDW 1440 GS□	0				0			
14,5	15.0	MDW 1450 GS□	O	111,1			O	156,1		
14,6	13,0	MDW 1460 GS□	0	111,1			0	150,1		
14,7		MDW 1470 GS□	O				O			
14,8		MDW 1480 GS□	0		38,1	56,1	0		76,1	94,1
14,9		MDW 1490 GS□	O				O			
15,0		MDW 1500 GS□	0				0			
15,1		MDW 1510 GS□	0				0			
15,2		MDW 1520 GS□	0				0			
15,3		MDW 1530 GS□	0		37,6	56,2	0		78,6	97,2
15,4		MDW 1540 GS□	0				0			
15,5	16.0	MDW 1550 GS□	O	115,5			0	169,3		
15,6	10,0	MDW 1560 GS□	O	1 10,0			0	100,0		
15,7		MDW 1570 GS□	0				0			
15,8		MDW 1580 GS□	O		39,1	58,3	O		80,1	99,3
15,9		MDW 1590 GS□	0				O			
16,0		MDW 1600 GS□	0				0			

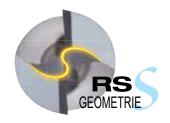
Bestellbeispiel

Nicht im Katalog angegebene Durchmesser können auf Kundenwunsch gefertigt werden.

Die Mindestbestellmenge beträgt 6 Stück.

Bei Bestellung geben Sie bitte die genaue Bestellnummer an.

Eigenschaften

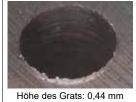

Die flachen MultiDrill Bohrer vom Typ MDF sind beschichtete Vollhartmetallbohrer für das Anbohren auf schrägen und gekrümmten Oberflächen.

Vorzüge

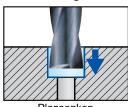
- Durch den Spitzenwinkels von 180° in einer Vielzahl von Bohranwendungen einsetzbar Anwendbar beim hocheffizienten Plansenken, Bohren in nicht horizontalen Oberflächen (geneigt oder zylindrisch) und beim unterbrochenen Bohren. Der MDF reduziert die Gratbildung am Bohrungsaustritt.
- Verbesserte Bearbeitungsstabilität Der MDF-Bohrer hat durch die angewendete RS-Geometrie eine sehr hohe Steifigkeit und einen sehr stabilen Kern.
- Hervorragende Spanabfuhr Breite Spantaschen und die exzellente Spanflächenform ermöglichen eine hervorragende Spanabfuhr.
- Ausgezeichnete Schneidkantenfestigkeit Durch das optimierte Schneidkantendesign erlangt der Bohrer eine sehr hohe Schneidkantenfestigkeit.
- Lange Schaftausführung Bohrer mit langer Schaftausführung sind verfügbar in den Durchmessern Ø 3,0 bis Ø 20,0 mm. Sie sind einsetzbar mit einer Überhanglänge bis zu L/D = 10.
- Flachbohrer mit Innenkühlung Die Ausführungen zum Bohren von 3D und 5D sind mit innerer Kühlmittelzufuhr ausgestattet.

Verbesserte Bohrstabilität durch größere Kerndicke

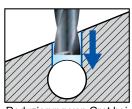
Reduzierung von Grat am Bohrungsaustritt

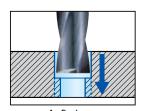


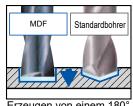
Werkstückstoff: 15CrMo5


MDF0500S2D (Ø 5,0 mm, 2D) Bohrer: Schnittdaten: $v_c = 65 \text{ m/min, } f = 0.12 \text{ mm/U}$ H = 10 mm, 150 Bohrungen, nass Ausrüstung: Vertikal-Bearbeitungszentrum

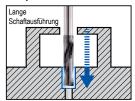
Im Vergleich zum Standardbohrer wird der Grat am Bohrungsaustritt um mehr als die Hälfte reduziert

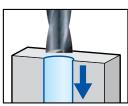


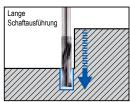

Anwendungen


Plansenken

Reduzierung von Grat bei Unterbrechungen


Aufbohren


Erzeugen von einem 180° Bodenprofil


Bohren auf geneigten oder zylindrischen Flächen

Plansenken bei Störkanten

Versetztes Bohren

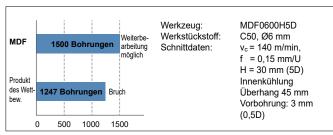
Plansenken bei Störkanten

■ Lange Schaftausführung (L2D)

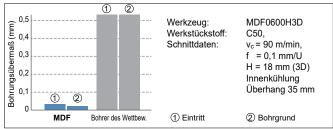
Für das Plansenken und Aufbohren bei großen Werkzeugüberhängen oder Störkanten. Beim Einsatz der langen Schaftausführung (L2D) wird eine Pilotierung mit einem gleichen oder größeren Durchmesser als dem Bohrungsdurchmesser empfohlen.

Zwei Varianten: (A) Ø DC < 6 mm Nenndurchmesser < Schaftdurchmesser

(B) Ø DC ≥ 6 mm Nenndurchmesser > Schaftdurchmesser

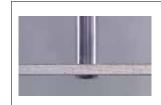


■ Mit Innenkühlung (H3D-Typ / H5D-Typ)


Durch die Innenkühlung für tiefere Bohrungen geeignet. Beim Verwenden des Bohrers vom Typ H5D empfehlen wir das Setzen einer Pilotbohrung.

Plansenken bei Störkanten

Plansenken bei großen Werkzeugüberhängen



Bohren auf geraden und schrägen Oberflächen

Werkzeug: Werkstückstoff: Schnittdaten: MDF0500S2D 15CrMo5 v_c = 65 m/min, f =0,08 mm/U H=10 mm Äußere MOI

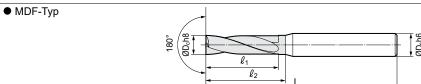
Geringer Grat am Bohrungsaustritt

Werkzeug: Werkstückstoff Schnittdaten: MDF1000S2D St 42-3 v_c = 75 m/min, f = 0,12 mm/U H = 5 mm Äußere MQL

■ Empfohlene Werkzeuge für verschiedene Anwendungen

Werkzeug	Flachbohrer MDF Type	Standardbohrer GS/HGS Typ	Schaftfräser zum Plansenken GSX Schaftfräser		
Form des Bohrgrundes	konvexe Form (180°)	konvexe Form (135°)	konkave Form (2° - 3° konkav)		
	fast flach (konkave Form)	konvexe Form (135°)	konvexe Form (Kann nicht als Pilotbohrer eingesetzt werden.)		
Bohren in horizontalen Oberflächen	Vorschub entspricht etwa der Hälte des Vorschubes eines Standardbohrers	Optimal	X Innerhalb 1D, begrenzt auf niedrigen Vorschub Vorschub ein Fünftel od. weniger gegenüber Standardbohrer		
Bohren in nichthorizontalen Oberflächen	Optimal (2D empfohlen)	X Nicht möglich	1D, begrenzt auf niedrigen Vorschub Vorschub halb so groß od. geringer gegenüber Flachbohrer		
Fräsen	X Nicht möglich	X Nicht möglich	Optimal		

Serie

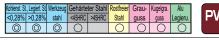

Anwendung	Ausführungen	Ausführungen Durchmesserbereich (mm)	
Außen	MDF 🗆 🗆 S2D	Ø 0,3 – 20,0	≤ 2,0
Auisen	MDF 0000 L2D	Ø 0,3 – 20,0	≤ 2,0
Innan	MDF 0000 H3D	Ø 0,3 – 16,0	≤ 3,0
Innen	MDF 0000 H5D	Ø 0,3 – 16,0	≤ 5,0

■ Äußere Kühlmittelzufuhr (MDF S2D-Typ)

Durchmossor Ø 0 3 7 0 mm

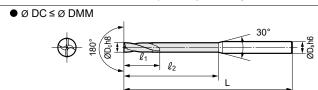
Durc	hmess	er Ø 0,3–7,0 n	nm			
Durchm. ØDc	Schaft ØDs	Artikelbezeichung	Lager	Abme	ssungen	(mm)
(mm)	(mm)	110500000		L	ℓ ₁	ℓ_2
0,3* 0,4*	3,0	MDF 0030S2D	0	40	1,0 1,4	1,3 1,8
0,4		0040S2D MDF 0050S2D	<u> </u>		2,0	2,2
0,6		0060S2D	Ö		2,4	2,6
0,7	3,0	0070S2D	o	40	2,8	3,1
0,8		0080S2D	0		3,2	3,5
0,9		0090S2D	<u> </u>		3,6	4,0
1,0 1,1		MDF 0100S2D 0110S2D	•		4,0 4,4	4,4 4,8
1,1	3,0	0120S2D	0	45	4,8	5,3
1,3	0,0	0130S2D	Ö		5,2	5,7
1,4		0140S2D	0		5,6	6,2
1,5		MDF 0150S2D	•		6,0	6,6
1,6	2.0	0160S2D	0	45	6,4	7,0
1,7 1,8	3,0	0170S2D 0180S2D	0	45	6,8 7,2	7,5 7,9
1,9		0190S2D	ŏ		7,2	8,4
2,0		MDF 0200S2D	•		8,0	8,8
2,1		0210S2D	•		8,4	9,2
2,2	4,0	0220S2D	•	50	8,8	9,7
2,3 2,4		0230S2D 0240S2D	•		9,2 9.6	10,1 10,6
2,5		MDF 0250S2D	<u> </u>		10.0	11,0
2,6		0260S2D	•		10,4	11,4
2,7	4,0	0270S2D	•	50	10,8	11,9
2,8		0280S2D	•		11,2	12,3
2,9 3,0		0290S2D MDF 0300S2D			11,6 12,0	12,8 13,2
3,0		0310S2D			12,0	13,2
3,2	0.0	0320S2D	•		12,8	14,1
3,3	6,0	0330S2D	•	50	13,2	14,5
3,4		0340S2D	•		13,6	15,0
3,5		0350S2D	•		14,0	15,4
3,6 3,7		MDF 0360S2D 0370S2D			14,4 14,8	15,8 16,3
3,8	6,0	0380S2D	•	50	15,2	16,7
3,9	-,-	0390S2D	•		15,6	17,2
4,0		0400S2D	•		16,0	17,6
4,1		MDF 0410S2D	•		16,4	18,0
4,2 4,3	6,0	0420S2D 0430S2D		60	16,8 17,2	18,5 18,9
4,4	0,0	0440S2D	•	00	17,6	19,4
4,5		0450S2D	•		18,0	19,8
4,6		MDF 0460S2D	•		18,4	20,2
4,7	0.0	0470S2D	•		18,8	20,7
4,8 4,9	6,0	0480S2D 0490S2D		60	19,2 19,6	21,1 21,6
5,0		0500S2D	•		20,0	22,0
5,1		MDF 0510S2D	•		20,4	22,4
5,2	0.0	0520S2D	•		20,8	22,9
5,3	6,0	0530S2D	•	60	21,2	23,3
5,4 5,5		0540S2D 0550S2D	•		21,6 22,0	23,8 24,2
5,6		MDF 0560S2D	•		22,4	24,6
5,7		0570S2D	•		22,8	25,1
5,8	6,0	0580S2D	•	60	23,2	25,5
5,9		0590S2D	•		23,6	26,0
6,0 6,1		0600S2D MDF 0610S2D	•		24,0 24,4	26,4 26,8
6,2		0620S2D	•		24,4	27,3
6,3	8,0	0630S2D	•	70	25,2	27,7
6,4		0640S2D	•		25,6	28,2
6,5		0650S2D	•		26,0	28,6
6,6 6,7		MDF 0660S2D 0670S2D	•		26,4 26,8	29,0 29,5
6,8	8,0	0670S2D 0680S2D	•	70	27,2	29,5
6,9	-,•	0690S2D	•		27,6	30,4
7,0		0700S2D	•		28,0	30,8

■ Durchmesser Ø 7 1_20 0 mm


Durc	hmess	er Ø 7,1–20,0	mm			
Durchm.	Schaft			Δhmes	ssungen	(mm)
ØDc	ØDs	Artikelbezeichnung	Lager			
(mm)	(mm)	MDE0740C0D		L	ℓ ₁	ℓ_2
7,1 7,2		MDF 0710S2D 0720S2D	•		28,4 28,8	31,2 31,7
7,3	8,0	072032D 0730S2D		70	29,2	32,1
7,4	0,0	0740S2D	•	''	29,6	32,6
7,5		0750S2D	•		30,0	33,0
7,6		MDF 0760S2D	•		30,4	33,4
7,7		0770S2D	•		30,8	33,9
7,8	8,0	0780S2D	•	70	31,2	34,3
7,9		0790S2D	•		31,6	34,8
8,0		0800S2D	•		32,0	35,2
8,1 8,2		MDF 0810S2D 0820S2D	0		32,4 32,8	35,6 36,1
8,3	10,0	0830S2D	ŏ	80	33,2	36,5
8,4	10,0	0840S2D	Ö		33,6	37,0
8,5		0850S2D	•		34,0	37,4
8,6		MDF 0860S2D	0		34,4	37,8
8,7		0870S2D	0		34,8	38,3
8,8	10,0	0880S2D	0	80	35,2	38,7
8,9		0890S2D	0		35,6	39,2
9,0 9,1		0900S2D MDF 0910S2D	•		36,0 36,4	39,6
9,1		0920S2D	0		36,8	40,0 40,5
9,3	10,0	0930S2D	ŏ	80	37,2	40,9
9,4	,.	0940S2D	O		37,6	41,4
9,5		0950S2D	•		38,0	41,8
9,6		MDF 0960S2D	0		38,4	42,2
9,7	40.0	0970S2D	•		38,8	42,7
9,8	10,0	0980S2D	0	80	39,2	43,1
9,9		0990S2D	•		39,6	43,6 44,0
10,0		1000S2D MDF 1010S2D	0		40,0	44.4
10,1		1020S2D	0		40,4	44,9
10,3	12,0	1030S2D	ŏ	90	41,2	45,3
10,4	,-	1040S2D	0		41,6	45,8
10,5		1050S2D	•		42,0	46,2
10,6		MDF 1060S2D	0		42,4	46,6
10,7	40.0	1070S2D	0	00	42,8	47,1
10,8	12,0	1080S2D	0	90	43,2	47,5
10,9 11,0		1090S2D 1100S2D	•		43,6 44,0	48,0 48,4
11,1		MDF 1110S2D	-		44,4	48,8
11,2		1120S2D	Ö		44,8	49,3
11,3	12,0	1130S2D	0	90	45,2	49,7
11,4		1140S2D	0		45,6	50,2
11,5		1150S2D	•		46,0	50,6
11,6		MDF 1160S2D	0		46,4	51,0
11,7	12.0	1170S2D 1180S2D	•	00	46,8	51,5
11,8	12,0	110000	•	90	47,2 47.6	51,9 52.4
11,9 12,0		1190S2D 1200S2D	•		47,6 48,0	52,4 52,8
12,5		MDF 1250S2D	0	400	50,0	54,0
13,0	14.0	1300S2D	O	100	52,0	56,8
13,5	14,0	1350S2D	0	110	54,0	59,6
14,0		1400S2D	0	110	56,0	62,4
14,5		MDF 1450S2D	0	110	58,0	65,2
15,0	16,0	1500S2D	0	ļ	60,0	68,0
15,5 16,0	,	1550S2D 1600S2D	0	115	62,0 64,0	70,8 73,6
16,5		MDF 1650S2D	<u> </u>		66,0	72,4
17,0	46.5	1700S2D	0	125	68,0	75,2
17,5	18,0	1750S2D	Ö	120	70,0	78,0
18,0		1800S2D	0	130	72,0	80,8
18,5		MDF 1850S2D	0		74,0	83,6
19,0	20,0	1900S2D	0	140	76,0	86,4
19,5	, -	1950S2D	0		78,0	89,2
20,0		2000S2D	9		80,0	92,0

^{*}RS-Geometrie wird eingesetzt ab DC ≥ 0,5 mm.

Sorte: ACF75


MULTI-DRILLs - Flachbohrer

■ Äußere Kühlmittelzufuhr (L2D-Typ, Lange Schaftausführung)

● Ø DC > Ø DMM

Durc	hmess	er Ø 3,0–9,5 mr	n			
Durchm. ØDc	Schaft ØDs	Artikelbezeichung	Lager	Abme	ssungen	(mm)
(mm)	(mm)	Artikeibezeichung	Lagei	L	ℓ_1	ℓ_2
3,0		MDF 0300L2D	0		13,5	30,0
3,1		0310L2D	0		14,0	31,0
3,2 3,3	6,0	0320L2D 0330L2D	0	100	14,4 14,9	32,0 33,0
3,3		0330L2D 0340L2D	0		15,3	34,0
3,5		0350L2D	0		15,8	35,0
3,6		MDF 0360L2D	0		16,2	36,0
3,7	6.0	0370L2D 0380L2D	0	100	16,7	37,0
3,8 3,9	0,0	0380L2D 0390L2D	0	100	17,1 17,6	38,0 39,0
4,0		0400L2D	o		18,0	40,0
4,1		MDF 0410L2D	0		18,5	41,0
4,2	6.0	0420L2D	0	100	18,9	42,0 43,0
4,3 4,4	6,0	0430L2D 0440L2D	0	100	19,4 19,8	44,0
4,5		0450L2D	O		20,3	45,0
4,6		MDF 0460L2D	0		20,7	46,0
4,7	6.0	0470L2D	0	100	21,2	47,0
4,8 4,9	6,0	0480L2D 0490L2D	0	100	21,6 22,1	48,0 49,0
5,0		0500L2D	o		22,5	50,0
5,1		MDF 0510L2D	0		23,0	51,0
5,2	0.0	0520L2D	0	440	23,4	52,0
5,3 5,4	6,0	0530L2D 0540L2D	0	110	23,9 24,3	53,0 54,0
5,5		0550L2D	0		24,8	55,0
5,6		MDF 0560L2D	0		25,2	56,0
5,7	6,0	0570L2D	O	110	25,7	57,0
5,8 5,9	0,0	0580L2D 0590L2D	0		26,1 26,6	58,0 59,0
6,0	5,0	MDF 0600L2DS5	0	110	27,0	30,0
6,0	6,0	MDF 0600L2D	0	110	27,0	60,0
6,1		MDF 0610L2D	0		27,5	30,5
6,2	6.0	0620L2D	0	120	27,9	30,9
6,3 6,4	6,0	0630L2D 0640L2D	0	120	28,4 28,8	31,4 31,8
6,5		0650L2D	o		29,3	32,3
6,6		MDF 0660L2D	0		29,7	32,7
6,7	0.0	0670L2D	0	400	30,2	33,2
6,8 6,9	6,0	0680L2D 0690L2D	0	120	30,6 31,1	33,6 34,1
7,0		0700L2D	0		31,5	34.5
7,1		MDF 0710L2D	0		32,0	35,0
7,2	0.0	0720L2D	0	400	32,4	35,4
7,3 7,4	6,0	0730L2D 0740L2D	0	130	32,9 33,3	35,9 36,3
7,4		0750L2D	0		33,8	36,8
7,6		MDF 0760L2D	0		34,2	37,2
7,7	6,0	0770L2D	0	130	34,7	37,7
7,8 7,9	,-	0780L2D 0790L2D	0		35,1 35,6	38,1 38,6
8,0	6,0	MDF 0800L2DS6	o	130	36,0	39,0
8,0	8,0	MDF 0800L2D	0	130	36,0	80,0
8,1		MDF 0810L2D			36,5	39,5
8,2 8,3	Q ∩	0820L2D 0830L2D	0	140	36,9 37,4	39,9 40,4
8,4	8,0	0830L2D 0840L2D	0	140	37,4	40,4
8,5		0850L2D	o		38,3	41,3
8,6		MDF 0860L2D	0		38,7	41,7
8,7	0.0	0870L2D	0	140	39,2	42,2
8,8 8,9	8,0	0880L2D 0890L2D	0	140	39,6 40,1	42,6 43,1
9,0		0900L2D	0		40,1	43,1
9,1		MDF 0910L2D	0		41,0	41,0
9,2	0.0	0920L2D	0	450	41,4	41,4
9,3	8,0	0930L2D 0940L2D	0	150	41,9	41,9
9,4 9,5		0940L2D 0950L2D	0		42,3 42,8	42,3 42,8
		0000020			12,0	12,0

● Durchmesser Ø 9,6–20,0 mm

Duic		ei 6 9,0-20,0 ii	1111			
Durchm. ØDc	Schaft ØDs	Artikelbezeichnung	Lager	Abme	ssungen	
(mm)	(mm)			L	ℓ_1	ℓ_2
9,6		MDF 0960L2D	0		43,2	46,2
9,7	8,0	0970L2D	0	150	43,7	46,7
9,8	0,0	0980L2D	0	130	44,1	47,1
9,9		0990L2D	0		44,6	47,6
10,0	8,0	MDF 1000L2DS8	0	150	45,0	48,0
10,0	10,0	MDF 1000L2D		150	45,0	100,0
10,1		MDF 1010L2D	•		45,5	48,5
10,2		1020L2D	0		45,9	48,9
10,3	10,0	1030L2D	0	160	46,4	49,4
10,4		1040L2D	0		46,8	49,8
10,5		1050L2D	•		47,3	50,3
10,6		MDF 1060L2D	0		47,7	50,7
10,7		1070L2D	•		48,2	51,2
10,8	10,0	1080L2D	O	160	48,6	51,6
10,9		1090L2D	•		49,1	52,1
11,0		1100L2D	0		49,5	52,5
11,1		MDF 1110L2D	O		50,0	53,0
11,2		1120L2D	0		50,4	53,4
11,3	10,0	1130L2D	0	170	50,9	53,9
11,4		1140L2D	0		51,3	54,3
11,5		1150L2D	0		51,8	54,8
11,6		MDF 1160L2D	0		52,2	55,2
11,7	10,0	1170L2D	0	170	52,7	55,7
11,8	10,0	1180L2D	0	170	53,1	56,1
11,9		1190L2D	0		53,6	56,6
12,0	10,0	MDF 1200L2DS10	0	170	54,0	57,0
12,0	12,0	MDF 1200L2D	0	170	54,0	120,0
12,5		MDF 1250L2D	0	180	56,3	59,3
13,0	12,0	1300L2D	•		58,5	61,5
13,5		1350L2D	0	190	60,8	63,8
14,0	12,0	MDF 1400L2DS12	0	190	63,0	66,0
14,0	14,0	MDF 1400L2D	0	190	63,0	140,0
14,5		MDF 1450L2D	0	200	65,3	68,3
15,0	14,0	1500L2D	0		67,5	70,5
15,5		1550L2D	O	210	69,8	72,8
16,0	14,0	MDF 1600L2DS14	O	210	72,0	75,0
16,0	16,0	MDF 1600L2D	0	210	72,0	160,0
16,5	40.0	MDF 1650L2D	0	220	74,3	77,3
17,0	16,0	1700L2D	0		76,5	79,5
17,5		1750L2D	0	230	78,8	81,8
18,0	16,0	MDF 1800L2DS16	0	230 230	81,0	84,0
18,0	18,0	MDF 1800L2D		230	81,0	180,0
18,5	4.6	MDF 1850L2D	0	240	83,3	86,3
19,0	18,0	1900L2D	0		85,5	88,5
19,5		1950L2D	O	250	87,8	90,8
20,0	18,0	MDF 2000L2DS18	O	250	90,0	93,0
20,0	20,0	MDF 2000L2D	0	250	90,0	200,0
					Corto	A 0 E 7 E

Sorte: ACF75

Beim Verwenden des Bohrers empfehlen wir das Setzen einer Pilotbohrung.

Multi-Drills

■ Empfohlene Schnittbedingungen

MDF S2D-Typ

- 1. Die empfohlene Bohrungstiefe ist 2 x DC. Die Höhe der Bohrungstiefe errechnet man beim Bohren in geneigten Flächen vom höchsten Punkt aus.
- 2. Die empfohlenen Schnittbedingungen sind auf das Bohren in flachen und horizontalen Flächen bezogen.
- 3. Die Vorschubgeschwindigkeit ist entsprechend des Neigungswinkels beim Bohren in geneigten Flächen anzupassen.
- 3.1 Ist der Neigungswinkel ≤ 30 °, sollte die Vorschubgeschwindigkeit ≤ 70 % betragen.
 3.2 Ist der Neigungswinkel > 30 °, sollte die Vorschubgeschwindigkeit ≤ 50 % sein.
- 4. Benutzen Sie den Bohrer nicht für Fräsanwendungen.

(vc: Schnittgeschwindigkeit m/min f: Vorschub mm/U)

						` `		,
Bohrdurchm. DC (mm)	Schnittbe- dingungen	Unlegierter Stahl / Kohlenstoffstahl (–250 HB)	Legierter Stahl (-300 HB)	Gehärteter Stahl (–50 HRC)	Rostfreier Stahl (-200 HB)	Grauguss FC250	Kugelgraphitguss	Aluminium- legierung
Ø 0.5	V c	30 –40 –50	30 –35 –40	15 –20 –25	15 –20 –25	30 –40 –50	20 –30 –40	60 –80 –100
−Ø 0,5	f	0,004- 0,005 -0,006	0,004- 0,005 -0,006	0,001- 0,002 -0,003	0,003- 0,004 -0,005	0,004 -0,005 -0,006	0,001 –0,003 –0,005	0,003 –0,005 –0,007
Q 4 0	V c	45 –55 –65	35 –45 –55	20 –30 –40	20 –25 –30	45 –55 –65	30 –40 –50	80 –100 –120
−Ø 1,0	f	0,01 –0,03 –0,05	0,01 –0,03 –0,05	0,002 -0,006 -0,01	0,005- 0,007 -0,01	0,01 –0,03 –0,05	0,005 –0,01 –0,015	0,01 –0,02 –0,03
−Ø 2,0	V c	50 –60 –70	40 –50 –60	20 –30 –40	20 –30 –40	50 –60 –70	45 –55 –65	90 –110 –130
-60 2,0	f	0,02 -0,04 -0,06	0,02 -0,04 -0,06	0,01 –0,018 –0,025	0,01 –0,015 –0,02	0,02 -0,04 -0,06	0,015 –0,03 –0,045	0,03 –0,05 –0,07
−Ø 4,0	V c	60 –75 –90	50 –65 –80	20 –30 –40	20 –30 –40	60 –75 –90	55 –65 –75	90 –110 –130
-60 4,0	f	0,06- 0,08 -0,10	0,05 -0,08 -0,10	0,01 –0,02 –0,03	0,01 –0,02 –0,03	0,06 -0,08 -0,10	0,04- 0,06 -0,08	0,06- 0,08 -0,10
0,00	V c	60 –75 –90	50 –65 –80	20 –30 –40	20 –30 –50	60 –75 –90	60 –70 –80	90 –110 –130
<i>–</i> Ø 6,0	f	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,04- 0,06 -0,08	0,03- 0,04 -0,05	0,05 –0,10 –0,15	0,06 -0,09 -0,12	0,05 –0,10 –0,15
-Ø 8,0	V c	60 –75 –90	50 –65 –80	20 –30 –40	20 –30 –50	60 –75 –90	60 –70 –80	90 –110 –130
0,0 ط	f	0,10 -0,15 -0,20	0,10 -0,15 -0,20	0,06-0,08-0,10	0,04- 0,06 -0,08	0,10 -0,15 -0,20	0,10 -0,12 -0,15	0,10 -0,15 -0,20
Ø 10.0	V c	60 –75 –90	50 –65 –80	20 –30 –40	20 –30 –50	60 –75 –90	60 –70 –80	90 –110 –130
−Ø 10,0	f	0,12 -0,17 -0,22	0,12 -0,17 -0,22	0,08 –0,10 –0,12	0,06 –0,08 –0,10	0,12 -0,17 -0,22	0,12 –0,15 –0,18	0,12 -0,17 -0,22
Ø 10.0	V c	60 –75 –90	50 –65 –80	20 –30 –40	20 –30 –50	60 –75 –90	60 –70 –80	90 –110 –130
−Ø 12,0	f	0,15 –0,20 –0,25	0,15 –0,20 –0,25	0,12 –0,15 –0,18	0,08 –0,10 –0,12	0,15 -0,20 -0,25	0,15 –0,18 –0,20	0,15 –0,20 –0,25
Ø 16.0	V c	60 –75 –90	50 –65 –80	20 –30 –40	20 –30 –50	60 –75 –90	60 –70 –80	90 –110 –130
−Ø 16,0	f	0,20 -0,25 -0,30	0,20 -0,25 -0,30	0,14 –0,17 –0,20	0,10 –0,15 –0,20	0,17 -0,22 -0,27	0,15 –0,20 –0,25	0,20 -0,25 -0,30
Ø 20.0	V c	60 –75 –90	50 –65 –80	20 –30 –40	20 –30 –50	60 –75 –90	60 –70 –80	90 –110 –130
−Ø 20,0	f	0,25 –0,30 –0,35	0,25 –0,30 –0,35	0,16 –0,19 –0,22	0,15 –0,20 –0,25	0,25 -0,30 -0,35	0,20 - 0,25 - 0,30	0,25 –0,30 –0,35

Min. - Optimum - Max.

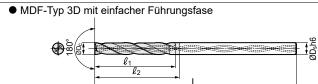
● MDF L2D-Typ, Lange Schaftausführung

- 1. Beim Einsatz des Bohrers vom Typ L2D ist eine Pilotbohrung mit dem gleichen Durchmesser notwendig.
- 2. Die Schnittbedingungen gelten bei zuvor gesetzter Pilotbohrung.
- 3. Die empfohlene Bohrungstiefe ist 5 x DC. Die Höhe der Bohrungstiefe errechnet man beim Bohren in geneigten Oberflächen vom höchsten Punkt aus.
- 4. Benutzen Sie den Bohrer nicht für Fräsanwendungen.

(vc: Schnittgeschwindigkeit m/min f: Vorschub mm/U)

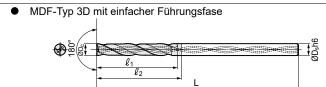
Bohrdurchm. DC (mm)	Schnittbe- dingungen	Unlegierter Stahl / Kohlenstoffstahl (–250 HB)	Legierter Stahl (–300 HB)	Gehärteter Stahl (–50 HRC)	Rostfreier Stahl (-200 HB)	Grauguss FC250	Kugelgraphitguss	Aluminium- legierung
−Ø 4.0	V c	60 –80 –100	50 –70 –90	20 –30 –40	20 –30 –40	70 –85 –100	65 –75 –85	90 –120 –150
-60 4,0	f	0,06 –0,08 –0,10	0,05 –0,08 –0,10	0,01 –0,02 –0,03	0,01 –0,02 –0,03	0,06 –0,08 –0,10	0,04 –0,06 –0,08	0,06 –0,08 –0,10
-Ø 6,0	V c	60 –80 –100	50 –70 –90	20 –30 –40	20 –30 –50	70 –85 –100	65– 75 –85	90 –120 –150
-6,0	f	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,04 –0,06 –0,08	0,03 -0,04 -0,05	0,05 –0,10 –0,15	0,06 –0,09 –0,12	0,05 –0,10 –0,15
-Ø 8.0	V c	60 –80 –100	50 –70 –90	20 –30 –40	20 –30 –50	70 –85 –100	65 –75 –85	90 –120 –150
-w 0,0	f	0,10 –0,15 –0,20	0,10 –0,15 –0,20	0,06 –0,08 –0,10	0,04 -0,06 -0,08	0,10 –0,15 –0,20	0,10 –0,12 –0,15	0,10 -0,15 -0,20
−Ø 10.0	V c	60 –80 –100	50 –70 –90	20 –30 –40	20 –30 –50	70 –85 –100	65 –75 –85	90 –120 –150
-Ø 10,0	f	0,15 –0,20 –0,25	0,15 -0,20 -0,25	0,08 –0,10 –0,12	0,06 -0,08 -0,10	0,15 -0,20 -0,25	0,12 –0,15 –0,18	0,15 –0,20 –0,25
−Ø 12,0	V c	60 –80 –100	50 –70 –90	20 –30 –40	20 –30 –50	70 –85 –100	65 –75 –85	90 –120 –150
-60 12,0	f	0,20 -0,25 -0,30	0,20 -0,25 -0,30	0,12 –0,15 –0,18	0,08 –0,10 –0,12	0,17 –0,22 –0,27	0,15 –0,20 –0,25	0,20 -0,25 -0,30
−Ø 16.0	V c	60 –80 –100	50 –70 –90	20 –30 –40	20 –30 –50	70 –85 –100	65 –75 –85	90 –120 –150
-60 10,0	f	0,20 -0,25 -0,30	0,20 -0,25 -0,30	0,14 -0,17 -0,20	0,10 -0,15 -0,20	0,20 -0,25 -0,30	0,20 -0,25 -0,30	0,25 -0,30 -0,35
−Ø 20,0	V c	60 –80 –100	50 –70 –90	20 –30 –40	20 –30 –50	70 –85 –100	65 –75 –85	90 –120 –150
− ⊌ 20,0	f	0,25 –0,30 –0,35	0,25 –0,30 –0,35	0,16 –0,19 –0,22	0,15 –0,20 –0,25	0,30 -0,35 -0,40	0,25 -0,30 -0,35	0,35 -0,40 -0,45

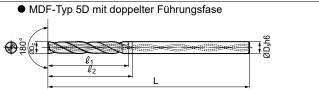
Min. - Optimum - Max.


■ Innere Kühlmittelzufuhr (MDF H3D/H5D-Typ)

● MDF-Typ 5D mit doppelter Führungsfase **⊕** § € 1

Durchm Schaft Bother Policy Curb Policy Po	Du	ırchm	esser	Ø 3,0-6,0 mm	1			
3.0 3 3 MDF 0300H3D		ØDs	lochtiefe	Artikelbezeichung	Lager			
3.1	(mm)	(mm)		1455 00001105			_	
3,1	3,0	3			•			
3.1 4 5 0310H5D ○ 86 20.8 23.8 3.2 4 3 0320H3D ○ 72 14.4 17.4 3.3 4 5 0320H5D ○ 86 22.1 22.1 3.4 4 5 0330H5D ○ 86 22.1 25.1 3.4 4 5 0340H5D ○ 86 22.8 25.8 3.5 4 3 0350H3D ○ 72 15.8 18.8 3.6 4 3 MDF 0360H3D ○ 72 16.7 19.2 3.6 4 5 0360H5D ○ 86 23.5 26.5 3.7 4 3 0370H5D ○ 86 24.1 27.1 3.8 4 5 0380H5D ○ 86 24.2 27.5 3.9 4 3 0340H3D ○ 72 17.6 20.6			3		0			
3.2	3,1	4						
3.3 4 5 0320H5D O 86 21.4 24.4 3.3 4 5 0330H3D O 72 14.9 17.9 3.4 4 5 0340H3D O 72 15.3 18.3 3.5 4 5 0340H5D O 86 22.8 25.8 3.6 4 5 0350H5D O 86 23.5 26.5 3.6 4 5 0350H5D O 86 24.1 27.1 3.7 4 5 0360H5D O 86 24.1 27.1 3.7 4 5 0370H5D O 86 24.8 27.8 3.8 4 5 0390H5D O 86 24.8 27.8 3.8 4 5 0390H5D O 72 17.6 20.6 3.9 4 5 0390H5D O 86 26.1 29.1 <td>2.2</td> <td>4</td> <td>3</td> <td></td> <td></td> <td></td> <td>14,4</td> <td>17,4</td>	2.2	4	3				14,4	17,4
3.9 4 5 0330H3D Q 86 22,1 25,1 3.4 4 5 0340H3D Q 72 15,3 18,3 3.5 4 5 0350H3D P 72 15,8 18,8 3.6 4 5 0350H3D P 72 15,8 18,8 3.6 4 5 0350H3D P 72 16,7 19,2 3.7 4 3 0370H3D P 72 16,7 19,2 3.8 4 5 0370H5D Q 86 24,1 27,1 3.8 4 5 0380H5D Q 86 25,5 28,5 3.9 4 3 0390H3D P 72 17,6 20,6 3.9 4 3 0390H3D P 72 17,6 20,6 4,0 4 3 040H3D R 27,5 20,5 <t< td=""><td>3,2</td><td>4</td><td>5</td><td>0320H5D</td><td>0</td><td>86</td><td>21,4</td><td>24,4</td></t<>	3,2	4	5	0320H5D	0	86	21,4	24,4
3.4 4 3 0340H3D 0 86 22.8 25.8 3.5 4 3 0340H3D 0 72 15.8 18.3 3.5 4 5 0350H5D 0 86 22.8 25.8 3.5 26.5 3.6 4 5 0350H5D 0 86 23.5 26.5 3.6 5 0350H5D 0 86 23.5 26.5 3.6 5 0350H5D 0 86 24.8 27.8 3.7 4 5 0370H5D 0 86 24.8 27.8 3.8 4 5 0350H5D 0 86 24.8 27.8 3.8 4 5 0350H5D 0 86 24.8 27.8 3.8 4 5 0380H3D 0 72 16.7 19.7 3.8 4 5 0380H3D 0 72 16.7 19.7 3.8 4 5 0380H3D 0 72 17.1 20.1 3.7 4 5 0380H3D 0 72 17.1 20.1 3.9 4 5 0380H5D 0 86 25.5 28.5 3.9 4 5 0380H5D 0 86 25.5 28.5 3.9 4 5 0380H5D 0 86 26.1 29.1 4.0 4 5 0400H3D 0 86 26.1 29.1 4.0 4 5 0400H3D 0 86 26.8 29.8 4.1 5 3 0400H3D 0 80 18.5 21.5 0410H5D 0 98 27.5 30.5 4.2 5 5 0420H5D 0 98 28.1 31.1 4.3 5 5 0430H3D 0 80 18.9 21.9 4.3 5 0430H3D 0 80 18.9 21.9 4.3 5 0430H3D 0 80 18.9 21.9 4.3 5 0430H3D 0 80 18.9 21.9 4.4 5 0430H3D 0 80 18.9 21.9 4.4 5 0430H3D 0 80 18.9 21.9 4.4 5 0430H3D 0 80 18.9 21.9 4.4 5 0430H3D 0 80 18.9 21.9 4.4 5 0430H3D 0 80 18.9 21.9 4.4 5 0430H3D 0 80 18.9 21.9 4.4 5 0430H3D 0 80 18.9 21.9 4.4 5 0430H3D 0 80 19.8 22.8 4.5 5 5 0430H3D 0 80 19.8 22.8 4.5 5 5 0430H3D 0 80 19.8 22.8 4.5 5 5 0440H3D 0 80 20.3 23.3 4.5 4.4 5 5 0440H3D 0 80 20.3 23.3 4.5 4.5 5 0440H3D 0 80 20.3 23.3 4.5 4.5 5 0440H3D 0 80 20.3 23.3 4.5 4.5 5 0440H3D 0 80 20.3 23.3 4.5 4.5 5 0440H3D 0 80 20.3 23.3 4.5 4.5 5 0440H3D 0 80 20.3 23.3 4.5 4.5 5 0440H3D 0 80 20.3 23.3 4.5 4.5 5 0440H3D 0 80 21.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2	3.3	4	3					
3,5 4 5 0340H5D 9 86 22,8 25,8 3,5 4 3 0350H5D 6 86 23,5 26,5 3,6 4 3 MDF 0360H3D 0 72 16,2 19,2 3,7 4 5 0370H3D 0 72 16,7 19,7 3,8 4 5 0370H3D 0 72 16,7 19,7 3,8 4 5 0380H3D 0 72 17,1 20,1 3,9 4 3 0390H3D 0 72 17,6 20,6 4,0 4 3 0400H3D 6 26,1 29,1 4,1 5 3 MDF 0410H3D 98 27,5 30,5 4,2 5 3 0420H3D 98 27,5 30,5 4,2 5 3 0420H3D 98 28,1 31,1 4,3 3 0430H3			5					
3,5	3,4	4	3					
3,6			3					
3,7	3,5	4	5					
3,7	2.0	4	3					
3.8	3,6	4	5		0		24,1	27,1
3	3.7	4	3				16,7	19,7
3.9 4 5 0380H5D ○ 86 25.5 28.5 3.9 4 5 0390H3D ○ 72 17.6 20.6 4.0 4 3 0400H3D ● 72 18.0 21.0 4.1 5 0400H3D ● 86 26.8 29.8 4.1 5 5 0410H3D ○ 80 18.5 21.5 4.2 5 3 0420H3D ○ 80 18.5 21.9 4.2 5 3 0420H3D ○ 80 18.9 21.9 4.2 5 3 0420H3D ○ 80 18.9 21.9 4.2 5 3 0420H3D ○ 80 18.9 21.9 4.2 5 3 0420H3D ○ 80 19.8 22.4 4.3 3 0430H3D ○ 80 19.8 22.8 4.4			5					27,8
4,0 4 5 0390H5D ○ 86 26,1 29,1 4,0 4 5 0400H5D ● 86 26,8 29,8 4,1 5 0400H5D ○ 80 18,5 21,5 4,1 5 3 MDF 0410H3D ○ 80 18,5 21,5 4,2 5 5 0420H3D ○ 80 18,9 21,9 4,3 5 5 0420H5D ○ 98 28,1 31,1 4,3 5 5 0430H3D ○ 80 19,4 22,4 4,3 5 5 0430H5D ○ 98 28,8 31,8 4,4 5 3 0440H3D ○ 80 19,4 22,8 4,5 5 5 0450H3D ○ 80 20,7 23,7 4,6 5 3 MDF 0460H3D ○ 80 20,2 23,2	3.8	4	3				17,1	20,1
4,0 4 5 0390H5D ○ 86 26,1 29,1 4,0 4 5 0400H5D ● 86 26,8 29,8 4,1 5 0400H5D ○ 80 18,5 21,5 4,1 5 3 MDF 0410H3D ○ 80 18,5 21,5 4,2 5 5 0420H3D ○ 80 18,9 21,9 4,3 5 5 0420H5D ○ 98 28,1 31,1 4,3 5 5 0430H3D ○ 80 19,4 22,4 4,3 5 5 0430H5D ○ 98 28,8 31,8 4,4 5 3 0440H3D ○ 80 19,4 22,8 4,5 5 5 0450H3D ○ 80 20,7 23,7 4,6 5 3 MDF 0460H3D ○ 80 20,2 23,2			5					
4,0 5 0400H5D ● 86 26,8 29,8 4,1 5 3 MDF 0410H3D ○ 80 18,5 21,5 4,2 5 3 0420H3D ○ 80 18,9 21,9 4,2 5 5 0420H5D ○ 98 28,1 31,1 4,3 5 5 0430H3D ○ 80 19,4 22,4 4,4 5 3 0440H3D ○ 80 19,8 22,8 4,5 5 5 0440H3D ○ 80 20,3 23,3 4,5 5 3 0450H3D ● 80 20,3 23,3 4,6 5 3 MDF 0460H3D ○ 80 20,7 23,3 4,7 5 3 0470H3D ○ 80 21,2 24,2 4,8 5 3 0490H3D ○ 80 22,1 25,1	3,9	4	3					
4,0 5 0400H5D ● 86 26,8 29,8 4,1 5 3 MDF 0410H3D ○ 80 18,5 21,5 4,2 5 3 0420H3D ○ 80 18,9 21,9 4,2 5 5 0420H5D ○ 98 28,1 31,1 4,3 5 5 0430H3D ○ 80 19,4 22,4 4,4 5 3 0440H3D ○ 80 19,8 22,8 4,5 5 5 0440H3D ○ 80 20,3 23,3 4,5 5 3 0450H3D ● 80 20,3 23,3 4,6 5 3 MDF 0460H3D ○ 80 20,7 23,3 4,7 5 3 0470H3D ○ 80 21,2 24,2 4,8 5 3 0490H3D ○ 80 22,1 25,1			5					
4,1 5 3 MDF 0410H3D ○ 80 18,5 21,5 4,2 5 5 0420H3D ○ 98 27,5 30,5 4,3 5 5 0420H5D ○ 98 28,1 31,1 4,3 5 3 0430H3D ○ 80 19,4 22,4 4,4 5 5 0430H5D ○ 98 28,8 31,8 4,4 5 5 0440H5D ○ 98 29,5 32,5 4,5 5 5 0440H5D ○ 98 30,2 33,2 4,6 5 3 0450H3D ○ 80 20,3 23,3 4,6 5 3 MDF 0460H3D ○ 80 20,7 23,7 4,8 5 3 0470H3D ○ 80 21,2 24,2 4,8 5 3 0490H3D ○ 80 22,1 25,2 4,9 5 3 0490H3D ○ 80 22,1 25,5<	4,0	4	5					
4,1 5 5 0410H5D ○ 98 27,5 30,5 4,2 5 5 0420H5D ○ 98 28,1 31,1 4,3 5 5 0430H5D ○ 98 28,1 31,1 4,4 5 3 0440H3D ○ 80 19,4 22,4 24,4 5 5 0440H5D ○ 98 29,5 32,5 4,5 5 0440H5D ○ 98 30,2 33,2 4,6 5 3 0450H5D ○ 98 30,2 33,2 4,6 5 5 0460H5D ○ 98 30,2 33,2 4,6 5 5 0460H5D ○ 98 30,2 33,2 4,7 5 5 0460H5D ○ 98 30,2 33,8 3,8 4,7 5 5 0460H5D ○ 98 30,2 33,8 3,8 4,7 5 5 0460H5D ○ 98 30,2 33,8 3,8 4,7 5 5 0460H5D ○ 98 30,2 33,8 3,8 4,7 5 5 0460H5D ○ 98 30,8 33,8 3,8 3,8 5 5 0450H5D ○ 98 30,8 33,8 3,8 3,8 5 5 5 0450H5D ○ 98 30,2 33,5 34,5 5 6 0450H5D ○ 98 30,2 33,5 34,5 6 7 0450H5D ○ 98 32,2 35,2 4,9 5 5 0490H5D ○ 98 32,2 35,2 35,2 4,9 5 5 0490H5D ○ 98 32,2 35,2 35,2 5 6 0500H5D ○ 98 33,5 36,5 5,0 5 0500H5D ○ 98 32,2 35,2 25,5 0500H5D ○ 98 33,5 36,5 5,1 6 5 0500H5D ○ 100 34,2 37,2 5,2 6 5 0520H5D ○ 100 34,2 37,2 5,4 6 5 0520H5D ○ 100 34,2 37,2 5,5 6 5 0530H5D ○ 100 34,2 37,2 5,5 6 5 0530H5D ○ 100 34,2 37,2 5,5 0550H5D ○ 100 36,9 39,9 5,6 6 5 0550H5D ○ 100 36,9 39,9 5,6 6 5 0550H5D ○ 100 36,9 39,9 5,6 6 5 0550H5D ○ 100 38,2 41,2 5,8 6 5 0550H5D ○ 100 38,2 41,2 5,8 6 5 0550H5D ○ 100 38,2 41,2 5,8 6 5 0580H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			3		_			
4,2 5 5 0420H5D ○ 98 28,1 31,1 4,3 5 3 0430H3D ○ 80 19,4 22,4 4,4 5 5 0430H5D ○ 98 28,8 31,8 4,4 5 5 5 0440H3D ○ 98 29,5 32,5 4,5 5 3 0450H3D ● 80 20,3 23,3 4,6 5 3 MDF 0460H3D ○ 80 20,7 23,7 4,6 5 3 MDF 0460H3D ○ 80 20,7 23,7 4,7 5 5 0470H3D ○ 80 21,2 24,2 4,8 5 3 0470H3D ○ 80 21,2 24,2 4,9 5 3 0480H3D ○ 80 21,2 24,2 4,9 5 3 0490H3D ○ 80 22,1 25,1 4,9 5 3 050H3D ○ 80 22,5	4,1	5						
4,2 5 5 0420H5D ○ 98 28,1 31,1 4,3 5 3 0430H3D ○ 80 19,4 22,4 4,4 5 5 0430H5D ○ 98 28,8 31,8 4,4 5 5 5 0440H3D ○ 98 29,5 32,5 4,5 5 3 0450H3D ● 80 20,3 23,3 4,6 5 3 MDF 0460H3D ○ 80 20,7 23,7 4,6 5 3 MDF 0460H3D ○ 80 20,7 23,7 4,7 5 5 0470H3D ○ 80 21,2 24,2 4,8 5 3 0470H3D ○ 80 21,2 24,2 4,9 5 3 0480H3D ○ 80 21,2 24,2 4,9 5 3 0490H3D ○ 80 22,1 25,1 4,9 5 3 050H3D ○ 80 22,5		_	3					21.9
4,3 5 3 0430H3D ○ 80 19,4 22,4 4,4 5 3 0440H3D ○ 80 19,8 22,8 4,5 5 5 0440H5D ○ 98 29,5 32,5 4,5 5 3 0450H3D ● 80 20,3 23,3 4,6 5 3 MDF 0460H3D ○ 80 20,7 23,7 4,6 5 3 MDF 0460H3D ○ 80 20,7 23,7 4,6 5 3 0470H3D ○ 80 20,7 23,7 4,7 5 3 0470H3D ○ 80 21,2 24,2 4,8 5 3 0470H3D ○ 80 21,2 24,2 4,9 5 3 0480H3D ○ 80 22,1 25,1 4,9 5 3 0490H3D ○ 80 22,1 25,1 4,9 5 3 050H3D ● 80 22,5 25,5 </td <td>4,2</td> <td>5</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	4,2	5	5					
4,3 5 5 0430H5D 0 98 28.8 31,8 4,4 5 3 0440H3D 0 80 19,8 22,8 4,5 5 5 0440H5D 0 98 29,5 32,5 4,6 5 3 MDF 0460H3D 0 80 20,7 23,7 4,6 5 3 MDF 0460H3D 0 80 20,7 23,7 4,6 5 3 MDF 0460H3D 0 80 20,7 23,7 4,6 5 3 MDF 0460H3D 0 80 20,7 23,7 4,7 5 3 0470H3D 0 80 21,2 24,2 4,8 5 5 0470H5D 0 98 31,5 34,5 4,9 5 3 0490H3D 0 80 22,1 25,1 4,9 5 3 050H3D 80 22,5 25,5	4.2	E	3	0430H3D		80	19,4	22,4
4,5 5 3 0450H3D ● 80 20,3 23,3 4,6 5 5 0460H3D ○ 80 20,7 23,7 4,6 5 5 0460H3D ○ 80 20,7 23,7 4,7 5 3 0470H3D ○ 80 21,2 24,2 4,8 5 3 0480H3D ○ 98 31,5 34,5 4,9 5 5 0480H3D ○ 80 21,6 24,6 4,9 5 5 0480H3D ○ 80 22,1 25,1 4,9 5 5 0490H3D ○ 80 22,1 25,1 5,0 5 5 0490H3D ○ 80 22,1 25,5 5,0 5 5 0490H3D ○ 80 22,2 25,5 5,0 5 0500H5D ○ 98 33,5 36,5 5,1 6 3 MDF 0510H3D ○ 82 23,0 26,0 <t< td=""><td>4,3</td><td>Э</td><td>5</td><td>0430H5D</td><td>0</td><td>98</td><td></td><td>31,8</td></t<>	4,3	Э	5	0430H5D	0	98		31,8
4,5 5 3 0450H3D ● 80 20,3 23,3 4,6 5 5 0460H3D ○ 80 20,7 23,7 4,6 5 5 0460H3D ○ 80 20,7 23,7 4,7 5 3 0470H3D ○ 80 21,2 24,2 4,8 5 3 0480H3D ○ 98 31,5 34,5 4,9 5 5 0480H3D ○ 80 21,6 24,6 4,9 5 5 0480H3D ○ 80 22,1 25,1 4,9 5 5 0490H3D ○ 80 22,1 25,1 5,0 5 5 0490H3D ○ 80 22,1 25,5 5,0 5 5 0490H3D ○ 80 22,2 25,5 5,0 5 0500H5D ○ 98 33,5 36,5 5,1 6 3 MDF 0510H3D ○ 82 23,0 26,0 <t< td=""><td>44</td><td>5</td><td>3</td><td></td><td></td><td></td><td></td><td></td></t<>	44	5	3					
4,6 5 3 MDF 0460H3D ○ 80 20,7 23,7 0460H5D ○ 98 30,8 33,8 33,8 4,7 5 5 0460H5D ○ 98 31,5 34,5 4,8 5 5 0480H3D ○ 80 21,2 24,2 04,8 5 5 0480H3D ○ 80 21,6 24,6 24,6 3 0490H3D ○ 98 32,2 35,2 4,9 5 5 0490H5D ○ 98 32,2 35,2 4,9 5 5 0490H5D ○ 98 32,8 35,8 5,0 5 5 0490H5D ○ 98 32,8 35,8 5,0 5 5 0500H5D ○ 98 33,5 36,5 5 0500H5D ○ 98 33,5 36,5 5,1 6 3 MDF 0510H3D ○ 82 23,0 26,0 5,1 6 5 0520H5D ○ 100 34,2 37,2 5,2 6 5 0520H5D ○ 100 34,2 37,2 5,3 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 5 0520H5D ○ 100 34,8 37,8 5,4 6 3 0530H3D ○ 82 23,9 26,9 5,5 6 3 0550H5D ○ 100 36,2 39,2 5,5 6 3 0550H5D ○ 100 36,2 39,2 5,5 6 6 5 0550H5D ○ 100 36,2 39,2 5,6 6 5 0550H5D ○ 100 36,2 39,2 5,7 6 3 0550H5D ○ 100 36,2 39,2 5,7 6 5 0550H5D ○ 100 37,5 40,5 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,7 6 5 0550H5D ○ 100 38,9 39,9 5,6 6 5 0550H5D ○ 100 38,9 39,9 5,6 6 5 0550H5D ○ 100 38,9 39,9 5,6 6 5 0550H5D ○ 100 38,9 41,9 5,9 6 5 0580H5D ○ 100 38,9 41,9 5,9 6 5 0580H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 39,5 42,5 60 9,6 0 9,9 6 5 0590H5D ○ 100 39,5 42,5 60 9,6 0 9,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0			5		O			
4,6 5 3 MDF 0460H3D ○ 80 20,7 23,7 0460H3D ○ 98 30,8 33,8 3,8 4,7 5 5 0470H3D ○ 98 31,5 34,5 4,8 5 5 0470H5D ○ 98 31,5 34,5 4,8 5 5 0480H5D ○ 98 32,2 35,2 4,9 5 5 0490H5D ○ 98 32,2 35,2 4,9 5 5 0500H5D ○ 98 32,2 35,2 5,0 5 0500H5D ○ 98 32,8 35,8 5,0 5,1 6 3 MDF 0510H3D ○ 80 22,1 25,1 6 3 0520H5D ○ 100 34,2 37,2 5,2 6 3 0530H5D ○ 100 34,2 37,2 5,3 6 5 0530H5D ○ 100 34,8 37,8 5,3 6 5 0530H5D ○ 100 34,8 37,8 5,3 6 5 0530H5D ○ 100 34,8 37,8 5,4 6 3 0550H3D ○ 82 23,9 26,9 5,5 6 3 0550H3D ○ 82 24,3 27,3 36,5 5,4 6 3 0550H3D ○ 82 24,3 27,3 36,5 5,4 6 3 0550H3D ○ 82 24,3 27,3 36,5 5,4 6 3 0550H3D ○ 82 24,3 27,3 36,5 5,5 6 3 0550H3D ○ 82 24,3 27,3 36,5 5,6 6 3 0550H3D ○ 82 24,8 27,8 5,6 6 5 0550H5D ○ 100 36,2 39,2 5,6 6 3 0550H3D ○ 82 25,2 28,2 5,7 28,7 6,5 0550H5D ○ 100 36,2 39,2 5,6 6 3 0550H3D ○ 82 25,2 28,2 5,7 28,7 5,7 6 3 0550H3D ○ 82 25,2 28,2 5,7 28,7 5,7 6 3 0550H3D ○ 82 25,2 28,2 5,7 28,7 5,7 6 3 0550H5D ○ 100 38,2 41,2 5,8 6 3 0580H3D ○ 82 25,7 28,7 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H3D ○ 82 26,6 29,6 29,6 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 38,2 27,0 30,0 6 6 5 0590H5D ○ 100 39,5 42,5 6 0590H5D ○ 100 39,5 42,5	4.5	5			•			
4,0	-,-						'	
4,7 3 5 0470H5D 0 98 31,5 34,5 4,8 5 3 0480H3D 0 80 21,6 24,6 4,9 5 5 0480H3D 0 98 32,2 35,2 4,9 5 5 0490H5D 0 98 32,8 35,8 5,0 5 3 0500H3D 80 22,5 25,5 5,1 6 3 MDF 0510H3D 0 82 23,0 26,0 5,1 6 3 MDF 0510H3D 0 82 23,4 26,0 5,2 6 5 0520H3D 0 82 23,4 26,0 5,3 6 5 0520H5D 0 100 34,2 37,2 5,3 6 5 0530H3D 0 82 23,4 26,9 5,4 6 3 0530H3D 0 82 24,3 27,3	4,6	5	5					
4,7 3 5 0470H5D 0 98 31,5 34,5 4,8 5 3 0480H3D 0 80 21,6 24,6 4,9 5 5 0480H3D 0 98 32,2 35,2 4,9 5 5 0490H5D 0 98 32,8 35,8 5,0 5 3 0500H3D 80 22,5 25,5 5,1 6 3 MDF 0510H3D 0 82 23,0 26,0 5,1 6 3 MDF 0510H3D 0 82 23,4 26,0 5,2 6 5 0520H3D 0 82 23,4 26,0 5,3 6 5 0520H5D 0 100 34,2 37,2 5,3 6 5 0530H3D 0 82 23,4 26,9 5,4 6 3 0530H3D 0 82 24,3 27,3			3					
4,8 5 5 0480H5D ○ 98 32,2 35,2 4,9 5 5 0490H5D ○ 98 32,8 35,8 5,0 5 0490H5D ○ 98 32,8 35,8 5,0 5 5 0500H5D ● 98 33,5 36,5 5,1 6 3 MDF 0510H3D ○ 82 23,0 26,0 5,1 6 5 0520H5D ○ 100 34,2 37,2 5,2 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 5 0520H5D ○ 100 34,8 37,8 5,4 6 3 0530H3D ○ 82 23,9 26,9 5,5 6 3 0550H5D ○ 100 36,2 39,2 5,5 6 3 0550H5D ○ 100 36,2 39,2 5,6 6 3 0550H5D ○ 100 36,2 39,2 5,6 6 5 0550H5D ○ 100 37,5 40,5 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,7 6 3 0580H5D ○ 100 37,5 40,5 5,7 6 3 0580H5D ○ 100 37,5 40,5 5,7 6 3 0570H5D ○ 100 38,2 41,2 5,8 6 3 0580H5D ○ 100 38,2 41,2 5,8 6 3 0580H5D ○ 100 38,9 41,9 5,9 6 5 0580H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 39,5 42,5 60 60 6 3 0600H3D ● 82 27,0 30,0	4,7	5						
4,8 5 5 0480H5D ○ 98 32,2 35,2 4,9 5 5 0490H5D ○ 98 32,8 35,8 5,0 5 0490H5D ○ 98 32,8 35,8 5,0 5 5 0500H5D ● 98 33,5 36,5 5,1 6 3 MDF 0510H3D ○ 82 23,0 26,0 5,1 6 5 0520H5D ○ 100 34,2 37,2 5,2 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 5 0520H5D ○ 100 34,8 37,8 5,4 6 3 0530H3D ○ 82 23,9 26,9 5,5 6 3 0550H5D ○ 100 36,2 39,2 5,5 6 3 0550H5D ○ 100 36,2 39,2 5,6 6 3 0550H5D ○ 100 36,2 39,2 5,6 6 5 0550H5D ○ 100 37,5 40,5 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,7 6 3 0580H5D ○ 100 37,5 40,5 5,7 6 3 0580H5D ○ 100 37,5 40,5 5,7 6 3 0570H5D ○ 100 38,2 41,2 5,8 6 3 0580H5D ○ 100 38,2 41,2 5,8 6 3 0580H5D ○ 100 38,9 41,9 5,9 6 5 0580H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 39,5 42,5 60 60 6 3 0600H3D ● 82 27,0 30,0	4.0		3					
4,9 5 5 0490H5D ○ 98 32,8 35,8 5,0 5 3 0500H3D ● 80 22,5 25,5 5,1 6 3 MDF 0510H3D ○ 82 23,0 26,0 5,1 6 3 0520H3D ○ 82 23,4 20,4 5,2 6 3 0520H3D ○ 82 23,4 20,4 5,3 6 3 0530H3D ○ 82 23,9 26,9 5,4 6 3 0530H3D ○ 82 24,3 27,3 5,5 6 3 0540H3D ○ 82 24,3 27,3 5,6 6 3 0550H3D ○ 82 24,3 27,8 5,6 6 3 0550H3D ○ 82 24,8 27,8 5,7 6 3 0560H5D ○ 100 36,9 39,9	4,8	5			0		32,2	
5,0 5 5 5 0500H3D	10	5	3	0490H3D				
5,0 5 0500H5D ● 98 33,5 36,5 5,1 6 3 MDF 0510H3D ○ 82 23,0 26,0 5,1 6 5 0510H5D ○ 100 34,2 37,2 5,2 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 3 0530H3D ○ 82 23,9 26,9 5,4 6 3 0530H3D ○ 82 24,3 27,3 5,5 6 3 0540H3D ○ 82 24,3 27,3 5,5 6 3 0550H3D ○ 82 24,8 27,3 5,6 6 5 0550H5D ○ 100 36,2 39,9 5,6 6 3 MDF 0560H3D ○ 82 25,2 28,2 5,7 6 3 0560H5D ○ 100 36,2 39,7	4,5	J	5		0			
5.1 6 3 MDF 0510H3D ○ 82 23,0 26,0 0510H5D ○ 100 34,2 37,2 37,2 5,2 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 5 0530H5D ○ 100 35,5 38,5 5,4 6 5 0530H5D ○ 100 36,2 39,2 5,5 6 3 0550H5D ○ 100 36,2 39,2 5,5 6 3 0550H5D ○ 100 36,2 39,2 5,6 6 3 0550H5D ○ 100 36,9 39,9 5,6 6 3 0550H5D ○ 100 37,5 40,5 5,7 6 3 0570H3D ○ 82 25,2 28,2 5,7 6 3 0550H5D ○ 100 37,5 40,5 5,7 6 3 0570H5D ○ 100 38,2 41,2 5,8 6 3 0580H5D ○ 100 38,2 41,2 5,8 6 3 0580H5D ○ 100 38,2 41,2 5,8 6 3 0580H5D ○ 100 38,9 41,9 5,9 6 5 0580H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 38,9 42,5 60 60 6 3 0680H3D ○ 82 26,6 29,6 60 60 6 3 0680H3D ○ 82 26,0 29,6 60 60 6 3 0680H3D ○ 82 26,0 29,6 60 60 6 3 0680H3D ○ 82 26,0 29,6 60 60 6 3 0680H3D ○ 82 26,0 29,6 60 60 6 3 0680H3D ○ 82 26,0 29,6 60 60 6 3 0680H3D ○ 82 27,0 30,0	5.0	5			•			
5,1 6 5 0510H5D ○ 100 34,2 37,2 5,2 6 3 0520H3D ○ 82 23,4 26,4 5,3 6 5 0520H5D ○ 100 34,8 37,8 5,3 6 5 0530H3D ○ 82 23,9 26,9 5,4 6 3 0540H3D ○ 82 24,3 27,3 5,5 6 3 0550H3D ○ 82 24,8 27,8 5,6 6 3 0550H5D ○ 100 36,9 39,9 5,6 6 3 MDF 0560H3D ○ 82 25,2 28,2 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,8 6 3 0580H3D ○ 82 25,7 28,7 5,9 6 3 0580H5D ○ 100 38,2 41,2					0			
5,2 6 3 0520H3D ○ 82 23,4 26,4 5 0520H5D ○ 100 34,8 37,8 37,8 5,3 6 5 0530H3D ○ 82 23,9 26,9 100 35,5 38,5 5,4 6 3 0540H3D ○ 82 24,3 27,3 36,5 5,5 6 3 0550H3D ● 82 24,8 27,8 5,6 6 3 MDF 0560H3D ○ 100 36,9 39,9 5,6 6 3 0550H3D ○ 82 25,2 28,2 28,2 36,5 5,7 6 3 0550H3D ○ 82 25,7 28,7 5,7 6 3 0550H3D ○ 82 25,7 28,7 5,7 6 3 0550H3D ○ 82 25,7 28,7 5,7 6 3 0550H3D ○ 82 25,7 28,7 5,7 6 3 0550H3D ○ 82 25,7 28,7 5,7 6 3 0550H3D ○ 82 26,6 29,6 5 0580H3D ○ 82 26,1 29,1 5,8 6 3 0580H3D ○ 82 26,1 29,1 5,9 6 5 0590H3D ○ 100 38,9 41,9 5,9 6 5 0590H3D ○ 100 38,9 41,9 5,9 6 5 0590H3D ○ 100 39,5 42,5 6,0 6 3 0600H3D ● 82 27,0 30,0	5,1	6	5					∠0,U
5,2 0 5 0520H5D ○ 100 34,8 37,8 5,3 6 3 0530H3D ○ 82 23,9 26,9 5,4 6 3 0540H3D ○ 82 24,3 27,3 5,5 6 3 0550H3D ● 82 24,8 27,8 5,5 6 3 0550H3D ● 82 24,8 27,8 5,6 6 5 0550H5D ● 100 36,9 39,9 5,6 6 5 0560H5D ○ 100 36,9 39,9 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,8 6 3 0580H3D ○ 82 26,1 29,1 5,9 6 3 0580H3D ○ 82 26,1 29,1 5,9 6 5 0590H5D ○ 100 38,9 41,9			3					
5,3 6 5 0530H5D ○ 100 35,5 38,5 5,4 6 3 0540H3D ○ 82 24,3 27,3 5,5 6 3 0550H3D ● 82 24,8 27,8 5,6 6 3 MDF 0560H3D ○ 82 25,2 28,2 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,8 6 3 0580H3D ○ 82 26,1 29,1 5,9 6 3 0580H3D ○ 82 26,6 29,6 5,9 6 3 0590H3D ○ 82 26,6 29,6 6,0 6 3 0600H3D ● 82 27,0 30,0	5,2	6	5					
5,3 6 5 0530H5D ○ 100 35,5 38,5 5,4 6 3 0540H3D ○ 82 24,3 27,3 5,5 6 3 0550H3D ● 82 24,8 27,8 5,6 6 3 MDF 0560H3D ○ 82 25,2 28,2 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,8 6 3 0580H3D ○ 82 26,1 29,1 5,9 6 3 0580H3D ○ 82 26,6 29,6 5,9 6 3 0590H3D ○ 82 26,6 29,6 6,0 6 3 0600H3D ● 82 27,0 30,0			3					
5,4 6 3 0540H3D	5,3	6	5					
5,4 6 5 0540H5D ○ 100 36,2 39,2 5,5 6 3 0550H3D ● 82 24,8 27,8 5,6 6 5 0550H5D ● 100 36,9 39,9 5,6 6 5 0560H3D ○ 82 25,2 28,2 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,8 6 3 0580H3D ○ 82 26,1 29,1 5,9 6 3 0590H3D ○ 82 26,6 29,6 5 0590H5D ○ 100 38,9 41,9 5,9 6 5 0590H5D ○ 100 39,5 42,5 6,0 6 3 0600H3D ● 82 27,0 30,0	E 4	e					24,3	27,3
5,6 6 3 MDF 0560H3D 0 0 82 25,2 28,2 0560H5D 0 100 37,5 40,5 0560H5D 0 100 37,5 40,5 0570H3D 0 82 25,7 28,7 0570H5D 0 100 38,2 41,2 05,8 6 5 0580H3D 0 82 26,1 29,1 05,9 6 5 0590H3D 0 82 26,6 29,6 0590H3D 0 82 26,6 29,6 0590H3D 0 82 26,6 29,6 0590H3D 0 100 39,5 42,5 0590H5D 0 100 39,5 42,5 0590H5D 0 100 39,5 42,5 0590H3D 0 82 27,0 30,0 0 6 0 6 3 0600H3D	5,4	0	5			100	36,2	39,2
5,6 6 3 MDF 0560H3D ○ 82 25,2 28,2 0560H5D ○ 100 37,5 40,5 5,7 6 3 0570H3D ○ 82 25,7 28,7 0570H5D ○ 100 38,2 41,2 5,8 6 3 0580H5D ○ 100 38,2 41,9 5,9 6 3 0590H3D ○ 82 26,6 29,6 5 0590H5D ○ 100 39,5 42,5 6,0 6 3 0600H3D ● 82 27,0 30,0	5.5	6			•			27,8
5,0 5 0560H5D ○ 100 37,5 40,5 5,7 6 3 0570H3D ○ 82 25,7 28,7 5,8 6 3 0580H3D ○ 82 26,1 29,1 5,9 6 3 0590H3D ○ 82 26,6 29,6 5 0590H5D ○ 100 39,5 42,5 6,0 6 3 0600H3D ● 82 27,0 30,0							36,9	39,9
5,7 6 3 0570H3D ○ 82 25,7 28,7 0570H3D ○ 82 25,7 28,7 0570H5D ○ 100 38,2 41,2 05,8 6 5 0580H3D ○ 82 26,1 29,1 05,9 6 3 0590H3D ○ 82 26,6 29,6 0590H3D ○ 82 26,6 29,6 0590H3D ○ 100 39,5 42,5 0590H5D ○ 100 39,5 42,5 0590H3D ● 82 27,0 30,0	5.6	6	3				25,2	
5.8 6 3 0580H3D ○ 100 38.2 41.2 5.8 6 5 0580H3D ○ 82 26.1 29.1 5.9 6 3 0580H3D ○ 100 38.9 41.9 5.9 6 3 0590H3D ○ 82 26.6 29.6 5 0590H5D ○ 100 39.5 42.5 6.0 6 3 0600H3D ● 82 27.0 30.0		-	5				37,5	
5,8 6 3 0580H3D ○ 82 26,1 29,1 050 5,9 6 3 0590H3D ○ 82 26,6 29,6 0590H5D ○ 100 39,5 42,5 0590H5D ○ 1	5,7	6	5				20,7	
5,9 6 3 0590H3D ○ 100 38,9 41,9 5,9 6 5 0590H3D ○ 82 26,6 29,6 5 0590H5D ○ 100 39,5 42,5 6 0 6 3 0600H3D ● 82 27,0 30,0			3					
6.0 6 3 0600H3D • 82 27,0 30,0	5,8	6	5					
6.0 6 3 0600H3D • 82 27,0 30,0			3					
6,0 6 3 0600H3D • 82 27,0 30,0 0600H5D • 100 40,2 43,2	5,9	6	5				39,5	42,5
5 0600H5D ● 100 40,2 43,2	6.0	6	3	0600H3D	•	82	27,0	30,0
		U	5	0600H5D	•	100	40,2	


■ Durchmesser Ø 6 1_0 0 mm


Durchm. Schaft ODE OD	Du	rchm	esser	Ø 6,1–9,0 mm	1			
Common Common	Durchm.	Schaft	Bohr-			۸hma	ecundon	(mm)
6.1 7 3 MDF 0610H3D O 88 27.5 30.5 0610H5D O 109 40.9 43.9 30.9 0620H3D O 88 27.9 30.9 0620H3D O 109 41.5 44.5 44.5 6.3 7 5 0630H3D O 88 28.4 31.4 6.4 7 3 0640H3D O 88 28.8 31.8 0640H3D O 88 28.8 31.8 0640H3D O 88 28.8 31.8 0640H3D O 88 28.8 31.8 0640H3D O 88 29.3 32.3 0650H3D ● 109 42.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45		ØDs	lochtiefe	Artikelbezeichnung	Lager	Abilie	ssungen	1 (111111)
6.1	(mm)	(mm)	(L/D)			L		
6.2 7 3 0620H3D O 109 43,9 43,9 43,9 63,3 6620H3D O 109 41,5 44,5 6,3 7 5 0630H3D O 88 28,4 31,4 6,4 7 3 0640H3D O 88 28,8 31,8 0640H3D O 88 28,8 31,8 0640H3D O 88 28,8 31,8 0640H3D O 88 28,8 31,8 0640H3D O 88 28,8 31,8 0640H3D O 88 29,3 32,3 0650H5D O 109 42,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45	61	7			•			
6,3 7 5 0620H5D 0 109 41,5 44,5 6,3 7 5 0630H3D 0 88 28,4 31,4 6,4 7 3 0640H3D 0 88 28,8 31,8 6,5 7 5 0650H3D 0 109 42,9 45,9 6,5 7 5 0650H3D 0 88 29,3 32,3 6,6 7 5 0660H3D 0 88 29,7 32,7 6,7 7 5 0660H3D 0 88 30,2 33,2 6,7 7 5 0660H3D 0 88 30,2 33,2 6,8 7 5 0660H3D 0 88 30,2 33,2 6,8 7 5 0690H3D 0 88 31,1 34,1 49,9 7,0 7 3 0690H3D 0 88 31,1	0, 1		5				40,9	
6,3 7 3 0630H3D O 109 41,3 34,3 36,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,4 7 5 0630H5D O 109 42,2 45,2 6,4 7 5 0640H5D O 109 42,2 45,2 6,5 7 3 0650H3D O 109 42,9 45,9 45,9 6,5 7 5 0650H5D O 109 43,6 46,6 6,6 7 5 0660H5D O 109 44,9 47,2 47,2 6,7 7 3 0670H3D O 88 29,7 32,7 6,6 8 7 5 0660H5D O 109 44,9 47,9 47,9 6,8 7 5 0660H5D O 109 44,9 47,9 6,8 7 5 0660H5D O 109 44,9 47,9 6,8 7 5 0660H5D O 109 44,9 47,9 6,8 7 5 0680H5D O 109 44,9 47,9 6,8 7 5 0680H5D O 109 46,2 49,2 7,0 7 5 0690H5D O 109 46,2 49,2 7,0 7 5 0690H5D O 109 46,2 49,2 7,1 8 5 0700H5D O 109 46,2 49,2 7,1 8 5 0700H5D O 118 47,6 50,6 7,2 8 3 0730H3D O 94 32,0 35,0 7,0 7 3 0730H3D O 94 32,4 35,4 5,4 5,4 5,4 5,4 5,4 5,4 5,4 5,4 5,4	62	7	3				27,9	
6,3 7 5 0630H5D 0 109 42.2 45.2 6,4 7 5 0640H5D 0 88 28.8 31,8 6,5 7 3 0650H3D 88 29,3 32,3 6,6 7 5 0650H5D 109 42,9 45,9 6,6 7 5 0660H5D 109 43,6 46,6 6,7 7 3 0670H3D 88 29,7 32,7 6,7 7 3 0670H3D 88 30,2 33,2 6,8 7 5 0670H5D 109 44,9 47,9 6,8 7 5 0680H5D 109 46,2 48,2 6,9 7 3 0690H3D 88 31,1 34,1 7,0 7 5 0690H3D 88 31,1 34,1 7,1 8 3 070H3D 88 31,5 34,5 <td>0,2</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0,2		5					
6,4 7 5 0640H3D 0 88 29.3 32.3 0650H3D 0 109 42.9 45.9 6.5 7 5 0650H5D 0 109 42.9 45.9 6.6 7 3 MDF 0660H3D 0 88 29.3 32.3 0650H3D 0 88 29.3 32.7 0660H5D 0 109 44.2 47.2 6.7 7 5 0660H5D 0 109 44.2 47.2 6.7 7 5 0660H3D 0 88 30.2 33.2 0670H3D 0 88 30.2 33.2 0670H3D 0 88 30.2 33.2 0670H3D 0 88 30.6 33.6 0680H3D 0 109 44.2 47.2 06.8 7 5 0660H5D 0 109 44.2 47.2 06.8 7 5 0660H5D 0 109 44.2 47.2 06.8 7 5 0660H5D 0 109 45.6 48.6 0.9 7 5 0680H5D 0 109 45.6 48.6 0.9 7 5 0690H3D 0 88 31.1 34.1 04.0 04.0 04.0 04.0 04.0 04.0 04.0 0	6.3	7						
6,4 7 5 0640H5D 0 109 42,9 45,9 6,5 7 5 0650H5D 0 109 43,6 46,6 6,6 7 3 MDF 0660H3D 0 88 29,7 32,7 6,6 7 3 MDF 0660H3D 0 88 30,2 33,2 6,7 7 5 0670H5D 0 109 44,2 47,2 6,7 7 5 0670H5D 0 109 44,9 47,9 6,8 7 3 0680H5D 0 109 44,9 47,9 6,8 7 3 0680H5D 0 109 45,6 48,6 6,9 7 5 0680H5D 0 109 46,9 49,9 7,0 7 3 0700H5D 9 109 46,9 49,9 7,1 8 3 0720H3D 94 32,4 35,4			5					
6,5 7 5 0650H3D	6.4	7	3					
6,6 7 5 0650H5D • 109 43,6 46,6 6,6 7 5 0660H5D 0 109 44,2 47,2 6,7 7 3 0670H3D 0 88 29,7 32,7 6,8 7 5 0670H5D 0 109 44,9 47,9 6,8 7 5 0680H5D 0 109 44,9 47,9 6,8 7 5 0680H5D 0 109 44,6 48,6 6,9 7 5 0690H5D 0 109 46,2 49,2 7,0 7 3 0700H5D • 109 46,2 49,2 7,1 8 3 MDF 0710H3D • 88 31,5 34,5 7,1 8 3 0720H3D • 94 32,0 35,4 7,2 8 3 0720H3D • 94 32,3 35,4 <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>			5					
6,6 7 3 MDF 0660H3D ○ 88 29,7 32,0 40,0 6,0 7 5 0660H5D ○ 109 44,2 47,2 6,7 7 5 0660H5D ○ 109 44,2 47,2 6,7 7 5 0670H5D ○ 109 44,9 47,9 6,8 7 5 0680H5D ○ 109 44,9 47,9 6,8 7 5 0680H5D ○ 109 46,2 49,2 7,0 7 5 0690H3D ○ 88 31,1 34,1 34,1 34,1 34,1 34,1 34,1 34,1	6,5	7	3		-			
6,6 7 5 0660H5D 0 109 44,2 47,2 6,7 7 3 0670H3D 0 88 30,2 33,2 6,8 7 5 0680H3D 0 88 30,6 33,6 6,9 7 3 0690H3D 0 88 31,1 34,1 7,0 7 5 0690H5D 0 109 46,2 49,2 7,0 7 5 0700H3D 0 88 31,5 34,5 7,0 7 5 0700H3D 0 94 32,0 35,0 7,1 8 3 MDF 0710H3D 0 94 32,0 35,0 7,2 8 3 0720H5D 0 118 47,6 50,6 7,2 8 3 0720H5D 0 118 48,2 51,2 7,3 8 3 0730H3D 94 32,9 35,9								
6,7 7 3 0670H3D 0 88 30,2 33,2 6,8 7 3 0680H3D 0 88 30,6 33,6 6,9 7 3 0690H3D 0 88 31,1 34,1 7,0 7 3 0690H3D 0 88 31,1 34,1 7,0 7 3 0700H3D 0 88 31,1 34,1 7,0 7 3 0700H3D 0 88 31,5 34,5 7,1 8 3 MDF 0710H3D 0 94 32,0 35,0 7,1 8 3 0720H3D 0 94 32,0 35,0 7,2 8 3 0720H3D 0 94 32,4 35,4 7,2 8 3 0720H3D 0 94 32,9 35,9 7,3 8 3 0730H5D 0 118 48,9 51,2	6,6	7	5					
6,8 7 3 0680H3D ○ 109 44,9 47,9 6,8 7 5 0680H3D ○ 88 30,6 33,6 6,9 7 3 0690H3D ○ 88 31,1 34,1 0690H3D ○ 109 46,2 49,2 7,0 7 5 0700H5D ○ 109 46,2 49,2 7,0 7 5 0700H5D ○ 109 46,9 49,9 7,1 8 3 MDF 0710H3D ○ 94 32,0 35,0 0710H5D ○ 118 47,6 50,6 7,2 8 5 0720H5D ○ 118 47,6 50,6 7,2 8 5 0720H5D ○ 118 48,2 51,2 7,3 8 5 0730H3D ○ 94 32,9 35,9 7,4 8 5 0730H5D ○ 118 48,9 51,9 7,4 8 5 0740H3D ○ 94 33,3 36,3 7,4 8,5 0750H3D ○ 118 49,6 52,6 7,5 8 5 0750H5D ○ 118 50,3 53,3 7,6 8 5 0750H5D ○ 118 50,3 53,3 7,7 8 5 0760H5D ○ 118 50,3 53,3 7,7 8 5 0760H5D ○ 118 50,3 53,3 7,7 8 5 0760H5D ○ 118 50,3 53,3 7,7 8 5 0760H5D ○ 118 51,6 54,6 54,6 54,6 54,6 54,6 54,6 54,6 54	·····		3					22 2
6,9 7 3 0680H5D ○ 109 45,6 48,6 6,9 7 5 0690H3D ○ 88 31,1 34,1 34,1 7 5 0690H5D ○ 109 46,2 49,2 7,0 7 5 0700H3D ● 109 46,9 49,9 7,1 8 3 MDF 0710H3D ○ 94 32,0 35,0 0710H5D ○ 118 47,6 50,6 7,2 8 5 0720H5D ○ 118 48,2 51,2 7,3 8 5 0730H5D ○ 118 48,9 51,9 7,4 8 5 0730H5D ○ 118 48,9 51,9 7,4 8 5 0740H5D ○ 118 48,9 51,9 7,4 8 5 0740H5D ○ 118 48,9 51,9 7,4 8 5 0740H5D ○ 118 48,9 51,9 7,4 8 5 0740H5D ○ 118 48,9 51,9 7,4 8 5 0750H5D ○ 118 48,0 52,6 7,5 8 5 0750H5D ○ 118 49,6 52,6 7,5 8 5 0750H5D ○ 118 50,9 53,9 7,7 8 5 0750H5D ○ 118 50,9 53,9 7,7 8 5 0750H5D ○ 118 50,9 53,9 7,7 8 5 0750H5D ○ 118 50,9 53,9 7,7 8 5 0750H5D ○ 118 50,9 53,9 5,9 8,0 8 5 0780H5D ○ 118 51,6 54,6 54,6 7,8 8 5 0780H5D ○ 118 52,9 55,9 8,0 8 5 0780H5D ○ 118 52,9 55,9 8,0 8 5 0800H5D ○ 118 52,9 55,9 8,0 8 5 0800H5D ○ 118 52,9 55,9 8,0 8,0 8 5 0800H5D ○ 118 53,6 56,6 6,6 8,1 9 3 MDF 0810H3D ○ 100 36,5 39,5 50,3 8,2 9 5 0830H5D ○ 127 54,3 57,3 8,2 9 5 0830H5D ○ 127 54,3 57,3 8,2 9 3 0830H3D ○ 100 37,4 40,4 8,3 6,4 9 5 0830H5D ○ 127 55,6 58,6 8,4 9 3 0830H3D ○ 100 37,8 40,8 8,5 9 5 0830H5D ○ 127 55,6 58,6 8,4 9 3 0850H3D ○ 100 37,8 40,8 8,5 9 3 0850H3D ○ 100 38,7 41,7 75,0 60,0 8,6 9 3 0850H5D ○ 127 55,6 58,6 8,4 9 3 0850H3D ○ 100 38,7 41,7 75,0 60,0 8,6 9 3 0850H5D ○ 127 55,6 6,8 6,9 3 MDF 0860H3D ○ 100 38,7 41,7 75,0 60,0 8,6 9 3 0850H5D ○ 127 55,6 58,6 8,4 9 3 0850H5D ○ 127 55,6 58,6 8,4 9 3 0850H5D ○ 127 55,6 58,6 8,4 9 5 0850H5D ○ 127 55,6 6,8 6 9 3 MDF 0860H3D ○ 100 38,7 41,7	6,7	7	5					
6,9 7 3 0680H5D ○ 109 45,6 48,6 6,9 7 5 0690H3D ○ 88 31,1 34,1 34,1 7 5 0690H5D ○ 109 46,2 49,2 7,0 7 5 0700H3D ● 109 46,9 49,9 7,1 8 3 MDF 0710H3D ○ 94 32,0 35,0 0710H5D ○ 118 47,6 50,6 7,2 8 5 0720H5D ○ 118 48,2 51,2 7,3 8 5 0730H5D ○ 118 48,9 51,9 7,4 8 5 0730H5D ○ 118 48,9 51,9 7,4 8 5 0740H5D ○ 118 48,9 51,9 7,4 8 5 0740H5D ○ 118 48,9 51,9 7,4 8 5 0740H5D ○ 118 48,9 51,9 7,4 8 5 0740H5D ○ 118 48,9 51,9 7,4 8 5 0750H5D ○ 118 48,0 52,6 7,5 8 5 0750H5D ○ 118 49,6 52,6 7,5 8 5 0750H5D ○ 118 50,9 53,9 7,7 8 5 0750H5D ○ 118 50,9 53,9 7,7 8 5 0750H5D ○ 118 50,9 53,9 7,7 8 5 0750H5D ○ 118 50,9 53,9 7,7 8 5 0750H5D ○ 118 50,9 53,9 5,9 8,0 8 5 0780H5D ○ 118 51,6 54,6 54,6 7,8 8 5 0780H5D ○ 118 52,9 55,9 8,0 8 5 0780H5D ○ 118 52,9 55,9 8,0 8 5 0800H5D ○ 118 52,9 55,9 8,0 8 5 0800H5D ○ 118 52,9 55,9 8,0 8,0 8 5 0800H5D ○ 118 53,6 56,6 6,6 8,1 9 3 MDF 0810H3D ○ 100 36,5 39,5 50,3 8,2 9 5 0830H5D ○ 127 54,3 57,3 8,2 9 5 0830H5D ○ 127 54,3 57,3 8,2 9 3 0830H3D ○ 100 37,4 40,4 8,3 6,4 9 5 0830H5D ○ 127 55,6 58,6 8,4 9 3 0830H3D ○ 100 37,8 40,8 8,5 9 5 0830H5D ○ 127 55,6 58,6 8,4 9 3 0850H3D ○ 100 37,8 40,8 8,5 9 3 0850H3D ○ 100 38,7 41,7 75,0 60,0 8,6 9 3 0850H5D ○ 127 55,6 58,6 8,4 9 3 0850H3D ○ 100 38,7 41,7 75,0 60,0 8,6 9 3 0850H5D ○ 127 55,6 6,8 6,9 3 MDF 0860H3D ○ 100 38,7 41,7 75,0 60,0 8,6 9 3 0850H5D ○ 127 55,6 58,6 8,4 9 3 0850H5D ○ 127 55,6 58,6 8,4 9 3 0850H5D ○ 127 55,6 58,6 8,4 9 5 0850H5D ○ 127 55,6 6,8 6 9 3 MDF 0860H3D ○ 100 38,7 41,7			3		1			
7,0 7 5 0690H5D ○ 109 46,2 49,2 7,0 7 3 0700H3D ● 88 31,5 34,5 7,1 8 3 MDF 0710H3D ○ 94 32,0 35,0 7,1 8 3 MDF 0710H3D ○ 94 32,4 35,4 7,2 8 3 0720H3D ○ 94 32,4 35,4 7,2 8 3 0720H3D ○ 94 32,4 35,4 7,2 8 3 0730H3D ○ 94 32,9 35,9 7,3 8 5 0730H3D ○ 94 32,9 35,9 7,4 8 5 0730H3D ○ 94 32,9 35,9 7,5 8 3 0740H3D ○ 94 33,8 36,8 7,5 8 3 0750H3D ○ 94 34,7 37,7 <td>6,8</td> <td>7</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	6,8	7	5					
7,0 7 5 0690H5D ○ 109 46,2 49,2 7,0 7 3 0700H3D ● 88 31,5 34,5 7,1 8 3 MDF 0710H3D ○ 94 32,0 35,0 7,1 8 3 MDF 0710H3D ○ 94 32,4 35,4 7,2 8 3 0720H3D ○ 94 32,4 35,4 7,2 8 3 0720H3D ○ 94 32,4 35,4 7,2 8 3 0730H3D ○ 94 32,9 35,9 7,3 8 5 0730H3D ○ 94 32,9 35,9 7,4 8 5 0730H3D ○ 94 32,9 35,9 7,5 8 3 0740H3D ○ 94 33,8 36,8 7,5 8 3 0750H3D ○ 94 34,7 37,7 <td> </td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td>			3					
7,0 7 5 0700H5D • 109 46,9 49,9 7,1 8 3 MDF 0710H3D • 94 32,0 35,0 7,2 8 3 0720H3D • 94 32,0 35,0 7,2 8 3 0720H3D • 94 32,4 35,4 7,3 8 3 0730H3D • 94 32,9 35,9 7,4 8 3 0730H5D • 118 48,9 51,9 7,4 8 3 0740H3D • 94 33,3 36,3 7,5 8 3 0750H3D • 94 33,8 36,8 7,5 8 3 0750H3D • 94 34,2 37,2 7,6 8 3 MDF 0760H3D • 94 34,2 37,2 7,7 8 3 0770H3D • 94 34,7 37,7 <td>6,9</td> <td>7</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	6,9	7	5					
7,0 7 5 0700H5D • 109 46,9 49,9 7,1 8 3 MDF 0710H3D • 94 32,0 35,0 7,2 8 3 0720H3D • 94 32,0 35,0 7,2 8 3 0720H3D • 94 32,4 35,4 7,3 8 3 0730H3D • 94 32,9 35,9 7,4 8 3 0730H5D • 118 48,9 51,9 7,4 8 3 0740H3D • 94 33,3 36,3 7,5 8 3 0750H3D • 94 33,8 36,8 7,5 8 3 0750H3D • 94 34,2 37,2 7,6 8 3 MDF 0760H3D • 94 34,2 37,2 7,7 8 3 0770H3D • 94 34,7 37,7 <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td>			3					
7,1 8 3 MDF 0710H3D O 118 47,6 50,6 50,6 50,6 50,6 50,6 50,6 50,6 50	7,0	7			•			
7,1 0 5 0710H5D ○ 118 47,6 50,6 7,2 8 3 0720H3D ○ 94 32,4 35,4 7,3 8 5 0720H5D ○ 118 48,2 51,2 7,3 8 5 0730H3D ○ 94 32,9 35,9 7,4 8 3 0740H3D ○ 94 33,3 36,3 7,5 8 3 0750H3D ● 94 33,8 36,8 7,5 8 3 0750H3D ● 94 33,8 36,8 7,6 8 3 MDF 0760H3D ○ 94 34,2 37,2 7,7 8 3 0770H3D ○ 94 34,7 37,7 7,8 8 3 0770H3D ○ 94 34,7 37,7 7,8 8 3 0780H3D ○ 94 35,1 38,1					0			35.0
7,2 8 3 0720H3D O 94 32,4 35,4 7,3 8 3 0720H5D O 118 48,2 51,2 7,3 8 3 0730H3D O 94 32,9 35,9 7,4 8 3 0740H3D O 94 33,3 36,3 7,5 8 3 0750H3D O 94 33,8 36,8 7,5 8 3 0750H3D O 94 33,8 36,8 7,6 8 3 0750H3D O 94 34,2 37,2 7,6 8 3 0750H3D O 94 34,2 37,2 7,7 8 3 0770H3D O 94 34,7 37,7 7,8 8 3 0770H3D O 94 35,1 38,1 7,8 8 3 0780H3D O 94 35,1 38,1 <td>/,1</td> <td> 8</td> <td>5</td> <td></td> <td></td> <td>118</td> <td></td> <td></td>	/,1	8	5			118		
7,2 0 5 0720H5D 0 118 48,2 51,2 7,3 8 3 0730H3D 0 94 32,9 35,9 7,4 8 5 0730H5D 0 118 48,9 51,9 7,4 8 5 0740H3D 0 94 33,3 36,3 7,5 8 3 0750H3D 0 94 33,8 36,8 7,6 8 3 MDF 0760H3D 0 94 34,2 37,2 7,6 8 3 MDF 0760H3D 0 94 34,2 37,2 7,7 8 3 0770H3D 0 94 34,7 37,7 7,8 8 3 0770H3D 0 94 34,7 37,7 7,8 8 3 0780H3D 0 94 35,1 38,1 7,8 8 3 0780H3D 0 118 52,9 55,3 <td>7.0</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td>	7.0		3					
7,5 6 5 0730H5D ○ 118 48,9 51,9 7,4 8 3 0740H3D ○ 94 33,3 36,3 7,5 8 3 0750H3D ● 94 33,8 36,8 7,6 8 5 0750H3D ● 94 34,2 37,2 7,6 8 3 MDF 0760H3D ○ 94 34,2 37,2 7,7 8 5 0760H5D ○ 118 50,9 53,9 7,7 8 3 0770H3D ○ 94 34,7 37,7 7,8 8 3 0780H3D ○ 94 35,6 38,6 7,8 8 3 0780H3D ○ 94 35,6 38,6 7,9 8 3 0790H3D ○ 94 35,6 38,6 8,0 8 3 0790H3D ○ 94 36,0 39,0	7,2	8	5					
7,5 6 5 0730H5D ○ 118 48,9 51,9 7,4 8 3 0740H3D ○ 94 33,3 36,3 7,5 8 3 0750H3D ● 94 33,8 36,8 7,6 8 5 0750H3D ● 94 34,2 37,2 7,6 8 3 MDF 0760H3D ○ 94 34,2 37,2 7,7 8 5 0760H5D ○ 118 50,9 53,9 7,7 8 3 0770H3D ○ 94 34,7 37,7 7,8 8 3 0780H3D ○ 94 35,6 38,6 7,8 8 3 0780H3D ○ 94 35,6 38,6 7,9 8 3 0790H3D ○ 94 35,6 38,6 8,0 8 3 0790H3D ○ 94 36,0 39,0	7.0	•	3			94		
7,4 8 3 0740H3D ○ 94 33,3 36,3 7,5 8 3 0750H3D ● 94 33,8 36,8 7,5 8 3 0750H3D ● 94 33,8 36,8 7,6 8 5 0750H3D ● 94 34,2 37,2 7,7 8 5 0760H3D ○ 94 34,7 37,7 7,7 8 3 0770H3D ○ 94 34,7 37,7 7,8 8 3 0780H3D ○ 94 35,1 38,1 7,8 8 3 0780H3D ○ 94 35,1 38,1 7,9 8 3 0780H3D ○ 94 35,6 38,6 7,9 8 3 0790H3D ○ 94 35,6 38,6 8,0 8 3 0800H3D ● 94 36,0 39,0 <td>1,3</td> <td>8</td> <td></td> <td>0730H5D</td> <td>0</td> <td>118</td> <td></td> <td></td>	1,3	8		0730H5D	0	118		
7,5 8 3 0750H3D ● 94 33,8 36,8 7,6 8 5 0750H3D ● 94 33,8 36,8 7,6 8 3 MDF 0760H3D ○ 94 34,2 37,2 7,7 8 5 0760H5D ○ 118 50,9 53,9 7,7 8 3 0770H3D ○ 94 34,7 37,7 7,8 8 3 0780H3D ○ 94 35,6 38,6 7,9 8 3 0780H3D ○ 94 35,6 38,6 7,9 8 3 0790H3D ○ 94 35,6 38,6 7,9 8 3 0790H3D ○ 94 35,6 38,6 8,0 8 3 0800H3D ● 94 36,0 39,0 8,1 9 3 0800H3D ● 118 53,6 56,6	7.4	0	3	0740H3D	0	94		
7,5 6 5 0750H5D • 118 50,3 53,3 7,6 8 3 MDF 0760H3D 0 94 34,2 37,2 7,7 8 5 0760H5D 0 118 50,9 53,9 7,7 8 5 0770H3D 0 94 34,7 37,7 7,8 8 3 0780H3D 0 94 35,1 38,1 7,8 8 5 0780H5D 0 118 52,3 55,3 7,9 8 3 0790H3D 0 94 35,6 38,6 7,9 8 3 0790H3D 0 94 36,0 38,6 8,0 8 5 0790H3D 0 94 36,0 39,0 8,1 9 3 MDF 0810H3D 0 100 36,5 39,5 8,2 9 3 0820H3D 0 100 36,5 39,5<	7,4		5	0740H5D	0	118	49,6	52,6
7,6 8 3 MDF 0760H3D ○ 94 34,2 37,2 0760H5D ○ 118 50,9 53,9 7,7 8 5 0770H5D ○ 118 51,6 54,6 54,6 55 0770H5D ○ 118 51,6 54,6 54,6 54,6 54,6 54,6 54,6 54,6 54	7.5	Q	3	0750H3D	•		33,8	
7,6 0 5 0760H5D ○ 118 50,9 53,9 7,7 8 3 0770H3D ○ 94 34,7 37,7 7,8 8 5 0770H5D ○ 118 51,6 54,6 7,8 8 5 0780H5D ○ 118 52,3 55,3 7,9 8 3 0790H3D ○ 94 35,6 38,6 8,0 8 5 0790H5D ○ 118 52,9 55,9 8,0 8 3 0800H3D ● 94 36,0 39,0 8,1 9 3 0800H5D ● 118 53,6 56,6 8,1 9 3 0810H5D ○ 127 54,3 57,3 8,2 9 3 0820H5D ○ 127 54,9 57,9 8,3 9 3 0830H3D ○ 100 37,4 40,4	7,5	0	5	0750H5D	•	118		
7.7 8 3 0770H3D 0 94 34,7 37,7 7.8 5 0770H5D 0 118 51,6 54,6 54,6 54,6 54,6 54,6 54,6 54,6 54	76	R						37,2
7,7 0 5 0770H5D ○ 118 51,6 54,6 7,8 8 3 0780H3D ○ 94 35,1 38,1 7,9 8 3 0790H3D ○ 94 35,6 38,6 8,0 8 5 0790H5D ○ 118 52,9 55,9 8,0 8 3 0800H3D ● 94 36,0 39,0 8,1 9 3 MDF 0810H3D ○ 100 36,5 39,5 8,1 9 3 MDF 0810H3D ○ 100 36,5 39,5 8,2 9 3 0820H3D ○ 100 36,9 39,9 8,3 9 3 0830H3D ○ 100 37,4 40,4 8,3 9 3 0830H3D ○ 100 37,4 40,4 8,4 9 3 0840H3D ○ 100 37,8 4	,,0		5					
7,8 8 3 0780H3D ○ 94 35,1 38,1 7,9 8 5 0780H3D ○ 94 35,6 38,6 7,9 8 3 0790H3D ○ 94 35,6 38,6 8,0 8 5 0790H5D ○ 118 52,9 55,9 8,0 8 5 0800H3D ● 94 36,0 39,0 8,1 9 3 MDF 0810H3D ○ 100 36,5 39,5 8,2 9 3 0820H3D ○ 100 36,9 39,9 8,3 9 3 0820H3D ○ 100 36,9 39,9 8,3 9 3 0830H3D ○ 100 37,4 40,4 8,4 9 3 0840H3D ○ 100 37,8 40,8 8,5 9 3 0850H3D ● 100 38,3 41,3 8,6 9 3 MDF 0860H3D ○ 100 38,7 41,7	77	8	3					37,7
7,0 0 5 0780H5D ○ 118 52,3 55,3 7,9 8 3 0790H3D ○ 94 35,6 38,6 8,0 8 5 0790H5D ○ 118 52,9 55,9 8,0 8 3 0800H3D ● 94 36,0 39,0 8,1 9 3 MDF 0810H3D ○ 100 36,5 56,6 8,1 9 3 0810H5D ○ 100 36,5 39,5 8,2 9 3 0820H3D ○ 100 36,9 39,9 8,3 9 3 0830H3D ○ 100 37,4 40,4 8,4 9 3 0840H3D ○ 100 37,8 40,8 8,5 9 3 0850H3D ● 100 38,3 41,3 8,6 9 3 MDF 0860H3D ○ 100 38,7 41,7	, ,		5					
7,9 8 3 0790H3D ○ 94 35,6 38,6 790H3D ○ 94 35,6 38,6 790H3D ○ 118 52,9 55,9 8,0 8 5 0800H3D ● 118 53,6 56,6 8,1 9 5 0810H5D ○ 118 53,6 56,6 790H3D ○ 100 36,5 39,5 790H3D ○ 100 36,5 39,5 790H3D ○ 100 36,9 39,9 790H3D ○ 100 36,9 39,9 790H3D ○ 100 37,4 40,4 790H3D ○ 100 37,4 40,4 790H3D ○ 100 37,8 40,8 8,4 9 3 0840H3D ○ 100 37,8 40,8 8,5 9 3 0850H3D ○ 100 37,8 40,8 8,5 9 3 0850H3D ○ 100 38,3 41,3 8,5 9 3 0850H3D ○ 100 38,3 41,3 8,5 9 3 0850H3D ○ 100 38,3 41,3 61,3 61,5 61,5 61,5 61,5 61,5 61,5 61,5 61,5	7.8	8	3					
7,9 0 5 0790H5D ○ 118 52,9 55,9 8,0 8 3 0800H3D ● 94 36,0 39,0 8,1 9 3 MDF 0810H3D ○ 100 36,5 39,5 8,1 9 5 0810H5D ○ 127 54,3 57,3 8,2 9 3 0820H3D ○ 100 36,9 39,9 8,3 9 5 0820H5D ○ 127 54,9 57,9 8,3 9 3 0830H3D ○ 100 37,4 40,4 8,4 9 3 0840H3D ○ 100 37,8 40,8 8,5 9 3 0850H3D ● 100 38,3 41,3 8,6 9 3 MDF 0860H3D ○ 100 38,7 41,7								
8,0 8 3 0800H3D	7,9	8	3					
8,1 9 3 MDF 0810H3D ○ 100 36,5 39,5 0810H5D ○ 127 54,3 57,3 8,2 9 5 0820H5D ○ 127 54,9 57,9 8,3 9 5 0830H5D ○ 127 55,6 58,6 8,4 9 5 0840H5D ○ 127 55,6 58,6 8,4 9 5 0840H5D ○ 127 55,6 58,6 8,5 9 5 0840H5D ○ 127 55,6 59,3 8,5 9 3 0850H3D ○ 100 37,8 40,8 8,5 9 5 0840H5D ○ 127 57,0 60,0 8,6 9 3 MDF 0860H3D ○ 100 38,3 41,3 65,6 9 3 MDF 0860H3D ○ 100 38,7 41,7	ļ		5					
8,1 9 3 MDF 0810H3D	8,0	8	5					
8,1 9 5 0810H5D ○ 127 54,3 57,3 8,2 9 3 0820H3D ○ 100 36,9 39,9 5 0820H5D ○ 127 54,9 57,9 8,3 9 5 0830H3D ○ 100 37,4 40,4 6,4 9 3 0840H3D ○ 100 37,8 40,8 8,4 9 5 0840H3D ○ 100 37,8 40,8 8,5 9 3 0850H3D ● 100 38,3 41,3 8,6 9 3 MDF 0860H3D ○ 100 38,7 41,7			3					
8,2 9 3 0820H3D O 100 36,9 39,9 8,3 9 3 0830H3D O 100 37,4 40,4 8,4 9 3 0830H5D O 127 55,6 58,6 8,4 9 3 0840H3D O 100 37,8 40,8 8,5 9 3 0850H3D Incompany 100 38,3 41,3 8,6 9 3 MDF 0860H3D Incompany 100 38,7 41,7	8,1	9						
8,3 9 5 0820H5D ○ 127 54,9 57,9 8,3 9 5 0830H3D ○ 100 37,4 40,4 0830H5D ○ 127 55,6 58,6 8,4 9 3 0840H3D ○ 100 37,8 40,8 8,5 9 5 0840H5D ○ 127 56,3 59,3 8,5 9 3 0850H3D ● 100 38,3 41,3 0850H5D ● 127 57,0 60,0 8,6 9 3 MDF 0860H3D ○ 100 38,7 41,7			3					
8,3 9 5 0830H3D ○ 100 37,4 40,4 0830H5D ○ 127 55,6 58,6 8,4 9 5 0840H3D ○ 100 37,8 40,8 0840H5D ○ 127 56,3 59,3 8,5 9 3 0850H3D ● 100 38,3 41,3 0850H3D ● 127 57,0 60,0 8,6 9 3 MDF 0860H3D ○ 100 38,7 41,7	8,2	9						
8.4 9 5 0830H5D ○ 127 55.6 58.6 8.4 9 5 0840H3D ○ 100 37.8 40.8 8.5 9 3 0840H5D ○ 127 56.3 59.3 8.5 9 5 0850H3D ● 100 38.3 41.3 0850H3D ● 127 57.0 60.0 0850H3D ○ 100 38.7 41.7			3				37.4	
8,4 9 3 0840H3D 0 100 37,8 40,8 0840H5D 0 127 56,3 59,3 0850H3D 0 100 38,3 41,3 0850H5D 0 127 57,0 60,0 0 100 38,7 41,7	8,3	9	5					
8,5 9 5 0840H5D ○ 127 56,3 59,3 0850H3D ● 100 38,3 41,3 0850H5D ● 127 57,0 60,0 0850H5D ○ 100 38,7 41,7			3					
8,5 9 3 0850H3D • 100 38,3 41,3 0850H5D • 127 57,0 60,0 08,6 0 3 MDF 0860H3D • 100 38,7 41,7	8,4	9					56.3	
0,5 9 5 0850H5D ● 127 57,0 60,0 8,6 0 3 MDF 0860H3D ○ 100 38,7 41,7	0.5			00501105	•	400	000	440
8.6 0 3 MDF 0860H3D 0 100 38,7 41,7	8,5	9	5		•			
	0.0	_	3					
J 0000113D J 127 37.0 60.0	8,6	9		0860H5D	O	127	57,6	60,6
87 9 3 0870H3D O 100 39,2 42,2	0.7		3				39.2	
0,' 3 5 0870H5D Q 127 58.3 61.3	8,7	9	5				58,3	61.3
88 9 3 0880H3D O 100 39,6 42,6	Ωο	0	3			100	39,6	42,6
6,6 9 5 0880H5D O 127 59,0 62,0	0,0	9	5	0880H5D	0	127	59,0	62,0
8,9 9 3 0890H3D O 100 40,1 43,1	80	۵	3	0890H3D	O		40,1	43,1
0,5 5 0890H5D 0 127 59,6 62,6	0,8	9	5	0890H5D	O		59,6	62,6
0900H3D	90	g	3		•		40,5	
9,0 9 5 0900H5D • 127 60,3 63,3	0,0		5	0900H5D	•	127	60,3	63,3

Sorte: ACF75

■ Innere Kühlmittelzufuhr (MDF H3D/H5D-Typ)

Durchm. ØDc	Schaft ØDs	Bohr- lochtiefe	Artikelbezeichung	Lager	Abmessungen (mm)				
(mm)	(mm)	(L/D)	· · · · · · · · · · · · · · · · · · ·	9	L	ℓ_1	ℓ_2		
9,1	10	3	MDF 0910H3D	0	106	41,0	44,0		
ا , ی	10	5	0910H5D	0	136	61,0	64,0		
9,2	10	3	0920H3D	0	106	41,4	44,4		
- ,-		5	0920H5D	O	136	61,6	64,6		
9,3	10	3	0930H3D	0	106 136	41,9 62,3	44,9 65,3		
		5 3	0930H5D 0940H3D	<u> </u>	106	42,3	45,3		
9,4	10	5	0940H5D	0	136	63,0	66,0		
		5 3	0950H3D	•	106	42,8	45,8		
9,5	10	5	0950H5D	•	136	63,7	66,7		
9,6	10	3	MDF 0960H3D	0	106	43,2	46,2		
9,0	10	5	0960H5D	O	136	64,3	67,3		
9,7	10	3	0970H3D	0	106	43,7	46,7		
		5	0970H5D	O	136	65,0	68,0		
9,8	10	3	0980H3D	0	106	44,1	47,1		
		5 3	0980H5D 0990H3D	O O	136 106	65,7	68,7		
9,9	10	5	0990H5D	0	136	44,6	47,6 69,3		
		5 3	1000H3D		106	45,0	48,0		
10,0	10	5	1000H5D	•	136	67,0	70,0		
10.1	44	3	MDF 1010H3D	0	116	45,5	48,5		
10,1	11	5	1010H5D	0	149	67,7	70,7		
10,2	11	3	1020H3D	•	116	45,9	48,9		
		5	1020H5D	0	149	68,3	71,3		
10,3	11	3	1030H3D	0	116	46,4	49,4		
	ļ	5	1030H5D	O	149	69,0	72,0		
10,4	11	3 5	1040H3D 1040H5D	0	116 149	46,8 69,7	49,8 72,7		
		3	1050H3D		116	47,3	50,3		
10,5	11	5	1050H5D		149	70,4	73,4		
40.0		3	MDF 1060H3D	0	116	47,7	50,7		
10,6	11	5	1060H5D	0	149	71,0	74,0		
10,7	11	5 3	1070H3D	O	116	48,2	51,2		
10,7	''	5	1070H5D	0	149	71,7	74,7		
10,8	11	3	1080H3D	•	116	48,6	51,6		
		5	1080H5D	O	149	72,4	75,4		
10,9	11	3	1090H3D	0	116	49,1	52,1		
		5 3	1090H5D	0	149 116	73,0	76,0		
11,0	11	5	1100H3D 1100H5D		149	49,5 73,7	52,5 76,7		
		3	MDF 1110H3D	0	122	50,0	53,0		
11,1	12		1110H5D	o	158	74,4	77,4		
44.0	10	5 3	1120H3D	Ö	122	50,4	53,4		
11,2	12		1120H5D	O	158	75,0	78,0		
11,3	12	5 3	1130H3D	0	122	50,9	53,9		
	12	5	1130H5D	0	158	75,7	78,7		
11,4	12	3	1140H3D	O	122	51,3	54,3		
	-	5	1140H5D	9	158	76,4	79,4		
11,5	12	3	1150H3D	•	122	51,8	54,8		
		5	1150H5D MDF 1160H3D		158	77,1	80,1		
11,6	12	5	MDF 1160H3D 1160H5D	0	122 158	52,2 77,7	55,2 80,7		
	·····	5 3	1170H3D	0	122	52,7	55,7		
11,7	12	5	1170H5D	o	158	78,4	81,4		
44.0	40	5 3	1180H3D	Ö	122	53,1	56,1		
11,8	12	5	1180H5D	0	158	79,1	82,1		
11 0	12	5 3	1190H3D	O	122	53,6	56,6		
11,9	12	5	1190H5D	0	158	79,7	82,7		
12,0	12	3	1200H3D	•	122	54,0	57,0		
12,0	'-	5	1200H5D	•	158	80,4	83,4		

● Durchmesser Ø 12,5–16,0 mm

Durchm. ØDc	Schaft ØDs	Bohr- lochtiefe	Artikelbezeichnung	Lager	Abme	ssungen	(mm)
(mm)	(mm)	(L/D)			L	ℓ_1	ℓ_2
10.5	13	3	MDF 1250H3D	0	128	56,3	59,3
12,5	13	5	1250H5D	0	167	83,8	86,8
13,0	13	3	1300H3D	O	128	58,5	61,5
13,0	13	5	1300H5D	0	167	87,1	90,1
13,5	14	3	MDF 1350H3D	0	134	60,8	63,8
13,3	14	5	1350H5D	0	176	90,5	93,5
14.0	14	3	1400H3D	0	134	63,0	66,0
14,0	14	5	1400H5D	0	176	93,8	96,8
14,5	15	3	MDF 1450H3D	0	140	65,3	68,3
14,5	10	5	1450H5D	0	185	97,2	100,2
15,0	15	3	1500H3D	0	140	67,5	70,5
13,0	13	5	1500H5D	0	185	100,5	103,5
15,5	16	3	MDF 1550H3D	0	146	69,8	72,8
13,3	10	5	1550H5D	0	194	103,9	106,9
16,0	16	3	1600H3D	0	146	72,0	75,0
10,0		5	1600H5D	0	194	107,2	110,2

Sorte: ACF75

■ Empfohlene Schnittbedingungen

MDF H3D-Typ mit innerer Kühlmittelzufuhr

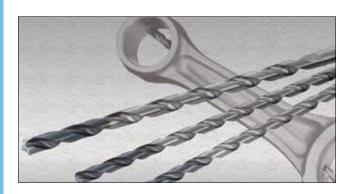
- 1. Die empfohlene Bohrungstiefe ist 3 x DC. Die Höhe der Bohrungstiefe errechnet man beim Bohren in geneigten Flächen vom höchsten Punkt aus.
- 2. Die empfohlenen Schnittbedingungen sind auf das Bohren in flachen und horizontalen Flächen bezogen.
- 3. Die Vorschubgeschwindigkeit ist entsprechend des Neigungswinkels beim Bohren in geneigten Flächen anzupassen.
- 3.1 Ist der Neigungswinkel ≤ 30°, sollte die Vorschubgeschwindigkeit ≤ 70 % betragen.
 3.2. Ist der Neigungswinkel > 30°, sollte die Vorschubgeschwindigkeit ≤ 50 % sein.
- 4. Benutzen Sie den Bohrer nicht für Fräsanwendungen.
- 5. Beim Bohren in rostfreiem Stahl wird eine Pilotbohrung mit dem gleichen Durchmesser empfohlen.

(vc: Schnittgeschwindigkeit m/min f: Vorschub mm/U)

Bohrdurchm. DC (mm)	Schnittbe- dingungen	Unlegierter Stahl / Kohlenstoffstahl (-250 HB)	Legierter Stahl (-300 HB)	Gehärteter Stahl (–50 HRC)	Rostfreier Stahl (–200 HB)	Grauguss FC250	Kugelgraphitguss	Aluminium- legierung
−Ø 4.0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25– 35 –45	70 –85 –100	65 –75 –85	90 –120 –150
-10 4,0	f	0,06 –0,08 –0,10	0,05 –0,08 –0,10	0,01 –0,02 –0,03	0,01 -0,02 -0,03	0,06 -0,08 -0,10	0,04 -0,06 -0,08	0,06- 0,08 -0,10
−Ø 6.0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70 –85 –100	70 –80 –90	90 –120 –150
-6,0	f	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,04 -0,06 -0,08	0,03 –0,04 –0,05	0,05 –0,10 –0,15	0,06 –0,09 –0,12	0,05 –0,10 –0,15
−Ø 8,0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70 –85 –100	70 –80 –90	90 –120 –150
-6,0	f	0,10 -0,15 -0,20	0,10 -0,15 -0,20	0,06 -0,08 -0,10	0,04 -0,06 -0,08	0,10 -0,15 -0,20	0,10 –0,12 –0,15	0,10 –0,15 –0,20
−Ø 10.0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70 –85 –100	70 –80 –90	90 –120 –150
-Ø 10,0	f	0,12 -0,17 -0,22	0,12 -0,17 -0,22	0,08 –0,10 –0,12	0,06 -0,08 -0,10	0,12 -0,17 -0,22	0,12 –0,15 –0,18	0,15 -0,20 -0,25
Ø 12.0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70 –85 –100	70 –80 –90	90 –120 –150
−Ø 12,0	f	0,15 -0,20 -0,25	0,15 –0,20 –0,25	0,12 –0,15 –0,18	0,08 -0,10 -0,12	0,15 -0,20 -0,25	0,15 -0,18 -0,20	0,20 -0,25 -0,30
Ø 16 0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70 –85 –100	70 –80 –90	90 –120 –150
−Ø 16,0	f	0,15 –0,20 –0,25	0,15 –0,20 –0,25	0,12 –0,15 –0,18	0,10 -0,15 -0,20	0,17 –0,22 –0,27	0,15 –0,20 –0,25	0,25 -0,30 -0,40

Min. - Optimum - Max.

MDF H5D-Typ mit innerer Kühlmittelzufuhr


- 1. Beim Einsatz des Bohrers vom Typ L2D ist eine Pilotbohrung mit dem gleichen Durchmesser notwendig.
- 2. Die Schnittbedingungen gelten bei zuvor gesetzter Pilotbohrung.
- 3. Die empfohlene Bohrungstiefe ist 5 x DC. Die Höhe der Bohrungstiefe errechnet man beim Bohren in geneigten Oberflächen vom höchsten Punkt aus.
- 4. Benutzen Sie den Bohrer nicht für Fräsanwendungen.

(vc: Schnittgeschwindigkeit m/min f: Vorschub mm/U)

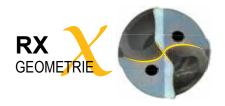
Bohrdurchm. DC (mm)	Schnittbe- dingungen	Unlegierter Stahl / Kohlenstoffstahl (-250 HB)	Legierter Stahl (-300 HB)	Gehärteter Stahl (–50 HRC)	Rostfreier Stahl (–200 HB)	Grauguss FC250	Kugelgraphitguss	Aluminium- legierung
0.40	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70 –85 –100	65 –75 –85	90 –120 –150
−Ø 4,0	f	0,06 –0,08 –0,10	0,05 –0,08 –0,10	0,01 -0,02 -0,03	0,01 -0,02 -0,03	0,06 -0,08 -0,10	0,04 -0,06 -0,08	0,06 -0,08 -0,10
−Ø 6,0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70- 85 -100	65 –75 –85	90 –120 –150
-6,0	f	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,04 -0,06 -0,08	0,03 –0,04 –0,05	0,05 –0,10 –0,15	0,06 –0,09 –0,12	0,05 –0,10 –0,15
-Ø 8.0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70 –85 –100	65 –75 –85	90 –120 –150
-\D 0,0	f	0,10 –0,15 –0,20	0,10 –0,15 –0,20	0,06 -0,08 -0,10	0,04 -0,06 -0,08	0,10 -0,15 -0,20	0,10 –0,12 –0,15	0,10 -0,15 -0,20
−Ø 10.0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70 –85 –100	65 –75 –85	90 –120 –150
10,0 اط–	f	0,15 –0,20 –0,25	0,15 –0,20 –0,25	0,08 –0,10 –0,12	0,06 -0,08 -0,10	0,15 –0,20 –0,25	0,12 –0,15 –0,18	0,15 -0,20 -0,25
−Ø 12,0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 -35 -45	70 –85 –100	65 –75 –85	90 –120 –150
-60 12,0	f	0,20 -0,25 -0,30	0,20 -0,25 -0,30	0,12 -0,15 -0,18	0,08 -0,10 -0,12	0,17 –0,22 –0,27	0,15 –0,20 –0,25	0,20 -0,25 -0,30
−Ø 16.0	V c	70 –85 –100	60 –75 –90	30 –40 –50	25 –35 –45	70 –85 –100	65 –75 –85	90 –120 –150
10,0 ص	f	0,20 -0,25 -0,30	0,20 -0,25 -0,30	0,14 -0,17 -0,20	0,10 –0,15 –0,20	0,20 -0,25 -0,30	0,20 –0,25 –0,30	0,25 -0,30 -0,35

Min. - Optimum - Max.

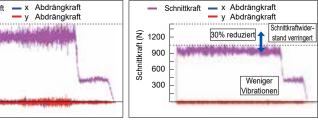
Extra lange SUPER MULTI-DRILLs MDW ... XHGS/PHT

■ XHGS-Serie

Anwendung	Тур	Durchmesser- bereich (mm)	Bohrtiefe (L/D)
	MDWUUUUXHGS12	Ø 3,0 – 12,0	-12
	MDWUUUUXHGS15	Ø 3,0 – 12,0	-15
Tiefloch- bohren	MDWUUUUXHGS20	Ø 3,0 – 12,0	-20
	MDW□□□□XHGS25	Ø 3,0 – 12,0	- 25
	MDWUUUUXHGS30	Ø 3,0 – 10,0	-30
Pilotbohr.	MDWDDDDPHT	Ø 3,0 – 12,0	- 2


■ Allgemeine Eigenschaften

Die Super MultiDrill XHGS-Serie ist eine Weiterentwicklung der Tieflochbohrerserie. Der XHGS-Bohrer zeichnet sich durch eine sehr gute Spankontrolle und verbesserte Stabilität aus und erreicht dadurch eine noch höhere Effizienz beim Tieflochbohren.


■ Eigenschaften und Anwendungen

Geringer Schnittwiderstand

Der Bohrer erzeugt durch die neue, spezielle RX-Geometrie geringe Schnittkräfte.

XHGS-Bohrer Herkömmlicher Bohrer Abdrängkraft Schnittkraft Abdrängkraft

Werkstückstoff Bohrer:

1200

600

300

Schnittkraft 900

MDW050XHT20 (herkömmlich), Schnittdaten v_c= 80 m/min, f= 0,3 5mm/U (⇒ zúm Zeitpunkt des Eindringens f= 0,08 mm/U), H=90 mm Kühlung:

MDW0500XHGS20 (Ø 5,0 mm, 20D)

Spankontrolle

Durch die neue "J-Spannut" wird eine stabilere Spankontrolle beim Tieflochbohren erreicht.

XHGS-Bohrer

Herkömml Bohrer

MDW050XHT20 (herkömmlich),

v_c = 80 m/min, H = 90 mm

f = 0.45 mm/U

f = 0,35 mm/U

MOI

Werkstückstoff:

Schnittdaten:

Kühluna:

f = 0.40 mm/U

MDW0500XHGS20 (Ø 5,0 mm, 20D)

Eine verbesserte Spanabfuhr ermöglicht es, die Spindellastschwankung zu reduzieren und sorgt für eine stabile, lange Standzeit.

Hohe Präzision & Stabilität

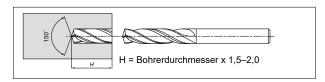
Durch sein einzigartiges Design bietet der Bohrer der XHGS-Serie, verglichen mit einem herkömmlichen Bohrer, eine hervorragende Präzision und Stabilität.

Extra lange SUPER MULTI-DRILLS MDW ... XHG/XHT/PHT

■ Empfohlene Schnittbedingungen

Min. - Optimum - Max

Bohrerdurchmesser	Schnitt-	Kohlenstoffstahl	Unlegierter Stahl	Legierter Stahl	Vergüteter Stahl	Grauguss
DC (mm)	bedingungen	(-200 HB)	(-250 HB)	(-300 HB)	(-40 HRC)	(GG-GGG)
-Ø 3.0	Vc	50 –60 –80	60 –80 –100	40 –55 –70	30 –40 –50	40 –55 –70
<i>−</i> Ø 3,0	f	0,12 –0,15 –0,20	0,12 –0,15 –0,20	0,10 –0,13 –0,16	0,06 –0,08 –0,12	0,15 –0,18 –0,23
-Ø 5.0	V _c	50 –60 –80	60 –80 –100	50 –60 –70	30 –45 –55	50 –60 –70
-60 3,0	f	0,15 –0,20 –0,25	0,15 –0,23 –0,30	0,12 –0,15 –0,20	0,08 –0,10 –0,14	0,17 –0,25 –0,35
-Ø 10.0	Vc	50 –70 –90	60 –80 –110	50 –65 –80	30 –50 –60	50 –65 –80
−Ø 10,0	f	0,20 -0,25 -0,30	0,20 -0,25 -0,32	0,15 –0,20 –0,25	0,10 –0,15 –0,20	0,25 –0,28 –0,35
−Ø 12,0	V _c	60 –80 –100	60 –90 –120	50 –65 –80	40 –55 –70	50 –65 –80
− ∞ 12,0	f	0,25 –0,30 –0,35	0,25 –0,30 –0,35	0,15 –0,23 –0,27	0,12 -0,15 -0,23	0,25 –0,30 –0,35


Hinweis: Einsatz von MQL ⇒ geringere Schnittgeschwindigkeit, Einsatz von Innenkühlung ⇒ höhere Schnittgeschwindigkeit

Vc: Schnittgeschwindigkeit (m/min), f: Vorschub (mm/U)

Empfehlungen für den Einsatz der Bohrer

1. Bohren einer Pilotbohrung mit dem dazugehörigen PHT-Pilotbohrer

Der Durchmesser des Pilotbohrers entspricht dem Durchmesser des XHGS-Bohrers mit einem Aufmaß von +0,02 mm bis +0,05 mm.

2. Beginnen Sie die Bohrung mit dem XHGS-Tieflochbohrer bei einer geringen Drehzahl.

Drehzahl: 500 min-1,

Vorschub: 1.000 bis 2.000 mm/min

Achtung:

Bohren Sie nicht sofort mit der vorgegebenen hohen Drehzahl, es könnte zu Schäden am Bohrer kommen.

3. Drehzahl erhöhen, bis die geforderte Schnittgeschwindigkeit erreicht ist und normalen Bohrprozess starten

Achtung: Verweilzeit!

Beginnen Sie erst dann mit dem Bohrvorgang, wenn die volle Drehzahl erreicht ist.

4. Nach Tieflochbohrung - Reduzierung der Drehzahl und Herausziehen des Bohrers mit hoher Vorschubgeschwindigkeit

Drehzahl: 500 min-1

Vorschub: 1.000 bis 2.000 mm/min

Achtung:

Das Entfernen des Bohrers bei hoher Drehzahl kann zum Bruch des Bohrers führen

5. Weitere Hinweise

Auf unebenen Flächen empfehlen wir das Anspiegeln einer Hilfsfläche. Produkte zum Plansenken:

Flachbohrer der MultiDrill MDF-Serie

Bei Querbohrungen oder schrägen Austrittsflächen Vorschub auf 0,05 mm/U reduzieren.

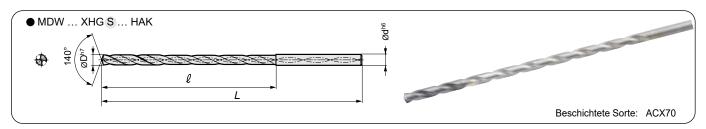
Kühlung

1. Innenkühlung

Verwenden Sie geeignete Kühlmittel oder Emulsion.

Pumpendruck: Stahl: 1,5 bis 2,0 MPa (Kühleffekt erhöht sich bei höherem Druck, beeinflusst Späne/Verschleiß)

Gusseisen und Aluminiumlegierungen: 4,0 bis 6,0 MPa (Priorität Kühlung)

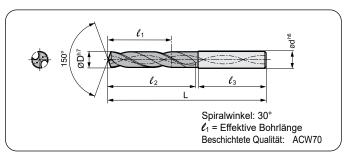

2. Innere MQL (Minimalmengenschmierung)

Luftdruck: 0,5 MPa oder höher

Durchflussvolumen: Es wird empfohlen, das maximal mögliche Durchflussvolumen an der Maschine einzustellen.

*Konsultieren Sie den Hersteller, wenn Sie Aluminiumlegierungen bearbeiten wollen.

Extra lange SUPER MULTI-DRILLs MDW ... XHGS/PHT - Typ



P ● MDW…XHG S - Typ für Tieflochbohrung

	WIDWAnd 5 - Typ full Heliocriboniturig (mm)																	
Abmes	sungen			Fί	ir 12 x	D	Fΰ	ir 15 x	D	F	ir 20 x	D	Fί	ir 25 x	D	Fί	ir 30 x	D
DC	ød	Kat. Nr.			Abmes	sungen		Abmes	sungen		Abmes	sungen		Abmes	sungen	Lager	Abmes	sungen
(mm)	(mm)	12, 15, 20, 25, 30		Lager	L	l	Lager	L	l	Lager	L	l	Lager	L	l		L	l
3,0		MDW 0300XHGS	HAK	•	85	57	•	94	66	•	109	81	•	124	96	•	139	111
3,5	4,0	0350XHGS □□	HAK	•	89	61	•	100	72	•	117	89	•	135	107	•	152	124
4,0		0400XHGS □□	HAK	•	95	67	•	107	79	•	127	99	•	147	119	•	167	139
4,5	5.0	MDW 0450XHGS □□	HAK	•	104	76	•	118	90	•	140	112	•	163	135	•	184	156
5,0	5,0	0500XHGS □□	HAK⁵*	•	108	80	•	123	95	•	148	120	•	173	145	•	198	170
5,0		MDW 0500XHGS 🗆	HAK	•	116	80	•	131	95	•	156	120	•	181	145	•	206	170
5,5	6,0	0550XHGS □□	HAK	•	124	88	•	141	105	•	168	132	•	196	160	•	223	187
6,0		0600XHGS □□	HAK	•	130	94	•	148	112	•	178	142	•	208	172	•	238	202
6,5		MDW 0650XHGS □□	HAK	•	138	102	•	158	122	•	190	154	•	223	187	•	255	219
6,8		0680XHGS □□	HAK	•	144	108	•	164	128	•	198	162	•	236	200	•	266	230
7,0	8,0	0700XHGS □□	HAK	•	145	109	•	166	130	•	201	165	•	236	200	•	271	235
7,5		0750XHGS □□	HAK		151	115	•	174	138		211	175	•	249	213		286	250
8,0		0800XHGS □□	HAK	•	157	121	•	181	145	•	221	185	•	261	225	•	301	265
8,5		MDW 0850XHGS 🗆	HAK	•	171	131	•	197	157	•	239	199	•	282	242	•	324	284
9,0	10,0	0900XHGS □□	HAK	•	177	137	•	204	164	•	249	209	•	294	254	•	339	299
9,5	10,0	0950XHGS □□	HAK	•	183	143	•	212	172	•	259	219		305	265		352	312
10,0		1000XHGS □□	HAK	•	187	147	•	217	177	•	267	227	•	317	277	•	367	327
10,5		MDW 1050XHGS □□	HAK	•	202	157	•	234	189	•	286	241	•	339	294	-	-	-
11,0	12.0	1100XHGS □□	HAK	•	208	163	•	241	196	•	296	251	•	351	306	-	_	-
11,5	12,0	1150XHGS □□	HAK	•	213	168	•	248	203	•	305	260	•	363	318	-	-	-
12,0		1200XHGS □□	HAK	•	219	174	•	255	210	•	315	270	•	375	330	_	_	-

(*) Kat. Nr. Bestellbeispiel: Bohrer- \emptyset = 5 mm, Schaft- \emptyset = 5 mm (z.B. für 20xD: MDW050XHGS20HAK5) Abweichende Standardmaße (Durchmesser, Länge) auf Anfrage (möglich: \emptyset 2,5 –16,0 mm)

MDW...PHT - Typ für Pilotbohrung

■ Bestellung von Artikeln

Für nicht lagerhaltige Produkte ist eine Mindestbestellmenge von 6 Stück erforderlich. Bezeichnung bitte gemäß nebenstehendem Beispiel festlegen.

Z.B., MDW 050 X H G S 30 HAK ACX70

Super MULTI-DRILL DC = 5,0 mm

Extra lange Ausführung mit Innenkühlung

Schaftausführung DIN6535
Realisierbare Bohrtiefe (L/D Verhältnis)
Geometrie für Stahlwerkstoffe mit doppelter Führungsfase
Spezielle Geometrien (RX-Geometrie) + "J-Spannut"

		P		1						
Abmess	sungen		Pilotbohrer							
DC	ød	Kat. Nr.	Lagar	Abr	nessur	ngen (n	nm)			
(mm)	(mm)		Lager	L	ℓ 1	ℓ_2	lз			
3,03	4,0	MDW 0303 PHT	•	52	9	22	28			
3,53	4,0	0353 PHT	•	52	9	22	28			
4,03	5,0	MDW 0403 PHT	•	59	12	29	28			
4,53	3,0	0453 PHT	•	59	12	29	28			
5,03	6,0	MDW 0503 PHT	•	71	15	33	36			
5,53	0,0	0553 PHT	•	71	15	33	36			
6,03		MDW 0603 PHT	•	76	18	38	36			
6,53		0653 PHT	•	76	18	38	36			
6,83	8,0	0683 PHT	•	76	18	38	36			
7,03		0703 PHT	•	82	21	43	36			
7,53		0753 PHT	•	82	21	43	36			
8,03		MDW 0803 PHT	•	88	24	46	40			
8,53	10,0	0853 PHT	•	88	24	46	40			
9,03	10,0	0903 PHT	•	88	24	46	40			
9,53		0953 PHT	•	88	24	46	40			
10,03		MDW 1003 PHT	•	104	30	55	45			
10,53	12,0	1053 PHT	•	104	30	55	45			
11,03	12,0	1103 PHT	•	104	30	55	45			
11,53		1153 PHT	•	104	30	55	45			
12,03	14,0	MDW 1203 PHT	•	117	42	68	45			

N ●MDW…XHT A - Typ für Aluminium und Kupferlegierungen

(mm) Für 20 x D Abmessungen Für 30 x D Kat. Nr. Lager Abmessungen Lager Abmessungen DC ød 20, 30 (mm) (mm) 20 30 ℓ_1 ℓ_1 4,0 4,0 MDW 040XHT A□□ HAK 127 167 137 5,0 MDW 050XHT A□□ HAK 156 118 206 168 6,0 6,0 060XHT A□□ HAK 178 138 238 198 7,0 MDW 070XHT A□□ HAK 201 162 271 232 8,0 8.0 080XHT A□□ HAK 221 182 301 262 9.0 MDW 090XHT A□□ HAK 249 205 339 295 10,0 10.0 267 225 367 325 100XHT A□□ HAK

Abmessungen

12,03 | 14,0 | MDW 1203 PHT

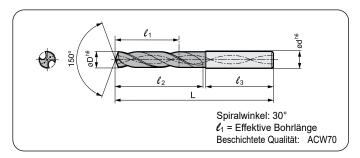
- ⇒ Alle "Super Multi-Drill" beinhalten ein Nachschleifaufmaß!
- ⇒ Unbeschichtete Hartmetallsorte: KH03

■ Bestellung von Artikeln

Für nicht lagerhaltige Produkte ist eine Mindestbestellmenge von 6 Stück erforderlich. Bezeichnung bitte gemäß nebenstehendem Beispiel festlegen.

Z.B.,

Super MDW 050 X H	TA 30 HAK (KH03) (Schneidstoffbez.)
MULTI-DRILL	Schaftausführung DIN6535
DC = 5,0 mm	Realisierbare Bohrtiefe (L/D Verhältnis)
Extra langer Typ	Ausführung für Al und Cu Legierungen
mit Innenkühlung	Spezielle Schneidengeometrie


■ Empfohlene Schnittbedingungen

Vc: Schnittgeschwindigkeit (m/min), f: Vorschub (mm/U)

Pilotbohrer

Werk Bohrer-ø (mm)	Aluminiumlegierung	
−Ø 5,0	V _c	80–160
<i>−</i> Ø 5,0	f	0,08–0,30
-Ø 6,0	V _c	80–160
-6,0	f	0,12–0,35
000	Vc	80–180
–Ø 8,0	f	0,15–0,40
Ø 10 0	Vc	80–180
−Ø 10,0	f	0,20–0,50
−Ø 12,0	Vc	80–180
12,0 س	f	0,20–0,45

■ MDW...PHT - Typ für Pilotbohrung

■ Bestellung von Artikeln

Für nicht lagerhaltige Produkte ist eine Mindestbestellmenge von 6 Stück erforderlich. Bezeichnung bitte gemäß nebenstehendem Beispiel festlegen.

Z.B.

MDW 0503 PHT A	CW70

Super
MULTI-DRILL

DC = 5,03 mm

Pilotbohrer mit Innenkühlung

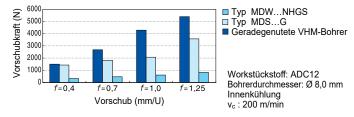
DC	ød	Kat. Nr.		Abr	nessur	igen (n	nm)
(mm)	(mm)		Lager	L	l 1	ℓ_2	lз
3,03	4.0	MDW 0303 PHT	•	52	9	22	28
3,53	4,0	0353 PHT	•	52	9	22	28
4,03	5,0	MDW 0403 PHT	•	59	12	29	28
4,53	3,0	0453 PHT	•	59	12	29	28
5,03	6.0	MDW 0503 PHT	•	71	15	33	36
5,53	0,0	0553 PHT	•	71	15	33	36
6,03		MDW 0603 PHT	•	76	18	38	36
6,53		0653 PHT	•	76	18	38	36
6,83	8,0	0683 PHT	•	76	18	38	36
7,03		0703 PHT	•	82	21	43	36
7,53		0753 PHT	•	82	21	43	36
8,03		MDW 0803 PHT	•	88	24	46	40
8,53	100	0853 PHT	•	88	24	46	40
9,03	10,0	0903 PHT	•	88	24	46	40
9,53		0953 PHT	•	88	24	46	40
10,03		MDW 1003 PHT	•	104	30	55	45
10,53	12.0	1053 PHT	•	104	30	55	45
11,03	12,0	1103 PHT	•	104	30	55	45
11,53		1153 PHT	•	104	30	55	45

68

45

MULTI-DRILLs mit "AURORA"-BESCHICHTUNG MDW ... NHGS - Typ

Mit Innenkühlung (3D/5D/10D)


■ Eigenschaften

- Hoch effiziente Bohrbearbeitung AURORA COAT Beschichtung, ein einzigartiges Design und eine scharfe Schneidkante senken deutlich die Schnittkräfte.
- Hohe Bohrungsqualität
 Ein spezieller Anschliff und ein ausgeklügeltes Design verbessern
 die Bohrungstoleranz und Oberflächenqualität.
- Hohe Standzeiten
 Durch die AURORA-Beschichtung erreichen Sie deutlich h\u00f6here
 Standzeiten.
- Tieflochbohren (L/D = 20) möglich Speziele Tieflochbohrer sind auf Kundenwunsch möglich. Durchmesserbereich: Ø 3,0–16,0 mm Gesamtlänge: max. 290 mm

■ Geeignete Materialien

- Aluminium
- Aluminiumlegierungen
- Kupferlegierungen
- Messinglegierungen
- Bronzelegierungen

■ Schnittkraftvergleich (Vorschubkraft)

■ Empfohlene Schnittbedingungen

			0 0	
Durchmesser (mm)		Aluminium- legierungen	Aluminiumleg., geschm., ausgehärtet	Kupfer- legierungen
-Ø 5	Vc	80–160	80–180	80–160
-05 f		0,08–0,30	0,10-0,30	0,08-0,15
−Ø 10	Vc	80–180	80–200	60–180
_⊎ 10	f	0,10-0,30	0,10-0,35	0,10-0,20
Ø 16	Vc	80–200	80–200	80–200
−Ø 16		0,15-0,40	0,10-0,40	0,10-0,25

 v_c : Schnittgeschwindigkeit (m/min), f: Vorschub (mm/U), (Min – Max)

	uro	chmesser Ø 3	3,0–	-8,0) m	m				(mm)
Abmess	sungen		3	D Ty	р	5	D Ty	р	10	D Ty	/p
		KatNr.	Lager	Abmes	sungen	Lager			Lager	Abmes	sungen
øD	ød	3, 5, 10 →	3	L	e	5	L	e	10	L	e
3,0	3,0	MDW 0300 NHGS	0	68,6	18,1	0	78,6	28,6	0	92,6	42,6
3,1	0,0	MDW 0310 NHGS□□		00,0	.0,.	0	. 0,0	20,0		02,0	,0
3,2		MDW 0320 NHGS□□	0						0		
3,3		MDW 0330 NHGS□□	O		20,7	0		32,7			49,7
3,4		MDW 0340 NHGS□□				0			0		
3,5		MDW 0350 NHGS□□				0			0		
3,6		MDW 0360 NHGS□□				0			0		
3,65	4,0	MDW 0365 NHGS□□		72,8		0	86,8			106,8	
3,66		MDW 0366 NHGS				0					
3,7		MDW 0370 NHGS			23,3	0		36,8			56,8
3,8		MDW 0380 NHGS				0			_		
3,9		MDW 0390 NHGS							0		
4,0		MDW 0400 NHGS	0			0			0		
4,1		MDW 0410 NHGS	0			0					
4,2		MDW 0420 NHGS□□ MDW 0430 NHGS□□	0		05.0	0		,,,			00.0
4,3		MDW 0430 NHGS			25,9			40,9			63,9
4,4		MDW 0450 NHGS	O			0			0		
4,5	5,0	MDW 0460 NHGS	0	81,0		0	99,0	_	•	125,0	
4,6		MDW 0470 NHGS	,			0					
4,7 4,8		MDW 0470 NHGS			28,5	0		45,0			71,0
4,0		MDW 0490 NHGS			20,5	0		45,0	0		11,0
5,0		MDW 0500 NHGS	0			0			0		
5,1		MDW 0510 NHGS				0			Ī		
5,2		MDW 0520 NHGS□□							_		
5,3		MDW 0530 NHGS□□	0		28,6			45,1			88,1
5,4		MDW 0540 NHGS□□			20,0			10,1			00,1
5,5		MDW 0550 NHGS□□	O						0		
5,6	6,0	MDW 0560 NHGS□□		83,2		0	101,2			137,2	
5,7		MDW 0570 NHGS□□				0					
5,8		MDW 0580 NHGS□□			31,2	0		49,2			85,2
5,9		MDW 0590 NHGS□□			,			,			,
6,0		MDW 0600 NHGS□□	O			0			0		
6,1		MDW 0610 NHGS□□				0			0		
6,2		MDW 0620 NHGS□□				0					
6,3		MDW 0630 NHGS□□			33,8	0		53,3			92,3
6,4		MDW 0640 NHGS□□				0					
6,5	7,0	MDW 0650 NHGS□□	0	89,5		0	110,5		0	152,5	
6,6	7,0	MDW 0660 NHGS□□		00,0			110,5			102,3	
6,7		MDW 0670 NHGS□□				0					
6,8		MDW 0680 NHGS	0		36,5	0		57,5	0		99,5
6,9		MDW 0690 NHGS	_						_		
7,0		MDW 0700 NHGS	0			0			0		
7,1		MDW 0710 NHGS				0			_		
7,2		MDW 0720 NHGS									
7,3		MDW 0730 NHGS			39,1			61,6			116,6
7,35		MDW 0735 NHGS	0		,			"			.,-
7,4	0 0	MDW 0740 NHGS□□ MDW 0750 NHGS□□	0	05.7		0	110 7			1677	
7,5	8,0	MDW 0750 NHGS		95,7		0	119,7	_		167,7	
7,6		MDW 0760 NHGS				0					
7,7		MDW 0770 NHGS	O		117	0		GF 7			1107
7,8		MDW 0790 NHGS	•		41,7	0		65,7			113,7
8,0		MDW 0790 NHGS	0			o			0		
0,0											

NHGS -Typ mit "AURORA"- Beschichtung, HM-Sorte: DL1300

MULTI-DRILLs mit "AURORA"-BESCHICHTUNG

MDW ... NHGS - Typ

● NHGS 3/5 Typ (Ø 3,0-16,0 mm)

● D	urc	chmesser Ø 8	3,1-	-13	,0 r	nm				(mm)				
Abmess	sungen		3	D Ty	р	5	D Ty	р	10	D Ty	/p				
	1	KatNr.	Lager	Abmes	sungen	Lager	Abmes	sungen	Lager	Abmes	sungen				
øD	ød	3, 5, 10 ▽	3	L		5	L	e	10	L	e				
8,1		MDW 0810 NHGS□□													
8,2		MDW 0820 NHGS□□				0									
8,3		MDW 0830 NHGS□□			44,3	0		69,8			118,8				
8,4		MDW 0840 NHGS				0									
8,5	9,0	MDW 0850 NHGS	0	101,9		0	128,9		0	182,9					
8,6		MDW 0860 NHGS□□ MDW 0870 NHGS□□				0									
8,7		MDW 0880 NHGS	0		46.9			73,9			127,9				
8,9		MDW 0890 NHGS	•		40,9			13,8			121,9				
9,0		MDW 0900 NHGS	0			o			0						
9,1		MDW 0910 NHGS□□													
9,2		MDW 0920 NHGS□□													
9,21		MDW 0921 NHGS□□			49,5			78,0			135,0				
9,3		MDW 0930 NHGS□□			49,5	0		10,0			133,0				
9,4		MDW 0940 NHGS							_						
9,5	10,0			108,0		0	138,0			198,0					
9,6		MDW 0960 NHGS□□ MDW 0970 NHGS□□													
9,7		MDW 0970 NHGS			52.0	0		82,0	0		142,0				
9,9		MDW 0990 NHGS			52,0	0						02,0			142,0
10,0		MDW 1000 NHGS□□	0			0			0						
10,1		MDW 1010 NHGS□□													
10,2		MDW 1020 NHGS□□													
10,3		MDW 1030 NHGS□□			54,7			86,2			149,2				
10,4		MDW 1040 NHGS□□													
10,5	11,0	MDW 1050 NHGS	0	168,3			151,3			217,3					
10,6	,-	MDW 1060 NHGS		, .			, ,			, ,					
10,7 10,8		MDW 1070 NHGS□□ MDW 1080 NHGS□□			E7 2			00.3			156.0				
10,8		MDW 1090 NHGS			57,3			90,3			156,3				
11,0		MDW 1100 NHGS□□	0			0			0						
11,08		MDW 1108 NHGS□□													
11,1		MDW 1110 NHGS□□													
11,2		MDW 1120 NHGS□□	0		59.9			94,4			163,4				
11,3		MDW 1130 NHGS□□			59,9			94,4			103,4				
11,4		MDW 1140 NHGS							_						
_ ′	12,0		0	124,5			160,5			232,5					
11,6 11,7		MDW 1160 NHGS□□ MDW 1170 NHGS□□													
11,8		MDW 1170 NHGS			62,5			98,5			170,5				
11,9		MDW 1190 NHGS□□			02,3			90,5			170,5				
12,0		MDW 1200 NHGS□□	0			0			0						
12,1		MDW 1210 NHGS□□													
12,2		MDW 1220 NHGS□□													
12,3		MDW 1230 NHGS□□			65,1			102,6			177,6				
12,4		MDW 1240 NHGS	_			_			_						
12,5	40.0	MDW 1250 NHGS□□ MDW 1260 NHGS□□		400 -		0	400 -			047 7					
	13,0	MDW 1260 NHGS		130,7			169,7			247,7					
12,7 12,8		MDW 1270 NHGS													
12,0		MDW 1290 NHGS						67,7		10	106,7			184,7	
12,96		MDW 1296 NHGS□□													
13,0		MDW 1300 NHGS□□	0			0			0						
,0															

Durchmesser	α	12	1 1	6 n	mm
Durchmesser	W)	15.	I-I	บ.บ	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

	urc	chmesser Ø 1	3,1	-1	6,0	mr	n			((mm)
Abmess	sungen		3	D Ty	р	5	D Ty	р	10	D Ty	/p
		KatNr.	Lager	Abmes	sungen	Lager	Abmes	sungen	Lager	Abmes	sungen
øD	ød	3, 5, 10 ▽	3	L	e	5	L	e	10	L	e
13,1		MDW 1310 NHGS□□									
13,2		MDW 1320 NHGS□□									
13,3		MDW 1330 NHGS□□			70.8			110,8			191,8
13,4		MDW 1340 NHGS□□			.,.			-,-			, ,
13,5	440	MDW 1350 NHGS□□	0	400.0		0	470 0			0000	
13,6	14,0	MDW 1360 NHGS□□		136,9			178,9			262,9	
13,7		MDW 1370 NHGS□□									
13,8		MDW 1380 NHGS□□			72,9			114,9			198,9
13,9		MDW 1390 NHGS□□									,
14,0		MDW 1400 NHGS□□	0			0					
14,1		MDW 1410 NHGS□□	o								
14,2		MDW 1420 NHGS□□									
14,3		MDW 1430 NHGS□□			75,5			119,0			206
14,4		MDW 1440 NHGS□□						,			
14,5		MDW 1450 NHGS□□	0			0					
14,6	15,0	MDW 1460 NHGS□□		141,1			188,1			278,1	
14,7		MDW 1470 NHGS□□									
14,8		MDW 1480 NHGS□□			70.4			100.4			040.4
14,9		MDW 1490 NHGS□□			78,1	□		123,1			213,1
14,96		MDW 1496 NHGS□□									
15,0		MDW 1500 NHGS□□	0			0					
15,1		MDW 1510 NHGS□□									
15,2		MDW 1520 NHGS□□									
15,3		MDW 1530 NHGS□□			80,7			127,2			220,2
15,4		MDW 1540 NHGS□□									
15,5	400	MDW 1550 NHGS□□	0	440.0			407.0			202.2	
15,6	16,0	MDW 1560 NHGS□□		149,3			197,3			293,3	
15,7		MDW 1570 NHGS□□									
15,8		MDW 1580 NHGS□□			83,3			131,3			227,3
15,9		MDW 1590 NHGS□□									
16,0		MDW 1600 NHGS□□	0			0					
		NHGS -Tvn mit	+ "ALIE		" Po	aabiak	tuna	шм	Corto	. DI	1200

NHGS -Typ mit "AURORA"- Beschichtung, HM-Sorte: DL1300

■ Bestellung von Artikeln

Nicht im Katalog angegebene Durchmesser können auf Kundenwunsch gefertigt werden. Die Mindestbestellmenge beträgt 6 Stück. Bei Bestellung geben Sie bitte die genaue Bestellnummer an.

Z.B.,

MDW 1030 NHGS 5, DL1300 (HM-Sorte) Super MÜLTI-DRILL DC = 10,3 mm Nutzlänge (L/D - Verhältnis): Geeignete Werkstückstoffe <u>-3 / -**5** / -10</u> mit Innenkühlung Multi-Bohrer NHGS - Typ

K37

Micro Long Drills MLDHL/P - Typ

■ Allgemeine Eigenschaften

MLDH ist die Bezeichnung für die neuentwickelten Mikro-Tieflochbohrer mit Innenkühlung von Sumitomo. Der Durchmesserbereich liegt von 0,8 bis 2,0 mm in den Längen von 5xD bis 30xD.

■ Eigenschaften und Anwendungen

Tieflochbohren

Die neu entwickelte Spannutgeometrie gibt dem Bohrer eine hohe Stabilität und sorgt für eine gute Spanabfuhr. Eine optimierte Ausspitzung der Querschneide gibt dem Bohrer eine gute Schneidenbalance und garantiert eine gute Spankontrolle. Dabei sind hohe Vorschubraten sicher möglich.

Prozesssichere Standzeiten

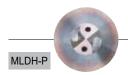
Durch Verwendung eines Hartmetalls mit ultrafeiner Körnung haben die Bohrer eine sehr hohe Bruch- und Verschleißfestigkeit. Eine von Sumitomo speziell entwickelte TiAIN PVD Beschichtung gibt dem Bohrer einen hohen Temperaturwiderstand.

Ausführungen

Anwendung	Тур	Durchmesser- bereich (mm)	Bohrtiefe (L/D)
Pilotbohrer	MLDH 🗆 🗆 P	Ø 0,8 – 2,0	-2
	MLDH 0000 L5	Ø 0,8 – 2,0	– 5
Tieflochbohrer	MLDH 0000 L12	Ø 0,8 – 2,0	-12
riellocriboniel	MLDH 🗆 🗆 🗆 L20	Ø 0,8 – 2,0	-20
	MLDH 🗆 🗆 🗆 L30	Ø 0,8 – 2,0	-30

■ Empfohlene Schnittbedingungen

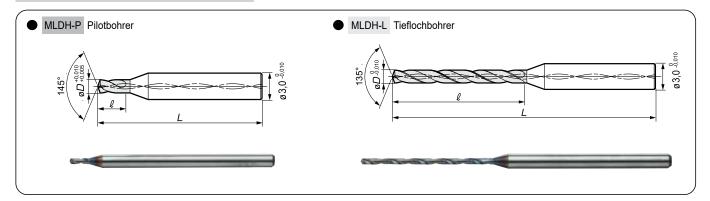
● MLDH P / L5


(vc: Schnittgeschw. (m/min), f: Vorschub (mm/U), Min - Standard - Max)

Bohrer-ø DC (mm)	Schnitt- Bed.	Unlegierter Stahl (–200 HB)	Niedrig Legierter Stahl (200–250 HB)	Legierter Stahl (250–300 HB)	Rostfreier Stahl (–200 HB)	Grauguss	Aluminiumlegierung	Hitzebeständiger Stahl
−Ø 1,0	Vc	40 –50 –60	40 –50 –60	40 –50 –60	20 –30 –40	40 –50 –60	50 –60 –70	5 –10 –15
-Ø 1,0	f	0,01 –0,02 –0,03	0,01 –0,02 –0,03	0,01 –0,02 –0,03	0,01 –0,02 –0,03	0,02 –0,03 –0,04	0,03 –0,04 –0,06	0,005 –0,01 –0,02
−Ø 1,5	Vc	40 –50 –60	40 –50 –60	40 –50 –60	20 –30 –40	40 –50 –60	50 –60 –70	5 –10 –15
1,5 ا	f	0,04 –0,08 –0,12	0,04 –0,08 –0,12	0,04 –0,08 –0,12	0,02 –0,05 –0,10	0,04 –0,08 –0,12	0,05 –0,10 –0,15	0,01 –0,03 –0,05
Ø 2.0	Vc	40 –50 –60	40 –50 –60	40 –50 –60	20 –30 –40	40 –50 –60	50 –60 –70	5 –10 –15
−Ø 2,0	f	0,06 –0,08 –0,12	0,06 –0,08 –0,12	0,06 –0,08 –0,12	0,04 –0,06 –0,10	0,06 –0,08 –0,12	0,08 –0,12 –0,15	0,01 –0,03 –0,05

● MLDH L12 / L20 / L30

(vc: Schnittgeschw. (m/min), f: Vorschub (mm/U), Min - Standard - Max)


						. ,		<u>`</u>
Bohrer-ø DC (mm)	Schnitt- Bed.	Unlegierter Stahl (–200 HB)	Niedr. Legierter Stahl (200–250 HB)	Legierter Stahl (250–300 HB)	Rostfreier Stahl (–200 HB)	Grauguss	Aluminiumlegierung	Hitzebeständiger Stahl
−Ø 1.0	Vc	40 –50 –60	40 –50 –60	40 –50 –60	20 –30 –40	40 –50 –60	50 –60 –70	5 –10 –15
יו ש– 1,0	f	0,01 –0,02 –0,03	0,01 –0,02 –0,03	0,01 –0,02 –0,03	0,01 –0,02 –0,03	0,02 –0,03 –0,04	0,03 –0,04 –0,06	0,005 –0,01 –0,02
−Ø 1,5	Vc	40 –50 –60	40 –50 –60	40 –50 –60	20 –30 –40	40 –50 –60	50 –60 –70	5– 10 –15
1,5	f	0,03 –0,05 –0,07	0,03 –0,05 –0,07	0,03 –0,05 –0,07	0,02 –0,04 –0,07	0,04 –0,07 –0,10	0,05 –0,08 –0,12	0,01 –0,02 –0,03
−Ø 2.0	Vc	40 –50 –60	40 –50 –60	40 –50 –60	20 –30 –40	40 –50 –60	50 –60 –70	5– 10 –15
− ⊌ 2,0	f	0,04 –0,06 –0,08	0,04 –0,06 –0,08	0,04 –0,06 –0,08	0,04 –0,06 –0,08	0,04 –0,07 –0,10	0,05 –0,08 –0,12	0,01 –0,02 –0,03

Micro Long Drills MLDHL/P - Typ

Innenkühlung

■ Lager (mm)

	P-Typ Pilotbohrer L-Typ Tieflochbohrer																
an	,,,,						5x D		,	12x D			20x D			30x D	
ØD	Kat Nr.	Lager	Abmes	sungen	Kat Nr.	Lager		sungen	Lager		sungen			sungen	Lager	Ahmes	sungen
(mm)	ridi. Til.	Lagor	L	e	5, 12, 20, 30	5	L	l	12	L	e	20	L	l	30	L	l
0,80	MLDH 0800P	О		3,2	MLDH 0800L□Ū	0		8	0			0		19	0		
0,81	0810P	0		5,2	0810L□□	0			0			0		19	0		28
0,82	MLDH 0820P	0		3,3	MLDH 0820L□□	0			0		14	О	60		0		20
0,83	0830P	0		0,0	0830L□□	0			0		14	0	00	20	0		
0,84	MLDH 0840P	0			MLDH 0840L□□	0			0			О		20	0	70	
0,85	0850P	0		3,4	0850L□□	0		9	О	55		0			О	70	29
0,86	0860P	0			0860L□□	0		J	<u> </u>	00		<u> </u>			0		
0,87	MLDH 0870P	0		3,5	MLDH 0870L□□	0			О			О		21	О		
0,88	0880P)		0,0	0880L□□)			<u> </u>		15)			<u> </u>		30
0,89	MLDH 0890P	0			MLDH 0890L□□	0			О		. •	О			О		
0,90	0900P	0		3,6	0900∟□□	0	50)			О			0		l
0,91	0910P)			0910L	0			<u> </u>)		22	0		31
0,92	MLDH 0920P	0		3,7	MLDH 0920L□□	0			O			0			O		
0,93	0930P	0			0930L 🗆	0			0			0	65		0		32
0,94	MLDH 0940P	0			MLDH 0940L	0			0		16	0			0	75	32
0,95	0950P 0960P	0	45	3,8	0950∟□□	0		10	0			0		23	0	75	
0,96	MLDH 0970P	0	45		0960L 🗆 🗆	0			0			0			0		33
0,97 0,98	0980P	0		3,9	MLDH 0970L□□	0			0	60		0			0		33
0,98	MLDH 0990P	0			0980L□□ MLDH 0990L□□	0			0	00	17	0		24	0		
1,00	1000P	0		4,0	MLDH 0990L□□ 1000L□□	0			0		17	0		24	0		34
1,05	MLDH 1050P	0		4,2	MLDH 1050L	0			0		18	0		25	0		36
1,10	MLDH 1100P	0	}	4,4	MLDH 1100L	0			0		19	0		26	0	80	37
1,15	MLDH 1150P	0		4,6	MLDH 1150L	0		12	0			0		28	0	00	39
1,20	MLDH 1200P	0		4,8	MLDH 1200L□□	0			0		20	0	70	29	0		41
1,25	MLDH 1250P	0		5,0	MLDH 1250L□□	0			0		21	0		30	0	85	43
1,30	MLDH 1300P	0		5,2	MLDH 1300L□□	0			0		22	0		31	0		44
1,35	MLDH 1350P	0		5,4	MLDH 1350L□□	O	55	14	0		23	0		32	O		46
1,40	MLDH 1400P	0		5,6	MLDH 1400L□□	0			0	65	24	0	75	34	0	90	48
1,45	MLDH 1450P	О	1	5,8	MLDH 1450L□□	0			О		25	О		35	О	90	49
1,50	MLDH 1500P	0		6,0	MLDH 1500L□□	0		16	О		26	0		36	0		51
1,55	MLDH 1550P	О		6,2	MLDH 1550L□□	0		10	0			0		37	О		53
1,60	MLDH 1600P	0		6,4	MLDH 1600L□□	0			0		27	0	80	38	0	95	54
1,65	MLDH 1650P	0		6,6	MLDH 1650L□□	О			0		28	О	00	40	О		56
1,70	MLDH 1700P	0		6,8	MLDH 1700L□□	0		18	0	70	29	0		41	О		58
1,75	MLDH 1750P	0		7,0	MLDH 1750L□□	0		10	0	70	30	0		42	0	100	60
1,80	MLDH 1800P	О	50	7,2	MLDH 1800L□□	0	60		0		31	0		43	0		61
1,85	MLDH 1850P	О	50	7,4	MLDH 1850L□□	0	00		0		_	0	85	44	O		63
1,90	MLDH 1900P	0		7,6	MLDH 1900L□□	0		20)		32	0		46	0	103	65
1,95	MLDH 1950P	0		7,8	MLDH 1950L□□	0		20	0	75	33	0		47	0	100	66
2,00	MLDH 2000P	О		8,0	MLDH 2000L□□	0			О		34	О	90	48	О		68

PVD-Beschichtung: ACV70

● Durchmesser Ø 0,03–0,19 mm

øD	Kat Na	Lager	Abmes	sungen	A L L	Stück/
(mm)	KatNr.	La	ℓ_1	ℓ_2	Abb.	Pack- ung
0,030	MDUS 0030-30C	0	0,3			
0,035	MDUS 0035-30C		0,4			
0,040	MDUS 0040-30C	0	0,4			
0,045	MDUS 0045-30C		0,5			
0,050	MDUS 0050-30C	0	0,5			
0,055	MDUS 0055-30C		0,6			
0,060	MDUS 0060-30C		0,0			
0,065	MDUS 0065-30C		0,7			5
0,070	MDUS 0070-30C		0,1			
0,075	MDUS 0075-30C		0,8			
0,080	MDUS 0080-30C	0	0,0			
0,085	MDUS 0085-30C			20	1	
0,090	MDUS 0090-30C		1,0	28	'	
0,095	MDUS 0095-30C		1,0			
0,100	MDUS 0100-30C	0				
0,110	MDUS 0110-30C	0	1,2			
0,120	MDUS 0120-30C		1,2			
0,120	MDUS 0130-30C	0				
0,140	MDUS 0140-30C		1,5			
0,150	MDUS 0150-30C					1
0,160	MDUS 0160-30C	0				
0,170	MDUS 0170-30C		1,8			
0,180	MDUS 0180-30C					
0,190	MDUS 0190-30C		1,9			

● Durchmesser Ø 0.20–0.59 mm

● Du	rchmesser Ø	0,	20-	-0,5	59 r	nm
øD	12 ()	Lager	Abmes	sungen		Stück/
(mm)	KatNr.	Lac	ℓ_1	ℓ_2	Abb.	Pack- ung
0,20	MDSS 0020	0				
0,21	MDSS 0021	O				
0,22	MDSS 0022	O				
0,23	MDSS 0023	O				
0,24	MDSS 0024	O	2,5			
0,25	MDSS 0025	O	2,0			
0,26	MDSS 0026	O				
0,27	MDSS 0027	O			2	
0,28	MDSS 0028	0				
0,29	MDSS 0029					
0,30	MDSS 0030	0				
0,31	MDSS 0031	O				
0,32	MDSS 0032	0	3			
0,33	MDSS 0033	O				
0,34	MDSS 0034	0		28		
0,35	MDSS 0035	O		20		
0,36	MDSS 0036	0				
0,37	MDSS 0037	0	4			
0,38	MDSS 0038	0				
0,39	MDSS 0039	0				1
0,40	MDSS 0040	0				'
0,41	MDSS 0041	0				
0,42	MDSS 0042	0				
0,43	MDSS 0043	0				
0,44	MDSS 0044	0	5			
0,45	MDSS 0045	O				
0,46	MDSS 0046	0				
0,47	MDSS 0047	O			3	
0,48	MDSS 0048	0				
0,49	MDSS 0049	O				
0,50	MDSS 0050	0				
0,51	MDSS 0051	O				
0,52	MDSS 0052	0				
0,53	MDSS 0053	O				
0,54	MDSS 0054	0		27		
0,55	MDSS 0055	O	6			
0,56	MDSS 0056	0				
0,57	MDSS 0057	0				
0,58	MDSS 0058	0				
0,59	MDSS 0059	J				

● Durchmesser Ø 0.60–1.00 mm

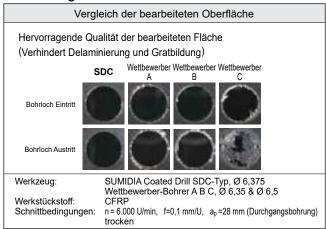
øD (mm) 0,60 0,61 0,62	KatNr. MDSS 0060 MDSS 0061 MDSS 0062 MDSS 0063 MDSS 0064		Abmes ℓ_1	sungen ℓ_2	Abb.	Stück Pack- ung
0,60 0,61	MDSS 0061 MDSS 0062 MDSS 0063 MDSS 0064	0	<u> </u>	<i>c</i> ₂		ung
0,61	MDSS 0061 MDSS 0062 MDSS 0063 MDSS 0064	о 0				
	MDSS 0062 MDSS 0063 MDSS 0064	0				
0,02	MDSS 0063 MDSS 0064					
0,63	MDSS 0064	0				
0,64		0				
0,65	MDSS 0065	0	7	26		
0,66	MDSS 0066	0				
0,67	MDSS 0067	0				
0,68	MDSS 0068	0				
0,69	MDSS 0069	0				
0,70	MDSS 0070	0				
0,71	MDSS 0071	0				
0,72	MDSS 0072	0				
0,72	MDSS 0073	0				
0,74	MDSS 0074					
0,75	MDSS 0075	0	9	24		
0,76	MDSS 0076	0				
0,77	MDSS 0077	0				
0,78	MDSS 0078	0				
0,79	MDSS 0079	0				
0,80	MDSS 0080	0			3	1
0,81	MDSS 0081	0			•	-
0,82	MDSS 0082	0				
0,83	MDSS 0083	0				
0,84	MDSS 0084	0	40	22		
0,85	MDSS 0085	0	10	23		
0,86	MDSS 0086	0				
0,87	MDSS 0087	0				
0,88	MDSS 0088	0				
0,89	MDSS 0089	O				
0,90	MDSS 0090	O				
0,91	MDSS 0091	0				
0,92	MDSS 0092	O				
0,93	MDSS 0093	0				
0,94	MDSS 0094	0				
0,95	MDSS 0095	0	11	22		
0,96	MDSS 0096	0	' '			
0,97	MDSS 0097	O				
0,98	MDSS 0098	0				
0,99	MDSS 0099	0	40			
1,00	MDSS 0100	O	12	21		

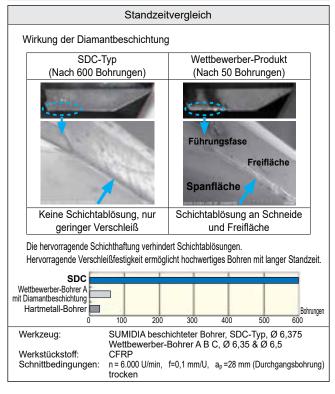
MDSS Empfohlene Schnittbedingungen (mit Emulsion)

		31011101			aga	90 (.		4101011	,
Werkst stoff Bohrer-ø	f Legieriei Starii,			nstahl, ve ıl (H _R C 30		Ro	stfreier St	ahl	
		Vorschub	Stufenvor-	Spindel-	Vorschub	Stufenvor-	Spindel-	Vorschub	Stufenvor-
(mm)	U/min	(mm/min)	schub(mm)	U/min	(mm/min)	schub(mm)	U/min	(mm/min)	schub(mm)
Ø 0,2	26500	50		21200	40		10600	20	
Ø 0,3	26500	80	0.45	21200	60	0.45	10600	30	
Ø 0,4	25900	100	0,1D	19900	80	0,1D	9500	40	0,1D
Ø 0,5	25500	150		19100	110		9500	50	
Ø 1,0	15900	240	0.2D-0.5D*	12700	190	0.2D-0.5D*	5600	80	

- Oben genannte Werte werden unter Verwendung von wasserlöslicher Emulsion empfohlen.
- 2. Bei Auftreten von Vibrationen oder Maschinengeräuschen bitte Werte entsprechend anpassen.
- Sollte die Maschine die angebenen Spindeldrehzahlen nicht erreichen k\u00f6nnen, benutzen Sie die maximal m\u00f6glichen Drehzahlen.
- Bei Bohrtiefen größer 3xD wird empfohlen den Vorschub zyklisch zu unterbrechen.

SUMIDIA-Bohrer SDC - Typ

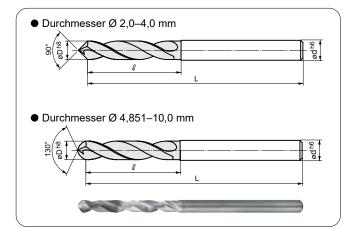

■ Allgemeine Eigenschaften


Die mit SUMIDIA CVD Dickschicht beschichteten Vollhartmetallbohrer der SDC-Serie, für kohlefaserverstärkten Kunststoff (CFK), verfügen über das einzigartige mehrstufige Spitzenwinkeldesign von Sumitomo.

■ Eigenschaften und Anwendungen

- Hervorragende Bohrlochqualität
 - Scharfe Schneiden vermeiden Delaminierung der Faserschichten und verringern die Gratbildung.
- Lange Standzeiten
 - Die hervorragende Haftung der Diamantschicht auf dem Hartmetall verringert den Verschleiß an den Schneiden und verlängert die Standzeit erheblich.

■ Leistungsmerkmale



Serie

Тур	Durchmesser- bereich (mm)	Spitzen- winkel	Bohrtiefe (^L / _D)
MDS□□□□□SDC3	Ø 2,0 – 4,0	90°	-3
MD3LLLLSDC3	Ø 4,851 – 10,0	130°	_3

* CFRP (Carbon Fibre Reinforced Plastic - kohlefaserverstärkter Kunststoff

● Durchmesser Ø 2,0-10,0 mm

(mm)

Abmes	sungen		3D-Typ		
DC (mm)	Ød (mm)	Kat Nr.	Lager	Abmes	sungen
(''''')	(mm)		_	L	e
2,0		MDS 02000SDC3	0		12,5
2,489	3,0	02489SDC3	0	49	15,0
3,0		03000SDC3	0		17,5
3,3	3,3	MDS 03300SDC3	0	60	20,0
4,0	4,0	04000SDC3	•	60	22,5
4,851	4,851	MDS 04851SDC3	0	76	27,5
5,0	5,0	05000SDC3	0	10	21,5
5,6	5,6	MDS 05600SDC3	0	81	30.0
6,0	6,0	06000SDC3	•	01	30,0
6,375	6,375	MDS 06375SDC3	0	83	32,5
7,0	7,0	07000SDC3	0	65	35,0
7,938	7,938	MDS 07938SDC3	0	90	40,0
8,0	8,0	08000SDC3	0	30	40,0
9,0	9,0	MDS 09000SDC3	0	98	45,0
9,550	9,550	MDS 09550SDC3	0	105	50,0
10,0	10,0	10000SDC3	0	103	50,0

■ Empfohlene Schnittbedingungen

	/erkstoff	Nur CFRP (Trockenzerspanung)	Gestapelte CFRP-Platten, Aluminiumlegierungen (Trockenzerspanung)
−Ø 6.0	Vc	80 –120 –150	40 –60 –80
0,0 ا	f	0,05 –0,08 –0,10	0,05 –0,05 –0,10
-Ø10.0	Vc	80 –100 –120	40 –60 –80
-610,0	f	0,05 –0,08 –0,10	0,05 –0,05 –0,10

(v_c : Schnittgeschw. (m/min), f : Vorschub (mm/U), Min - Standard - Max)

MULTI-DRILLs mit auswechselbarem Kopf

SMD - Typ

■ Eigenschaften

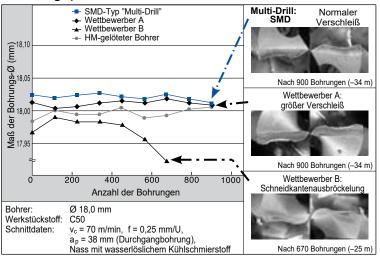
Ideal zur schnellen und exakten Bearbeitung von Stahl.

Dieser neu entwickelte Bohrer von SUMITOMO erzeugt ähnlich präzise
Bohrungen wie nachschleifbare Bohrer, die in der Industrie als das
ultimative Bohrwerkzeug gelten.

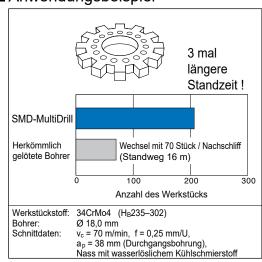
■ Vorzüge

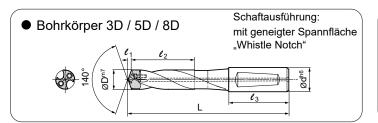
- Verfügbar in den Durchmessern 12,0–42,5 mm
- Bohrtiefe von 1,5 bis 12 x D
- Optimierte Temperaturabfuhr durch spezielle Positionierung der Kühlmittelbohrungen
- Maximale Steifigkeit durch neu entwickeltes (Kopf) Spannsystem
- Hohe Präzision und Bohrleistung beim Bohren von Stählen
- Drei unterschiedliche Geometrien: Die Standardgeometrie MTL für rostfrei und langspanende Stähle, MEL und der neue MFS-Typ für das Anbohren auf unebenen Oberflächen.

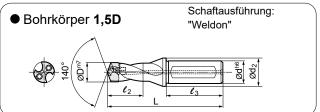
Prozeßsicherheit durch auswechselbare Bohrköpfe, die auf eine exakt geschliffene Radialverzahnung aufgesetzt und verschraubt werden.

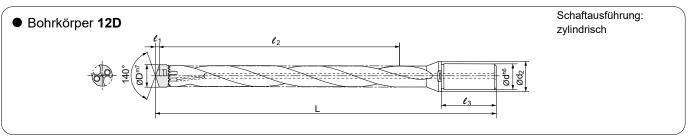

Die formschlüssige Verbindung gewährleistet sichere Klemmung des Bohrkopfes.

Verfügbar in den Durchmessern 12,0 30,5 mm mit einer Bohrtiefe von 3D, 5D, 8D und 12D


Ein weiteres Merkmal dieses Bohrers ist sein speziell behandelter zäher Stahlkörper, der sehr resistent gegen Verschleiß und Rost ist.


Kühlbohrungen, die durch ihre Position den Druck und die Strömungsrichtung der Kühlflüssigkeit verbessern.


■ Bohrungspräzision



Anwendungsbeispiel

 ℓ_2 = Effektive Nutzlänge

■ Bohrkörper

(mm)

Abr	ness	sung	en			Serie	(1,5D	,5D) Serie (3D)		Serie (5D) Serie (8D)		Serie (12D)				Geeignete						
Bohrl	opf	Scl	naft	Bezeichnung	Lager	Abn	nessunç	gen	Lager	Abmes	sungen	Lager Abmessunger		n Lager Abmessunger		sungen	Lager Abmessun		nessuno	gen Bohrköpfe		
Ø D	ℓ_1	Ød	ℓ_3		s	L	ℓ_2	Ød2	МЗ	L	ℓ_2	М5	L	ℓ_2	М8	L	ℓ_2	12D	L	ℓ_2	Ød2	DMTL / DMEL
12,0	2,2			SMDH 120 □ □	•	91	25,5	20	•	107,2	43,5	•	132,2	68,5								1200-1249
12,5	2,3	16	48	SMDH 125 □ □	•	91	25,5	20	•	107,3	43,5	•	132,3	68,5								1250-1299
13,0	2,4	10	40	SMDH 130 □ □	•	92	27,5	20	•	112,4	46,5	•	142,4	73,5								1300–1349
14,0	2,5			SMDH 140 □ □ □	•	96	31,5	20	•	119,0	52,5	•	149,0	81,5	•	194,0	124,5	•	238,5	168,5	20	1350–1450
15,0	2,7			SMDH 150 □ □ □	•	100	32,0	25	•	129,2	55,0	•	159,2	86,0	•	204,2	133,0	•	253,0	180,0	25	1451–1550
16,0	2,9	20	50	SMDH 160 □ □ □	•	103	35,0	25	•	134,4	59,0	•	169,4	92,0		214,4	141,0	•	265,5	192,0	25	1551–1650
17,0	3,1	20	50	SMDH 170 □ □ □	•	105	35,5	25	•	139,6	62,5	•	174,6	97,5	•	224,6	150,5	•	278,1	203,5	25	1651–1750
18,0	3,3			SMDH 180 □ □ □	•	107	39,7	25	•	144,8	66,5	•	179,8	103,5	•	229,8	158,5	•	290,5	215,5	25	1751–1850
19,0	3,5			SMDH 190 □ □ □		115	40,5	30	•	160,1	69,5	•	195,0	108,5	•	255,0	167,5	•	309,1	228,5	30	1851–1950
20,0	3,6			SMDH 200 □ □ □		118	43,0	30	•	160,1	73,0	•	200,1	114,0	•	265,1	175,0	•	321,4	240,0	30	1951–2050
21,0	3,8	25	56	SMDH 210 □ □ □	ullet	119	44,0	30	•	160,3	76,0	•	200,3	119,0	•	270,3	184,0	•	333,9	252,0	30	2051–2150
22,0	4,0			SMDH 220 □ □ □	ullet	121	47,0	30	•	165,1	80,0	•	205,1	125,0	•	275,1	192,0	•	347,0	264,0	30	2151–2280
23,0	4,2			SMDH 230 □ □ □	•	122	46,5	30	•	164,8	82,5	•	214,8	129,5	•	284,8	200,5	•	359,0	275,5	30	2281–2380
24,0	4,4			SMDH 240 □ □ □	•	129	49,5	37	•	174,6	86,5	•	224,6	135,5	•	299,6	208,5	•	376,1	284,5	37	2381–2480
25,0	4,6			SMDH 250 □ □ □	ullet	129	49,0	37	•	174,6	88,0	•	229,6	140,0	•	304,6	217,0	•	388,4	300,0	37	2481-2580
26,0	4,7			SMDH 260 □ □	•	132	52,0	37	•	179,7	92,0	•	234,7	146,0	•	314,7	225,0					2581-2680
27,0	4,9	32	60	SMDH 270 □ □	•	133	53,0	37	•	179,9	94,0	•	239,9	151,0	•	324,9	234,0					2681-2780
28,0	5,1			SMDH 280 □ □	•	135	54,5	37	•	185,1	96,5	•	245,1	156,5	•	330,1	241,5					2781–2880
29,0	5,3			SMDH 290 □ □	•	136	55,5	37	•	190,3	99,5	•	250,3	161,5	•	340,3	250,5					2881-2980
30,0	5,5			SMDH 300 □ □	•	139	58,5	37	•	190,5	104,5	•	260,5	167,5	•	350,5	259,5					2981–3050

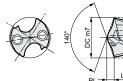
Bestellbeispiel: SMDH210M3, Bohrköpfe ⇒ K59/H60

■ Empfohlene Anzugsmomente

Schra	ube	
	(N·m)	Geeigneter Bohrkopf
BXD 02208 IP	0,8–1,0	SMDT 1200 – 1550 D M □L
BXD 02509 IP	0,9–1,2	SMDT 1551 – 1850 D M □L
BXD 03011 IP	1,8–2,4	SMDT 1851 – 2150 D M □L
BXD 03512 IP	2,8-3,7	SMDT 2151 – 2480 D M □L
BXD 04014 IP	4,1–5,5	SMDT 2481 – 2780 D M □L
BXD 04515 IP	5,0-6,6	SMDT 2781 – 3050 D M □L

Ersatzteile

Schraube	Schlüssel	
		Geeignete Bohrkörper
BXD 02208 IP	TRDR 08 IP	SMDT 120 – 150 M □
BXD 02509 IP	TRDR 10 IP	SMDT 160 – 180 M □
BXD 03011 IP	TRDR 15 IP	SMDT 190 – 210 M □
BXD 03512 IP	TRDR 15 IP	SMDT 220 – 240 M □
BXD 04014 IP	TRDR 20 IP	SMDT 250 – 270 M □
BXD 04515 IP	TRDR 25 IP	SMDT 280 – 300 M □


Nachschleifbarer Bohrkopf SMDT... D MTL -Typ

(Kohlenstoff- und legierter Stahl, Kugelgraphitguss)

PVD beschichtete Sorte: ACX70

MTL-Typ

■ Bohrkopf (VHM)

● Ø 12,0–15,3 mm

DC	Bezeichnung	Lager	PL	LF
(mm)				
12,0	SMDT 1200 D MTL	•	2,2	
12,1	1210 D MTL	•	2,2	
12,2	1220 D MTL	•	2,2	6,9
12,3	1230 D MTL	•	2,2	
12,4	1240 D MTL	•	2,3	
12,5	SMDT 1250 D MTL	•	2,3	
12,6	1260 D MTL	•	2,3	
12,7	1270 D MTL	•	2,3	7,1
12,8	1280 D MTL	•	2,3	
12,9	1290 D MTL	•	2,3	
13,0	SMDT 1300 D MTL	•	2,4	
13,1	1310 D MTL	•	2,4	
13,2	1320 D MTL	•	2,4	7,3
13,3	1330 D MTL	•	2,4	
13,4	1340 D MTL	•	2,4	
13,5	SMDT 1350 D MTL	•	2,5	
13,6	1360 D MTL	•	2,5	
13,7	1370 D MTL	•	2,5	
13,8	1380 D MTL	•	2,5	
13,9	1390 D MTL	•	2,5	
14,0	1400 D MTL	•	2,5	7,8
14,1	1410 D MTL	•	2,6	
14,2	1420 D MTL	•	2,6	
14,3	1430 D MTL	•	2,6	
14,4	1440 D MTL	•	2,6	
14,5	1450 D MTL	•	2,6	
14,6	SMDT 1460 D MTL	•	2,7	
14,7	1470 D MTL	•	2,7	
14,8	1480 D MTL	•	2,7	
14,9	1490 D MTL	•	2,7	
15,0	1500 D MTL	•	2,7	8,3
15,1	1510 D MTL	•	2,7	
15,2	1520 D MTL	•	2,8	
15,3	1530 D MTL	•	2,8	

Ø 15,4-18,7 mm

DC (mm)	Bezeichnung	Lager	PL	LF
15,4	SMDT 1540 D MTL	•	2,8	8,3
15,5	1550 D MTL	•	2,8	0,3
15,6	SMDT 1560 D MTL	•	2,8	
15,7	1570 D MTL	•	2,9	
15,8	1580 D MTL	•	2,9	
15,9	1590 D MTL	•	2,9	
16,0	1600 D MTL	•	2,9	0.7
16,1	1610 D MTL	•	2,9	8,7
16,2	1620 D MTL	•	2,9	
16,3	1630 D MTL	•	3,0	
16,4	1640 D MTL	•	3,0	
16,5	1650 D MTL	•	3,0	
16,6	SMDT 1660 D MTL	•	3,0	
16,7	1670 D MTL	•	3,0	
16,8	1680 D MTL	•	3,1	
16,9	1690 D MTL	•	3,1	
17,0	1700 D MTL	•	3,1	9,2
17,1	1710 D MTL	•	3,1	
17,2	1720 D MTL	•	3,1	
17,3	1730 D MTL	•	3,1	
17,4	1740 D MTL	•	3,2	
17,5	1750 D MTL	•	3,2	
17,6	SMDT 1760 D MTL	•	3,2	
17,7	1770 D MTL	•	3,2	
17,8	1780 D MTL	•	3,2	
17,9	1790 D MTL	•	3,3	
18,0	1800 D MTL	•	3,3	0.0
18,1	1810 D MTL	•	3,3	9,6
18,2	1820 D MTL	•	3,3	
18,3	1830 D MTL	•	3,3	
18,4	1840 D MTL		3,3	
18,5	1850 D MTL	•	3,4	
18,6	SMDT 1860 D MTL	•	3,4	10.4
18,7	1870 D MTL	•	3,4	10,1

● Ø 18,8-30,5 mm

DC (mm) Bezeichnung Lager PL LF 18,8 SMDT 1880 D MTL • 3,4 18,9 1890 D MTL • 3,5 19,0 1900 D MTL • 3,5 19,1 1910 D MTL • 3,5 19,2 1920 D MTL • 3,5 19,3 1930 D MTL • 3,5 19,4 1940 D MTL • 3,5 19,5 1950 D MTL • 3,5
18,9 1890 D MTL • 3,4 19,0 1900 D MTL • 3,5 19,1 1910 D MTL • 3,5 19,2 1920 D MTL • 3,5 19,3 1930 D MTL • 3,5 19,4 1940 D MTL • 3,5
19,0 1900 D MTL • 3,5 19,1 1910 D MTL • 3,5 19,2 1920 D MTL • 3,5 19,3 1930 D MTL • 3,5 19,4 1940 D MTL • 3,5
19,0 1900 D MTL • 3,5 19,1 1910 D MTL • 3,5 19,2 1920 D MTL • 3,5 19,3 1930 D MTL • 3,5 19,4 1940 D MTL • 3,5
19,1 1910 D MTL • 3,5 19,2 1920 D MTL • 3,5 19,3 1930 D MTL • 3,5 19,4 1940 D MTL • 3,5
19,2 1920 D MTL 3,5 19,3 1930 D MTL 3,5 19,4 1940 D MTL 3,5
19,3 1930 D MTL ● 3,5 19,4 1940 D MTL ● 3,5
19,6 SMDT 1960 D MTL • 3,6
19,7 1970 D MTL ● 3,6
19,8 1980 D MTL • 3,6
19,9 1990 D MTL • 3,6 10,
20,0 2000 D MTL ● 3,6
20,5 SMDT 2050 D MTL ● 3,7
21.0 SMDT 2100 D MTI
21,5 2150 D MTL • 3,9 11,
22,0 SMDT 2200 D MTL • 4,0 11,
22,5 2250 D MTL • 4,1
23,0 SMDT 2300 D MTL • 4,2 11,
23,5 2350 D MTL • 4,3
24,0 SMDT 2400 D MTL 4,4 11,
24,5 2450 D MTL • 4,5
25,0 SMDT 2500 D MTL
25,5 2550 D MTL • 4,6
26,0 SMDT 2600 D MTL
26,5 2650 D MTL ■ 4,8
27,0 SMDT 2700 D MTL • 4,9 12
27,5 2750 D MTL ■ 5,0
28,0 SMDT 2800 D MTL
28,5 2850 D MTL ■ 5,2
29,0 SMDT 2900 D MTL
29,5 2950 D MTL ■ 5,4
30,0 SMDT 3000 D MTL
30,5 3050 D MTL ● 5,6 13,

■ Empfohlene Schnittbedingungen

● Für Anwendung von 3 x D und 5 x D Bohrern

Werkstückstoff		Allg. Stahl	Gehärteter Stahl	Kugelgraphit-
Bohrer-ø (mm)		(HB250-320)	(HRC45)	guss
~ 16,0	Vc	70 – 100 – 120	40 - 60 - 90	50 - 60 - 80
	f	0,15 - 0,2 - 0,3	0,1 - 0,15 - 0,2	0,2 - 0,25 - 0,3
~ 20,0	Vc	70 – 100 – 120	40 – 70 – 90	50 – 70 – 90
	f	0,15 – 0,25 – 0,35	0,15 - 0,2 - 0,25	0,2 - 0,25 - 0,35
~ 30,8	Vc	70 – 100 – 120	40 - 60 - 90	50 - 70 - 90
	f	0,2 - 0,25 - 0,35	0,15 - 0,2 - 0,25	0,25 - 0,3 - 0,35

Anmerkung: Durch eine stabile Maschine und Werkstückspanung ist eine Hochleistungszerspanung gewähleistet.

● Für Anwendung von 8 x D und 12 x D Bohrern

		•		
Werkstückstoff		Allg. Stahl	Gehärteter Stahl	Kugelgraphit-
Bohrer-ø (mm)		(HB250-320)	(HRC45)	guss
~ 16,0	Vc	50 – 70 – 80	30 – 50 – 70	40 – 50 – 70
	f	0,15 - 0,2 - 0,3	0,1 - 0,15 - 0,2	0,2 - 0,25 - 0,3
~ 20,0	Vc	50 – 70 – 80	30 – 50 – 70	40 - 60 - 80
	f	0,15 – 0,25 – 0,35	0,15 - 0,2 - 0,25	0,2 - 0,25 - 0,35
~ 25,0 (12D)	Vc	50 – 70 – 80	30 - 50 - 70	40 - 60 - 80
~ 30,5 (8D)	f	0,2 - 0,25 - 0,35	0,15 - 0,2 - 0,25	0,25 - 0,3 - 0,35

[v_c : Schnittgeschwindigkeit (m/min), f: Vorschub (mm/U), Min - Standard - Max]

MEL-Typ

■ Bohrkopf (VHM)

• Ø 12,0–15,3 mm

	12,0-13,3 11111	•		
DC (mm)	Bezeichnung	Lager	PL	LF
12,0	SMDT 1200 D MEL	•	2,2	
12,1	1210 D MEL	•	2,2	
12,2	1220 D MEL	•	2,2	6,9
12,3	1230 D MEL	•	2,2	
12,4	1240 D MEL	•	2,3	
12,5	SMDT 1250 D MEL		2,3	
12,6	1260 D MEL	•	2,3	
12,7	1270 D MEL	•	2,3	7,1
12,8	1280 D MEL	•	2,3	
12,9	1290 D MEL	•	2,3	
13,0	SMDT 1300 D MEL	•	2,4	
13,1	1310 D MEL	•	2,4	
13,2	1320 D MEL	•	2,4	7,3
13,3	1330 D MEL	•	2,4	
13,4	1340 D MEL	•	2,4	
13,5	SMDT 1350 D MEL	•	2,5	
13,6	1360 D MEL	•	2,5	
13,7	1370 D MEL	•	2,5	
13,8	1380 D MEL	•	2,5	
13,9	1390 D MEL	•	2,5	
14,0	1400 D MEL	•	2,5	7,8
14,1	1410 D MEL	•	2,6	
14,2	1420 D MEL	•	2,6	
14,3	1430 D MEL	•	2,6	
14,4	1440 D MEL	•	2,6	
14,5	1450 D MEL	•	2,6	
14,6	SMDT 1460 D MEL	•	2,7	
14,7	1470 D MEL	•	2,7	
14,8	1480 D MEL	•	2,7	
14,9	1490 D MEL	•	2,7	
15,0	1500 D MEL	•	2,7	8,3
15,1	1510 D MEL	•	2,7	
15,2	1520 D MEL	•	2,8	
15,3	1530 D MEL	•	2,8	

• Ø 15,4–18,7 mm

DC (mm)	Bezeichnung	Lager	PL	LF
15,4	SMDT 1540 D MEL	•	2,8	8,3
15,5	1550 D MEL	•	2,8	0,3
15,6	SMDT 1560 D MEL	•	2,8	
15,7	1570 D MEL	•	2,9	
15,8	1580 D MEL	•	2,9	
15,9	1590 D MEL	•	2,9	
16,0	1600 D MEL	•	2,9	8,7
16,1	1610 D MEL	•	2,9	0,1
16,2	1620 D MEL	•	2,9	
16,3	1630 D MEL	•	3,0	
16,4	1640 D MEL	•	3,0	
16,5	1650 D MEL	•	3,0	
16,6	SMDT 1660 D MEL	•	3,0	
16,7	1670 D MEL	•	3,0	
16,8	1680 D MEL	•	3,1	
16,9	1690 D MEL	•	3,1	
17,0	1700 D MEL	•	3,1	9,2
17,1	1710 D MEL	•	3,1	
17,2	1720 D MEL	•	3,1	
17,3	1730 D MEL	•	3,1	
17,4	1740 D MEL	•	3,2	
17,5	1750 D MEL	•	3,2	
17,6	SMDT 1760 D MEL	•	3,2	
17,7	1770 D MEL	•	3,2	
17,8	1780 D MEL	•	3,2	
17,9	1790 D MEL	•	3,3	
18,0	1800 D MEL	•	3,3	9,6
18,1	1810 D MEL	•	3,3	9,0
18,2	1820 D MEL	•	3,3	
18,3	1830 D MEL	•	3,3	
18,4	1840 D MEL	•	3,3	
18,5	1850 D MEL	•	3,4	
18,6	SMDT 1860 D MEL	•	3,4	10,1
18,7	1870 D MEL	•	3,4	10,1

• Ø 18,8–30,5 mm

	7 10,0–30,3 11111	ı		
DC (mm)	Bezeichnung	Lager	PL	LF
18,8	SMDT 1880 D MEL	•	3,4	
18,9	1890 D MEL	•	3,4	
19,0	1900 D MEL	•	3,5	
19,1	1910 D MEL	•	3,5	10,1
19,2	1920 D MEL	•	3,5	10, 1
19,3	1930 D MEL	•	3,5	
19,4	1940 D MEL	•	3,5	
19,5	1950 D MEL	•	3,5	
19,6	SMDT 1960 D MEL	•	3,6	
19,7	1970 D MEL	•	3,6	
19,8	1980 D MEL	•	3,6	10 E
19,9	1990 D MEL	•	3,6	10,5
20,0	2000 D MEL	•	3,6	
20,5	SMDT 2050 D MEL	•	3,7	
21,0	SMDT 2100 D MEL	•	3,8	11 0
21,5	2150 D MEL	•	3,9	11,0
22,0	SMDT 2200 D MEL	•	4,0	11,0
22,5	2250 D MEL	•	4,1	11,0
23,0	SMDT 2300 D MEL	•	4,2	11,0
23,5	2350 D MEL	•	4,3	11,0
24,0	SMDT 2400 D MEL	•	4,4	11,0
24,5	2450 D MEL	•	4,5	11,0
25,0	SMDT 2500 D MEL	•	4,5	11,3
25,5	2550 D MEL	•	4,6	11,3
26,0	SMDT 2600 D MEL	•	4,7	11,7
26,5	2650 D MEL	•	4,8	11,7
27,0	SMDT 2700 D MEL	•	4,9	12,2
27,5	2750 D MEL	•	5,0	12,2
28,0	SMDT 2800 D MEL	•	5,1	12,6
28,5	2850 D MEL	•	5,2	12,0
29,0	SMDT 2900 D MEL	•	5,3	13,1
29,5	2950 D MEL	•	5,4	10,1
30,0	SMDT 3000 D MEL	•	5,5	13,5
30,5	3050 D MEL	•	5,6	10,0

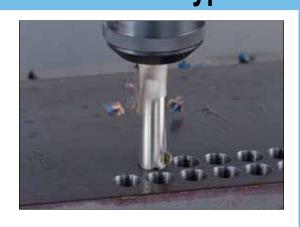
■ Empfohlene Schnittbedingungen

● Für Anwendung von 3 x D und 5 x D Bohrern

Werkstückstoff Bohrer-ø (mm)		Unlegierter Stahl (–HB250)	Rostfreier Stahl (–HB200)	Grauguss
~ 16.0	Vc	80 – 100 – 120	50 - 60 - 80	50 – 70 – 90
10,0	f	0,15 - 0,2 - 0,35	0,1 - 0,15 - 0,2	0,2 - 0,25 - 0,3
~ 20.0	Vc	80 – 100 – 120	60 – 70 – 90	60 - 80 - 100
~ 20,0	f	0,15 – 0,25 – 0,35	0,15 - 0,2 - 0,25	0,25 - 0,3 - 0,35
~ 30,8	Vc	80 – 100 – 120	60 - 70 - 90	60 – 80 – 100
	f	0,2 - 0,3 - 0,35	0,15 - 0,2 - 0,25	0,2 - 0,35 - 0,40

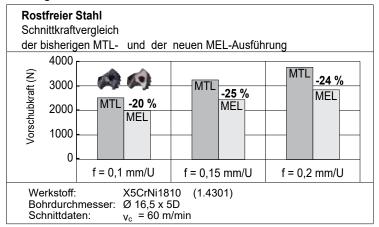
Anmerkung: Durch eine stabile Maschine und Werkstückspannung ist eine Hochleistungszerspanung gewährleistet.

● Für Anwendung von 8 x D und 12 x D Bohrern

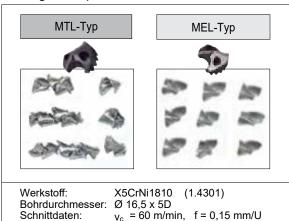

Werkstückstoff		Unlegierter Stahl	Rostfreier Stahl	Grauguss
Bohrer-ø (mr	n)	(-HB250)	(-HB200)	Orauguss
~ 16.0	Vc	50 – 70 – 80	40 - 50 - 60	40 - 60 - 80
10,0	f	0,15 - 0,2 - 0,35	0,1 - 0,15 - 0,2	0,2 - 0,25 - 0,3
~ 20.0	Vc	50 – 70 – 80	40 – 60 – 70	50 – 70 – 90
~ 20,0	f	0,15 – 0,25 – 0,35	0,15 - 0,2 - 0,25	0,25 - 0,3 - 0,35
~ 25,0 (12D)	Vc	60 – 70 – 80	40 – 60 – 70	50 – 70 – 90
~ 30,5 (8D)		0,2 - 0,3 - 0,35	0,15 - 0,2 - 0,25	0,2 - 0,35 - 0,4

[v_c : Schnittgeschwindigkeit (m/min), f : Vorschub (mm/U), Min - **Standard** - Max]

Nachschleifbarer Bohrkopf SMDT... MEL - Typ

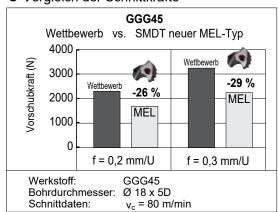

■ Vorteile

- Köpfe sind austausch- und nachschleifbar
- Reduzierung der Schnittkräfte von 25 % durch neues Design
- Ideal für rostfreie und weichere Stähle
- Hervorragende Standzeit in Grauguss
- Verbesserte Bohrleistung auf leistungsschwächeren Maschinen
- Erhöhte Produktivität

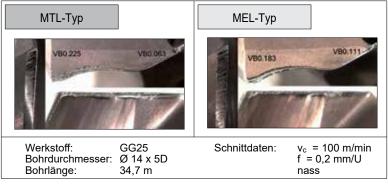


■ Schnittleistungen in rostfreiem Stahl

Vergleich der Schnittkräfte



Vergleich Spanbruch

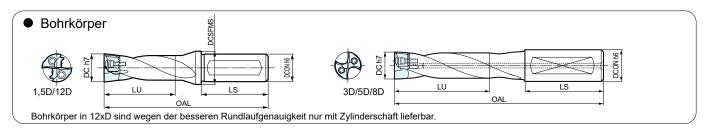


■ Schnittleistung in Gusseisen

Vergleich der Schnittkräfte

Vergleich der Verschleißfestigkeit

MFS-Typ Ideal zum Bohren in geneigten Oberflächen und zur Gratreduzierung an der Bohrungsaustrittseite


■ Vorteile

 Durch den Spitzenwinkel von 180° für eine Vielzahl von Anwendungen einsetzbar Anwendbar zum Plansenken, Anspiegeln, Bohren auf geneigten oder zylindrischen Oberflächen sowie im unterbrochenen Schnitt.

Reduziert die Gratbildung an der Bohrungsaustrittseite.

Verbesserte Bearbeitungsstabilität

Der MFS Bohrkopf hat aufgrund seiner RS-Geometrie eine sehr hohe Steifigkeit und einen stabilen Kern.

■ Bohrkörper

Abm	essun	gen			Serie	e (1,5[D)		Serie (3	3D)	Serie (5D) Serie (8D)		Serie (12D)			Geeignete					
Bohr- kopf	Sch	aft	Bezeichnung	Lager	Al	omessun	gen	Lager	Abmes	sungen	Lager	Abmes	sungen	Lager Abmessungen		sungen	Lager	Lager Abmessungen		gen	Bohrköpfe
DC	DCON	LS		s	OAL	LU	DCSFMS	М3	OAL	LU	М5	OAL	LU	М8	OAL	LU	12D	OAL	LU	DCSFMS	MFS
12,0			SMDH 120 □ □	•	91	25,5	20	•	107,2	43,5	•	132,2	68,5								1200–1249
12,5	16	48	SMDH 125 □ □	•	91	25,5	20	•	107,3	43,5	•	132,3	68,5								1250–1299
13,0	16	40	SMDH 130 □ □	•	92	27,5	20	•	112,4	46,5	•	142,4	73,5								1300-1349
14,0			SMDH 140 🗆 🗆	•	96	31,5	20	•	119,0	52,5	•	149,0	81,5	•	194,0	124,5	•	238,5	168,5	20	1350–1450
15,0			SMDH 150 □ □ □	•	100	32,0	25	•	129,2	55,0	•	159,2	86,0	•	204,2	133,0	•	253,0	180,0	25	1451–1550
16,0	20	50	SMDH 160 □ □ □	•	103	35,0	25	•	134,4	59,0	•	169,4	92,0		214,4	141,0	•	265,5	192,0	25	1551–1650
17,0	20	50	SMDH 170 □ □ □	•	105	35,5	25	•	139,6	62,5	•	174,6	97,5	•	224,6	150,5	•	278,1	203,5	25	1651–1750
18,0			SMDH 180 □ □ □	•	107	39,7	25	•	144,8	66,5	•	179,8	103,5	•	229,8	158,5	•	290,5	215,5	25	1751–1850
19,0			SMDH 190 □ □ □		115	40,5	30	•	160,1	69,5	•	195,0	108,5	•	255,0	167,5	•	309,1	228,5	30	1851–1950
20,0			SMDH 200 □ □ □	•	118	43,0	30	•	160,1	73,0	•	200,1	114,0	•	265,1	175,0	•	321,4	240,0	30	1951–2050
21,0	25	56	SMDH 210 □ □ □	•	119	44,0	30	•	160,3	76,0	•	200,3	119,0	•	270,3	184,0	•	333,9	252,0	30	2051-2150
22,0			SMDH 220 □ □ □	•	121	47,0	30	•	165,1	80,0	•	205,1	125,0	•	275,1	192,0	•	347,0	264,0	30	2151–2280
23,0			SMDH 230 □ □ □	•	122	46,5	30	•	164,8	82,5	•	214,8	129,5	•	284,8	200,5	•	359,0	275,5	30	2281-2380
24,0			SMDH 240 □ □ □	•	129	49,5	37	•	174,6	86,5	•	224,6	135,5	•	299,6	208,5	•	376,1	284,5	37	2381–2480
25,0			SMDH 250 □ □ □	•	129	49,0	37	•	174,6	88,0	•	229,6	140,0	•	304,6	217,0	•	388,4	300,0	37	2481-2580
26,0			SMDH 260 □ □	•	132	52,0	37	•	179,7	92,0	•	234,7	146,0	•	314,7	225,0					2581–2680
27,0	32	60	SMDH 270 □ □	•	133	53,0	37	•	179,9	94,0	•	239,9	151,0	•	324,9	234,0					2681–2780
28,0			SMDH 280 □ □	•	135	54,5	37	•	185,1	96,5	•	245,1	156,5	•	330,1	241,5					2781–2880
29,0			SMDH 290 □ □	•	136	55,5	37	•	190,3	99,5	•	250,3	161,5	•	340,3	250,5					2881–2980
30,0			SMDH 300 □ □	•	139	58,5	37	•	190,5	104,5	•	260,5	167,5	•	350,5	259,5					2981–3050

■ Empfohlene Anzugsmomente

Schra	ube					
	(N·m)	Geeigneter Bohrkopf				
BXD 02208 IP	0,8–1,0	SMDT 1200 - 1550 MFS				
BXD 02509 IP	0,9-1,2	SMDT 1551 - 1850 MFS				
BXD 03011 IP	1,8-2,4	SMDT 1851 – 2150 MFS				
BXD 03512 IP	2,8-3,7	SMDT 2151 - 2480 MFS				
BXD 04014 IP	4,1–5,5	SMDT 2481 – 2780 MFS				
BXD 04515 IP	5,0-6,6	SMDT 2781 - 3050 MFS				

Ersatzteile

Schraube	Schlüssel	
		Geeignete Bohrkörper
BXD 02208 IP	TRDR 08 IP	SMDT 120 – 150 □□
BXD 02509 IP	TRDR 10 IP	SMDT 160 − 180 □□
BXD 03011 IP	TRDR 15 IP	SMDT 190 – 210 □□
BXD 03512 IP	TRDR 15 IP	SMDT 220 – 240 □□
BXD 04014 IP	TRDR 20 IP	SMDT 250 – 270 □□
BXD 04515 IP	TRDR 25 IP	SMDT 280 − 300 □□

SMDT... MFS-Typ

Typ MFS

PVD-Beschichtung: ACX70

■ Bohrkopf (VHM)

• ø 12,0 ~ 21,5 mm

	•			
Ве	zeichnung	Lager	LF (mm)	Geeignete Halter
SMDT 1	200 MFS	•	7,1	SMDH120 □ □
SMDT 1	250 MFS	•	7,2	SMDH125 □ □
SMDT 1	300 MFS	•	7,5	SMDH130 □□
SMDT 1	350 MFS	•		
SMDT 1	400 MFS	•	7,9	SMDH140 □□
SMDT 1	450 MFS	•		
SMDT 1	500 MFS	•	8.3	SMDH150 □ □
SMDT 1	550 MFS	•	0,5	SIVIDITI30 🗆 🗆
SMDT 1	600 MFS	•	8.8	SMDH160 ∏∏
SMDT 1	650 MFS	•	0,0	SIVIDITIOU 🗆 🗆
SMDT 1	700 MFS	•	0.3	SMDH170 ∏∏
SMDT 1	750 MFS	•	9,5	SIVIDITI70 🗆 🗆
SMDT 1	800 MFS	•	0.8	SMDH180 ∏∏
SMDT 1	850 MFS	•	9,0	SIVIDITIOU 🗆 🗆
SMDT 1	900 MFS	•	10.2	SMDH190 ∏∏
SMDT 1	950 MFS	•	10,2	
SMDT 2	000 MFS	•	10.7	ewph300 □□
SMDT 2	050 MFS	•	10,7	SMDH200 □□
SMDT 2	100 MFS	•	11.2	CMDH310 □□
SMDT 2	150 MFS	•	11,2	SMDH210 □□
	SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 1 SMDT 2 SMDT 2 SMDT 2 SMDT 2 SMDT 2	Bezeichnung SMDT 1200 MFS SMDT 1250 MFS SMDT 1300 MFS SMDT 1350 MFS SMDT 1400 MFS SMDT 1450 MFS SMDT 1550 MFS SMDT 1550 MFS SMDT 1650 MFS SMDT 1650 MFS SMDT 1700 MFS SMDT 1700 MFS SMDT 1750 MFS SMDT 1750 MFS SMDT 1750 MFS SMDT 1800 MFS SMDT 1800 MFS SMDT 1800 MFS SMDT 1900 MFS SMDT 1900 MFS SMDT 1950 MFS SMDT 2000 MFS SMDT 2000 MFS SMDT 20100 MFS SMDT 2100 MFS SMDT 2100 MFS SMDT 2100 MFS	SMDT 1200 MFS SMDT 1250 MFS SMDT 1350 MFS SMDT 1350 MFS SMDT 1450 MFS SMDT 1450 MFS SMDT 1550 MFS SMDT 1550 MFS SMDT 1650 MFS SMDT 1650 MFS SMDT 1700 MFS SMDT 1700 MFS SMDT 1750 MFS SMDT 1750 MFS SMDT 1750 MFS SMDT 1800 MFS SMDT 1800 MFS SMDT 1900 MFS SMDT 1900 MFS SMDT 1900 MFS SMDT 1950 MFS SMDT 1950 MFS SMDT 1950 MFS SMDT 2000 MFS SMDT 2050 MFS SMDT 2050 MFS	SMDT 1200 MFS

• ø 22,0 ~ 30,0 mm

DC (mm)	Bezeichnung	Lager	LF (mm)	Geeignete Halter
22,0	SMDT 2200 MFS	•	11,2	SMDH220 □□
22,5	SMDT 2250 MFS	•	11,2	SIVIDI 1220 🗆 🗆
23,0	SMDT 2300 MFS	•	11,2	SMDH230 ∏∏
23,5	SMDT 2350 MFS	•	11,2	31VIDI 1230 🗆 🗆
24,0	SMDT 2400 MFS	•	11,3	SMDH240 ∏∏
24,5	SMDT 2450 MFS	•	11,3	SIVIDI 1240 🗆 🗆
25,0	SMDT 2500 MFS	•	11,7	SMDH250 ∏∏
25,5	SMDT 2550 MFS	•	11,7	31VIDI 1230 🗆 🗆
26,0	SMDT 2600 MFS	•	12,2	SMDH260 □□
26,5	SMDT 2650 MFS	•	12,2	SIVIDI IZOU 🗆 🗆
27,0	SMDT 2700 MFS	•	12,7	ЅМДН270 ПП
27,5	SMDT 2750 MFS	•	12,1	SIVIDI IZ70 🗆 🗆
28,0	SMDT 2800 MFS	•	13,2	SMDH280 ∏∏
28,5	SMDT 2850 MFS	•	13,2	SIVIDI IZOU 🗆 🗆
29,0	SMDT 2900 MFS	•	13,6	SMDH290 □□
29,5	SMDT 2950 MFS	•	13,6	SIVIDIZ90 🗆 🗆
30,0	SMDT 3000 MFS	•	14,1	SMDH300 □□

■ Wichtige Hinweise für MFS-Bohrköpfe

	Bohren ins Volle (oh	ne Führungsbohrung)	bei vorhandener	Führungsbohrung	Plansenken Bohrungsgrund
Anwendung			\mathbf{I}	I	
Anwendung	ebene Oberfläche	geneigte Oberfläche	rur boh	üh- ngs- nrun- en	
1,5D-Bohrkörper	()		O (Führungsbohrung nicht erforderlich)	0
3D- – 12D-Bohrkörper		X		X	0

■ Empfohlene Schnittbedingungen

v_c: Schnittgeschwindigkeit (m/min) f: Vorschub (mm/U)

-								i. voisonab (iiiii) o
Werkst	ückstoff	Baustahl (<250 HB)	Unlegierter Stahl (250–320 HB)	Gehärteter Stahl (45 HRC)	Rostfreier Stahl (<200 HB)	GJL (GG)	Kugelgraphitguss	Aluminiumlegie- rung (*)
Bohrerdurchmesser DC (mm)	Schnitt- Bedingungen	Min. – Optimal – Max.	Min. – Optimal – Max.	Min. – Optimal – Max.	Min. – Optimal – Max.	Min. – Optimal – Max.	Min. – Optimal – Max.	Min. – Optimal – Max.
−Ø 16.0	V _c	60 –100 –120	70 –100 –120	40 –60 –90	50 –60 –80	50– 70 –90	50 –60 –80	200– 240 –260
-b 16,0	f	0,15 –0,20 –0,35	0,15 –0,20 –0,30	0,10 –0,15 –0,20	0,10 –0,15 –0,20	0,20 –0,25 –0,30	0,20 –0,25 –0,30	0,35 –0,45 –0,55
−Ø 20.0	Vc	80 –100 –120	70 –100 –120	40 –60 –90	60 –70 –90	60 –80 –100	50 –70 –90	200– 240 –260
-60 20,0	f	0,15 –0,25 –0,35	0,15 –0,25 –0,35	0,15 –0,20 –0,25	0,15 –0,20 –0,25	0,20 –0,30 –0,35	0,20 –0,25 –0,35	0,35 –0,50 –0,60
Ø 20 0	Vc	80 –100 –120	70 –100 –120	40 –60 –90	60 –70 –90	60 –80 –100	50 –70 –90	200– 240 –260
−Ø 30,8	f	0,20 –0,30 –0,35	0,20 –0,25 –0,35	0,15 –0,20 –0,25	0,15 –0,20 –0,25	0,20 -0,30 -0,40	0,25 –0,30 –0,35	0,35 -0,50 -0,60

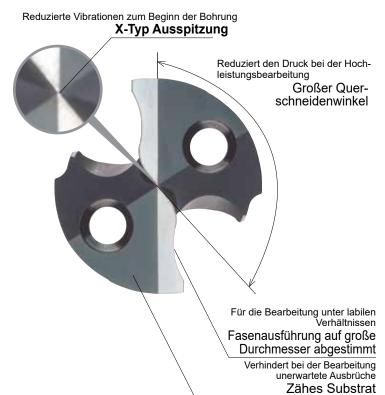
Hinweis: Für eine Pilotbohrung ist empfohlene Bohrungstiefe 2 x DC. Beim Bohren auf geneigten Oberflächen wird die Tiefe vom höchsten Punkt der Bohrung gemessen. Die empfohlenen Schnittbedingungen (s. o.) gelten für ebene Oberflächen.

Passen Sie beim Bohren auf einer geneigten Oberfläche den Vorschub an den Neigungswinkel an. Bei einem Neigungswinkel von ≤ 30° reduzieren Sie den Vorschub auf ≤ 70 %. Bei einem Neigungswinkel von ≥ 30° reduzieren Sie den Vorschub auf ≤ 50 %. Der MFS-Bohrkopf ist ein reines Bohrwerkzeug. Der MFS-Bohrkopf ist nicht zum Fräsen geeignet

(*) Informationen zu Bohrern speziell für Aluminiumlegierungen auf Anfrage.

MULTI-DRILLs mit auswechselbarem Kopf

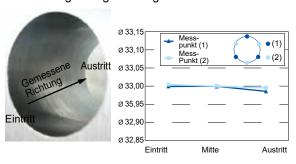
SMD-Typ



Für große Bohrdurchmesser

Das Werkzeugdesign ist auf die Bearbeitung großer Gehäuse z.B. aus Kugelgraphitguss abgestimmt.

Das Schneidendesign wurde so optimiert, dass die hohen Schnittkräfte, die bei großen Bohrungen auftreten, reduziert werden.


■ Bearbeitete Oberflächengenauigkeit

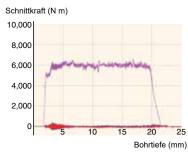
Werkstückstoff: St 52-3 (Baustahl) Bohrer: Ø 33.0 mm x 5D

Schnittdaten: $v_c = 120 \text{ m/min, } f = 0.25 \text{ mm/U}$

Kühlung: **Emulsion**

Hohe Bohrgenauigkeit bei großen Durchmessern

Schnittkraftvergleich

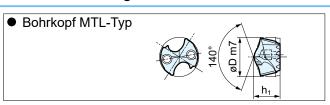

Werkstückstoff: St 42-2 (Bleche, gestapelt) Bohrer: Ø 37,5 mm x 5D

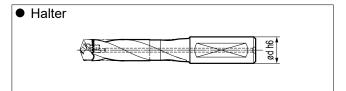
Schnittdaten: $v_c = 90 \text{ m/min, } f = 0.35 \text{ mm/U}$

Kühlung: **Emulsion**

Stabil auch beim Paketbohren

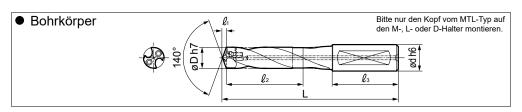
■ Empfohlene Schnittbedingungen


v_C=Schnittgeschwindigkeit (m/min) f=Vorschub (mm/U)


Werkstückstoff		Unlegierter Stahl (-250 HB)	Allgemeiner Stahl (250–320 HB)	Gehärteter Stahl (45 HRC)	Rostfreier Stahl (–200 HB)	Grauguss	Kugelgraphit- guss	
Empfohlener Kopf Bohrer Ø (mm) Schnitt- daten		MTL- Typ	MTL -Typ	MTL-Typ MTL-Typ		MTL -Typ	MTL-Typ	
-36,5	V _C	60–120 (40–80)	60–120 (40–80)	40–80 (30–60)	40–80 (30–60)	50–100 (40–90)	50–90 (40–70)	
	f	0,25–0,4	0,2–0,35	0,15-0,3	0,15–0,25	0,25–0,45	0,25–0,35	
-42,5	Vc	60–120 (40–80)	60–120 (40–80)	40–80 (30–60)	40–80 (30–60)	50–100 (40–90)	50–90 (40–70)	
	f	0,25-0,4	0,2-0,35	0,15–0,3	0,15–0,25	0,25–0,45	0,25-0,35	

Hinweis: Unter stabilen Bearbeitungsverhältnissen können die maximalen Schnittdaten verwendet werden. Für 8XD Bohren gelten die Daten in den Klammern (). Vor dem 8XD Bohren sollte ein Pilotbohrer eingesetzt werden.

Für große Bohrdurchmesser


Nachschleifbarer Bohrkopf SMDT... MTL - Typ

- Bohrkopf (Ø 31,0–42,5 mm), Beschichtung ACX80
- Halter M (3D), L (5D), D (8D)

D - b - d b	Bohrköpfe			Halter							
Bohrdurchm.	MTL-Typ		h1	M (3D)		L (5D)		D (8D)			
ØD	Bezeichnung	Lager] 111	Bezeichnung	Lager	Bezeichnung	Lager	Bezeichnung	Lager		
31,0	SMDT 3100 MTL										
31,5	SMDT 3150 MTL		15,2	SMDH 320 M	0	SMDH 320 L	0	SMDH 320 D	0		
32,0	SMDT 3200 MTL	0									
32,5	SMDT 3250 MTL										
33,0	SMDT 3300 MTL	0	15,2	SMDH 335 M	O	SMDH 335 L	0	SMDH 335 D	O		
33,5	SMDT 3350 MTL										
34,0	SMDT 3400 MTL	0									
34,5	SMDT 3450 MTL		16,6	SMDH 350 M	0	SMDH 350 L	0	SMDH 350 D	O		
35,0	SMDT 3500 MTL	O									
35,5	SMDT 3550 MTL										
36,0	SMDT 3600 MTL	0	16,4	SMDH 365 M	0	SMDH 365 L	0	SMDH 365 D	O		
36,5	SMDT 3650 MTL										
37,0	SMDT 3700 MTL	0									
37,5	SMDT 3750 MTL	0	18,1	SMDH 380 M	O	SMDH 380 L	0	SMDH 380 D	O		
38,0	SMDT 3800 MTL	0									
38,5	SMDT 3850 MTL										
39,0	SMDT 3900 MTL	0	17,8	SMDH 395 M	0	SMDH 395 L	0	SMDH 395 D	O		
39,5	SMDT 3950 MTL										
40,0	SMDT 4000 MTL	0									
40,5	SMDT 4050 MTL	0	19,5	SMDH 410 M	0	SMDH 410 L	0	SMDH 410 D	O		
41,0	SMDT 4100 MTL	0									
41,5	SMDT 4150 MTL							SMDH 425 D			
42,0	SMDT 4200 MTL	0	19,3	SMDH 425 M	0	SMDH 425 L	0		O		
42,5	SMDT 4250 MTL										

Abmessung	en (mm)	М (3D)	1.6	5D)	D (8D)	Sch	haft	Schraube	Schlüssel	
Bohrk									ngen (mm)		2	(N·m)
øD	ℓ_1	ℓ_2	L	ℓ_2	L	ℓ_2	L	ℓ_3	ød			
31,0												
31,5	5,7	97,9	200,7	163	265,7	257,9	360,7	60	32,0			
32,0										BXD04515IP	TRDR25IP	5–6,6
32,5										DAD043131F	TRUNZJIF	3-0,0
33,0	6,0	103,3	206,0	171,5	276,0	273,3	376,0	60	32,0			
33,5												
34,0												
34,5	6,3	106,8	221,3	182	296,3	287	401,3	70	40,0			
35,0												
35,5		440.0	000.0	407.5	004.0	007.0	444.0	70	40.0			
36,0	6,6	112,3	226,6	187,5	301,6	297,3	411,6	70	40,0			
36,5												
37,0	6,8	115 0	224.0	195,8	311,8	310,8	426,8	70	40.0			
37,5	0,0	115,8	231,8	195,6	311,0	310,0	420,0	70	40,0			
38,0 38,5										BX0515	HD040	7,2
39,0	7,1	121,3	237,1	206,3	322,1	321,3	437,1	70	40,0			
39,5	7,1	121,0	237,1	200,3	322,1	321,3	437,1	70	40,0			
40,0												
40,5	7,4	129,8	252,4	209,8	332,4	334,8	457,4	70	40,0			
41,0	.,.	120,0	_0_, +		302,4	30 1,3	, ,		10,0			
41,5												
42,0	7,6	135,3	257,6	220,3	342,6	345,3	467,6	70	40,0			
42,5	, -		, -		, ,		, ,		, ,			

SumiDrill WDX-Typ

Allgemeine Eigenschaften

Der Wendeplattenbohrer "SumiDrill" WDX-Typ zeichnet sich durch eine exzellente Schnittkraftbalance aus und ist dadurch universell in Baustahl, in rostfreiem Stahl und auch in Aluminium-Legierungen einsetzbar. Durch vier wählbare Spanbrechertypen wird eine bessere Spankontrolle erzielt und die Schnittkraft, insbesondere für die Bearbeitung in labilen Verhältnissen, reduziert.

Serienübersicht

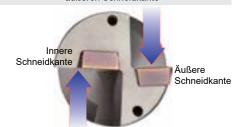
Bearbeitungstiefe	Durchmesserbereich (mm)
2D	Ø 13,0 – Ø 68,0
3D	Ø 13,0 – Ø 68,0
4D	Ø 13,0 – Ø 63,0
5D	Ø 13,0 – Ø 55,0

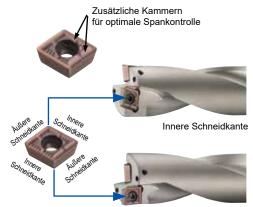
Anwendungsmerkmale

Design

Der Schnittwiderstand wird während der Bearbeitung optimal durch den Einsatz der inneren und äußeren Schneidkanten ausbalanciert. Die Schneidkantenpositionen wurden für ein stabiles Bohren optimiert.

Exzellente Spankontrolle


Die Richtung der Spanabfuhr kann mit den zusätzlichen Kammern in der Mitte der Spanbrecher kontrolliert gesteuert werden, was eine gute Spankontrolle ermöglicht.


Vielseitiges Werkzeug für verschiedene Anwendungen Wählen Sie zwischen vier Spanbrechertypen für unterschiedliche Anwendungen, die ein optimales Bohren in unterschiedlichen Werkstoffen und Einsatzbedingungen ermöglichen. Geeignet für verschiedene Anwendungen wie Aufbohren, Plandrehen, Außendrehen und Innenbohren. Wirtschaftlich, 4 effektive Schneiden

Vier Schneiden je Platte - einsetzbar für Innen- und Außenschneide.

Тур	L	(3	Н	M Neu
Besonder- heit	Geringe Vorschübe/ Spankontrolle	Allgemeine Anwendung	Für Nichteisenmetalle	Starke Schneidkante	Für Edelstahl
Bild					
Form					

Design Schnittkraft der inneren Schneidkante = Schnittkraft der äußeren Schneidkante

Äußere Schneidkante

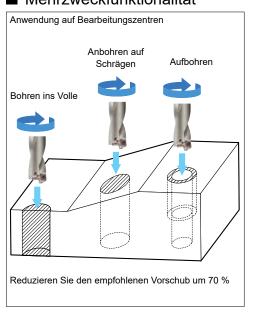
Leistung

Ausgewogenes Design (Vergleich der Horizontalwerte)

Die Balance bleibt zwischen den Eintritts- und Austrittspunkten der Bohrung erhalten. Stabile Bohrung.

SumiDrill WDX -Typ

Herkömmliche und Produkte des Wettbewerbs



Verbesserte Spankontrolle Werkstückstoff: X5CrNiS18 10 WDX 200D3S25 (Ø 20,0) $v_c = 130$ m/min, f = 0,06 mm/U, H = 50 mm, nass

Herkömmliche und Produkte des Wettbe-

Mehrzweckfunktionalität

SumiDrill WDX-Typ

M - Spanbrecher / ACM300 Neu Zur Bearbeitung von Edelstahl

Eigenschaften

Die Spankontrolle des neu entwickelten M-Spanbrechers für die Edelstahlbearbeitung ermöglicht eine stabile Bohrungsqualität.

Bohrer	WDX M -Typ	WDX G-Typ	Wettbewerber
Bohrloch			0
Späne)))si	- 126)) 55

Werkstückstoff: X2CrNiMo17 13 2 Bohrer: WDX200D3S25

WSP: WDXT063006 M (ACM300)

Schnittdaten: $v_c = 150 \text{ m/min}, f = 0,08 \text{ mm/U}, H = 60 \text{ mm},$

ACP100

Zum Hochgeschwindigkeitsbohren von Stahl und Gusseisen

■ Eigenschaften

Erzielt eine ausgezeichnete Verschleißfestigkeit und eine hohe Zuverlässigkeit dank unserer Beschichtungskontrolltechnologie sowie der ultradünnen Kristallkornschicht der Super-FF-Beschichtung.

		ACP100	Wettbewerber
Schneidkante	Spanfläche	Noncomment of the last of the	Ausbrüche
Äußere Sc	Seite		Ausbrüche
Schneidkante	Spanfläche	THE PARTY	Ausbrüche
Innere Sch	Seite		Ausbrüche

Werkstückstoff: C50

Bohrer: WDX250D3S25

WSP: WDXT063006 G (ACP100)
Schnittdaten: v_c = 200 m/min, f = 0,12 mm/U, H = 50 mm

Durchgangsbohrung, nass

Bohrer für Tieflochbohrungen L/D = 5

■ Eigenschaften

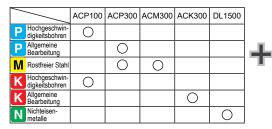
Der "SumiDrill" WDX-Typ für 5xD Anwendungen wurde mit einer speziellen Spannut sowie einer größeren Kühlkanalbohrung für den leichteren Abtransport der Späne während des Bohrens entwickelt.

Große Kühlkanalbohrung

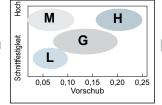
Für 5xD Bohrungen entwickelte Spannut

Freifläche zur Optimierung der Kühlung

Leistung


	Querschnitt	Schnittwiderstand	Bearbeitete Oberfläche (Austritt)
WDX260D5S32 Spannutdesign L/D = 5 Der Schwerpunkt liegt auf der Spanabfuhr. Das erweiterte Spannutdesign verbessert den Spantransport für eine stabile Bohranwendung auch bei Bohrungen bis 5xD.		(N) 12.000 Der Ausschlag der Amplitute der Vorschubkraft ist stärker als beim 4xD Design, bleibt jedoch auch beim 5xD Design konstant. Vorschubkraft Horizontale Kraftkomponente Tiefe L/D = 4 Tiefe L/D = 5	Sehr gute Oberfläche über die gesamten Bohrtiefe.
Vergleichswerkzeug Spannutdesign L/D = 4 Der Schwerpunkt liegt auf der Bohrersteifigkeit. Das Spannutdesign für höhere Bohrersteifigkeit ermöglicht ein stabiles Tieflochbohren bis 4xD.		Stabiles Bohren Spanstau am Ende bis 4D des Bohrlochs Starke Steifigkeit lässt nur geringe Amplitude in Schubrichtung zu Tiefe L/D = 4 Tiefe L/D = 5	Schlechte Oberfläche durch Spanstau an der Bohreraus- trittseite im Bereich 5xD.

WSP: WDX10/3506-G Werkstückstoff: X5CrNiS18 10 Schnittdaten: v_c = 150 m/min, f = 0,05 mm/U, H = 130 mm, Durchgangsbohrung, nass


SumiDrill WDX-Typ

Auswahlhilfe - Die Wendeschneidplatten der WDX-Serie bieten eine Vielzahl von Optionen

4 Spanbrechertypen

11 Kombinationen

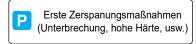
2. Empfehlung

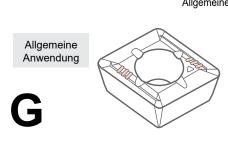
P

7um Robron von St 42.3. 15 CrMo5. 20CrMo5. usw.

Bei Problemen mit der Spankontrolle wird eine hohe Geschwindigkeit und ein geringer Vorschub empfohlen.

Verringern Sie den Vorschub, wenn Vibrationen durch verbrannte Späne auftreten.



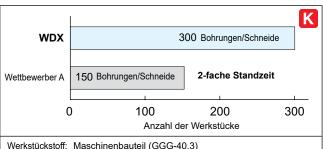


1. Empfehlung

™ ACK300

Bohren von Nichteisenmetallen

DL1500



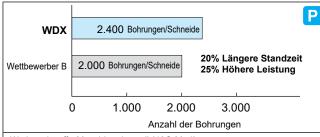
ACP100 ist die erste Empfehlung für Stahl mit einer Härte von ≥ 200HB oder für Hochgeschwindigkeitsbohrungen in Stahl.

P

SumiDrill WDX-Typ

Anwendungsbeispiele

Werkstückstoff: Maschinenbauteil (GGG-40.3)


Bohrer: WDX205D3S25 WSP: WDXT063006 G (ACK300)

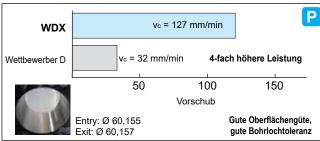
Schnittdaten: $v_c = 122 \text{ m/min, } f = 0,15 \text{ mm/U, } H = 33 \text{ mm,}$

Durchgangsbohrung, nass

Deutliche Erhöhung der Standzeit; doppelt so hoch wie bei herkömmlichen

Werkzeugen. Stabiler Schnitt mit minimaler Schnittkraft.

Werkstückstoff: Maschinenbauteil (42CrMo4)

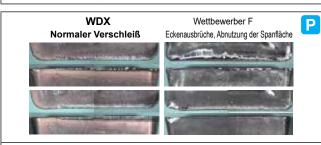

WDX200D3S25

WSP: WDXT063006 G (ACP300)

Schnittdaten: v_c = 157 m/min, f = 0,19 mm/Ú, H = 19 mm, Durchgangsbohr., nass Wettbewerb.B: v_c = 157 m/min, f = 0,15 mm/U, H = 19 mm, Durchgangsbohr., nass

Gute Spanabfuhr auch unter Hochleistungsbedingungen.

Bessere Stabilität durch geringe Schnittkraft erzielt 25% höhere Leistung und 20% längere Standzeit.

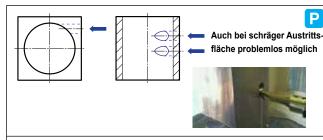

Blech (C48) Werkstückstoff: WDX600D3S40 Bohrer:

WSP: WDXT186012 G (ACP300)

 v_c = 150 m/min, f = 0,16 mm/ \acute{U} , H = 60 mm, Durchgangsbohr., nass Schnittdaten: Wettbewerb.D: $v_c = 30$ m/min, f = 0,20 mm/U, H = 60 mm, Durchgangsbohr., nass

Stabiles Bohrverhalten auch bei großen Durchmessern.

4-fach höhere Leistung.


Werkstückstoff: Traktorteile (35MnBM) Bohrer WDX205D5S25 WDXT063006 G (ACP300) WSP

 $v_c = 100 \text{ m/min}, f = 0,11 \text{ mm/U}, H = 60 \text{ mm},$ Schnittdaten:

Durchgangsbohrung, nass

Erzielt eine gleichmäßige Bearbeitung auch bei L/D = 5.

Reduziert Schneidplattenausbrüche und -verschleiß für stabile Standzeiten

Werkstückstoff: Blech (C15) Bohrer: WDX430D3S40 WSP: WDXT125012 H (ACP300)

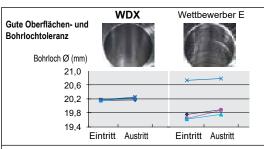
Schnittdaten: v_c = 136 m/min, f = 0,15 mm/U, H = 60+50 mm (Halbkreis-

fläche), Durchgangsbohrung, nass

Ermöglicht Bohren auch unter instabilen Bedingungen (unterbrochenes Bohren

an der tiefsten Stelle). Leiseres Schnittverhalten als bei herkömmlichen Werkzeugen.

WDX

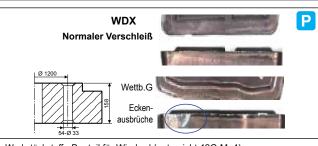

Sehr gute Spanabfuhr.

Werkstückstoff: Rohrteile (X5CrNiS18 10) Bohrer: WDX210D3S25 WSP WDXT063006 M (ACM300)

Schnittdaten: $v_c = 105 \text{ m/min}, f = 0.08 \text{ mm/U}, H = 34 \text{ mm},$

nass

Verbesserte Spankontrolle und stabilere Bearbeitung.



Werkstückstoff: Maschinenbauteil (15CrMo5) Bohrer: WDX200D5S25 WSP: WDXT063006 G (ACP300)

 $v_c = 185 \text{ m/min, } f = 0,12 \text{ mm/U, } H = 87 \text{mm,}$ Schnittdaten: Durchgangsbohrung, nass

Gute Oberflächengüte

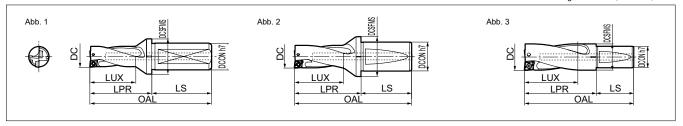
Stabiler Bohrlochdurchmesser

Werkstückstoff: Bauteil für Windrad (entspricht 42CrMo4)

Bohrer: WDX330D5S40

WSP WDXT094008 L (ACP300)

Schnittdaten: $v_c = 146 \text{ m/min, } f = 0,10 \text{ mm/U, } H = 158 \text{ mm,}$


Durchgangsbohrung, nass

Verhindert Defekte an Werkstücken, die durch Ausbrüche der Wendeschneidplatte verursacht werden.

SumiDrill WDX-Typ (2D)

Maximale Bohrungstiefen: 2D

Bearbeitungstoleranz: -0,05 bis +0,15mm

■ Bohrkörper Ø 13 0 mm – Ø 45 0 mm

	son	irkörper, Ø 13	,0 m	m – ն	<i>0</i> 45,	υn	nm		
DC	Lager	Bezeichnung	LUX	LPR	OAL	LS	DCSFMS	DCON	Abb
13,0	•	WDX 130D2S20	29	44	88				1
13,5	•	135D2S20	30	45	89				1
14,0	•	140D2S20	31	46	90	44	28,0	20	1
14,5	•	145D2S20	32	47	91		_ ′		1
15,0	•	150D2S20	33	48	92				1
15,5	•	WDX 155D2S20	34	49	93				1
16,0	•	160D2S20	35	50	94	١			1
16,5	•	165D2S20	36	51	95	44	30,0	20	1
17,0	•	170D2S20	37	52	96				1
17,5	•	WDX 175D2S25	38	53	109			_	1
18,0	•	180D2S25	39	54	110	56	32,0	25	1
18,5	•	WDX 185D2S25	40	55	111				1
19,0	•	190D2S25	41	56	112				1
19,5	•	195D2S25	42	57	113				1
20,0	•	200D2S25	43	58	114				1
20,5	•	205D2S25	44	59	115	56	33,0	25	1
21,0	•	210D2S25	45	60	116	00	00,0	20	1
21,5	•	215D2S25	46	61	117				1
22,0	•	220D2S25	47	62	118				1
22,5	•	225D2S25	48	63	119				1
23,0	•	WDX 230D2S25	49	67	123				1
23,5	•	235D2S25	50	68	124				1
24,0	•	240D2S25	51	69	125	56	37,0	25	1
24,5	•	245D2S25	52	70	126	30	37,0	23	1
25,0		250D2S25	53	71	127				1
25,5	•	WDX 255D2S32	54	74	134				2
26,0		260D2S32	55	75	135				2
26,5	•	265D2S32	56	76	136				2
27,0		270D2S32	57	77	137	60	41,0	32	2
27,5	•	275D2S32	58	78	138	00	41,0	32	2
			59	79	139				2
28,0	•	280D2S32 285D2S32	60	80	140				2
28,5	•	WDX 290D2S32	62	83	143				2
29,0	•				144		50,0		2
		295D2S32	63	84		60		32	2
30,0*	0	300D2S32	64	88	148	60	F40	32	
31,0*	_	310D2S32	66	90	150		54,0		2
32,0*	0	320D2S32	68	92	152				2
30,0*	•	WDX 300D2S40	64	88	158				2
31,0*	•	310D2S40	66	90	160				
32,0*		320D2S40	68	92	162	70	E4 0	40	2
33,0		330D2S40	70	94	164	70	54,0	40	
34,0	•	340D2S40	72	96	166				2
35,0	•	350D2S40	74	98	168				2
36,0	•	360D2S40	76	100	170				2
37,0	•	WDX 370D2S40	79	109	179				2
38,0	•	380D2S40	81	111	181				2
39,0	•	390D2S40	83	113	183				2
40,0	•	400D2S40	85	115	185	70	40.5	40	2
41,0	•	410D2S40	87	117	187	70	49,5	40	2
42,0	•	420D2S40	89	119	189				2
43,0	•	430D2S40	91	121	191				2
44,0	•	440D2S40	93	123	193				2
45,0	•	450D2S40	95	125	195				2

^{*} Die Durchmesser Ø 30, Ø 31, Ø 32 sind bei Schaftdurchmessern von Ø 32 und Ø 40 auf Lager.

■ Bohrkörper, Ø 46,0 mm – Ø 68,0 mm

DC	Lager	Bezeichnung	LUX	LPR	OAL	LS	DCSFMS	DCON	Abb
46,0	•	WDX 460D2S40	97	127	197				2
47,0	•	470D2S40	99	129	199				2
48,0	•	480D2S40	101	131	201		49,5		2
49,0	•	490D2S40	103	133	203		49,5		2
50,0	•	500D2S40	105	135	205	70		40	2
51,0	•	510D2S40	107	137	207	10			3
52,0	•	520D2S40	109	139	209		50,5		3
53,0	•	530D2S40 111 141 211			51,5		3		
54,0	•	540D2S40	113	143	213		52,5		3
55,0	•	550D2S40	115	145	215		53,5		3
56,0	0	WDX 560D2S40	120	152	222		54,0		3
57,0	0	570D2S40	122	154	224		55,0		3
58,0	0	580D2S40	124	156	226		56,0		3
59,0	0	590D2S40	126	158	228		57,0		3
60,0	0	600D2S40	128	160	230		58,0		3
61,0	0	610D2S40	130	162	232		59,0		3
62,0	0	620D2S40	132	164	234	70	60,0	40	3
63,0	0	630D2S40	134	166	236		61,0		3
64,0	0	640D2S40	136	168	238		62,0		3
65,0	0	650D2S40	138	170	240		63,0		3
66,0	O	660D2S40	140	172	242		64,0		3
67,0	O	670D2S40	142	174	244		65,0		3
68,0	0	680D2S40	144	176	246		66,0		3

■ Ersatzteile

	Flachkopfsch	raube	Schlüssel	Schlüssel
Geeignete Bohrkörper		(N-m)		
WDX130D2S20-WDX150D2S20	BFTX01604N	0,3	TRX06	_
WDX155D2S20-WDX180D2S25	BFTX0204N	0,5	TRX06	_
WDX185D2S25-WDX225D2S25	BFTY02206	1,0	_	TRD07
WDX230D2S25-WDX285D2S32	BFTX02506N	1,5	_	TRD08
WDX290D2S32-WDX360D2S40	BFTX03584	3,5	_	TRD15
WDX370D2S40-WDX450D2S40	BFTX0511N	5,0	_	TRD20
WDX460D2S40-WDX680D2S40	BFTX0615N	5,0	_	TRD25

■ Bezeichnungsschlüssel - Bohrkörper

WDX 200 D2 S25

Durchmesser DC ☐ Schaftdurchmesser DCON (Ø 20,0 mm) (Ø 25,0 mm) Realisierbare Bohrtiefe L/D-Verhältnis (2D)

■ Bezeichnungsschlüssel - Platte

WDXT 06 30 06 -G

Plattenbreite (6,0 mm)

Plattendicke (3,0 mm)

Spanbrechertyp

Eckenradius (0,6 mm)

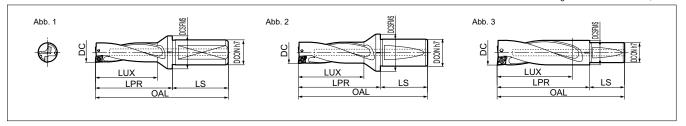
SumiDrill WDX-Typ (2D)

■ Wendeschneidplatten

Anwendung	Bes	chich	tetes	Hartr	netal									
Hochgeschw./Leichtbearb.	K				N									
Allgemeine Anwendung		P	M											
Schruppen		P		K										
Bezeichnung	ACP100	ACP300	ACM300	ACK300	DL1500	Abb.	W1	S	RE1	RE2	Geeignete Bohrkörper			
WDXT 042004 L	0	•		•		1								
042004 G	•	•		•	•	2	4.0			0,4	WDX130D2S20 -			
042004 H	•	•		•		3	4,2	2,0	0,4	ĺ .	WDX150D2S20			
042004 M			•			4				0,8				
WDXT 052504 L	0	•		•		1				,		Abb. 1	Abb. 2	
052504 G	•	•		•	•	2	- ^			0,4	WDX155D2S20 -	W1 RE2	W1 RE2	
052504 H	•	•		•		3	5,0	2,5	0,4		WDX180D2S25	L NEZ	G VVI RE2	
052504 M			•			4				1,0		()		
WDXT 063006 L	•	•		•		1						1991		
063006 G	•	•		•	•	2				0,6	WDX185D2S25 -	RE1	RE1	
063006 H	•	•		•		3	6,0	3,0	0,6		WDX225D2S25	Geringer Vorschub/Spankontrolle	Allgemeine Anwendung	
063006 M			•			4				1,4				
WDXT 073506 L	•	•		•		1						Abb. 3	Abb. 4	
073506 G	•	•		•	•	2	7,5	2.5	0.0	0,6	WDX230D2S25 -	W1 RE2	W1 RE2	9
073506 H	•	•		•		3	7,5	3,5	0,6		WDX285D2S32	H	M REZ	<u>s</u>
073506 M			•			4				1,6				
WDXT 094008 L	•	•		•		1							T T	
094008 G	•	•		•	•	2	9,6	4,0	0,8	0,8	WDX290D2S32 -	RE1	RE1	_
094008 H	•	•		•		3	9,6	4,0	0,0		WDX360D2S40	Starke Schneidkante	Für Edelstahl	
094008 M			•			4				2,4				
WDXT 125012 L	•	•		•		1								
125012 G	•	•		•	•	2	10 1	5,0	1,2	1,2	WDX370D2S40 -			
125012 H	•	•		•		3	12,4	3,0	1,2		WDX450D2S40			
125012 M			•			4				3,2				
WDXT 156012 L	•	•		•		1					WDX460D2S40 -			
156012 G	•	•		•	•	2	15,2	6,0	1,2	1,2	WDX460D2S40 = WDX550D2S40			
156012 H	•	•		•		3					VVDA330D2340			
WD- XT 186012 L	•	O		o		1	40.0		4.6		WDX560D2S40 -			
186012 G	•	•		•		2	18,0	6,0	1,2	1,2	WDX680D2S40			
186012 H	0	0		0		3								

■ Empfohlene Schnittbedingungen (2D)

(min. - **optimal** - max.)


_	· ·										
	Materia	lgruppe	@ G	r je		Schnittgeschwin-			Vorschub (mm/U)		
ISO	We	erkstoff	Härte (HB)	Span- brecher	HM-Sorte	digkeit (m/min)	Ø 13,0–Ø 18,0	Ø 18,5–Ø 29,0	Ø 29,5– Ø 36,0	Ø 37,0–Ø 55,0	Ø 56,0–Ø 68,0
		St 42-3	125	G	ACP300	120 –180 –240	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,11	0,05 –0,08 –0,12	0,06 –0,09 –0,13
		C15	125	L	ACP300	130 –170 –220	0,04 –0,08 –0,12	0,04 –0,08 –0,12	0,04 –0,08 –0,13	0,05 –0,10 –0,15	0,06 –0,11 –0,17
	Kohlenstoff-	C45	190	G	ACP300	100 –150 –200	0,08 -0,13 -0,24	0,08 –0,13 –0,24	0,08 –0,14 –0,26	0,09 -0,16 -0,29	0,10 –0,17 –0,32
	stahl	C45 gehärtet	250	G	ACP100	100 –170 –240	0,05 –0,09 –0,14	0,05 –0,09 –0,14	0,05 –0,09 –0,14	0,05 –0,10 –0,17	0,06 –0,11 –0,18
		C75	270	G	ACP100	120- 180 -240	0,06 -0,10 -0,17	0,06 –0,10 –0,17	0,06 –0,10 –0,17	0,07 –0,12 –0,19	0,08 -0,13 -0,21
D		C75 gehärtet	300	G	ACP100	80 –150 –210	0,05-0,09-0,14	0,05-0,09-0,14	0,05-0,09-0,14	0,05- 0,10 -0,15	0,06 -0,11 -0,17
	Niedrig legierter Stahl	Cr-Mo, Ni-Cr-Mo	180	L	ACP300	100- 140 -180	0,05 -0,08 -0,14	0,05-0,08-0,14	0,05- 0,08 -0,16	0,06 -0,09 -0,17	0,07 –0,10 –0,19
			275	G	ACP100	100- 170 -240	0,06 -0,10 -0,14	0,06-0,10-0,14	0,06- 0,10 -0,14	0,07 -0,11 -0,16	0,08 -0,11 -0,17
	Niedrig legierter	Cr-Mo, Ni-Cr-Mo gehärtet	300	G	ACP100	90 –150 –210	0,06 -0,10 -0,14	0,06- 0,10 -0,14	0,06- 0,10 -0,14	0,07 –0,11 –0,16	0,08 –0,11 –0,17
	Stahl	INI-CI-INIO	350	G	ACP100	75– 120 –165	0,06- 0,10 -0,14	0,06-0,10-0,14	0,06- 0,10 -0,14	0,07 -0,11 -0,16	0,08 -0,11 -0,17
	Hoch legierter		200	G	ACP100	120 –180 –240	0,08 -0,12 -0,17	0,08 –0,12 –0,17	0,08 –0,12 –0,18	0,09 -0,12 -0,21	0,10 -0,13 -0,22
	Stahl	gesintert	325	G	ACP100	100 –140 –180	0,06- 0,10 -0,15	0,06- 0,10 -0,15	0,06- 0,11 -0,15	0,07 -0,11 -0,16	0,08 -0,11 -0,17
		martensitisch/ferritisch	200	М	ACM300	120 –150 –180	0,06- 0,08 -0,15	0,06-0,08-0,15	0,06-0,08-0,15	0,07 -0,10 -0,16	0,08 -0,12 -0,16
M	Rostfreier	martensitisch/gehärtet	240	М	ACM300	90 –120 –150	0,06-0,08-0,15	0,06-0,08-0,15	0,06-0,08-0,15	0,07 -0,10 -0,16	0,08 -0,12 -0,16
	Stahl	austenitisch	180	М	ACM300	120 –150 –180	0,06 -0,08 -0,15	0,06- 0,08 -0,15	0,06- 0,08 -0,15	0.07 –0.10 –0.16	0.08 -0.12 -0.16
V	Guss (GG)			Н	ACK300	120 –160 –200	0,09 -0,20 -0,32	0,10-0,22-0,36	0,11- 0,24 -0,39	0,12-0,26-0,44	0,13-0,29-0,48
N	Kugelgraphitgu	ss (GGG)		Н	ACK300	90 –120 –150	0,09 –0,20 –0,32	0,10- 0,22 -0,36	0,11 –0,24 –0,39	0,12 -0,26 -0,44	0,13 –0,29 –0,48
S	0 0 1 0 1 7		200	G	ACP300	25- 50 -70	0,06 –0,11 –0,18	0,06- 0,11 -0,18	0,06 -0,12 -0,19	0,07 -0,13 -0,22	0,08- 0,14 -0,24
N	Aluminiumlegie			G	DL1500	200- 260 -320	0,06 –0,11 –0,17	0,06 -0,11 -0,17	0,06 –0,12 –0,18	0,07 -0,13 -0,20	0,08 -0,14 -0,22
IN	Kupferlegierungen			G	DL1500	180 –230 –280	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20	0,08 -0,14 -0,22

^{*}Bei den Sorten P und K, für die ACP300 und ACK300 die erste Empfehlung sind, gelten ACP100-Wendeplatten als zweite Empfehlung. In diesem Fall wird empfohlen, die Schnittgeschwindigkeit auf 130 % und den Vorschub auf 75 % der Werte in der obigen Tabelle einzustellen.

SumiDrill WDX-Typ (3D)

Maximale Bohrungstiefen: 3D

Bearbeitungstoleranzen ca. 0 bis +0,20 mm

■ Bohrkörper, Ø 13,0 mm – Ø 45,0 mm

		irkorper, Ø 13							
DC	Lager	Bezeichnung	LUX	LPR	OAL	LS	DCSFMS	DCON	Abb
13,0	•	WDX 130D3S20	42,0	57,0	101,0				1
13,5	•	135D3S20	43,5	58,5	102,5				1
14,0	•	140D3S20	45,0	60,0	104,0	44	28,0	20	1
14,5	•	145D3S20	46,5	61,5	105,5				1
15,0	•	150D3S20	48,0	63,0	107,0				1
15,5	•	WDX 155D3S20	49,5	64,5	108,5				1
16,0	•	160D3S20	51,0	66,0	110,0	44	30,0	20	1
16,5	•	165D3S20	52,5	67,5	111,5	44	30,0	20	1
17,0	•	170D3S20	54,0	69,0	113,0				1
17,5	•	WDX 175D3S25	55,5	70,5	126,5	F.C.	22.0	٥٢	1
18,0	•	180D3S25	57,0	72,0	128,0	56	32,0	25	1
18,5	•	WDX 185D3S25	58,5	73,5	129,5				1
19,0	•	190D3S25	60,0	75,0	131,0				1
19,5	•	195D3S25	61,5	76,5	132,5				1
20,0	•	200D3S25	63,0	78,0	134,0				1
20,5	•	205D3S25	64,5	79,5	135,5	56	33,0	25	1
21,0	•	210D3S25	66,0	81,0	137,0				1
21,5	•	215D3S25	67,5	82,5	138,5				1
22,0	•	220D3S25	69,0	84.0	140,0				1
22,5	•	225D3S25	70,5	85,5	141,5				1
23,0	•	WDX 230D3S25	72,0	90,0	146,0				1
23,5	•	235D3S25	73,5	91,5	147,5				1
24,0	•	240D3S25	75,0	93,0	149,0	56	37,0	25	1
24,5	•	245D3S25	76,5	94,5	150,5		'		1
25,0	•	250D3S25	78,0	96,0	152,0				1
25,5	•	WDX 255D3S32	79,5	99,5	159,5				2
26,0	•	260D3S32	81,0	101,0	161,0				2
26,5	•	265D3S32	82,5	102,5	162,5				2
27,0	•	270D3S32	84,0	104,0	164,0	60	41,0	32	2
27,5	•	275D3S32	85,5	105,5	165,5		,-		2
28,0	•	280D3S32	87,0	107,0	167,0				2
28,5	•	285D3S32	88,5	108,5	168,5				2
29,0	•	WDX 290D3S32	91,0	112,0	172,0				2
29,5	•	295D3S32	92,5	113,5	173,5		50,0		2
30,0*	0	300D3S32	94,0	118,0	178,0	60		32	2
31,0*		310D3S32	97,0	121,0	181,0		54,0		2
32,0*	0	320D3S32	100,0	124,0	184,0		,-		2
30,0*	•	WDX 300D3S40	94,0	118,0	188,0				2
31,0*	•	310D3S40	97,0	121,0	191,0				2
32,0*	•	320D3S40	100,0	124,0	194,0				2
33,0	•	330D3S40	103,0	127,0	197,0	70	54,0	40	2
34,0	•	340D3S40	106,0	130,0	200,0	•	, 5		2
35,0	•	350D3S40	109,0	133,0	203,0				2
36,0	•	360D3S40	112,0	136,0	206,0				2
37,0	•	WDX 370D3S40	116,0	146,0	216,0				2
38,0	•	380D3S40	119,0	149,0	219,0				2
39,0	•	390D3S40	122,0	152,0	222,0				2
40,0	•	400D3S40	125,0	155,0	225,0				2
41,0	•	410D3S40	128,0	158,0	228,0	70	49,5	40	2
42,0	•	420D3S40	131,0	161,0	231,0	. •	.5,5	. •	2
43,0	•	430D3S40	134,0	164,0	234,0				2
44,0	•	440D3S40	137,0	167,0	237,0				2
45,0	•	450D3S40	140,0	170,0	240,0				2
$\overline{}$		esser Ø 30. Ø 31. Ø 32 sind				<u>ا</u>	md (X 40		

^{*} Die Durchmesser Ø 30, Ø 31, Ø 32 sind bei Schaftdurchmessern von Ø 32 und Ø 40 auf Lager.

■ Bohrkörper, Ø 46,0 mm – Ø 68,0 mm

Lager	Bezeichnung	LUX	LPR	OAL	LS	DCSFMS	DCON	Abb
•	WDX 460D3S40	143,0	173,0	243,0				2
•	470D3S40	146,0	176,0	246,0				2
•	480D3S40	149,0	179,0	249,0		10.5		2
•	490D3S40	152,0	182,0	252,0		49,5		2
•	500D3S40	155,0	185,0	255,0	70		40	2
•	510D3S40	158,0	188,0	258,0	70		40	3
•	520D3S40	161,0	191,0	261,0		50,5		3
•	530D3S40	164,0	194,0	264,0		51,5		3
•	540D3S40	167,0	197,0	267,0		52,5		3
•	550D3S40	170,0	200,0	270,0		53,5		3
0	WDX 560D3S40	176,0	208,0	278,0		54,0		3
O	570D3S40	179,0	211,0	281,0		55,0		3
0	580D3S40	182,0	214,0	284,0		56,0		3
O	590D3S40	185,0	217,0	287,0		57,0		3
O	600D3S40	188,0	220,0	290,0		58,0		3
O	610D3S40	191,0	223,0	293,0		59,0		3
0	620D3S40	194,0	226,0	296,0	70	60,0	40	3
O	630D3S40	197,0	229,0	299,0		61,0		3
0	640D3S40	200,0	232,0	302,0		62,0		3
O	650D3S40	203,0	235,0	305,0		63,0		3
0	660D3S40	206,0	238,0	308,0		64,0		3
O	670D3S40	209,0	241,0	311,0		65,0		3
O	680D3S40	212,0	244,0	314,0		66,0		3
		 WDX 460D3S40 470D3S40 480D3S40 490D3S40 500D3S40 510D3S40 520D3S40 530D3S40 540D3S40 550D3S40 550D3S40 550D3S40 570D3S40 570D3S40 670D3S40 600D3S40 600D3S40 610D3S40 620D3S40 620D3S40 630D3S40 630D3S40 640D3S40 650D3S40 650D3S40 660D3S40 670D3S40 	 WDX 460D3S40 143,0 470D3S40 146,0 480D3S40 149,0 490D3S40 152,0 500D3S40 155,0 510D3S40 164,0 530D3S40 167,0 540D3S40 170,0 550D3S40 170,0 WDX 560D3S40 170,0 570D3S40 170,0 60D3S40 182,0 590D3S40 182,0 600D3S40 185,0 600D3S40 189,0 610D3S40 191,0 620D3S40 194,0 630D3S40 200,0 650D3S40 203,0 660D3S40 203,0 660D3S40 209,0 670D3S40 209,0 	 WDX 460D3S40 143,0 173,0 470D3S40 146,0 176,0 480D3S40 149,0 179,0 490D3S40 152,0 185,0 500D3S40 155,0 185,0 510D3S40 161,0 191,0 530D3S40 164,0 194,0 540D3S40 167,0 197,0 550D3S40 170,0 200,0 WDX 560D3S40 170,0 200,0 WDX 560D3S40 179,0 211,0 580D3S40 182,0 214,0 590D3S40 182,0 214,0 600D3S40 185,0 217,0 600D3S40 189,0 220,0 610D3S40 191,0 223,0 620D3S40 191,0 223,0 630D3S40 194,0 226,0 630D3S40 200,0 232,0 640D3S40 200,0 232,0 650D3S40 200,0 238,0 660D3S40 200,0 238,0 670D3S40 209,0 241,0 	 WDX 460D3S40 143,0 173,0 243,0 470D3S40 146,0 176,0 246,0 480D3S40 149,0 179,0 249,0 490D3S40 152,0 182,0 252,0 500D3S40 155,0 185,0 255,0 510D3S40 161,0 191,0 261,0 530D3S40 167,0 197,0 267,0 550D3S40 170,0 200,0 270,0 WDX 560D3S40 176,0 208,0 278,0 570D3S40 179,0 211,0 281,0 570D3S40 182,0 224,0 284,0 600D3S40 179,0 211,0 281,0 600D3S40 188,0 229,0 290,0 610D3S40 189,0 223,0 293,0 620D3S40 191,0 223,0 293,0 620D3S40 191,0 222,0 299,0 630D3S40 191,0 223,0 293,0 620D3S40 197,0 229,0 299,0 630D3S40 200,0 232,0 302,0 650D3S40 203,0 235,0 305,0 660D3S40 209,0 241,0 311,0 	 WDX 460D3S40 143,0 173,0 243,0 470D3S40 146,0 176,0 246,0 480D3S40 149,0 179,0 249,0 490D3S40 152,0 185,0 255,0 500D3S40 158,0 188,0 258,0 520D3S40 161,0 191,0 261,0 530D3S40 167,0 197,0 267,0 550D3S40 170,0 200,0 270,0 WDX 560D3S40 170,0 200,0 270,0 570D3S40 179,0 211,0 281,0 570D3S40 182,0 278,0 570D3S40 179,0 211,0 281,0 580D3S40 182,0 214,0 284,0 600D3S40 188,0 220,0 290,0 610D3S40 191,0 223,0 293,0 620D3S40 191,0 223,0 293,0 630D3S40 194,0 226,0 296,0 640D3S40 200,0 232,0 302,0 650D3S40 200,0 232,0 302,0 650D3S40 206,0 238,0 308,0 670D3S40 209,0 241,0 311,0 	 WDX 460D3S40 143,0 173,0 243,0 49,5 470D3S40 146,0 176,0 246,0 480D3S40 152,0 182,0 252,0 500D3S40 155,0 185,0 255,0 510D3S40 161,0 191,0 261,0 51,5 520D3S40 161,0 191,0 261,0 51,5 530D3S40 164,0 194,0 264,0 51,5 550D3S40 170,0 200,0 270,0 53,5 WDX 560D3S40 170,0 200,0 270,0 53,5 570D3S40 170,0 200,0 270,0 53,5 WDX 560D3S40 188,0 284,0 56,0 570D3S40 182,0 214,0 284,0 55,0 590D3S40 182,0 214,0 284,0 56,0 590D3S40 185,0 217,0 287,0 57,0 600D3S40 188,0 220,0 290,0 58,0 590D3S40 185,0 217,0 287,0 57,0 600D3S40 189,0 223,0 293,0 59,0 620D3S40 191,0 223,0 293,0 59,0 620D3S40 194,0 226,0 296,0 70 60,0 630D3S40 197,0 229,0 299,0 620D3S40 194,0 226,0 296,0 70 60,0 630D3S40 200,0 232,0 302,0 62,0 650D3S40 200,0 232,0 302,0 62,0 660D3S40 206,0 238,0 308,0 64,0 670D3S40 209,0 241,0 311,0 65,0 	 WDX 460D3S40 143,0 173,0 243,0 470D3S40 146,0 176,0 246,0 480D3S40 149,0 179,0 249,0 490D3S40 155,0 182,0 252,0 500D3S40 158,0 188,0 258,0 520D3S40 161,0 191,0 261,0 530D3S40 164,0 194,0 264,0 540D3S40 170,0 200,0 270,0 535D3S40 170,0 200,0 270,0 535D3S40 170,0 200,0 270,0 535D3S40 170,0 201,0 281,0 55,0 570D3S40 179,0 211,0 281,0 570D3S40 188,0 229,0 299,0 600D3S40 188,0 220,0 290,0 58,0 610D3S40 189,0 217,0 287,0 57,0 58,0 600D3S40 191,0 223,0 293,0 620D3S40 197,0 229,0 299,0 61,0 630D3S40 197,0 229,0 299,0 620D3S40 197,0 229,0 299,0 630D3S40 197,0 229,0 299,0 630D3S40 200,0 232,0 302,0 63,0 64,0 660D3S40 203,0 235,0 305,0 63,0 64,0 670D3S40 209,0 241,0 311,0 65,0

■ Ersatzteile

	Flachkopfsch	raube	Schlüssel	Schlüssel
Geeignete Bohrkörper		(N·m)		
WDX130D3S20-WDX150D3S20	BFTX01604N	0,3	TRX06	_
WDX155D3S20-WDX180D3S25	BFTX0204N	0,5	TRX06	_
WDX185D3S25-WDX225D3S25	BFTY02206	1,0	_	TRD07
WDX230D3S25-WDX285D3S32	BFTX02506N	1,5	_	TRD08
WDX290D3S32-WDX360D3S40	BFTX03584	3,5	_	TRD15
WDX370D3S40-WDX450D3S40	BFTX0511N	5,0	_	TRD20
WDX460D3S40-WDX680D3S40	BFTX0615N	5,0	_	TRD25

■ Bezeichnungsschlüssel - Bohrkörper

WDX 200 D3 S25

Durchmesser DC USchaftdurchmesser DCON (Ø 20,0 mm) Realisierbare Bohrtiefe L/D-Verhältnis (3D)

■ Bezeichnungsschlüssel - Platte

WDXT 06 30 06 -G

Plattenbreite (6,0 mm) Plattendicke (3,0 mm)

Spanbrechertyp

Eckenradius (0,6 mm)

SumiDrill WDX-Typ (3D)

■ Wendeschneidplatten

Anwendung	Bes	chich	tetes	Hartr	netal	l							
Hochgeschw./Leichtbearb.	P _K				N								
Allgemeine Anwendung		P	M										
Schruppen		P		K									
Bezeichnung	ACP100	ACP300	ACM300	ACK300	DL1500	Abb.	W1	S	RE1	RE2	Geeignete Bohrkörper		
WDXT 042004 L	0	•		•		1							
042004 G	•	•		•	•	2			_ ,	0,4	WDX130D3S20 -		
042004 H	•	•		•		3	4,2	2,0	0,4	,	WDX150D3S20		
042004 M			•			4				0,8			
WDXT 052504 L	0	•		•		1				Ĺ		Abb. 1	Abb. 2
052504 G	•	•		•	•	2			_ ,	0,4	WDX155D3S20 -	W1 RE2	RE2
052504 H	•	•		•		3	5,0	2,5	0,4		WDX180D3S25	L KEZ	G RE2
052504 M			•			4				1,0		()	
WDXT 063006 L	•	•		•		1							
063006 G	•	•		•	•	2		20	0.0	0,6	WDX185D3S25 -	RE1	RE1
063006 H	•	•		•		3	6,0	3,0	0,6		WDX225D3S25	Geringer Vorschub/Spankontrolle	Allgemeine Anwendung
063006 M			•			4				1,4			
WDXT 073506 L	•	•		•		1						Abb. 3	Abb. 4
073506 G	•	•		•	•	2	7,5	3,5	0,6	0,6	WDX230D3S25 -	W1 RE2	M W1 RE2 S
073506 H	•	•		•		3	7,5	3,5	0,0		WDX285D3S32	H	M REZ
073506 M			•			4				1,6			
WDXT 094008 L	•	•		•		1							
094008 G	•	•		•	•	2	9,6	4,0	0,8	0,8	WDX290D3S32 -	RE1	RE1
094008 H	•	•		•		3	9,0	4,0	0,6		WDX360D3S40	Starke Schneidkante	Für Edelstahl
094008 M			•			4				2,4			
WDXT 125012 L	•	•		•		1							
125012 G	•	•		•	•	2	12.4	5,0	1,2	1,2	WDX370D3S40 -		
125012 H	•	•		•		3	12,4	3,0	1,2		WDX450D3S40		
125012 M			•			4				3,2			
WDXT 156012 L	•	•		•		1					WDX460D3S40 -		
156012 G	•	•		•	•	2	15,2	6,0	1,2	1,2	WDX460D3S40 =		
156012 H	•	•		•		3					VVD/330D3340		
WDXT 186012 L	•	O		O		1					WDX560D3S40 -		
186012 G	•	•		•		2	18,0	6,0	1,2	1,2	WDX560D3S40 - WDX680D3S40		
186012 H	0	0		0		3					VVD/000D3340		

■ Empfohlene Schnittbedingungen (3D)

(min. - optimal - max.)

	Materia	algruppe	£ €	pan- echer		Schnittgeschwin-			Vorschub (mm/U)		
ISO	W	erkstoff	Härte (HB)	Spa	I HIVI-SOME	digkeit (m/min)	Ø 13,0–Ø 18,0	Ø 18,5–Ø 29,0	Ø 29,5– Ø 36,0	Ø 37,0–Ø 55,0	Ø 56,0–Ø 68,0
		St 42-3	125	G	ACP300	120 –180 –240	0,05 -0,07 -0,10	0,05 -0,07 -0,10	0,05 –0,08 –0,11	0,05 –0,08 –0,12	0,06 -0,09 -0,13
		C15	125	L	ACP300	130– 170 –220	0,04 –0,07 –0,10	0,04 –0,07 –0,10	0,04 –0,08 –0,11	0,05 –0,09 –0,12	0,06 –0,10 –0,13
	Kohlenstoff-	C45	190	G	ACP300	100 –150 –200	0,08 –0,12 –0,20	0,08 –0,12 –0,20	0,08 –0,13 –0,22	0,09 -0,14 -0,24	0,10 –0,16 –0,27
	stahl	C45 gehärtet	250	G	ACP100	100– 170 –240	0,05 –0,08 –0,11	0,05 –0,08 –0,11	0,05 –0,08 –0,12	0,05 –0,09 –0,14	0,06 –0,10 –0,15
		C75	270	G	ACP100	120 –180 –240	0,06 –0,09 –0,14	0,06 –0,09 –0,17	0,06 –0,10 –0,14	0,07 –0,11 –0,17	0,08 –0,12 –0,18
P		C75 gehärtet	300	G	ACP100	80 –150 –210	0,05 –0,08 –0,11	0,05 –0,08 –0,11	0,05 –0,08 –0,11	0,05 –0,09 –0,14	0,06 –0,10 –0,14
	Niedrig legierter Stah	Cr-Mo, Ni-Cr-Mo	180	L	ACP300	100– 140 –180	0,05 -0,07 -0,12	0,05 -0,07 -0,12	0,05 -0,08 -0,13	0,06 –0,08 –0,13	0,07 –0,09 –0,16
	Niedria legiertes	Cr Mo	275	G	ACP100	100 –170 –240	0,06 –0,08 –0,11	0,06 –0,08 –0,11	0,06 –0,08 –0,11	0,07 –0,10 –0,12	0,08 –0,10 –0,13
	Niedrig legierter Stahl	Ni-Cr-Mo gehärtet	300	G	ACP100	90 –150 –210	0,06 –0,08 –0,11	0,06 –0,08 –0,11	0,06 –0,08 –0,11	0,07 –0,10 –0,12	0,08 –0,10 –0,13
	Statii	IN OF INO	350	G	ACP100	75– 120 –165	0,06 –0,08 –0,11	0,06 –0,08 –0,11	0,06 –0,08 –0,11	0,07 –0,10 –0,12	0,08 –0,10 –0,13
	Hoch legierter		200	G	ACP100	120 –180 –240	0,08 –0,11 –0,14	0,08 –0,12 –0,15	0,08 –0,12 –0,16	0,09 –0,14 –0,18	0,10 –0,14 –0,19
	Stahl	gesintert	325	G	ACP100	100 –140 –180	0,06 –0,09 –0,11	0,06-0,09-0,11	0,06 –0,09 –0,11	0,07 –0,10 –0,12	0,08 –0,10 –0,13
	Dootfroing	martensitisch/ferritisch	200	М	ACM300	120 –150 –180	0,06 -0,08 -0,15	0,06-0,08-0,15	0,06-0,08-0,15	0,07 –0,10 –0,16	0,08 -0,12 -0,16
M	Rostfreier Stahl	martensitisch/gehärtet	240	М	ACM300	90 –120 –150	0,06 –0,08 –0,15	0,06 –0,08 –0,15	0,06 –0,08 –0,15	0,07 –0,10 –0,16	0,08 –0,12 –0,16
	Starii	austenitisch	180	М	ACM300	120 –150 –180	0,06 -0,08 -0,15	0,06 -0,08 -0,15	0,06 -0,08 -0,15	0,07 –0,10 –0,16	0,08 -0,12 -0,16
K	Guss (GG)			Н	ACK300	120 –160 –200	0,09 -0,18 -0,27	0,10 -0,20 -0,30	0,11 –0,22 –0,32	0,12 -0,24 -0,36	0,13 -0,26 -0,40
1	Kugelgraphitgu	ıss (GGG)		Н	ACK300	90 –120 –150	0,09 -0,18 -0,27	0,10 -0,20 -0,30	0,11 –0,22 –0,32	0,12 -0,24 -0,36	0,13 -0,26 -0,40
S	Hitzebeständige Legierungen		200	G	ACP300	25 –50 –70	0,06 –0,10 –0,15	0,06 –0,10 –0,15	0,06 –0,11 –0,16	0,07 –0,12 –0,18	0,08 –0,13 –0,20
N	Aluminiumlegie	erungen		G	DL1500	200 –260 –320	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 -0,13 -0,20	0,08 -0,14 -0,22
14	Kupferlegierungen			G	DL1500	180- 230 -280	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20	0,08 –0,14 –0,22

^{*}Bei den Sorten P und K, für die ACP300 und ACK300 die erste Empfehlung sind, gelten ACP100-Wendeplatten als zweite Empfehlung. In diesem Fall wird empfohlen, die Schnittgeschwindigkeit auf 130 % und den Vorschub auf 75 % der Werte in der obigen Tabelle einzustellen.

■ Bohrkörper, Ø 13,0 mm – Ø 45,0 mm

DC	Lager	Bezeichnung	LUX	LPR	OAL	LS	DCSFMS	DCON	Abb
13,0	•	WDX 130D4S20	55	70	114				1
13,5	•	135D4S20	57	72	116				1
14,0	•	140D4S20	59	74	118	44	28,0	20	1
14,5	•	145D4S20	61	76	120		-,-		1
15,0	•	150D4S20	63	78	122				1
15,5	•	WDX 155D4S20	65	80	124				1
16,0	•	160D4S20	67	82	126				1
16,5	•	165D4S20	69	84	128	44	30,0	20	1
17,0	•	170D4S20	71	86	130				1
17,5	•	WDX 175D4S25	73	88	144				1
18,0	•	180D4S25	75	90	146	56	32,0	25	1
18,5	•	WDX 185D4S25	77	92	148				1
19,0	•	190D4S25	79	94	150				1
19,5	•	195D4S25	81	96	152				1
	•								1
20,0		200D4S25 205D4S25	83 85	98 100	154 156	56	33,0	25	1
	•					30	33,0	25	1
21,0	•	210D4S25	87	102	158				
21,5	•	215D4S25	89	104	160				1
22,0	•	220D4S25	91	106	162				1
22,5	•	225D4S25	93	108	164				1
23,0	•	WDX 230D4S25	95	113	169				1
23,5	•	235D4S25	97	115	171				1
24,0	•	240D4S25	99	117	173	56	37,0	25	1
24,5	•	245D4S25	101	119	175				1
25,0	•	250D4S25	103	121	177				1
25,5	•	WDX 255D4S32	105	125	185				2
26,0	•	260D4S32	107	127	187				2
26,5	•	265D4S32	109	129	189				2
27,0	•	270D4S32	111	131	191	60	41,0	32	2
27,5	•	275D4S32	113	133	193				2
28,0	•	280D4S32	115	135	195				2
28,5	•	285D4S32	117	137	197				2
29,0	•	WDX 290D4S32	120	141	201		50,0		2
29,5	•	295D4S32	122	143	203		30,0		2
30,0*	0	300D4S32	124	148	208	60		32	2
31,0*		310D4S32	128	152	212		54,0		2
32,0*	O	320D4S32	132	156	216				2
30,0*	•	WDX 300D4S40	124	148	218				2
31,0*	•	310D4S40	128	152	222				2
32,0*	•	320D4S40	132	156	226				2
33,0	•	330D4S40	136	160	230	70	54,0	40	2
34,0	•	340D4S40	140	164	234				2
35,0	•	350D4S40	144	168	238				2
36,0	•	360D4S40	148	172	242				2
37,0	•	WDX 370D4S40	153	183	253				2
38,0	•	380D4S40	157	187	257				2
39,0	•	390D4S40	161	191	261				2
40,0	•	400D4S40	165	195	265				2
41,0	•	410D4S40	169	199	269	70	49,5	40	2
	•	420D4S40	173	203	273	, 0	73,3	70	2
		72004040	170	200	210	1	1	1	1 4
42,0		43004640	177	207	277				2
42,0 43,0	•	430D4S40	177	207	277				2
42,0		430D4S40 440D4S40 450D4S40	177 181 185	207 211 215	277 281 285				2 2 2

* Die Durchmesser Ø 30, Ø 31, Ø 32 sind bei Schaftdurchmessern von Ø 32 und Ø 40 auf Lager.

■ Bohrkörper, Ø 46,0 mm – Ø 63,0 mm

DC	Lager	Bezeichnung	LUX	LPR	OAL	LS	DCSFMS	DCON	Abb.
46,0	•	WDX 460D4S40	189	219	289				2
47,0	•	470D4S40	193	223	293				2
48,0	•	480D4S40	197	227	297		49,5		2
49,0	•	490D4S40	201	231	301		49,5		2
50,0	•	500D4S40	205	235	305	70		40	2
51,0	•	510D4S40	209	239	309	10		40	3
52,0	•	520D4S40	213	243	313		50,5		3
53,0	•	530D4S40	217	247	317		51,5		3
54,0	•	540D4S40	221	251	321		52,5		3
55,0	•	550D4S40	225	255	325		53,5		3
56,0	0	WDX 560D4S40	232	264	334		54,0		3
57,0	O	570D4S40	236	268	338		55,0		3
58,0	0	580D4S40	240	272	342		56,0		3
59,0	O	590D4S40	244	276	346	70	57,0	40	3
60,0	0	600D4S40	248	280	350	10	58,0	40	3
61,0	O	610D4S40	252	284	354		59,0		3
62,0	O	620D4S40	256	288	358		60,0		3
63,0		630D4S40	260	292	362		61,0		3

Ersatzteile

	Flachkopfsch	raube	Schlüssel	Schlüsse	
Geeignete Bohrkörper		(N-m)			
WDX130D4S20-WDX150D4S20	BFTX01604N	0,3	TRX06	_	
WDX155D4S20-WDX180D4S25	BFTX0204N	0,5	TRX06	_	
WDX185D4S25-WDX225D4S25	BFTY02206	1,0	_	TRD07	
WDX230D4S25-WDX285D4S32	BFTX02506N	1,5	_	TRD08	
WDX290D4S32-WDX360D4S40	BFTX03584	3,5	_	TRD15	
WDX370D4S40-WDX450D4S40	BFTX0511N	5,0	_	TRD20	
WDX460D4S40-WDX630D4S40	BFTX0615N	5,0	_	TRD25	

■ Bezeichnungsschlüssel - Bohrkörper

WDX 200 D4 S25

Durchmesser DC LSchaftdurchmesser DCON (Ø 20,0 mm) (Ø 25,0 mm) Realisierbare Bohrtiefe L/D-Verhältnis (4D)

■ Bezeichnungsschlüssel - Platte

06 30 06 -G WDXT

Plattenbreite Plattendicke Spanbrechertyp (6,0 mm) (3,0 mm)Eckenradius (0,6 mm)

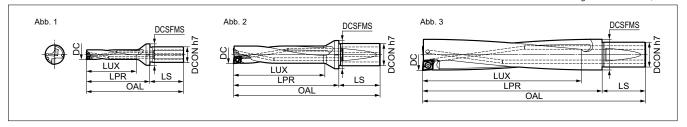
SumiDrill WDX-Typ (4D)

■ Wendeschneidplatten

Anwendung	Bes	chich	tetes	Hartr	netal								
Hochgeschw./Leichtbearb.	P _K				N								
Allgemeine Anwendung		P	M										
Schruppen		P		K									
Bezeichnung	ACP100	ACP300	ACM300	ACK300	DL1500	Abb.	W1	S	RE1	RE2	Geeignete Bohrkörper		
WDXT 042004 L	O	•		•		1							
042004 G	•	•		•	•	2	4,2	20		0,4	WDX130D4S20 -		
042004 H	•	•		•		3	4,2	2,0	0,4		WDX150D4S20		
042004 M			•			4				0,8			
WDXT 052504 L	0	•		•		1						Abb. 1	Abb. 2
052504 G	•	•		•	•	2			_ ,	0,4	WDX155D4S20 -	W1 RE2	W1 RE2
052504 H	•	•		•		3	5,0	2,5	0,4		WDX180D4S25	L REZ	G WI RE2
052504 M			•			4				1,0		A CO	
WDXT 063006 L	•	•		•		1				Ĺ			
063006 G	•	•		•	•	2				0,6	WDX185D4S25 -	RE1	RE1
063006 H	•	•		•		3	6,0	3,0	0,6	,	WDX225D4S25	Geringer Vorschub/Spankontrolle	Allgemeine Anwendung
063006 M			•			4				1,4			
WDXT 073506 L	•	•		•		1						Abb. 3	Abb. 4
073506 G	•	•		•	•	2				0,6	WDX230D4S25 -	W1 RE2	W1_ RF2 S
073506 H	•	•		•		3	7,5	3,5	0,6	,	WDX285D4S32	H RE2	M RE2 S
073506 M			•			4				1,6		ann ann ann ann ann ann ann ann ann ann	
WDXT 094008 L	•	•		•		1							
094008 G	•	•		•	•	2		1,0		0,8	WDX290D4S32 -	RE1	RE1
094008 H	•	•		•		3	9,6	4,0	0,8		WDX360D4S40	Starke Schneidkante	Für Edelstahl
094008 M			•			4				2,4			
WDXT 125012 L	•	•		•		1							
125012 G	•	•		•	•	2	40.4		4.0	1,2	WDX370D4S40 -		
125012 H	•	•		•		3	12,4	5,0	1,2		WDX450D4S40		
125012 M			•			4				3,2			
WDXT 156012 L	•	•		•		1					WDV400D4040		
156012 G	•	•		•	•	2	15,2	6,0	1,2	1,2	WDX460D4S40 -		
156012 H	•	•		•		3					WDX550D4S40		
WDXT 186012 L	•	O		O		1					WDV500D4040		
186012 G	•	•		•		2	18,0	6,0	1,2	1,2	WDX560D4S40 -		
186012 H	O	O		0		3					WDX630D4S40		

■ Empfohlene Schnittbedingungen (4D)

(min. - **optimal** - max.)


	Materia	3 te	-i-		Schnittgeschwin-			Vorschub (mm/U)			
ISO	W	erkstoff	Härte (HB)	Span- brecher	HM-Sorte	digkeit (m/min)	Ø 13,0–Ø 18,0	Ø 18,5–Ø 29,0	Ø 29,5– Ø 36,0	Ø 37,0–Ø 55,0	Ø 56,0–Ø 63,0
		St 42-3	125	G	ACP300	120 –180 –240	0,05 –0,07 –0,10	0,05 –0,07 –0,10	0,05 –0,07 –0,10	0,05 –0,08 –0,10	0,06 –0,09 –0,11
		C15	125	L	ACP300	130 –170 –220	0,04 –0,07 –0,09	0,04 –0,07 –0,09	0,04 –0,07 –0,09	0,05 –0,08 –0,10	0,06 –0,09 –0,11
	Kohlenstoff-	C45	190	G	ACP300	100 –150 –200	0,08 –0,11 –0,17	0,08 –0,11 –0,17	0,08 –0,12 –0,18	0,09 –0,14 –0,21	0,10 –0,15 –0,23
	stahl	C45 gehärtet	250	G	ACP100	100– 170 –240	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,11	0,05 –0,08 –0,11	0,06 –0,09 –0,13
		C75	270	G	ACP100	120 –180 –240	0,06 –0,08 –0,11	0,06 –0,08 –0,11	0,06 –0,09 –0,13	0,07 –0,11 –0,14	0,08 –0,11 –0,15
Б	C75 gehärtet		300	G	ACP100	85 –150 –210	0,05 –0,07 –0,09	0,05 –0,07 –0,09	0,05 –0,08 –0,10	0,05 –0,08 –0,11	0,06 –0,09 –0,12
	Niedrig legierter Stah	Cr-Mo, Ni-Cr-Mo	180	L	ACP300	100 –140 –180	0,05 –0,07 –0,10	0,05 –0,07 –0,10	0,05 –0,07 –0,11	0,06 –0,08 –0,12	0,07 –0,09 –0,14
	Nii adala ta alaadaa	Cr Ma	275	G	ACP100	100 –170 –240	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,11	0,06 –0,08 –0,11
	Niedrig legierter Stahl	Ni-Cr-Mo gehärtet	300	G	ACP100	90 –150 –210	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,11	0,06 –0,08 –0,11
		IN OI MO	350	G	ACP100	75– 120 –165	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,11	0,06 –0,08 –0,11
	Hoch legierter		200	G	ACP100	120 –180 –240	0,06 –0,10 –0,13	0,07 –0,11 –0,14	0,07 –0,11 –0,15	0,08 –0,12 –0,16	0,09 –0,13 –0,17
	Stahl	gesintert	325	G	ACP100	100 –140 –180	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,11	0,06 –0,08 –0,11
	Rostfreier	martensitisch/ferritisch	h 200	М	ACM300	120 –150 –180	0,06 –0,08 –0,13	0,06 –0,08 –0,13	0,06 –0,08 –0,14	0,07 -0,09 -0,14	0,06 –0,11 –0,14
M	Stahl	martensitisch/gehärt	et 240	М	ACM300	90 –120 –150	0,06 –0,08 –0,13	0,06 –0,08 –0,13	0,06 –0,08 –0,14	0,07 –0,09 –0,14	0,06 –0,11 –0,14
	Otani	austenitisch	180	М	ACM300	120 –150 –180	0,06 –0,08 –0,13	0,06 –0,08 –0,13	0,06 –0,08 –0,14	0,07 –0,09 –0,14	0,06 –0,11 –0,14
K	Guss (GG)			Н	ACK300	120 –160 –200	0,09 –0,17 –0,23	0,10 –0,19 –0,26	0,11 –0,21 –0,28	0,12 -0,23 -0,31	0,13 –0,25 –0,34
I	Kugelgraphitgu	ıss (GGG)		Н	ACK300	90 –120 –150	0,09 –0,17 –0,23	0,10 –0,19 –0,26	0,11 –0,21 –0,28	0,12 -0,23 -0,31	0,13 –0,25 –0,34
S	Hitzebeständige Legierungen		200	G	ACP300	25 –50 –70	0,06 –0,10 –0,13	0,06 –0,10 –0,13	0,06 –0,10 –0,14	0,07 –0,11 –0,15	0,08 –0,12 –0,17
N	Aluminiumlegie	erungen		G	DL1500	200 –260 –320	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,06 –0,11 –0,16	0,06 –0,12 –0,18	0,07 –0,13 –0,20
11	Kupferlegierungen			G	DL1500	180 –230 –280	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,06 –0,11 –0,16	0,06 –0,12 –0,18	0,07 –0,13 –0,20

^{*}Bei den Sorten P und K, für die ACP300 und ACK300 die erste Empfehlung sind, gelten ACP100-Wendeplatten als zweite Empfehlung. In diesem Fall wird empfohlen, die Schnittgeschwindigkeit auf 130 % und den Vorschub auf 75 % der Werte in der obigen Tabelle einzustellen.

SumiDrill WDX-Typ (5D)

Maximale Bohrungstiefen: 5D

Bearbeitungstoleranz: 0 bis +0,25 mm

■ Bohrkörper, Ø 13,0 mm – Ø 45,0 mm

		irkorper, Ø 13	,0 111	· · · · ×		<u> </u>	IIII		
DC	Lager	Bezeichnung	LUX	LPR	OAL	LS	DCSFMS	DCON	Abb.
13,0	•	WDX 130D5S20	68,0	83,0	127,0				1
13,5	•	135D5S20	70,5	85,5	129,5				1
14,0	•	140D5S20	73,0	88,0	132,0	44	28,0	20,0	1
14,5	•	145D5S20	75,5	90,5	134,5				1
15,0	•	150D5S20	78,0	93,0	137,0				1
15,5	•	WDX 155D5S20	80,5	95,5	139,5				1
16,0	•	160D5S20	83,0	98,0	142,0	44	30,0	20.0	1
16,5	•	165D5S20	85,5	100,5	144,5	44	30,0	20,0	1
17,0	•	170D5S20	88,0	103,0	147,0				1
17,5	•	WDX 175D5S25	90,5	105,5	161,5	56	32,0	25.0	1
18,0	•	180D5S25	93,0	108,0	164,0	50	32,0	25,0	1
18,5	•	WDX 185D5S25	95,5	110,5	166,5				1
19,0	•	190D5S25	98,0	113,0	169,0				1
19,5	•	195D5S25	100,5	115,5	171,5				1
20,0	•	200D5S25	103,0	118,0	174,0				1
20,5	•	205D5S25	105,5	120,5	176,5	56	33,0	25,0	1
21,0	•	210D5S25	108,0	123,0	179,0				1
21,5	•	215D5S25	110,5	125,5	181,5				1
22,0	•	220D5S25	113,0	128,0	184,0				1
22,5	•	225D5S25	115,5	130,5	186,5				1
23,0	•	WDX 230D5S25	118,0	136,0	192,0				1
23,5	•	235D5S25	120,5	138,5	194,5				1
24,0	•	240D5S25	123,0	141,0	197,0	56	37,0	25,0	1
24,5	•	245D5S25	125,5	143,5	199,5				1
25,0	•	250D5S25	128,0	146,0	202,0				1
26,0	•	WDX 260D5S32	133,0	153,0	213,0				2
27,0	•	270D5S32	138,0	158,0	218,0	60	41,0	32,0	2
28,0	•	280D5S32	143,0	163,0	223,0				2
29,0	•	WDX 290D5S32	149,0	170,0	230,0		50,0		2
30,0*	•	300D5S32	154,0	178,0	238,0	60		32,0	2
31,0*	•	310D5S32	159,0	183,0	243,0	00	54,0	52,0	2
32,0*	0	320D5S32	164,0	188,0	248,0				2
30,0*	•	WDX 300D5S40	154,0	178,0	248,0				2
31,0*	•	310D5S40	159,0	183,0	253,0				2
32,0*	•	320D5S40	164,0	188,0	258,0				2
33,0	•	330D5S40	169,0	193,0	263,0	70	54,0	40,0	
34,0	•	340D5S40	174,0	198,0	268,0				2
35,0	•	350D5S40	179,0	203,0	273,0				2
36,0	•	360D5S40	184,0	208,0	278,0				2
37,0	0	WDX 370D5S40	190,0	220,0	290,0				2
38,0	0	380D5S40	195,0	225,0	295,0				2
39,0	0	390D5S40	200,0	230,0	300,0				2
40,0	O	400D5S40	205,0	235,0	305,0				2
41,0	0	410D5S40	210,0	240,0	310,0	70	49,5	40,0	
42,0	O	420D5S40	215,0	245,0	315,0				2
43,0	O	430D5S40	220,0	250,0	320,0				2
44,0	0	440D5S40	225,0	255,0	325,0				2
45,0	O	450D5S40	230,0	260,0	330,0				2

^{*} Die Durchmesser Ø 30, Ø 31, Ø 32 sind bei Schaftdurchmessern von Ø 32 und Ø 40 auf Lager.

■ Bohrkörper, Ø 46,0 mm – Ø 55,0 mm

DC	Lager	Bezeichnung	LUX	LPR	OAL	LS	DCSFMS	DCON	Abb.
46,0	O	WDX 460D5S40	235,0	265,0	335,0				2
47,0	O	470D5S40	240,0	270,0	340,0				2
48,0	0	480D5S40	245,0	275,0	345,0		49,5		2
49,0	O	490D5S40	250,0	280,0	350,0		49,5		2
50,0	0	500D5S40	255,0	285,0	355,0	70		40,0	2
51,0	O	510D5S40	260,0	290,0	360,0	70		40,0	3
52,0	0	520D5S40	265,0	295,0	365,0		50,5		3
53,0	O	530D5S40	270,0	300,0	370,0		51,5		3
54,0	O	540D5S40	275,0	305,0	375,0		52,5		3
55,0	O	550D5S40	280,0	310,0	380,0		53,5		3

■ Ersatzteile

	Flachkopfsch	raube	Schlüssel	Schlüssel
Geeignete Bohrkörper		(N-m)		
WDX130D5S20-WDX150D5S20	BFTX01604N	0,3	TRX06	_
WDX155D5S20-WDX180D5S25	BFTX0204N	0,5	TRX06	_
WDX185D5S25-WDX225D5S25	BFTY02206	1,0	_	TRD07
WDX230D5S25-WDX280D5S32	BFTX02506N	1,5	-	TRD08
WDX290D5S32-WDX360D5S40	BFTX03584	3,5	_	TRD15
WDX370D5S40-WDX450D5S40	BFTX0511N	5,0	_	TRD20
WDX460D5S40-WDX550D5S40	BFTX0615N	5,0	_	TRD25

■ Bezeichnungsschlüssel - Bohrkörper

WDX 200 D5 S25

Durchmesser DC Schaftdurchmesser DCON
(Ø 20,0 mm) Realisierbare Bohrtiefe
L/D-Verhältnis (5D)

■ Bezeichnungsschlüssel - Platte

WDXT <u>06</u> <u>30</u> <u>06</u> <u>-G</u>

Plattenbreite (6,0 mm)

Plattendicke (3,0 mm)

Eckenradius (0,6 mm)

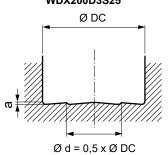
SumiDrill WDX-Typ (5D)

■ Wendeschneidplatten

Anwendung	Beso	chich	tetes	Hartr	netal	l								
Hochgeschw./Leichtbearb.	PK				N									
Allgemeine Anwendung		P	M											
Schruppen		P		K										
Bezeichnung	ACP100	ACP300	ACM300	ACK300	DL1500	Abb.	W1	s	RE1	RE2	Geeignete Bohrkörper			
WDXT 042004 L	О	•		•		1								
042004 G	•	•		•	•	2	4,2	2,0	0,4	0,4	WDX130D5S20 -			
042004 H	•	•		•		3	4,2	2,0	0,4		WDX150D5S20			
042004 M			•			4				0,8		ALL A	Abb O	
WDXT 052504 L	O	•		•		1						Abb. 1	Abb. 2	
052504 G	•	•		•	•	2	5,0	2,5	0,4	0,4	WDX155D5S20 -	W1 RE2	W1 RE2	
052504 H	•	•		•		3	3,0	2,5	0,4		WDX180D5S25	L REZ	G RE2	
052504 M			•			4				1,0				
WDXT 063006 L	•	•		•		1						RE1	RE1	
063006 G	•	•		•	•	2	6,0	3,0	0,6	0,6	WDX185D5S25 –	_	_	
063006 H	•	•		•		3	0,0	3,0	0,0		WDX225D5S25	Geringer Vorschub/Spankontrolle	Allgemeine Anwendung	
063006 M			•			4				1,4		Abb. 3	Abb. 4	
WDXT 073506 L	•	•		•		1						Abb. 3	ADD. 4	
073506 G	•	•		•	•	2	7,5	3,5	0,6	0,6	WDX230D5S25 -	W1 RE2	W1 RE2	s.
073506 H	•	•		•		3	,,,	0,0	0,0		WDX280D5S32	In [/_	M RE2	
073506 M			•			4				1,6				
WDXT 094008 L	•	•		•		1						RE1	RE1	
094008 G	•	•		•	•	2	9,6	4,0	0,8	0,8	WDX290D5S32 -	REI	KEI	
094008 H	•	•		•		3	0,0	٦,٥	0,0		WDX360D5S40	Starke Schneidkante	Für Edelstahl	
094008 M			•			4				2,4				
WDXT 125012 L	•	•		•		1								
125012 G	•	•		•	•	2	12,4	5.0	1,2	1,2	WDX370D5S40 -			
125012 H	•	•		•		3	, .	5,5	-,_		WDX450D5S40			
125012 M			•			4				3,2				
WDXT 156012 L	•	•		•		1		l			WDX460D5S40 -			
156012 G	•	•		•	•	2	15,2	6,0	1,2	1,2	WDX550D5S40			
156012 H	•	•		•		3					57,00050040			

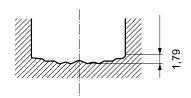
■ Empfohlene Schnittbedingungen (5D)

(min. - **optimal** - max.)


	Materialgruppe		е	3 te	pan- echer		Schnittgeschwin-		Vorschub	(mm/U)	
ISC	W	erkstot	ff	Härte (HB)	Spa	HM-Sorte	digkeit (m/min)	Ø 13,0–Ø 18,0	Ø 18,5–Ø 29,0	Ø 29,5– Ø 36,0	Ø 37,0–Ø 55,0
		St 42-3		125	G	ACP300	120 –180 –240	0,05 -0,06 -0,09	0,05 -0,06 -0,09	0,05 -0,06 -0,09	0,05 –0,07 –0,09
		C15		125	L	ACP300	130 –170 –220	0,04 –0,06 –0,08	0,04 -0,06 -0,08	0,04 -0,06 -0,08	0,05 –0,07 –0,09
	Kohlenstoff-	C45		190	G	ACP300	100 –150 –200	0,07 –0,10 –0,15	0,07 –0,10 –0,15	0,08 –0,11 –0,17	0,09 –0,12 –0,19
	stahl	C45	gehärtet	250	G	ACP100	100 –170 –240	0,04 –0,07 –0,08	0,04 –0,07 –0,08	0,05 –0,07 –0,09	0,05 –0,08 –0,11
		C75		270	G	ACP100	120 –180 –240	0,05 –0,08 –0,11	0,05 –0,08 –0,11	0,06 -0,08- 0,11	0,07 –0,09 –0,13
	C75 gehärtet		gehärtet	300	G	ACP100	80 –150 –210	0,04 –0,07 –0,08	0,04 –0,07 –0,08	0,05 –0,07 –0,09	0,05 –0,08 –0,10
P	Niedrig legierter Stah	Cr-Mo, N	Ni-Cr-Mo	180	L	ACP300	100– 140 –180	0,05 –0,06 –0,09	0,05 -0,06 -0,09	0,05 –0,06 –0,10	0,05 –0,07 –0,11
	Nicedate to structure	Cr.Ma		275	G	ACP100	100 –170 –240	0,04 –0,06 –0,09	0,04 -0,06 -0,09	0,04 -0,06 -0,09	0,05 –0,07 –0,10
	Niedrig legierter Stahl	Ni-Cr-Mo	gehärtet	300	G	ACP100	90 –150 –210	0,04 -0,06 -0,09	0,04 -0,06 -0,09	0,04 -0,06 -0,09	0,05 –0,07 –0,10
	Statil	INITOTINO		350	G	ACP100	75– 120 –165	0,04 –0,06 –0,09	0,04 -0,06 -0,09	0,04 -0,06 -0,09	0,05 –0,07 –0,10
	Hoch legierter			200	G	ACP100	120 –180 –240	0,05 –0,08 –0,12	0,06 -0,09 -0,12	0,06 –0,09 –0,13	0,07 –0,10 –0,14
	Stahl		gesintert	325	G	ACP100	100 –140 –180	0,04 –0,06 –0,09	0,04 -0,06 -0,09	0,04 -0,06 -0,09	0,04 –0,06 –0,09
	Rostfreier	martensi	tisch/ferritisch	200	М	ACM300	120 –150 –180	0,05 –0,08 –0,11	0,05 -0,08 -0,12	0,05 -0,08 -0,12	0,06 –0,09 –0,12
M	Stahl	martensi	tisch/gehärtet	240	M	ACM300	90 –120 –150	0,05 –0,08 –0,11	0,05 –0,08 –0,12	0,05 –0,08 –0,12	0,06 –0,09 –0,12
	Otani	austeniti	sch	180	М	ACM300	120 –150 –180	0,05 –0,08 –0,11	0,05 -0,08 -0,12	0,05 -0,08 -0,12	0,06 –0,09 –0,12
K	Guss (GG)				Н	ACK300	120 –160 –200	0,08 –0,15 –0,21	0,09 -0,17 -0,23	0,09 -0,18 -0,25	0,11 –0,20 –0,28
K	Kugelgraphitgu	uss (GG	G)		Н	ACK300	90 –120 –150	0,08 –0,15 –0,21	0,09 -0,17 -0,23	0,09 -0,18 -0,25	0,11 –0,20 –0,28
S	Hitzebeständig	je Legiei	rungen	200	G	ACP300	25 –50 –70	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 –0,09 –0,12	0,06 –0,10 –0,14
N	Aluminiumlegie	erungen			G	DL1500	200- 260 -320	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,06 –0,11 –0,16	0,06 –0,12 –0,18
IN	Kupferlegierungen			G	DL1500	180– 230 –280	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,06– 0,11 –0,16	0,06 –0,12 –0,18	

^{*}Bei den Sorten P und K, für die ACP300 und ACK300 die erste Empfehlung sind, gelten ACP100-Wendeplatten als zweite Empfehlung. In diesem Fall wird empfohlen, die Schnittgeschwindigkeit auf 130 % und den Vorschub auf 75 % der Werte in der obigen Tabelle einzustellen.

SumiDrill WDX-Typ

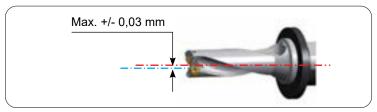

Profil der Bohrung

Bohrungsgrund nach dem Bohren mit WDX200D3S25

Bohrerdurchmesser DC (mm)	a (mm)
Ø 13,0– Ø 18,0	0,4
Ø 18,5– Ø 28,5	0,6
Ø 29,0– Ø 36,0	0,8
Ø 37,0– Ø 55,0	1,2
Ø 56,0– Ø 68,0	1,4

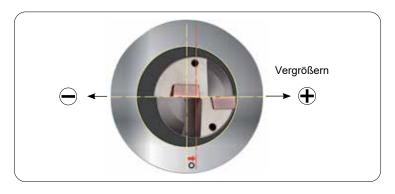
Bohrungsgrund nach dem Bohren mit konventionellem Werkzeug

Die Nachbearbeitung ist einfach, da der Bohrungsgrund fast eben ist.


■ Richtlinien für die Drehbearbeitung

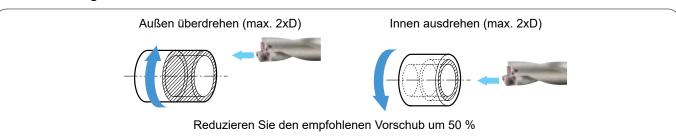
Justieranweisungen

Stellen Sie sicher, dass der Bohrerflansch spielfrei an der Werkzeugaufnahme anliegt.


Achsenversatz: Differenz zwischen Werkstückachse und der Y-Achse.

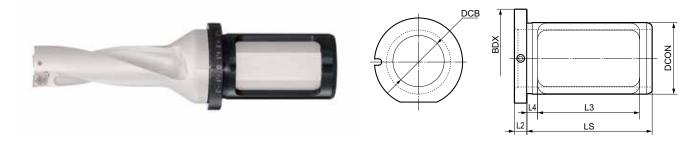
Justieren Sie die Werkzeugachse exakt zur Y-Achse der Maschinenspindel.

Bohren mit Achsenversatz


Entnehmen Sie die Maximalwerte des Achsenversatz der rechten Tabelle.

Bohrer	Max. Achsen- versatz (mm)	Bohrer	Max. Achsen- versatz (mm)
WDX130	0,35	WDX330	0,55
WDX135	0,30	WDX340	0,45
WDX140	0,25	WDX350	0,35
WDX145	0,20	WDX360	0,20
WDX150	0,15	WDX370	1,00
WDX155	0,40	WDX380	1,00
WDX160	0,40	WDX390	0,90
WDX165	0,35	WDX400	0,80
WDX170	0,30	WDX410	0,70
WDX175	0,25	WDX420	0,60
WDX180	0,20	WDX430	0,50
WDX185	0,50	WDX440	0,50
WDX190	0,45	WDX450	0,40
WDX195	0,40	WDX460	1,50
WDX200	0,30	WDX470	1,40
WDX205	0,30	WDX480	1,30
WDX210	0,20	WDX490	1,20
WDX215	0,15	WDX500	1,10
WDX220	0,10	WDX510	1,00
WDX225	0,05	WDX520	0,90
WDX230	0,70	WDX530	0,80
WDX235	0,70	WDX540	0,60
WDX240	0,60	WDX550	0,50
WDX245	0,50	WDX560	2,00
WDX250	0,50	WDX570	1,80
WDX255	0,45	WDX580	1,70
WDX260	0,40	WDX590	1,60
WDX265	0,35	WDX600	1,50
WDX270	0,25	WDX610	1,40
WDX275	0,20	WDX620	1,30
WDX280	0,15	WDX630	1,20
WDX285	0,10	WDX640	1,00
WDX290	1,00	WDX650	0,90
WDX295	0,95	WDX660	0,70
WDX300	0,90	WDX670	0,60
WDX310	0,80	WDX680	0,50
WDX320	0,70		
Empfehlung: Red	luzieren Sie der	empfohlenen Vor	schub um 30 %

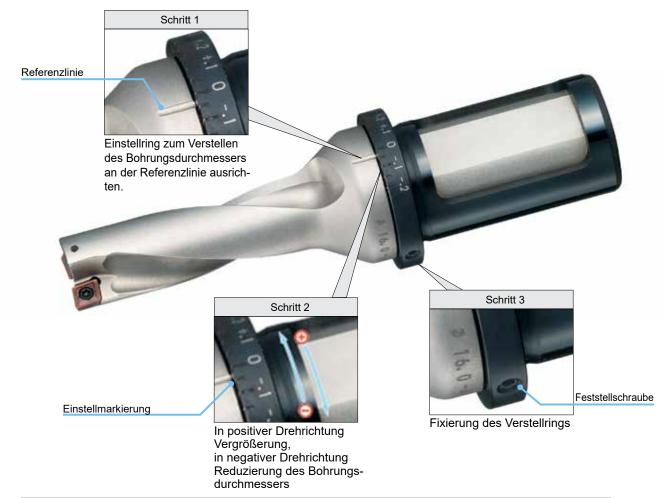
Empfehlung: Reduzieren Sie den empfohlenen Vorschub um 30 %.


■ Anwendung auf Drehmaschinen

SumiDrill WDX-Typ

Exzenter-Buchse WAS - Typ

Die Exzenter-Buchse WAS-Typ wurde exclusiv für den "SumiDrill" WDX-Typ konstruiert und ermöglicht einen Bohrungsdurchmesser von bis zu ±0,3mm.


■ Abmessungen

Ersatzteile

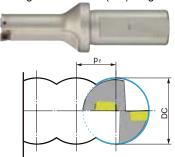
Abmessungen (mm)

Bezeichnung	Lager	DCB	DCON	BDX	LS	L2	L3	L4	Einstellwerte (max.)	Schraube	Schlüssel
WAS 2025-48	•	20	25	33	43	5	32	5	+0,30,2	BT306	LH015
WAS 2532-60	•	25	32	42	60	7	46	6	+0,30,3	BT406	LH020
WAS 3240-70	•	32	40	55	70	7	57	6	+0,30,3	BT408	LH020
WAS 4050-85	•	40	50	60	70	7	54	6	+0,50,5	BT408	LH020


■ Anwendung der Exzenter-Buchse

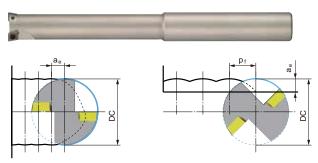
Bemerkung 1: Den Verstellring nur zum Justieren verwenden. Der Bohrungsdurchmesser sollte gemessen und nachgestellt werden. Bemerkung 2: Nur zur Nutzung mit Weldon/Whistle-Notch Aufnahmen. Nicht verwendbar mit Spannzangen.

Multi-Drills


PDL-Typ / PCT-Typ

Beschreibung

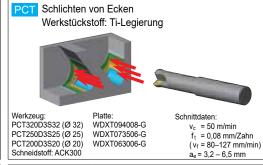
Das Werkzeug arbeitet in Spindelrichtung. Dabei sind die Schnittkräfte vorwiegend axial und die Stabilität des Werkzeugs ist in dieser Richtung am größten. Tauchfräsen ist eine gute Alternative, um Vibrationen zu vermeiden oder bei der Nutzung mit großen Auskraglängen.

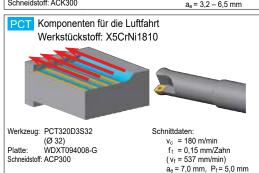

- Eigenschaften Eine 180° Schneidenausrichtung erzeugt ein fast ebenes Bodenprofil mit einer Ebenheit von < 0,1 mm.
 - Alle Werkzeuge verfügen über Innenkühlung, um eine sichere Spanabfuhr zu gewährleisten.
 - Ein hochwertiger Werkzeugstahl garantiert hohe Steifigkeit des Werkzeugs bei großen Auskraglängen. Die vernickelte Oberfläche bietet hohen Schutz gegen Verschleiß.
 - Beim PDL-Tauchbohrer und PCT-Tauchfräser werden die gleichen WSP wie im WDX-System verwendet. So kann auf eine Vielzahl an Spanbrechern und Sorten für die Bearbeitung fast aller Materialien zurückgegriffen werden.
 - Der PDL-Tauchbohrer verfügt wie ein Wendeschneidplattenbohrer über eine Zentrumsschneide. So können Bohrungen und Kavitäten mit einer Versatzrate (Pf) von maximal 70 % des Werkzeugdurchmessers (DC) hergestellt werden.

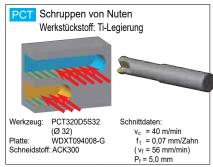
Für eine effektive Bearbeitung empfehlen wir einen Bohrungsversatz Pf von 70 % des Werkzeuadurchmessers.

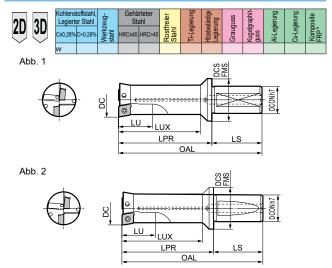
● Der PCT-Tauchfräser wurde für die Bearbeitung von Kavitäten bis 5xD mit hohen Vorschüben entwickelt. Er verfügt über zwei bzw. drei effektive Schneiden.

Der PCT Tauchfräser ist ein mehrschneidiges Werkzeug. Beachten Sie daher die Werte für "ae-max" und entnehmen Sie diese aus der Tabelle für die Werkzeugabmessungen.






Anwendungsbeispiele



Tauchbohrer mit WSP PDL-Typ (2D, 3)

Werkzeughalter (Arbeitstiefe: 2xD

Dozajahnung	ager		/		Geeignete	A L L					
Bezeichnung	Га́	DC	OAL	LU	LUX	LPR	LS	DCON	DCSFMS	Schneidplatte	Abb.
PDL 160D2S20	•	16,0	94	32	35	50	44	20	28	WDXT052504	
200D2S25	•	20,0	114	40	43	58	56	25	33	WDXT063006	1
250D2S25	•	25,0	127	50	53	71	56	25	37	WDXT073506	
PDL 320D2S40	•	32,0	162	64	68	92	70	40	54	WDXT094008	2
400D2S40	lacktriangle	40,0	185	80	85	115	70	40	54	WDXT125012	

■Werkzeughalter (Arbeitstiefe: 3xD)

Danisha	ager		-		Geeignete	A L L					
Bezeichnung	Ľa	DC	OAL	LU	LUX	LPR	LS	DCON	DCSFMS	Schneidplatte	Abb.
PDL 160D3S20	•	16,0	110	48	51	66	44	20	28	WDXT052504	
200D3S25	•	20,0	134	60	63	78	56	25	33	WDXT063006	1
250D3S25	•	25,0	152	75	78	96	56	25	37	WDXT073506	
PDL 320D3S40	•	32,0	194	96	100	124	70	40	54	WDXT094008	2
400D3S40	•	40,0	225	120	125	155	70	40	54	WDXT125012	

Ersatzteile

Schraube	Schlüssel	Schlüssel		
P			(N·m)	Geeignetes Werkzeug
BFTX0204N	TRX06	-	0,5	PDL 160 D2 S20, PDL 160 D3 S20 PCT 160 D3 S16, PCT 160 D5 S16
BFTY02206	_	TRD07	1,0	PDL 200 D2 S25, PDL 200 D3 S25 PCT 200 D3 S20, PCT 200 D5 S20
BFTX02506N	_	TRD08	1,5	PDL 250 D2 S25, PDL 250 D3 S25 PCT 250 D3 S25, PCT 250 D5 S25
BFTX03584	_	TRD15	3,5	PDL 320 D2 S40, PDL 320 D3 S40 PCT 320 D3 S32, PCT 320 D5 S32
BFTX0511N	_	TRD20	5,0	PDL 400 D2 S40, PDL 400 D3 S40 PCT 400 D3 S42, PCT 400 D5 S42

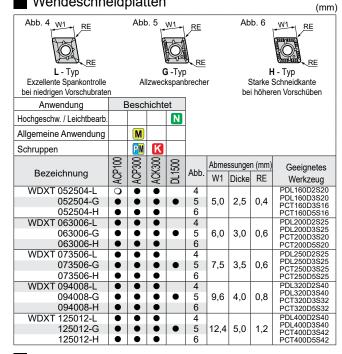
Hinweise zur Montage der Wendeschneidplatten



PDL-Typ: Die Wendeschneidplatten können entweder im Zentrum oder an der Außenseite verwendet werden. An den Außenseiten eingesetzte WSP können danach nicht mehr im Zentrum genutzt werden. Im Zentrum gebrauchte WSP können danach nicht mehr an der Außenseite verwendet werden.

PCT-Typ: 2 Schneiden können nur für die äußeren WSP verwendet werden.

Tauchfräser mit WSP **PCT**-Typ (3D, 5)


■ Werkzeughalter (Arbeitstiefe: 3xD)

Bezeichnung	ager		Abme	ssung	Zähne-	Geeignete	Abb.			
Bezeichhung	Ľa	DC	a _e max	OAL	LH	LS	DCON	zahl	Schneidplatte	AUU.
PCT 160D3S16	•	16,0	4,0	123	53	70	16	2	WDXT052504	
200D3S20	•	20,0	5,0	145	65	80	20	2	WDXT063006	
250D3S25	•	25,0	6,5	160	80	80	25	2	WDXT073506	3
320D3S32	•	32,0	8,5	191	101	90	32	2	WDXT094008	
400D3S42	•	40,0	11,0	225	125	100	42	3	WDXT125012	

■ Werkzeughalter (Arbeitstiefe: 5xD)

Bezeichnung	ager		Abme	ssung	jen (m	nm)		Zähne-	Geeignete	Abb.
Bezeichhung	Ľa	øD	a _e max	OAL	LH	LS	DCON	zahl	Schneidplatte	ADD.
PCT 160D5S16	•	16,0	4,0	155	85	70	16	2	WDXT052504	
200D5S20	•	20,0	5,0	185	105	80	20	2	WDXT063006	
250D5S25	•	25,0	6,5	210	130	80	25	2	WDXT073506	3
320D5S32	•	32,0	8,5	255	165	90	32	2	WDXT094008	
400D5S42	•	40,0	11,0	305	205	100	42	3	WDXT125012	

Wendeschneidplatten

Bezeichnungsschlüssel


Werkzeughalter:

PCT 250 D3 S25

Schneidplatte:

WDXT 07 35 06 -G
Plattenbreite (7,5) Dick x 10 | Spanbrechertyp (80,6) | Spanbrechertyp (80,6)

Empfohlende Schnittbedingungen PDL -Typ / PCT -Typ

■ Empfohlende Schnittbedingungen (2D)

	Emptoblende Schnitt	peain	gun	gen	(2D)			[n	nin optimal - max.]
	Materialgruppe	Härte	Sna	nbrecher	Schnittgeschwindigkeit	PDL-Typ: f (mm/U)			
ISO	Werkstoff	(HB)		M-Sorte	Vc (m/min)	Ø 16,0	Ø 20,0–25,0	Ø 32,0	Ø 40,0
		125	G	ACP300	120 –180 –240	0,05 –0,08 –0,10	0,05 –0,08 –0,10	0,05 –0,08 –0,11	0,05 –0,08 –0,12
		125	L	ACP300	130 –170 –220	0,04 –0,08 –0,12	0,04 –0,08 –0,12	0,04 –0,08 –0,13	0,05 –0,10 –0,15
	Kohlenstoffstahl	190	G	ACP300	100 –150 –200	0,08 –0,13 –0,24	0,08 –0,13 –0,24	0,08 –0,14 –0,26	0,09 –0,16 –0,29
	Konlenstonstani	250	G	ACP300	80 –120 –160	0,06 –0,11 –0,18	0,06 –0,11 –0,18	0,06 –0,12 –0,19	0,07 –0,13 –0,22
		270	G	ACP300	100 –130 –160	0,08 –0,13 –0,22	0,08 –0,13 –0,22	0,08 –0,14 –0,23	0,09 –0,16 –0,26
D		300	G	ACP300	70 –100 –140	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20
P		180	L	ACP300	100 –140 –180	0,05 –0,08 –0,14	0,05 –0,08 –0,14	0,05 –0,08 –0,16	0,06 –0,09 –0,17
	Niedrig legierter Stahl	275	G	ACP300	80 –120 –160	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20
	Meding legierter Starii	300	G	ACP300	75– 110 –140	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20
		350	G	ACP300	60 –85 –110	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20
	Hoch legierter Stahl	200	G	ACP300	100 –130 –160	0,08 –0,13 –0,24	0,08 –0,13 –0,24	0,08 –0,14 –0,26	0,09 –0,16 –0,29
	<u> </u>	325	G	ACP300	80 –100 –120	0,06 –0,11 –0,18	0,06 –0,11 –0,18	0,06 –0,12 –0,19	0,07 –0,13 –0,22
	martensitisch/ ferristisch	200	G	ACP300	100 –140 –180	0,06 –0,11 –0,18	0,06 –0,11 –0,18	0,06 –0,12 –0,19	0,07 –0,13 –0,22
М	Rostfreier martensitisch / temperiert	240	G	ACP300	90 –120 –150	0,06 –0,11 –0,18	0,06 –0,11 –0,18	0,06 –0,12 –0,19	0,07 –0,13 –0,22
IVI	Stahl, austenitisch / vergütet	180	G	ACP300	100 –140 –180	0,06 –0,08 –0,18	0,06 –0,11 –0,18	0,06 –0,12 –0,19	0,07 –0,13 –0,22
	austenitisch / ferristisch (Duplex)	230	G	ACP300	80 –120 –150	0,04 –0,08 –0,18	0,06 –0,11 –0,18	0,06 –0,12 –0,19	0,07 –0,13 –0,22
V	Guss (GG)	180	Н	ACK300	120 –160 –200	0,09 –0,20 –0,32	0,10 –0,22 –0,36	0,11 –0,24 –0,39	0,12 –0,26 –0,44
N	Kugelgraphitguss (GGG)	260	Н	ACP300	90 –120 –150	0,09 –0,20 –0,32	0,10 –0,22 –0,36	0,11 –0,24 –0,39	0,12 –0,26 –0,44
S	Hitze beständige Legierungen	200	G	ACP300	25 –50 –70	0,06 –0,11 –0,18	0,06 –0,11 –0,18	0,06 –0,12 –0,19	0,07 –0,13 –0,22
N	Aluminiumlegierungen		G	DL1500	200 –260 –320	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20
IA	Kupferlegierungen		G	DL1500	180 –230 –280	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20

Empfohlende Schnittbedingungen (3D)

	Emplomende Schnitt	beam	gui	igen ((30)			[n	nin optimal - max.]
	Materialgruppe	Härte	Sna	nbrecher	Schnittgeschwindigkeit	PDL-	Typ: f (mm/U) /	PCT-Typ: fz (mm/Z	ahn)
ISO	Werkstoff	(HB)		M-Sorte	Vc (m/min)	Ø 16,0	Ø 20,0–25,0	Ø 32,0	Ø 40,0
		125	G	ACP300	120 –180 –240	0,05 –0,07 –0,10	0,05 –0,07 –0,10	0,05 –0,08 –0,11	0,05 –0,08 –0,12
		125	L	ACP300	130– 170 –220	0,04 –0,07 –0,10	0,04 –0,07 –0,10	0,04 –0,08 –0,11	0,05 –0,09 –0,12
	Kohlenstoffstahl	190	G	ACP300	100 –150 –200	0,08 –0,12 –0,20	0,08 –0,12 –0,20	0,08 –0,13 –0,22	0,09 –0,14 –0,24
	Konienstonstani	250	G	ACP300	80– 120 –160	0,06 –0,10 –0,15	0,06 –0,10 –0,15	0,06 –0,11 –0,16	0,07 –0,12 –0,18
		270	G	ACP300	100 –130 –160	0,08 –0,12 –0,18	0,08 –0,12 –0,18	0,08 –0,13 –0,19	0,09 -0,14 -0,22
P		300	G	ACP300	70 –100 –140	0,06 –0,10 –0,14	0,06 –0,10 –0,14	0,06 –0,11 –0,15	0,07 –0,12 –0,17
		180	L	ACP300	100– 140 –180	0,05 –0,07 –0,12	0,05 –0,07 –0,12	0,05 –0,07 –0,13	0,06 –0,07 –0,15
	Niedrig legierter Stahl	275	G	ACP300	80 –120 –160	0,06 –0,10 –0,14	0,06 –0,10 –0,14	0,06 –0,11 –0,15	0,07 –0,12 –0,17
	Niedrig legierter Starii	300	G	ACP300	75– 110 –140	0,06 –0,10 –0,14	0,06 –0,10 –0,14	0,06 –0,11 –0,15	0,07 –0,12 –0,17
		350	G	ACP300	60 –85 –110	0,06 –0,10 –0,14	0,06 –0,10 –0,14	0,06- 0,11 -0,15	0,07 –0,12 –0,17
	Hoch legierter Stahl	200	G	ACP300	100 –130 –160	0,08 –0,12 –0,20	0,08 –0,12 –0,20	0,08 –0,13 –0,22	0,09 –0,14 –0,24
	, and the second	325	G	ACP300	80 –100 –120	0,06 –0,10 –0,15	0,06 –0,10 –0,15	0,06 –0,11 –0,16	0,07 –0,12 –0,18
	martensitisch/ ferristisch	200	G	ACP300	100– 140 –180	0,06 –0,10 –0,15	0,06 –0,10 –0,15	0,06 –0,11 –0,16	0,07 –0,12 –0,18
M	Rostfreier martensitisch / temperiert	240	G	ACP300	90 –120 –150	0,06 –0,10 –0,15	0,06 –0,10 –0,15	0,06- 0,11 -0,16	0,07 –0,12 –0,18
IVI	Stahl, austenitisch / vergütet	180	G	ACP300	100– 140 –180	0,06 –0,10 –0,15	0,06 –0,10 –0,15	0,06 –0,11 –0,16	0,07 –0,12 –0,18
	austenitisch / ferristisch (Duplex)	230	G	ACP300	80 –120 –150	0,04 –0,10 –0,15	0,06 –0,10 –0,15	0,06- 0,11 -0,16	0,07 –0,12 –0,18
K	Guss (GG)	180	Н	ACK300	120 –160 –200	0,09 –0,18 –0,27	0,10 –0,20 –0,30	0,11 –0,22 –0,32	0,12 -0,24 -0,36
K	Kugelgraphitguss (GGG)	260	Н	ACP300	90 –120 –150	0,09 –0,18 –0,27	0,10 –0,20 –0,30	0,11 –0,22 –0,32	0,12 -0,24 -0,36
S	Hitze beständige Legierungen	200	G	ACP300	25 –50 –70	0,06 –0,10 –0,15	0,06 –0,10 –0,15	0,06 –0,11 –0,16	0,07 –0,12 –0,18
N	Aluminiumlegierungen		G	DL1500	200 –260 –320	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20
14	Kupferlegierungen		G	DL1500	180 –230 –280	0,06 –0,11 –0,17	0,06 –0,11 –0,17	0,06 –0,12 –0,18	0,07 –0,13 –0,20


	Empfohlende Schnitt	bedin	gun	gen ((5D)					
	· · · · · · · · · · · · · · · · · · ·				,	[Hill: - Optimal - Hax.				
	Materialgruppe	Härte	Spa	nbrecher	Schnittgeschwindigkeit	PCT-Typ: f _z (mm/Zahn)				
ISO	Werkstoff	(HB)	н	M-Sorte	Vc (m/min)	Ø 16,0	Ø 20,0–25,0	Ø 32,0	Ø 40,0	
		125	G	ACP300	120 –180 –240	0,05 -0,06 -0,09	0,05 –0,06 –0,09	0,05 –0,06 –0,09	0,05 -0,07 -0,09	
		125	L	ACP300	130 –170 –220	0,04 -0,06 -0,08	0,04- 0,06 -0,08	0,04 -0,06 -0,08	0,05 -0,07 -0,09	
	K 11	190	G	ACP300	100 –150 –200	0,07 –0,10 –0,15	0,07 –0,10 –0,15	0,08 –0,11 –0,17	0,09 -0,12 -0,19	
	Kohlenstoffstahl	250	G	ACP300	80 –120 –160	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 -0,09 -0,12	0,06 –0,10 –0,14	
		270	G	ACP300	100 –130 –160	0,07 –0,10 –0,14	0,07 –0,10 –0,14	0,08 –0,11 –0,15	0,09 –0,12 –0,17	
Б		300	G	ACP300	70 –100 –140	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 -0,09 -0,12	0,06 –0,10 –0,13	
Р		180	L	ACP300	100 –140 –180	0,05 –0,06 –0,09	0,05 -0,06 -0,09	0,05 –0,06 –0,10	0,05 –0,07 –0,11	
	NE LE LE COLLE	275	G	ACP300	80 –120 –160	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 -0,09 -0,12	0,06 -0,10 -0,13	
	Niedrig legierter Stahl	300	G	ACP300	75– 110 –140	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 -0,09 -0,12	0,06 -0,10 -0,13	
		350	G	ACP300	60 –85 –110	0,05 –0,09 –0,11	0,05 -0,09 -0,11	0,06- 0,09 -0,12	0,06 -0,10 -0,13	
	IIb-Iit Ot-bI	200	G	ACP300	100 –130 –160	0,07 –0,10 –0,15	0,07 –0,10 –0,15	0,08 –0,11 –0,17	0,09 _0,12 _0,19	
	Hoch legierter Stahl	325	G	ACP300	80 –100 –120	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 -0,09 -0,12	0,06 -0,10 -0,14	
	martensitisch/ ferristisch	200	G	ACP300	100 –140 –180	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 -0,09 -0,12	0,06 –0,10 –0,14	
B.4	Rostfreier martensitisch / temperiert	240	G	ACP300	90 –120 –150	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 –0,09 –0,12	0,06 –0,10 –0,14	
M	Stahl, austenitisch / vergütet	180	G	ACP300	100 –140 –180	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 -0,09 -0,12	0,06 -0,10 -0,14	
	austenitisch / ferristisch (Duplex)	230	G	ACP300	80 –120 –150	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 –0,09 –0,12	0,06 –0,10 –0,14	
V	Guss (GG)	180	Н	ACK300	120 –160 –200	0,08 –0,15 –0,21	0,09- 0,17 -0,23	0,09 -0,18 -0,25	0,11 –0,20 –0,28	
N	Kugelgraphitguss (GGG)	260	Н	ACP300	90 –120 –150	0,08 –0,15 –0,21	0,09 -0,17 -0,23	0,09 -0,18 -0,25	0,11 -0,20 -0,28	
S	Hitze beständige Legierungen	200	G	ACP300	25 –50 –70	0,05 –0,09 –0,11	0,05 –0,09 –0,11	0,06 –0,09 –0,12	0,06 –0,10 –0,14	
NL	Aluminiumlegierungen		G	DL1500	200 –260 –320	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,06- 0,11 -0,16	0,06 –0,12 –0,18	
N	Kupferlegierungen		G	DL1500	180 –230 –280	0,05 –0,10 –0,15	0,05 –0,10 –0,15	0,06- 0,11 -0,16	0,06 –0,12 –0,18	

SUMIBORO

SUMIBORON SUMIDIA

L1-L32

SUMIBORON	SUMIBORON-Serie	L2
Hinweise für SUMIBORON-Schneidstoffe	Beschichtetes SUMIBORON	L3
	Schneidstoffeinsatz - Bearbeitung von gehärtetem Material	L4
	Schneidstoffeinsatz - Bearbeitung von Grauguss	L5
	Schneidstoffeinsatz - Bearb. von Sinterlegierungen/Titanlegierungen	L6
	Schneidstoffeinsatz - Bearb. von Walzen/Hart-/Hitzebeständigen Legierungen	L7
SUMIBORON-Schneidplatten	SUMIBORON Schneidkantenausführungen	L8
	SUMIBORON "Break Master" NFVTyp/NLVTyp/NSVTyp	L10
	SUMIBORON Einweg "Wiper" Schneidplatten WGTyp/WHTyp	L11
SUMIBORON-Schneidstoffe	SUMIBORON BN1000/BN2000	L12
	Beschichtetes SUMIBORON BNC2115/BNC2125/BNC2010/BNC2020	L14
	Beschichtetes SUMIBORON BNC300/SUMIBORON BN350	L17
	SUMIBORON BN7000/BN7115 Neu Beschichtetes SUMIBORON BNC8115/ SUMIBORON BNS8125	L18
	Beschichtetes SUMIBORON BNC8115 SUMIBORON BNS8125	L20
	Beschichtetes SUMIBORON BNC500	L22
SUMIBORON, binderlos	Binderloses SUMIBORON NCB100	L24
QUANTIA		1.00
SUMIDIA	Herstellungsprozess	L26
SUMIDIA-Schneidstoffe	Binderloses SUMIDIA NPD10/SUMIDIA DA90	L28
	SUMIDIA DA1000	L30
SUMIDIA-Schneidplatten	SUMIDIA NFTyp	L30
	SUMIDIA "Break Master" NLDTyp/NGDTyp	L31
	SUMIDIA "Break Master" L/R DM _{Typ}	L32

CBN-Schneidplatten SUMIBORON

Neue Generation der Sumitomo CBN Serie der beste Weg für die Bearbeitung von gehärtetem Stahl

■ Eigenschaften

Basierend auf dem weltweiten Erfolg bei der Hartbearbeitung mit Sumitomo Wendeschneidplatten, zeichnet sich die neue Generation von CBN-Substraten durch deutlich verbesserte Eigenschaften aus. Mit den Multi-Corner Einwegplatten haben Sie die Wirtschaftlichkeit im Griff.

Die neuen Sumitomo CBN Sorten bringen Ihre Hartbearbeitung auf den neuesten Stand.

Das gesinterte CBN-Werkzeug SUMIBORON wird aufgrund seiner geringen chemischen Reaktivität mit Kohlenstoff hauptsächlich für die Bearbeitung von Eisenmetallen eingesetzt. Es gibt 4 verschiedene Klassifizierungen von SUMIBORON:

■ Klassifizierungen / Anwendungen

lassifizierung nach Schneidstoffgruppen	Mikrostruktur	Schema	Sorte	Werkstückstoff	
			BN700	(FO) Sintered	
		and the second	BN7000	K (FC) Sintered S	
			BN7115	Sintered Alloy	
Diese Schneidstoffgruppe mit ei-	A HITALI		BN7500	Sintered Alloy	
em hohen CBN-Gehalt, bei dem	7 3 CA 7 TH	CBN - Korn	BNS8125 New	K (FC/FCD) S	
lie einzelnen Körner miteinander verbunden sind, eignet sich für die	CACHA Ser	Metallisches Bindemittel	BNS800	K (FC) S	
Bearbeitung von Werkstoffen mit einer großen Härte wie Gusseisen, uitzebeständigen Legierungen und Binterlegierungen.	是代象	Spezialbeschichtung aus Keramik	BNC8115 ^{Neg}	K (FC/FCD) S H	
		OBIT	BN1000		
Diese Schneidstoffe, bei denen die	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		BN2000	m	
CBN-Körner durch ein spezielles eramisches Bindemittel mit einer	1		BN350		
ehr hohen Bindekraft zusammen- lehalten werden, bietet eine her-	南下 公司的		BNX10	Œ	
orragende Verschleißfestigkeit und	見るみは		BNX20		
Zähigkeit bei der Bearbeitung von gehärtetem Stahl und Gusseisen.		CBN-Korn	BNX25		
chartetern otarn and Gasselson.	The same of the sa	Keramisches Bindemittel	BN500	K (FC/FCD)	
			BNC2115		
		Spezialbeschichtung aus Keramik	BNC2125 New		
SUMIBORON mit spezieller Keramik-			BNC2010		
peschichtung. Das CBN und die Beschichtung	10人以及美国的扩展的		BNC2020	m	
veisen die nötige Härte, Zähigkeit, Värmebeständigkeit und Oxidations-	The subsection		BNC300	H	
eständigkeit auf, die für eine hervor-	V 7 20		BNC100		
agende Zerspanungsleistung des Verkzeugs erforderlich sind.	D. A.		BNC160		
g		` CBN	BNC200		
			BNC500	K (FC)	
Binderloses CBN ist härter und hat eine bessere Wärmeleitfähigkeit als ierkömmliches CBN, dadurch werten eine höhere Effizienz und längese Standzeiten bei der Bearbeitung on schwer zerspanbaren Werkstofen, wie Titanlegierungen und Kotalt-Chrom-Legierungen, erreicht.		CBN-Partikel (ohne Bindemittel)	NCB100	K (FC) S Custo Bridge	

Beschichtetes SUMIBORON

Eigenschaften

Neue beschichtete SUMIBORON-Serie, erreicht

- höhere Geschwindigkeit
- höhere Effizienz und
- höhere Präzision

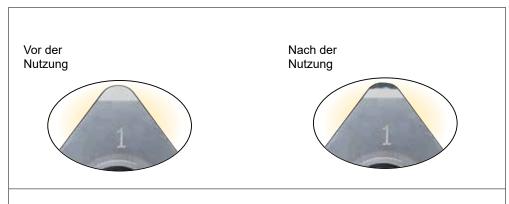
■ Allgemeine Eigenschaften

Durch Verwendung eines hochgradig hitzebeständigen und robusten CBN-Substrats in Verbindung mit einer speziellen Keramikbeschichtung bedient diese Serie eine breite Palette von Anwendungen und bietet im Vergleich zu herkömmlichem CBN höhere Präzision und längere Standzeiten.

Angeboten wird eine Vielzahl von wirtschaftlichen und anwenderfreundlichen Schneidplatten, beispielsweise die kosteneffizienten doppelseitigen, mehrschneidigen Schneidplatten zur einmaligen Verwendung.

Merkmale

Doppelseitige, mehrschneidige Schneidplatten zur einmaligen Verwendung


Kosteneffizienter als herkömmliche Schneidplatten zur einmaligen Verwendung.

Robuste Hartlötung Verwendung einer neuen Hartlötmethode mit besserer Haftung.

Spezielle Keramikbeschichtung und neu entwickeltes CBN-Substrat Bietet längere Standzeit.

■ Schneidkantenmanagement

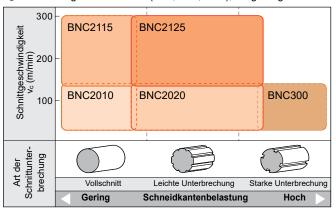
Die Kantennummern sind nach der Bearbeitung weiterhin sichtbar, wodurch sich das Management benutzter Schneidkanten vereinfacht.

Schneidstoffeinsatz

H Bearbeitung von gehärtetem Material

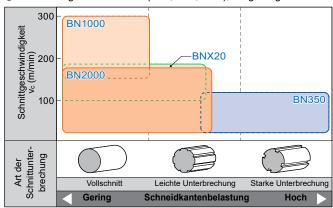
Vorteile bei der Bearbeitung mit CBN

In Zeiten wachsender Produktionskosten ist die Bearbeitung von gehärteten Bauteilen mit CBN zu einer wirtschaftlich unschlagbaren Alternative zum Schleifen geworden. Geringere Investitionskosten, mehr Flexibilität, vergleichbare Werkstückqualitäten gegenüber Schleifen, deutlich umweltfreundlicherer Bearbeitungsprozess sind die entscheidenden Vorteile für jeden Produktionsbetrieb.

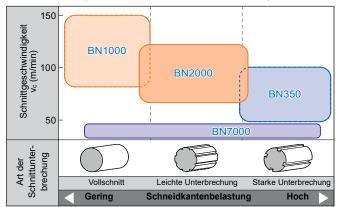

■ Empfohlene Schneidstoffe

	Sorte	Binde- mittel	CBN-Gehalt (%)	Korngröße (µm)	Härte HV (GPa)	TRS (GPa)	Hauptbestandteile der Beschichtung	Beschichtungs- dicke (µm)	Merkmale
	BNC2115	TiN	60–65	3	31–33	1,3–1,4	TiAlSiN Super Multi- lagenbeschichtung	3	Hervorragende Oberflächengüte durch eine Beschichtung mit hoher Kerbverschleißfestigkeit und zähem CBN-Substrat.
	BNC2125	TiN	65–70	4	33–35	1,5–1,6	TiAlSiN Super Multi- lagenbeschichtung	3	Die Kombination aus zähem CBN-Substrat und Beschichtung zeigt ausgezeichntete Ergebnisse bei der Hochpräzisionsbearbeitung.
	BNC2010	TiCN	50–55	2	30–32	1,1–1,2	TiCN Mehr- schichtig	2	Ideale Sorte für die Hochpräzisionsbearbeitung mit hochverschleißfestem, beschichteten CBN-Substrat.
tet	BNC2020	TiN	70–75	5	34–36	1,4–1,5	TiCN Mehr- schichtig	2	Ein zähes Substrat mit einer hochverschleißfesten und haftfesten Beschichtung gewährleistet lange Standzeiten bei der allgemeinen bis hocheffizienten Bearbeitung.
eschichtet	BNC300	TiN	60–65	1	33–35	1,5–1,6	TiAIN	1	Für eine breite Anwendung vom Vollschnitt bis zum stark unterbrochenen Schnitt.
Be	BNC100	TiN	40–45	1	29–32	1,0–1,1	TiAIN/TiCN	3	Durch hochverschleißfeste Beschichtung für den Einsatz im Hochgeschwindigkeitsbereich geeignet.
	BNC160	TiN	60–65	3	31–33	1,2–1,3	TiAIN/TiCN	3	Stabile, hochpräzise Oberflächenbearbeitung von gehärtetem Stahl.
	BNC200	TiN	65–70	4	33–35	1,4–1,5	TiAIN	3	Hohe Standzeit dank zähem Substrat und hochverschleißfester Beschichtung.
	BNC8115	Al-Le- gierung	85–90	8	39–42	0,95–1,15	TiAIN	2	Die PVD-Bechichtung, in Kombination mit der exzellenten Verschleißfestigkeit des Voll-CBN-Substrats, verhindert Freiflächenverschleiß bei der Schruppbearbeitung.
	BN1000	TiCN	40–45	1	27–31	0,9–1,0	_	ı	Höchste Verschleiß- und Bruchfestigkeit. Geeignet für die Hochgeschwindigkeitsbearbeitung.
ᇴ	BN2000	TiN	50–55	2	31–34	1,1–1,2	_	-	Allgemeine Sorte für die Bearbeitung von gehärtetem Stahl mit einer hohen Bruch- und Verschleißfestigkeit.
hichte	BNX20	TiN	55–60	3	31–33	1,0–1,1	_	-	Ausgezeichnete Kolkverschleißfestigkeit. Geeignet für hocheffiziente Zerspanung unter hohen Temperaturbedingungen.
Unbeschichtet	BN350	TiN	60–65	1	33–35	1,5–1,6	_	ı	Optimale Schneidkantenfestigkeit. Geeignet für den stark unterbrochenen Schnitt.
ı	BNX10	TiCN	40–45	3	27–31	0,9–1,0	-	-	Ausgezeichnete Verschleißfestigkeit.Geeignet für die Hochgeschwindigkeitsbearbeitung im Vollschnitt.
	BNX25				29–31	1,0–1,1	_	-	Hocheffizienter Schnitt bei großen Schnittliefen und Vorschüben. Exzellente Bruchzähigkeit im unterbrochenen Schnitt bei hoher Schnittgeschwindigkeit.

Anwendungsbereich


Beschichtetes SUMIBORON

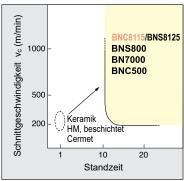
● Induktionsgehärteter Stahl (C45, C55, usw.), Vergütungsstahl



Unbeschichtetes SUMIBORON

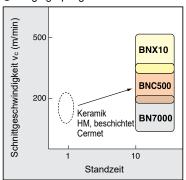
■ Induktionsgehärteter Stahl (C45, C55, usw.), Vergütungsstahl

Gesenkstahl (X155CrVMo12-1, X40CrVMo5-1, usw.), HSS

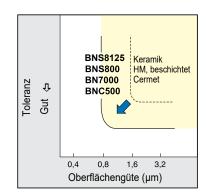

K Bearbeitung von Grauguss

■ Vorteile bei der Bearbeitung mit CBN

In den folgenden Diagrammen sind die Vorteile von CBN bei der Gussbearbeitung gegenüber herkömmlichen Schneidstoffen wie Hartmetall, Cermet oder Keramik dargestellt. Mit Sumitomo CBN erreichen Sie bei höheren Schnittgeschwindigkeiten deutlich längere Standzeiten, eine höhere Bearbeitungsgenauigkeit und Effiziens, sowie einen stabileren Prozess.


Hochgeschwindigkeitsbearbeitung

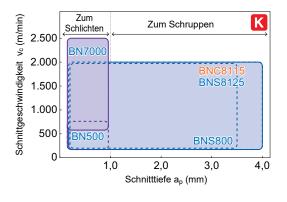
Grauguss



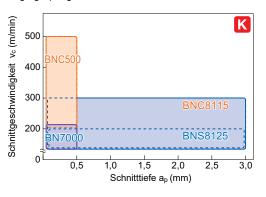
Hochgeschwindigkeitsbearbeitung

Kugelgraphitguss

Präzisionsbearbeitung



■ Empfohlene Schneidstoffe


	Sorte	Binde- mittel	CBN-Gehalt (%)	Korngröße (µm)	Härte HV (GPa)	TRS (GPa)	Hauptbestandteile der Beschichtung	Beschichtungs- dicke (µm)	Merkmale
Ţ	BNS8125	Al-Le- gierung	85–90	8	39–42	0,95–1,15	-	_	Das 100%ige Voll-CBN gewährleistet eine hervorragende Verschleiß- und Bruchfestigkeit.
chichtet	BNS800	Al-Le- gierung	85–90	8	39–42	0,9–1,1	-	-	Hoher CBN-Gehalt mit ausgezeichneter Thermoschockbeständigkeit.
Unbesc	BN7000	Co-Ver- bindung	90–95	2	41–44	1,8–1,9	_	-	Sorte mit hoher Verschleiß- und Bruchfestigkeit zum Schneiden von Gusseisen und exotischen Legierungen.
	BN500	TiC	65–70	6	32–34	1,0–1,1	-	-	Optimale Sorte für das Schneiden von Gusseisen. Bietet eine hervorragende Verschleiß- und Bruchfestigkeit.
Beschichtet	BNC8115	Al-Le- gierung	85–90	8	39–42	0,95–1,15	TiAIN	2	Die PVD-Bechichtung, in Kombination mit der exzellenten Verschleißfestigkeit des Voll-CBN-Substrats, verhindert Freiflächenverschleiß bei der Schruppbearbeitung.
Besch	BNC500	TiC	85–90	4	32–34	1,1–1,2	TiAIN	3	Dank des hochverschleißfesten Substrats und der Beschichtung für die Bearbeitung von schwer zerspanbarem Gusseisen einsetzbar.

Anwendungsbereich

Grauguss

Kugelgraphitguss

Special Cast Iron

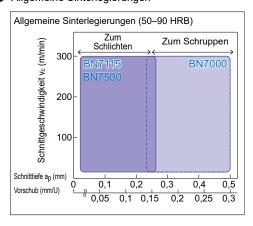
Werkstückstoff	Härte (HB)	Struktur des Werkstückstoffs	Anwendungs- beispiel	Schnittgeschwindigkeit v _c (m/min) 100 200 300 350 400 500			
Ni-resistentes Gusseisen	150–200	Austenit	Kolbenring	BNC500			
Cr-reiches Gusseisen	250–350	Austenit	Pumpenteil	BNS8125/BNS800			
FCV (CGI)	400–580	Perlit	Motorblöcke Zylinderköpfe Bremsscheiben	BNC500			

Sintered Alloy

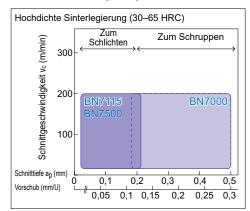
Bearbeitung von gesinterten Bauteilen

Vorteile

Mit SUMIBORON ist der Kantenverschleiß wesentlich geringer als mit Hartmetall oder Cermet. Es ist zudem verschleißfester und kann problemlos scharfe Kanten bearbeiten. Außerdem verhindert SUMIBORON das Entstehen von Graten und Ausbrüchen an den Werkstückkanten und erzielt so eine gute Bearbeitungspräzision und Oberflächengüte.


■ Empfohlene Schneidstoffe

	Sorte	Binde- mittel	CBN-Gehalt (%)	Korngröße (µm)	Härte HV (GPa)	TRS* (GPa)	Hauptbestandteile der Beschichtung	Beschichtungs- dicke (µm)	Merkmale
chtet	BN7115	Co-Verbin- dung	90–95	1	41–44	2,2–2,3	_	-	Sorte, die eine ausgewogene Balance zwischen extremer Kantenschärfe und Bruch- festigkeit aufweist und für die Feinbearbeitung von Sinterlegierungen geeignet ist.
eschic	BN7500	Co-Verbin- dung	90–95	1	41–44	2,0–2,1	-	-	Dieser Schneidstoff sorgt für eine gute Schneidkantenschärfe und eignet sich für die Bearbeitung von gesinterten Legierungen.
Onb	BN7000	Co-Verbin- dung	90–95	2	41–44	1,8–1,9	-		Sorte mit verbesserter Verschleiß- und Bruchfestigkeit beim Schruppen von gesinterten Werkstoffen.


^{*}Bruchfestigkeit, gemessen mit einem Prüfkörper, der der verwendeten CBN-Schneidplatte entspricht.

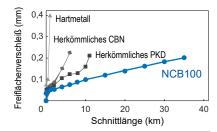
Anwendungsbereich

Allgemeine Sinterlegierungen

Hochdichte Sinterlegierung

S Zerspanung von Titanlegierungen

Vorteile


SUMIBORON ermöglicht die Hochgeschwindigkeitsbearbeitung von Titanlegierungen, die bisher mit herkömmlichen Werkzeugen nur schwer zu bearbeiten waren, und erzielt so eine deutlich höhere Bearbeitungseffizienz.

■ Empfohlene Schneidstoffe

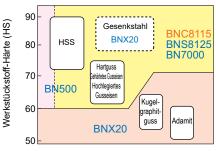
	Sorte	Binde- mittel	CBN-Gehalt (%)	Korngröße (µm)	Härte HV (GPa)	TRS* (GPa)	Hauptbestandteile der Beschichtung	Beschichtungs- dicke (µm)	Merkmale
Ν	ICB100	-	100	≤ 0,5	51–54	1,8–1,9	-	-	Optimal für die hocheffiziente Bearbeitung von Titanlegierungen.

^{*}Bruchfestigkeit, gemessen mit einem Prüfkörper, der der verwendeten CBN-Schneidplatte entspricht.

Leistung

■ Empfohlene Schnittbedingungen

Werkstückst	off		Empfohlene	Empfohlene Schnittbedingungen						
Zusammensetzung	Härte (HRC)	Sorte	Schnittgeschwindigkeit v _c (m/min) 50 100 150 200 250 300	Vorschub f (mm/U)	Schnitttiefe a _p (mm)					
Ti-6Al-4V	30–35	NCB100		0,05-0,15-0,20	0,10-0,30-0,50					
Ti-5Al-5V-5Mo-3Cr	32–38	NCB100	——	0,05-0,10-0,20	0,10-0,30-0,50					
Ti-10V-2Fe-3Al	32–38	NCB100	——	0,05-0,10-0,20	0,10-0,30-0,50					


Schneidstoffeinsatz

Walzen-Bearbeitung

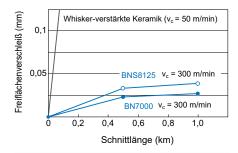
Vorteile

SUMIBORON erleichtert die Bearbeitung von hochfesten Walzen, die bisher mit konventionellen Werkzeugen schlecht zu bearbeiten waren, und steigert somit erheblich die Bearbeitungseffizienz.

■ Empfohlene Schneidstoffe

Schlichten bis Mittlere bis Schruppbearbeitung Walzgut (Beispiel für gewalzten Stabstahl)

■ Empfohlene Schnittbedingungen


Werksti	ückstoff	Empfohlene Schnittbedingungen									
Kennung	Härte (HS)	Schnittgeschwindigkeit v _c (m/min) 20 40 60 80 100 120 140	Vorschub f (mm/U)	Schnitttiefe a _p (mm)							
Adamit	≥ 40		0,1–0,5	0,2–3,0							
Gehärtetes Gusseisen	≥ 60		0,1–0,5	0,2–3,0							
Hochlegiertes Gusseisen	≥ 60		0,1–0,5	0,2–3,0							
HSS	≥ 70		0,1–0,4	0,1–3,0							

Bearbeitung von Hartlegierungen

Vorteile

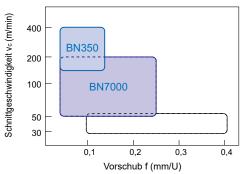
SUMIBORON ist für die Bearbeitung von hochfesten Legierungen geeignet, die bisher mit konventionellen Werkzeugen nur schwer zu bearbeiten waren, was die Produktivität der Bearbeitung drastisch erhöht. Die meist empfohlene Sorte ist BN7000, gefolgt von BNS8125.

Leistung

Werkstückstoff: Colmomoy No. 6 (Ni-Basislegierung, selbstfließend)
Schneidplatte: SNGN090308
Schnittdaten: f = 0,1 mm/U, a_P = 0,2 mm trocken

■ Empfohlene Schnittbedingungen

Werkst	ückstoff	Empfohlene Schnittbedingungen						
Kennung	Material	Schnittgeschwindigkeit v _c (m/min) 50 100 200 300				Vorschub f (mm/U)	Schnitttiefe a _p (mm)	
Ni-Basislegie- rung, selbst- fließend	Colmonoy No. 6			-	·	_	0,05–0,2	0,1–3,0
Co-Basis- legierung, selbstfließend	Stellit	ı		1			0,05–0,2	0,1–1,0


BN7000 ermöglicht lange Standzeiten und minimalen Verschleiß bei der Hochgeschwindigkeitsbearbeitung.

Zerspanung von hitzebeständigen Legierungen

Vorteile

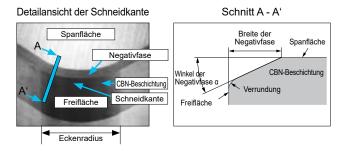
SUMIBORON gewährleistet lange Standzeiten bei der Bearbeitung von hitzebeständigen Legierungen.

Empfohlene Schneidstoffe

■ Empfohlene Schnittbedingungen

Werksti	ückstoff	Empfohlene Schnittbedingungen							
Kennung	Material	Schnittgeschwindigkeit v _c (m/min) 50 100 150 200	Vorschub f (mm/U)	Schnitttiefe a _p (mm)					
Ni-Basislegie- rung, hitzebe- ständig	Inconel 718	<u> </u>	0,05–0,2	0,1–1,0					
Co-Basis- legierung, hitzebeständig	Stellit	Ι	0,05–0,2	0,1–1,0					

Für das Schlichten von hitzebeständigem Stahl ist SUMIBORON am besten geeignet.


Schneidkantenausführung von SUMIBORON Wendeschneidplatten

Sumiboron Wendeschneidplatten und Schneidkantenausführungen

Alle SUMIBORON Wendeschneidplatten verfügen über eine optimierte Schneidkantenausführung für entsprechende Sorten und Geometrien (wie rechts abgebildet).

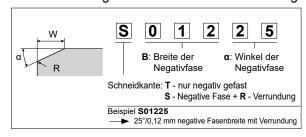
Dadurch werden Schneidkantenbrüche vermieden, die durch starke Belastungen während der Bearbeitung entstehen können (wie z.B. gehärtetem Stahl).

Als der Pionier bei CBN-Werkzeugen liegt unsere Stärke bei der Bearbeitung von gehärtetem Stahl in der vielfältigen Auswahl an "SUMIBORON"-Sorten und entsprechenden Schneidkantenausführungen.

■ Schneidkanten-Spezifikation von SUMIBORON Wendeschneidplatten

ri en	Werk-	Schneid-	Negativ /		Standa	ırd		Geringe S	chnittkraft Typ I	L / Hoch	effizient	er Typ E	5	Stabilisierte S	chneidl	kante H	
Ausfüh- rungen	stückstoff	stoff	Positiv	Identifizie- rungscode	α	W	Verrun- dung	Kennung	Identifizie- rungscode	α	W	Verrun- dung	Kennung	Identifizie- rungscode	α	W	Honen
		BNX10	Neg./Pos.	T01225	25°	0,12	nein	_	_	_	_	_	_	_	_	_	_
		BNX20	Neg./Pos.	S01225	25°	0,12	ja	LT	T01215*	15°	0,12	nein	_	_	_	_	_
	Gehärteter	BNX25	Neg./Pos.	S01725	25°	0,17	ja	_	_	_	_	_	_	_	_	_	_
z	Stahl	BN1000	Neg./Pos.	S01225	25°	0,12	ja	_	_	-	_	_	_	_	_	_	_
2	Otani	BN2000	Neg./Pos.	S01225	25°	0,12	ja	LT	T01215	15°	0,12	nein	HS	S01235	35°	0,12	ja
l Ö		BN350	Neg.	T01225	25°	0,12	nein					HT	HT	T01235	35°	0,12	nein
SUMIBORON		DIVOO	Pos.	T01235	35°	0,12	nein	_	_	_	_	_	-	-	_	_	_
S		BN700	Neg./Pos.	T01215	15°	0,12	nein	LF	(scharfkantig)	0°	0	nein	HS	S01225	25°	0,12	ja
	Guss	BN7000	Neg./Pos.	T01215	15°	0,12	nein	LF	(scharfkantig)	0°	0	nein	HS	S01225	25°	0,12	ja
hte	Guss						nein	LF	(scharfkantig)	0°	0	nein	HS	S00525	25°	0,05	ja
l i≓	Sinter- legierung	BN7115 Neg./Pos.	s. T01215	15°	0,12	ja	LE	(scharfkantig)	0°	0	ja	US	S01225	25°	0,12	ja	
Unbeschichtete							-	LS	S00715	15°	0,05	-	-	-	-	_	-
qu	Warmfeste Super- legierung						nein	LF	(scharfkantig)	0°	0	nein					
		BN7500	Neg./Pos.	T01215	15°	0,12	ja	LE	(scharfkantig)	0°	0	ja	HS	S00525	25°	0,05	ja
							ja	LS	S00715	15°	0,07	ja					-
		BNS8125	Neg.	T02020	20°	0,20	_	_	_	-	_	_	_	_	_	_	-
		BNS800	Neg.	T02020	20°	0,20	nein	LF	(scharfkantig)	0°	0	nein	_	_	_	_	_
		BNC2115	Neg./Pos.	S01225	25°	0,12	ja	LS	S00515	15°	0,05	ja	HS	S01730	30°	0,17	ja
SUMIBORON		BNC2125	Neg./Pos.	S01225	25°	0,12	ja	LS	S00515	15°	0,05	ja	HS	S02735	35°	0,27	ja
N. N.		BNC2010	Neg./Pos.	S01225	25°	0,12	ja	LE	(scharfkantig)	0°	0	ja	HS	S01730	30°	0,17	ja
Iĕ	0-1-2-4-4	BNC2020	Neg /Dec	C04225	25°	0,12	io	LT	T00515	15°	0,05	nein	нѕ	S02735	35°	0.07	i.
≥	Gehärteter Stahl	BNC2020	Neg./Pos.	S01225	25	0,12	ja j	ES	S00535	35°	0,05	ja	нъ	502735	35	0,27	ja
	Starii	BNC100	Neg./Pos.	S01225	25°	0,12	ja	LS	S01715	15°	0,17	ja	_	_	_	_	_
ete		BNC160	Neg./Pos.	S01225	25°	0,12	ja	LS	S01020	20°	0,10	ja	HS	S01730	30°	0,17	ja
- St		BNC200	Neg./Pos.	S01225	25°	0,12	ja	LS	S01015	15°	0,10	ja	HS	S01735	35°	0,17	ja
Beschichtetes		BNC300	Neg./Pos.	S01225	25°	0,12	ja	LS	S00515	15°	0,05	ja	HS	S01735	35°	0,17	ja
Bes	Guss	BNC500	Neg./Pos.	S01215	15°	0,12	ja	_	_	_	_	_	HS	S01225	25°	0,12	ja
	Guss, gehärteter Stahl	BNC8115	Neg.	S02020	20°	0,20	ja	_	-	-	-	_	_	-	-	-	_
Binderlo- ses CBN	Guss, Warmfeste Leg., Hartmetall, Cermet	NCB100	Neg./Pos.	T01215	15°	0,12	nein	-	-	-	-	-	-	-	-	-	_

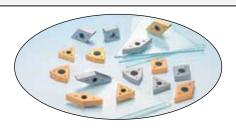
 $^{^\}star$ Der BNX20 Identifizierungscode ist T00715 für Schneidplatten mit Inkreis IC \leq Ø 4,76.


Schneidkantenausführung der Schneidplatten mit "Wiper" / Spanbrecher

Тур	Kennung					Unbeschichtetes SUMIBORON			Beschichtetes SUMIBORON								
		Identifizie- rungscode	α	W		BN2000	BNS8125	BNS800	BNC2115	BNC2125	BNC2010	BNC2020	BNC100	BNC160	BNC200	BNC500	BNC8115
	WG	S01215	15°	0,12	ja	•			•	•	•	•		•	•		
	WH	S01215	15°	0,12	ja	•			•	•	•	•		•	•		
Wiper	w	S01215	15°	0,12	ja									•	•	•	
vvipei		S01715	15°	0,17	ja								•				
		S02020	20°	0,20	ja												•
		T02020	20°	0,20	nein		•	•									
Wiper scharfkantig	LFW	scharfkantig	0°	0	nein			•									
	N-FV	-	0°	0	ja	•			•	•	•	•		•	•		
Mit Spanbrecher	N-LV	S00535	35°	0,05	ja	•			•	•	•	•		•	•		
	N-SV	S01235	35°	0,12	ja				•	•	•	•		•	•		

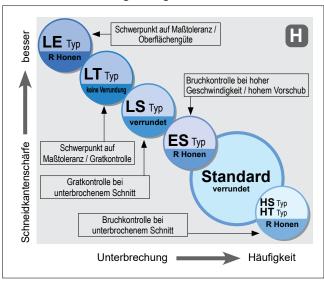
■ Identifizierungscode der Schneidkantenspezifikation

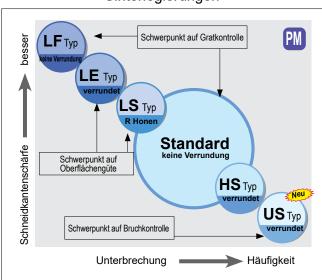
	Bezeichnung der Schneidkantenausführung										
Kennung.	Standard-Typ										
L	niedrige Schnittkräfte		F	scharfkantig							
		+	Е	nur verrundet							
E	hohe Effizienz		Т	nur negativ gefast							
Н	stabilisierte Schneide		S	negativ gefast + verrundet							
WG / WH / W	"Wiper"										
N-FV / N-LV N-SV	mit Spanbrecher										


■ Identifizierungscode der Schneidenausführung

SUMIBORON Auswahl der CBN-Platten

Große Auswahl für verbesserte Leistungen durch verschiedene Schneidkantenausführungen


Mehrschneidige Einwegplatten


- Eigenschaften
- Wendeschneidplatten mit mehreren eingelöteten Einwegschneiden bieten Kostenvorteile gegenüber einschneidigen Wendeschneidplatten.
- Beschichtetes SumiBoron ist auch als doppelseitige Wendeschneidplatte verfügbar. Bei rhombischen sowie vier- und dreieckigen Formen stehen bis zu sechs Schneidecken zur Verfügung.
- Aufgrund der geschliffenen Seitenflächen entsprechen die mehrschneidigen Einweg-Wendeschneidplatten der G-Toleranz. Zusätzlich erleichtert die Nummerierung der Schneiden die Handhabung für den Anwender.

Schneidkantenausführungen

Bearbeitung von gehärtetem Stahl

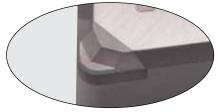
Sinterlegierungen

Einweg-Wiper Schneidplatte

■ Eigenschaften

Zwei Wipertypen einsetzbar:

WG-Typ

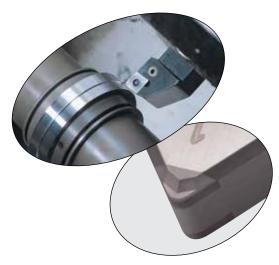

⇒ für geringe Vorschübe

WH-Typ

⇒ für hohe Vorschübe

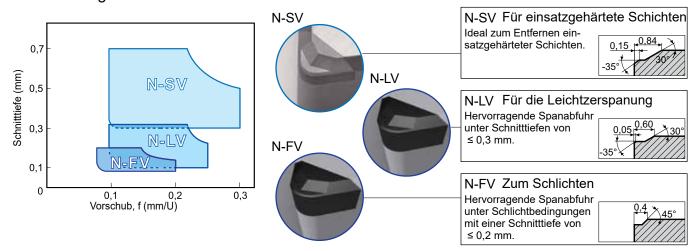
- SumiBoron mit "Wiper" Einwegschneide für die Zerspanung gehärteter Stähle
- Exzellente Oberflächenqualität, vergleichbar mit Schleifqualität
- Diese mehrschneidigen Wendeschneidplatten haben geschliffene Seitenflächen und werden in einer G-Toleranz gefertigt. Zusätzlich bietet die Nummerierung der Schneiden eine bessere Orientierung und Handhabung für den Anwender.

Break Master N - FV, N - LV, N - SV

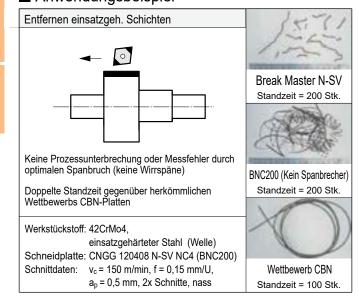


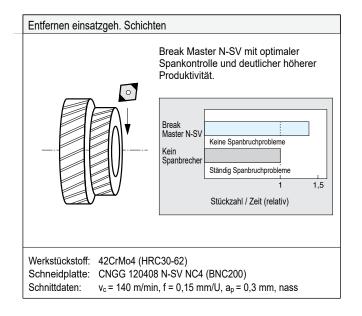
"Break Master" mit "NSV"- Typ Spanbrecher

■ Eigenschaften


- Der N-SV-Typ eignet sich hervorragend zur Entfernung einsatzgehärteter Schichten, während die N-FV- / N-LV-Typen am besten zum Schlichten von gehärtetem Stahl geeignet sind.
- Weltweit erste CBN-Schneidplatten mit Spanbrecher.
- Speziell für die Entfernung einsatzgehärteter Schichten.
- Der Spanbrecher ist in der CBN Schneide integriert, sodass durchweg eine gute Spankontrolle erreicht wird. Die spezielle Spanbrechergeometrie bietet eine gute Spankontrolle, insbesondere in gehärteten Werkstücken bis in die weicheren Schichten hinein.

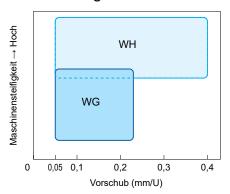
SUMIBORON Break Master N-FV /N-LV /N-SV




- Eigenschaften
- SUMIBORON mit Spanbrecher
- direkt auf den CBN-Blank gesinterter Spanbrecher
- optimale Spankontrolle bei der Bearbeitung gehärteter Teile bis in weiche Schichten hinein
- NSV-Spanbrecher ideal zum Entfernen einsatzgehärteter Schichten
- NFV/NLV-Spanbrecher bestens geeignet zum Schlichten von gehärtetem Stahl

■ Anwendungsbereich

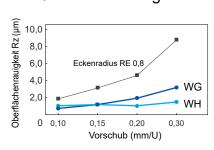
Anwendungsbeispiel


■ Eigenschaften

- SUMIBORON Einwegplatten mit Wiper Schneide für gehärteten Stahl
- ausgezeichnete Oberflächengüten, vergleichbar mit Schleifqualität
- höhere Produktivität durch höhere Schnittbedingungen
- zwei Wipertypen einsetzbar:

WG-Typ ⇒ für geringe Vorschübe **WH-**Typ ⇒ für hohe Vorschübe

Anwendungsbereich

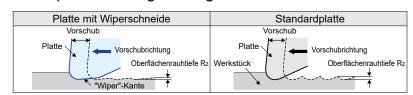

WH-Typ:

→ für hochstabile Anwendungen

WG-Typ

→ bei Welligkeit oder Vibrationsneigung

■ Oberflächenrauigkeit



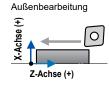
Der Wiperschneide gewährleistet eine ausgezeichnete Oberflächengüte und eine höhere Produktivität bei der Bearbeitung.

Werkstückstoff: 15CrMo5 (60 HRC) Schneidplatte: CNGA120408NC4

Schnittdaten: v_c = 135 m/min, a_p = 0,1 mm, trocken

■ "Wiper"- Leistung im Vergleich

■ Werkzeugkorrektur der WG / WH - Wiperplatten


CNGA / CCGW / WNGA - Wiperplatten

- 1. Halter mit 95° Anstellwinkel verwenden.
- 2. Werkzeugkompensation notwendig.

CNGA / CCGW / WNGA Wiperplatten erfüllen nicht den ISO-Standard. Bitte die Position der Schneidkante entsprechend den Vorgaben korrigieren.

Schneidkantenkompensation, Außenbearbeitung

Eckenradius	Wiper	X-Richtung	Z-Richtung		
RE 0,4	WG	-0,02	-0,02		
KE 0,4	WH	-0,06	-0,06		
DE 0.0/4.0	WG	-0,01	-0,01		
RE 0,8/1,2	WH	-0,06	-0,06		

DNGA / DCGW - Wiperplatten

- 1. Halter mit 93° Anstellwinkel verwenden.
- 2. Werkzeugkompensation notwendig.

DNGA/DCGW Wiperplatten entsprechen nicht dem ISO-Standard. Bitte die Position der Schneidkante gemäß den Vorgaben korrigieren.

DNGA/DCGW Wiperplatten können nur für die Innenund Außenbearbeitung eingesetzt werden. Kein Wipereffekt bei der Planbearbeitung.

Schneidkantenkompensation, Außenbearbeitung

Eckenradius	Wiper	X-Richtung	Z-Richtung	
RE 0,4	WG	-0,17	-0,01	
NE 0,4	WH	-0,70	-0,06	
RE 0,8	WG	-0,05	0	
KE U,0	WH	-0,58	-0,05	

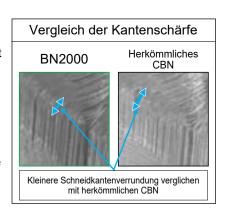
BN1000/BN2000

Unbeschichtete CBN Sorte für das Hartdrehen

■ Eigenschaften

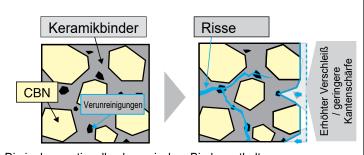
Unbeschichtetes CBN - Substrat mit neu entwickeltem keramischem Binder mit sehr hohem Reinheitsgehalt. Stabile Standzeiten sind durch die hohe Bruchzähigkeit und Verschleißfestigkeit in einem breiten Bearbeitungsbereich von gehärteten Stählen erzielbar.

Verfügbar als einschneidige und mehrschneidige Platte.

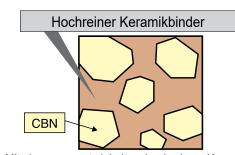

■ Vorzüge

BN1000

- Überragende Qualität mit höchster Verschleißfestigkeit der unbeschichteten CBN-Sorten für die Hochgeschwindigkeitsbearbeitung Exzellente Standzeiten im kontinuierlichen und leicht unterbrochenen Schnitt
- Verbesserte Bruchfestigkeit bei erhöhter Verschleißfestigkeit
- Der hochreine TiCN-Keramikbinder bietet eine höhere Härte und Hitzebeständigkeit.

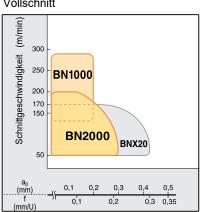

● BN2000

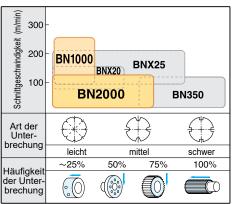
- Mehrbereichs-CBN-Substrat zur Bearbeitung von gehärtetem Stahl Stabile Standzeiten im Vollschnitt und bei leichten bis mittleren Schnittgeschwindigkeiten
- Perfekte Balance zwischen Verschleiß- und Bruchfestigkeit Bedeutende Verbesserung dieser Balance durch neu entwickelten Keramikbinder
- Konstant gute Oberflächengüte durch scharfe Schneide (Fig. rechts)


■ Neu entwickelter hochreiner Keramikbinder

Konventionelle Sorte

Die im konventionellen keramischen Binder enthaltenen Verunreinigungen verursachen eine Schwächung des gesinterten Körpers und eine Reduzierung der Hitzebeständigkeit. Daraus resultieren Risse, Ausbrüche und Verschleiß.


BN1000/BN2000

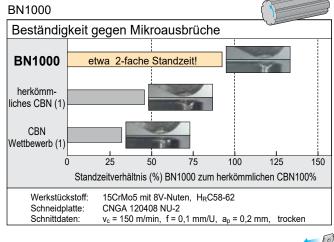

Mit dem neu entwickelten hochreinen Keramikbinder und den stark verringerten Verunreinigungen erzielt BN1000/BN2000 eine größere Härte und eine verbesserte Hitzebeständigkeit!

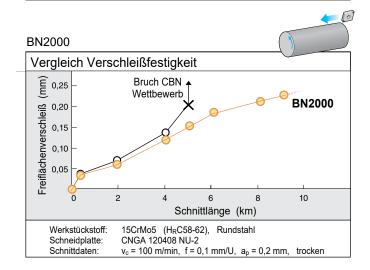
■ Empfohlene Anwendungsbereiche

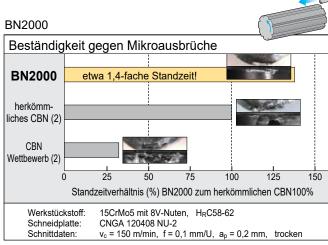
Vollschnitt

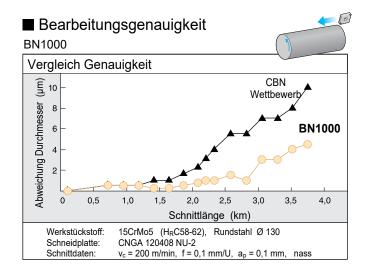
Unterbrochener Schnitt

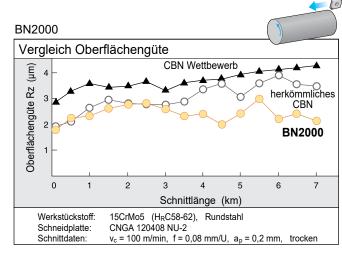
Schnittbedingungen


BN1000


	Vc	(m/mii	f	a _p		
100	150	200	250	300	(mm/U)	(mm)
120			•			
 					0,03-0,15	0,03-0,2


BN2000


	Vc	(m/mir	f	ap		
50	100	150	200	250	(mm/U)	(mm)
\vdash	80 120)			0,03-0,2	0,0-0,3


* Kühlung ... Vollschnitt: Unterbr. Schnitt: trocken oder nass trocken

H

BNC2115/BNC2125/BNC2010/BNC2020

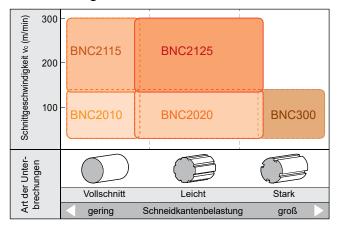
Allgemeine Eigenschaften

Die Sorten BNC2115/BNC2125 ergänzen unsere Serie "Beschichtete SUMIBORON" und sind unsere erste Empfehlung für die Bearbeitung von gehärtetem Stahl für eine hochpräzise und hocheffiziente Zerspanung. In Kombination mit den Sorten BNC2010/BNC2020, die sich durch eine stabile Standzeit auszeichnen, ermöglichen sie eine höhere Produktivität bei der Hartbearbeitung unterschiedlichster Stähle.

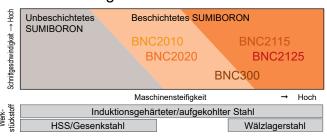
Merkmale

- Die beste Sorte f
 ür die Hochpräzisionsbearbeitung Erzielt hohe Standzeiten bei hervorragender Oberflächengüte und stabiler Bearbeitung.
- Ausgezeichnete Oberflächengüte Hervorragende Oberflächengüte durch eine Beschichtung mit hoher Kerbverschleißfestigkeit und zähem CBN-Substrat.

- Erste Empfehlung für die Bearbeitung von gehärtetem Stahl Hervorragende Verschleiß- und Bruchsicherheit.
- Lange, stabile Standzeiten auch bei hocheffizienter und unterbrochener Bearbeitung Die Kombination aus zähem CBN-Substrat und Beschichtung zeigt ausgezeichntete Ergebnisse bei der Hochpräzisionsbearbeitung.



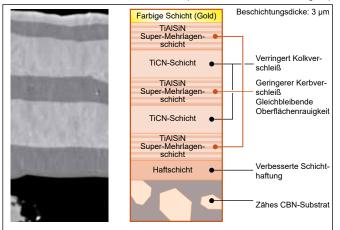
 Sorte für hochpräzise Bearbeitung mit hervorragender Oberflächenrauigkeit und Oberflächengüte Ideale Sorte für die Hochpräzisionsbearbeitung mit hochverschleißfestem, beschichteten CBN-Substrat.



 Allgemeine Sorte, geeignet für normale Anwendungen bei der Bearbeitung von gehärtetem Stahl Erhöht die Stabilität bei der Bearbeitung eines breiten Spektrums von gehärteten Stahlteilen.

Anwendungsbereich

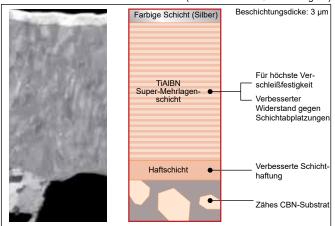
Differenzierung


SUMIBORON

BNC2115/BNC2125/BNC2010/BNC2020

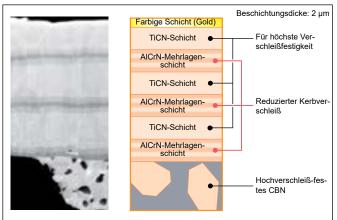
■ CBN-Substrat und Beschichtungsstruktur

BNC2115


Hochpräzisionsbearbeitung (mittlere bis hohe Geschwindigkeit)

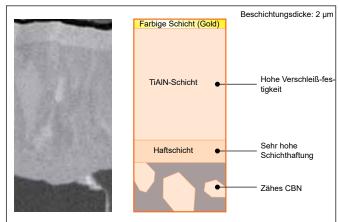
Zähes Substart beschichtet mit einer hochharten TiAlSiN-Mehrlagenschicht und einer hochhitzebeständigen TiCN-Schicht für ausgezeichnete Oberflächengüten.

BNC2125


Allgemeine Bearbeitung (mittlere bis hohe Geschwindigkeit)

Zähes Substrat mit einer TiAlBN-Mehrlagenschicht mit hoher Festigkeit und hoher Härte für einen weiten Anwendungbereich.

BNC2010

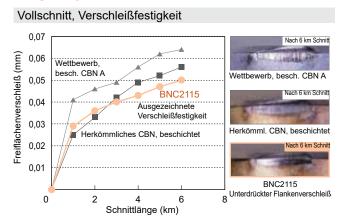

Hochpräzisionsbearbeitung (niedrige bis mittlere Geschwindigkeit)

Verschleißfestes Substrat mit einer hochfesten AlCrN-Mehrlagenschicht und einer hochhitzebeständigen TiCN-Beschichtung für ausgezeichnete Oberflächenqualitäten.

BNC2020

Allgemeine Bearbeitung (niedrige bis mittlere Geschwindigkeit, instabiler Schnitt)

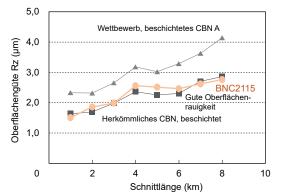
Zähes Substrat mit einer hochverschleißfesten TIAIN-Beschichtung für den Einsatz bei instabilen Bedingungen und hohen Belastungen.


■ Empfohlene Schnittbedingungen

Sorte	Schnittgeschwindigkeit vc (m/min) Min Optimum -Max.	, ,	
BNC2115	110 –180 –300	0,03 –0,10 –0,20	0,03 –0,20 –0,35
BNC2125	110 –160 –300	0,05 –0,20 –0,40	0,05 –0,30 –0,50
BNC2010	50 –140 –180	0,03 –0,10 –0,20	0,03 –0,20 –0,35
BNC2020	50 –120 –180	0,03 –0,20 –0,40	0,05 –0,30 –0,50
BNC300	50 –100 –150	0,03 –0,10 –0,20	0,03 –0,20 –0,30

BNC2115/BNC2125/BNC2010/BNC2020

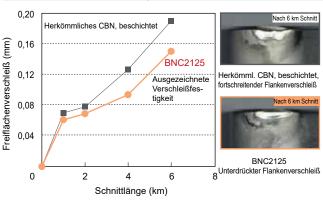
Zerspanleistung


BNC2115

16CrMo4 (58-62 HRC) Werkstückstoff: DNGA150408NC4 Schneidplatte:

Schnittdaten: $v_c = 200 \text{ m/min}, f = 0.1 \text{ mm/U}, a_p = 0.15 \text{ mm}, \text{ nass}$

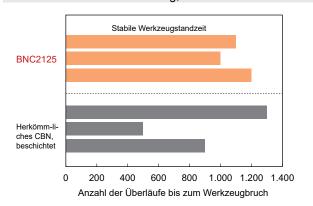
Vollschnitt, bearbeitete Oberflächengüte



Werkstückstoff: 16CrMo4 (58-62 HRC) DNGA150408NC4 Schneidplatte:

 v_c = 200 m/min, f = 0,1 mm/U, a_P = 0,15 mm, nass Schnittdaten:

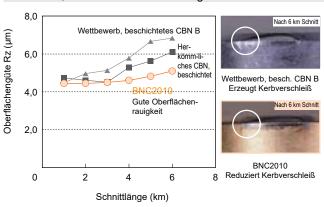
BNC2125


Vollschnitt, Verschleißfestigkeit

100Cr6 (58-62 HRC) Werkstückstoff: DNGA150408NC4 Schneidplatte:

Schnittdaten: $v_c = 150 \text{ m/min}, f = 0.1 \text{ mm/U}, a_p = 0.2 \text{ mm}, \text{ nass}$

Starke Schneidkantenbelastung, Bruchsicherheit

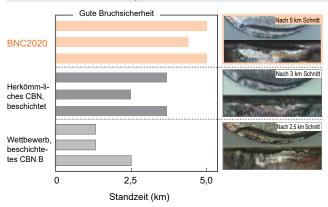


Werkstückstoff: 100Cr6 (58-62 HRC) DNGA150408NC4 Schneidplatte:

Schnittdaten: $v_c = 150 \text{ m/min}, f = 0.15 \text{ mm/U}, a_p = 0.5 \text{ mm}, 63 \text{ m/Überlauf}, nass$

BNC2010

Vollschnitt, bearbeitete Oberflächengüte



Werkstückstoff: 16CrMo4 (58-62 HRC) Schneidplatte: DNGA150408NC4

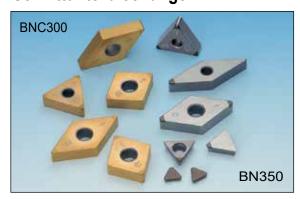
Schnittdaten: $v_c = 120 \text{ m/min}, f = 0.14 \text{ mm/U}, a_p = 0.15 \text{mm}, \text{ nass}$

BNC2020

Unterbrochener Schnitt, Bruchsicherheit

Werkstückstoff: 16CrMo4 mit 5 Nuten (58-62 HRC)

DNGA1204012NC4


Schneidplatte: v_c = 130 m/min, f = 0,1 mm/U, a_p = 0,6 mm, trocken Schnittdaten:

SUMIBORON

BNC300 / BN350

Die ultimativen Sorten BNC300 und BN350 zur Bearbeitung von gehärtetem Stahl mit Schnittunterbrechungen

■ Allgemeine Eigenschaften

BNC300

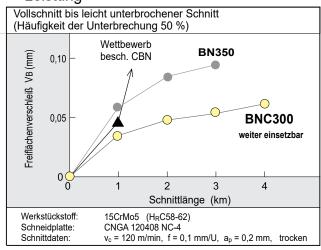
Neu entwickeltes CBN-Substrat mit erhöhter Zähigkeit in Verbindung mit einer extrem verschleißfesten Beschichtung auf TiAIN-Basis mit verbesserter Haftfestigkeit. Durch einen guten Kompromiss aus Bruch- und Verschleißbeständigkeit kann eine längere Standzeit im unterbrochenen Schnittbetrieb oder bei einer Mischung aus ununterbrochenem und unterbrochenem Schneiden erzielt werden.

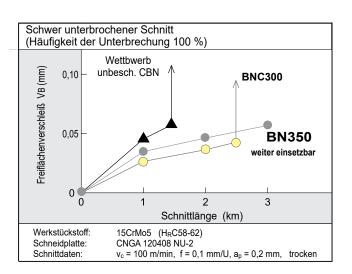
BN350

SUMIBORON-Serie mit höchster Bruchbeständigkeit und zähestem CBN. Zuverlässiger Schneidstoff für stabile Standzeiten bei stark unterbrochenen Schnittbedingungen.

■ Eigenschaften

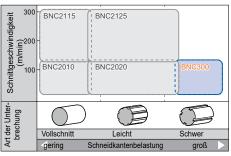
BNC300 ● Stabile Standzeiten

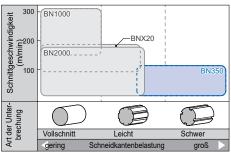

Zähes CBN Substrat und eine verschleißfeste Beschichtung für hohe Standzeiten bei stark unterbrochenen Schnitten.


 Exzellente Bearbeitungsgenauigkeit!
 Die optimierte Beschichtung schützt die Schneidkante vor Beschädigung und ermöglicht somit eine stabile Bearbeitungsgenauigkeit und Oberflächengüte.

Erweiterter Anwendungsbereich!
 BNC300 für eine breite Anwendung vom Vollschnitt bis stark unterbrochenem Schnitt.

BN350 • Stabile und lange Standzeiten bei unterbrochenen Schnitten
Hervorragende Bruchbeständigkeit, daher keine Schneidkantenausbrüche wie sie sonst oft bei unterbrochenen Schnitten
vorkommen

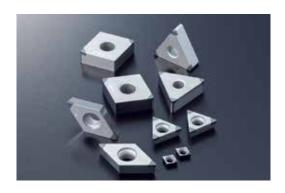

Leistung



■ Empfohlene Anwendungsbereiche

Beschichtetes SUMIBORON

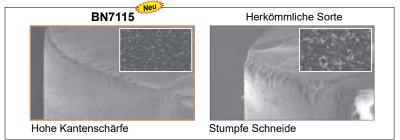
Unbeschichtete SUMIBORON



■ Empfohlene Schnittbedingungen (BNC300, BN350)

50	v _c (m)	/min) 150	200	f (mm/U)	a _p (mm)
\vdash	80 120	\dashv		0,03-0,2	0,03-0,3

Kühlung ... Unterbr. Schnitt: trocken



Allgemeine Eigenschaften

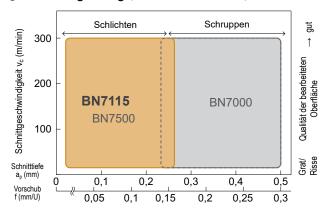
Aufgrund des hohen CBN-Gehalts bietet BN7115 eine gute Verschleißfestigkeit und eine hohe Bruchfestigkeit, die durch die verbesserte Bindekraft zwischen den CBN-Partikeln erreicht wird. BN7115 zeigt eine stabile Schneidleistung bei hoher Geschwindigkeit und ist ideal für das Schlichten von Sinterlegierungen

Hinzu kommt die neue Schneidkantenausführung "US", für höhere Bruchfestigkeit bei unterbrochenen Schnitten.

Abtragen des Bindemittels \rightarrow Vergleich der Bindekraft der CBN-Partikel

Merkmale

BN7000


 Ermöglicht die hocheffiziente Bearbeitung von Sinterlegierungen in verschiedenen Formen mit der Standardschneide und der "LF"- und "HS"- Schneidkantenvariante. Auch bei schwer zerspanbaren Werkstoffen wie Walzen, Schnellarbeitsstahl und hitzebeständigen Legierungen werden hervorragende Schnittleistungen erzielt. Hohe thermische Beständigkeit bei der Hochgeschwindigkeitsbearbeitung von Gusseisen.

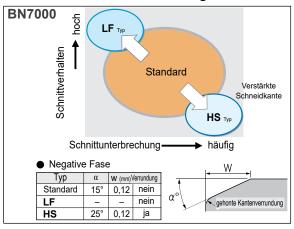
BN7115

 Die Verbesserung der Bindungsfestigkeit zwischen CBN-Teilchen und Bindemittel durch ein spezielles Bindemittel und die höhere Bindekraft zwischen den CBN-Teilchen, dank unseres firmeneigenen Sinterverfahrens, sorgen für eine hervorragende Kantenschärfe bei der Bearbeitung von Sinterlegierungen und verhindern Gratbildung und Ausbrüche.

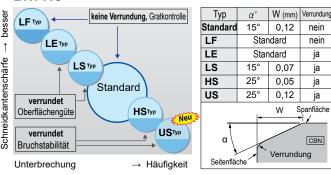
Anwendungsbereich

Sinterlegierung (50-95 HRB/90-200 HV)

■ Empfohlene Schnittbedingungen

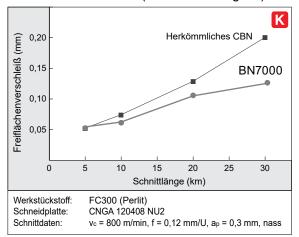

Grauguss

9				
		Schnittbe	dingungen (M	lin Optimum -Max.)
Werkstückstoff	Sorte	Schnittge- schwindigkeit vc (m/min)	Vorschub f (mm/U)	Schnitttiefe a _p (mm)
Grauguss	BN7000	100- 1.000 -2.500	0,05- 0,30 -0,60	0,05- 0,50 -1,00



		Schnittbe	lin. –Optimum– Max.)	
Werkstückstoff	Sorte	Schnittge- schwindigkeit vc (m/min)	Vorschub f (mm/U)	Schnitttiefe a _p (mm)
Sinterlegierung,	BN7115	10 –150 –300	0,01 –0,08 –0,15	0,05 –0,13 –0,25
allgemein	BN7000	10 –150 –300	0,01 –0,15 –0,30	0,05 –0,25 –0,50
Hochfeste	BN7115	10 –100 –200	0,01 –0,06 –0,12	0,05 –0,10 –0,20
Sinterlegierung	BN7000	10 –100 –200	0,01 –0,15 –0,30	0,05 –0,25 –0,50

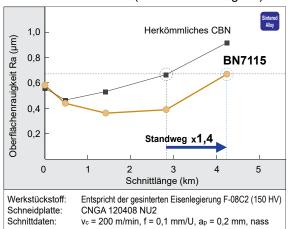
Schneidkantenausführungen

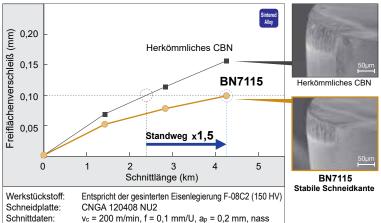


BN7115

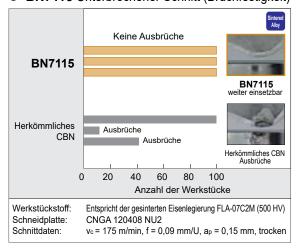
Die neuartige Schneidkantenausführung "US" eignet sich hervorragend für stark unterbrochene Schnitte

BN7000 Vollschnitt (Verschleißfestigkeit)




BN7000

■ Schnittleistung (Sinterlegierungen)


BN7115 Vollschnitt (Oberflächenrauigkeit)


BN7115 Vollschnitt (Verschleißfestigkeit)

BN7115 Unterbrochener Schnitt (Bruchfestigkeit)

BN7000 Unterbrochener Schnitt (Bruchfestigkeit)

BNC8115/BNS8125 **™**

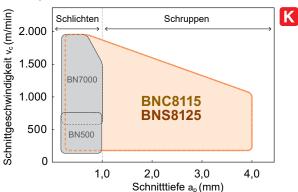
■ Allgemeine Eigenschaften

Umfasst ein breites Bearbeitungsspektrum vom Schruppen bis zum Schlichten von Gusseisen, exotisch legiertem Gusseisen und gehärtetem Stahl. Die 100% Voll-CBN-Struktur ermöglicht Schnitttiefen im Bereich von 0,5 mm und mehr.

Merkmale

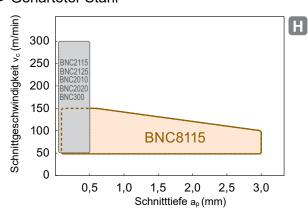
BNC8115

Die PVD-Bechichtung, in Kombination mit der exzellenten Verschleißfestigkeit des Substrats, verhindert Freiflächenverschleiß bei der Bearbeitung von schwerzerspanbaren Gusswerkstoffen und gehärtetem Stahl.
 BNC8115 ist ideal zum Schruppen und kann mit Schnitttiefen von 0,5 mm bis 3,0 mm auch zum Schruppen und Schlichten von Grauguss verwendet werden.

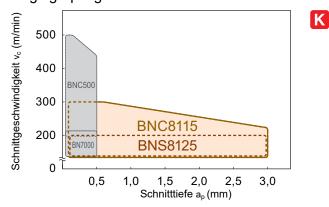

Die goldfarbene Beschichtung sorgt für eine bessere Erkennbarkeit der eingesetzten Schneidkantenecken.

BNS8125

• Die optimierte Korngrößenstruktur der CBN-Partikel ermöglicht einen verbesserten Bruchwiderstand, lange Standzeiten und eine konstante Verschleißfestigkeit bei der Bearbeitung von Grauguss.


Anwendungsbereich

Grauguss



Für Grauguss wird die Nassbearbeitung empfohlen. Bei der Trockenbearbeitung ist unsere 1. Empfehlung BNC8115/ BNS8125 sowohl zum Schruppen als auch zum Schlichten.

Gehärteter Stahl

Kugelgraphitguss

Empfohlene Schnittbedingungen

Gusseisen (Drehen)

	•	•		
Werkstückstoff	Corto	Schnittbedingu	ıngen _{Min}	Optimum-Max.
VVERKSLUCKSION	Sorte	Schnittgeschwindigkeit v _c (m/min)	Vorschub f (mm/U)	Schnitttiefe a _p (mm)
Crougues	BNC8115	200 –1.000 –2.000	0,10 -0,50 -1,00	≤ 4,0
Grauguss	BNS8125	200 –1.000 –2.000	0,10 –0,50 –1,00	≤ 4,0
Kugelgraphit-	BNC8115	80 –160 –300	0,10 –0,30 –0,50	≤ 3,0
guss	BNS8125	80 –120 –200	0.10 -0.30 -0.50	≤ 3.0

K

H

K

Gehärteter Stahl (Drehen)

		,		-		
Morkatii akataff	Sorte	Schnittbeding	ungen _{Min.–}	Min Optimum -Max.		
Werkstückstoff		Schnittgeschwindigkeit		Schnitttiefe		
		$v_c(m/min)$	(mm/U)	a _p (mm)		
Gehärteter Stahl	BNC8115	50 –100 –150	0,10 -0,25 -0,40	≤ 3,0		

• Gusseisen (Fräsen)

	•	•						
Werkstückstoff	Sorte	Schnittbedingungen MinOptimum-Max.						
VVEIKSLUCKSLOII	Sorte	Schnittgeschwindigkeit	Vorschub	Schnitttiefe				
		(m/min)	(mm/U)	(mm)				
Crougues	BNC8115	800 –1.400 –2.000	0,10 -0,50 -1,00	≤ 4,0				
Grauguss	BNS8125	800 –1.400 –2.000	0.10 -0.50 -1.00	≤ 4.0				

Beschichtetes SUMIBORON / SUMIBORON

Verschleißfestigkeit (Bearbeitung v. gehärtetem Stahl)

BNC8115/BNS8125 **□**

■ BNC8115 Schnittleistung

Verschleißfestigkeit (Bearbeitung v. Kugelgraphitguss)

0,20 Herkömmliches CBN Freiflächenverschleißbreite (mm) 0,16 0,12 lerkömml. Werkz. (unbeschichte (nach 2,5 km) 0,08 BNC8115 0.04 0,5 1,0 1,5 2,0 2,5 **BNC8115** Schnittlänge (km) (nach 2,5 km) GGG-40.3, (Rundmaterial) Werkstückstoff: SNGN090308 Schneidplatte: Schnittdaten: $v_c = 300 \text{ m/min}, f = 0.2 \text{ mm/U}, a_p = 0.2 \text{ mm},$

Herkömmliches CBN 0,4 Freiflächenverschleißbreite (mm) 0,3 0,2 BNC8115 0,1 0,5 1,0 1,5 2,0 2,5 **BNC8115** Schnittlänge (km) (nach 0,5 km) Werkstückstoff: SUJ2 58-62 HRC, (Rundmaterial SNGN090308 Schneidplatte: Schnittdaten: v_c = 150 m/min, f = 0,2 mm/U, a_p = 0,3 mm,

■ BNS8125 Schnittleistung

Verschleißfestigkeit (Bearbeitung von Grauguss)

Wettbewerber 0,16 Freiflächenverschleißbreite (mm) 0,12 Wettbewerb (unbeschichtet 0,08 (nach 45 km) BNS8125 0,04 20 30 40 BNS8125 Schnittlänge (km) (nach 45 km) Werkstückstoff: GGG-30 (Rundmaterial) Schneidplatte: SNGN090308 Schnittdaten: $v_c = 800 \text{ m/min}, f = 0.1 \text{ mm/U}, a_p = 0.2 \text{ mm},$

Verbesserte Schneidkantenstabilität

BNS8125
(nach 9,0 km)

Werkstückstoff: GGG-40.3, (Rundmaterial mit 2 V-Nuten)

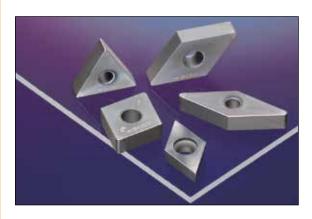
 $v_c = 200 \text{ m/min, } f = 0.2 \text{ mm/U, } a_p = 0.5 \text{ mm,}$

SNGN120408

Bruchfestigkeit (Bearbeitung v. Kugelgraphitguss)

■ Auswahl zwischen BNC8115 und BNS8125 (Gusseisen/gehärteter Stahl)

Werkstückstoff			nichtetes SUMIBORON BNC8115 ehen Fräsen	SUMIBORON BNS8125 Drehen Fräsen		SUMIBORON BN7000 Drehen Fräsen		Beschichtetes SUMIBORON BNC500 Drehen		Beschichtetes SUMIBORON BNC2125 Drehen	
V	Grauguss	0	Optimal	0	Optimal, wirtschaftlich	0	Schnitttiefe ≤ 1,0 mm Hochgeschwindig- keitsschlichten	×	Nicht möglich	×	Nicht möglich
K	Kugelgraphitguss	0	Schnitttiefe ≥ 0,5 mm	0	Unterbrochene Bearbeitung	0	Schnitttiefe ≤ 0,5 mm Langsame Zer- spanung	0	Schnitttiefe ≤ 0,5 mm	X	Nicht möglich
Н	Gehärteter Stahl	0	Schnitttiefe ≥ 0,5 mm	×	Nicht möglich	X	Nicht möglich	×	Nicht möglich	0	Schnitttiefe ≤ 0,5 mm Hochgeschwindig- keitsbearbeitung


Schneidplatte:

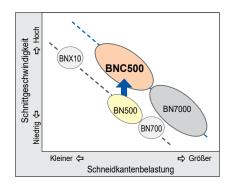
Schnittdaten:

Empfehlung

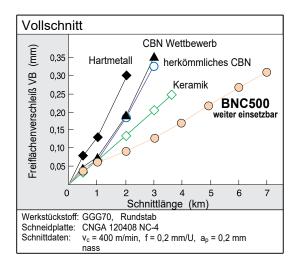
imes Nicht möglich

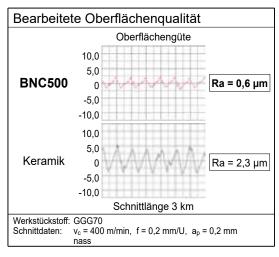
Beschichtete CBN Sorte für Kugelgraphitguss

■ Eigenschaften

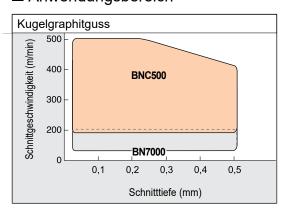

Die Verwendung eines neu entwickelten TiC-Binders führt zu einer weiteren Verbesserung der Zähigkeit des gesinterten CBN-Körpers und zu einer außergewöhnlichen Verschleißfestigkeit, die zusätzlich durch die Keramikbeschichtung und der damit verbundenen Hitzebeständigkeit erhöht wird. Beim Schlichten des Kugelgraphitgusses wird eine Hochgeschwindigkeitsbearbeitung bei höchster Präzision ermöglicht. Ebenso wird eine lange und stabile Standzeit bei der Bearbeitung von hochfestem Kugelgraphitguss, von speziellem Gusseisen sowie von Vermiculargusseisen und Zentrifugalgusseisen erreicht.

Vorzüge

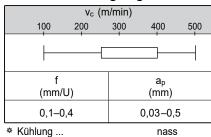

 Lange und stabile Standzeit bei v_c = 400 m/min oder höher


Ausgezeichnete Verschleißfestigkeit ermöglicht stabile Bearbeitung unter Hochgeschwindigkeitsbedingungen.

 Unterstützt die Präzisionsbearbeitung Kann über lange Zeit eine hervorragende Maßtoleranz und Oberflächengüte aufrechterhalten.

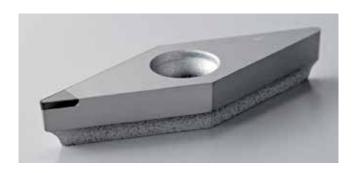


Leistung

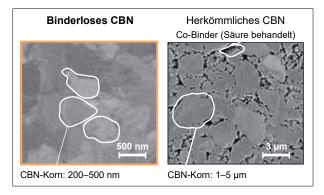

Anwendungsbereich

Präzisionsbearbeitung

■ Empfohlene Schnittbedingungen



Binderloses SUMIBORON NCB100



Eigenschaften

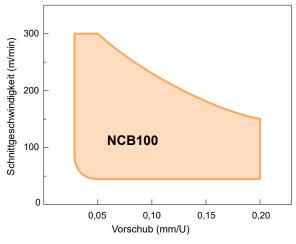
Binderloses SUMIBORON ist ein polykristallines kubisches Bor-Nitrid (CBN), das Nanometer- oder Submikron-CBN-Partikel ohne Bindemittel direkt bindet.

Binderloses CBN ist härter und hat eine bessere Wärmeleitfähigkeit als herkömmliches CBN, dadurch werden eine höhere Effizienz und längere Standzeiten bei der Bearbeitung von schwer zerspanbaren Werkstoffen, wie Titanlegierungen und Kobalt-Chrom-Legierungen, erreicht.

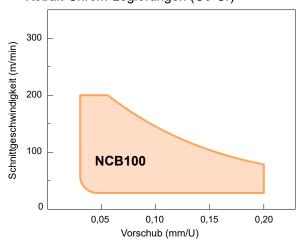
Gesinterte CBN-Mikrostruktur

■ Physikalische Eigenschaften

	Binderloses CBN	Herkömmliches CBN	
CBN-Gehalt (%)	100	90–95	
Bindematerial	-	WC-Co	
Härte (GPa)	51–54	41–44	
Wärmeleitfähigkeit (W/m⋅K)	180–200	100–120	

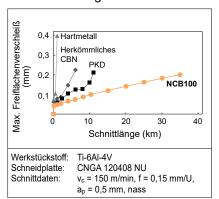

SUMIBORON Binderloses CBN

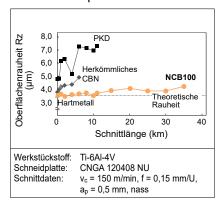
Vorzüge

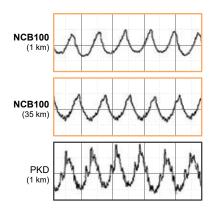

- Höhere Härte und Wärmeleitfähigkeit als bei herkömmlichen CBN-Sorten bewirken eine effizientere Bearbeitung und längere Standzeiten.
- Durch das fehlende Bindematerial besteht eine geringere Affinität zu den zu bearbeitenden Werkstoffen. Dadurch wird eine sehr präzise Bearbeitung und eine bessere Oberflächengüte erzielt.
- Ideales Werkzeugmaterial für schwer zerspanbare Materialien, wie Titanlegierungen, Kobalt-Chrom-Legierungen, Hartmetallen und Cermets.
- NCB100 ist in der Lage, über einen langen Zeitraum eine hervorragende Maßgenauigkeit und Oberflächenrauheit zu halten.
- Verbesserte Produktivität und Kosteneinsparung durch weniger häufigen Schneidplattenwechsel im Vergleich zu herkömmlichen Werkzeugen.

Anwendungsbereich und Leistungsmerkmale beim Drehen von

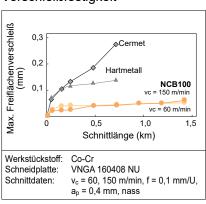
Titanlegierungen (Ti-6Al-4V)

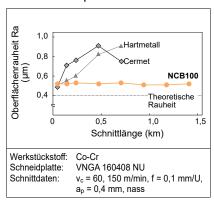


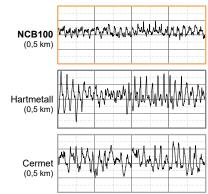

Binderloses SUMIBORON NCB100


Drehen von Titanlegierungen (Ti-6Al-4V)

Verschleißfestigkeit


Oberflächenqualität




Drehen von Kobalt-Chrom-Legierungen (Co-Cr)

Verschleißfestigkeit

Oberflächenqualität

■ Empfohlene Schnittbedingungen

Titanlegierungen

					IVIIII Optilliulii - IVIAX.	
Werkstück	stoff	Canta	Schnittdaten			
Zusammensetzung	Härte (HRC)	Sorte	Schnitttiefe (mm)	Vorschub (mm/U)	Schnittgeschwindigkeit (m/min)	
Ti-6Al-4V	30–35	NCB100	0,1 –0,3 –0,5	0,05 –0,15 –0,20	50 –200 –300	
Ti-5Al-5V-5Mo-3Cr	32–38	NCB100	0,1 –0,3 –0,5	0,05 –0,10 –0,20	50 –150 –250	
Ti-10V-2Fe-3Al	32–38	NCB100	0,1 –0,3 –0,5	0,05 –0,10 –0,20	50–1 50 –250	

Kobalt-Chrom-Legierung

 Schnittgeschwindigkeit

Min. - Optimum - Max.

Werkstückstoff		Corto	Schnittdaten			
Zusammensetzung	Härte (HRC)	Sorte	Schnitttiefe (mm)	Vorschub (mm/U)	Schnittgeschwindigkeit (m/min)	
Co-30Cr-5Mo	35–45	NCB100	0,10 –0,15 –0,30	0,05 –0,15 –0,20	50 –200 –300	

Hartmetall

	ı iai ii ii ciaii					Min Optimum - Max		
Werkstückstoff			Sorte	Schnittdaten				
	Zusammensetzung Härte (HRC)		Sorie	Schnitttiefe (mm)	Vorschub (mm/U)	Schnittgeschwindigkeit (m/min)		
	WC-20Co	<85	NCB100	0.03 –0.10 –0.20	0.03 –0.10 –0.20	5 –20 –40		

Andere Materialien

Min	_	0	nti	mı	ım	_	Max.
IVIII1.	-	U	ρu	mu	ım	-	wax.

SUMIDIA Binderlos NPD10 wird empfohlen bei: > 88 HRA

Andere materialien					Min Optimum - Max.
Werkstückstoff		Conto		Schnittdaten	
Zusammensetzung	Härte (HRC)	Sorte			Schnittgeschwindigkeit (m/min)
Reintitan	130–230	NCB100	0,1 –0,3 –0,5	0,05 –0,10 –0,20	100 –250 –400
Cermet	1.000-1.500	NCB100	0,1 -0,2 -0,3	0,05 –0,10 –0,20	10 –30 –50

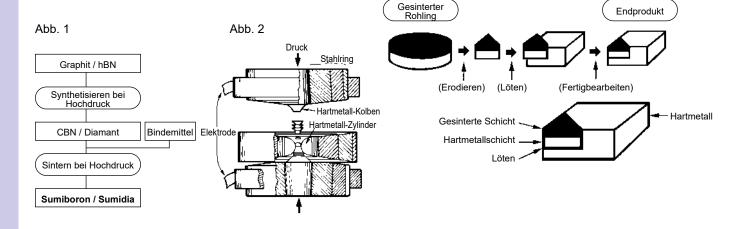
SUMIBORON / SUMIDIA Herstellungsprozess

■ Allgemeine Merkmale

In den 70er Jahren war Sumitomo der erste japanische Hersteller, der gesintertes kubisches Bornitrid (CBN) und gesinterte Diamanten (PKD) für die Werkzeugindustrie entwickelte. Diese Werkzeugmaterialien können als Wegbereiter betrachtet werden, da sie das Einsatzgebiet von Schneidwerkzeugen entscheidend erweitert haben.

■ Herstellung von CBN /PKD

Bei der Herstellung von **SUMIBORON** / **SUMIDIA** wird zunächst Diamant- oder CBN-Pulver unter besonders hohem Druck zusammengeschmolzen. Danach werden die synthetisch hergestellten Kristalle gesintert.


Abb. 2 zeigt ein Beispiel für eine Vorrichtung zum Sintern bei hohen Temperaturen und Hochdruck.

Diese Anlage besteht aus einem Kolben und einem Zylinder.

Um den hohen Druck von 5000 N/mm₂ zu erreichen, wird eine Spezialvorrichtung eingebaut.

Zur Herstellung des Endproduktes werden runde Scheiben aus SUMIBORON- oder SUMIDIA-Material in eine besondere Form erodiert und auf Werkzeugträger aus Hartmetall oder Stahl usw. gelötet.

Danach erfolgt durch Schleifen der Kante die Fertigbearbeitung.

■ Schleifanleitung für SumiBoron / SumiDia

l A	Anleitung	SumiBoron	SumiDia		
Schleif- maschine	_	Stabile Werkzeugschleifmaschine verwenden Feinzustellmaschine sollte vorhanden sein Nachschliff ist notwendig	Stabile Werkzeugschleifmaschine verwenden Nachschliff ist notwendig		
	Schleifmittel	Diamond	Diamond		
	Korngröße	D 25 - mittel, D 20 - fein (#400-800)	Grobschleifen: D 35 (#400) Fertigschleifen: D 25 (#800–1500)		
Schleif- scheibe	Bindung	Kunstharzbindung oder keramisch gebundene Schleifscheibe	Spezial-Metallbindung für Diamant-gesintertes Werkzeug oder keramisch gebundene Schleifscheibe		
	Konzentration	100	100–125		
	Abrichten	Abrichter WA Körnung 500	Abrichter WA Körnung 500		
0 - 1-1 - 141	Scheibengeschw.	800–1000 m/min.	800–1000 m/min.		
Schleifbe-	Tischbewegung	Oszillation 30–60 pro min.	Oszillation 30–60 pro min.		
dingungen	Schleiföl	Wasserlöslich	Wasserlöslich		
Bemerkungen	-	Nach dem Schleifen Schneidkante mit Mikroskop auf Ausbrüche überprüfen. Um eine saubere Schneidkante an dem erodierten Rohling zu erzielen, sollte das Schleifaufmaß mehr als 0,05 mm betragen.	 Spanfläche ist allgemein geläppt. Nach dem Schleifen Schneidkante mit Mikroskop (30-50fach) auf Ausbrüche überprüfen. Zum Bearbeiten von Nichteisenmetallen sollte die Schneidkante scharfkantig sein. Um eine saubere Schneidkante an dem erodierten Rohling zu erzielen, sollte das Schleifaufmaß mehr als 0,05 mm betragen. 		

SUMIDIA Serie

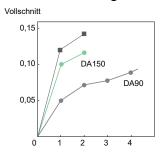
■ Allgemeine Merkmale

Die SUMIDIA-Serie besteht aus 3 unterschiedlichen Sinterdiamantsorten (DA90, DA150, DA1000), welche durch die unterschiedlichen Kombinationen aus Korngröße und Bindermaterial genau für die jeweiligen Einsatzgebiete optimiert wurden. Diese Serie wird durch die neueste Innovation, die NPD10-Sorte (NPD=Nano-Polycrystalline-Diamond) ergänzt, bei der die nanokristallinen Diamantkörner ohne Bindemittel im Gefüge gehalten werden. Die SUMIDIA-Serie eignet sich für eine große Anwendungs-Bandbreite, wie der Bearbeitung von Aluminiumlegierungen bis hin zur Bearbeitung von harten Materialien wie Hartmetall und Keramik.

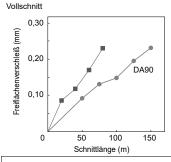
■ Sorte • Merkmale • Anwendungen

Sorte		Merkmale	Anwendung	Korngröße (µm)	Härte Hv	Bruchfestigkeit (kg/mm²)
	DA1000	Gesinteter ultra Feinkorn Diamant mit hoher Härte und verbesserter Verschleißfestigkeit mit scharfer Schneide	Hoch-Sihältige Al-Legierungen Schruppen, unterbr. Schnitt und Schlichten von Al-Leg. Holz oder organische Stoffe Nichteisenmetalle (Aluminium, Kupferlegierungen)	< 0,5	50 60	≈ 2,60
SUMIDIA	DA150	Mikrokorn gesinteter Diamant mit starkem Bindungsverhalten. Einsetzbar bei Nichteisenmetallen und anderen sehr harten Werkstoffen.	Nichteisenmetalle (Aluminium, Kupferlegierungen) HM-Bearbeitung und Keramikschruppen Glasfaserverst. Kunststoff und Kohlenstoff Holz oder organische Stoffe	5	50 ~ 60	≈ 1,95
	DA90	Die große Korngröße und der hohe Diamantanteil verleiht der DA90- Sorte eine ausgezeichnete Verschleißfestigkeit und ist somit optimal für die Bearbeitung von harten, spröden und abrasiven Materialien geeignet.	Bearbeitung von Stoffen mit hohem Siliziumgehalt Bearbeitung von Aluminiumverbundwerkstoff (MMC) Für die Schruppbearbeitung von Grünlingen oder halbgesintertem Hartmetall & Keramik Bearbeitung von gesinterter Keramik/Stein/Fels	< 50	50 ~ 60	≈ 1,10
SUMIDIA	NPD10	Eine Sorte aus 100 % Diamant, gefertigt aus direkt miteinander verbundenen, nanokristallinen Diamantkörnern. Weist die höchste Verschleiß- und Bruchfestigkeit sowie die beste Schneidkantenschärfe auf.	Feinstschlichten von Hartmetall Bearbeitung von spröden Materialien (Keramik)	< 0,05	120 ~ 130	≈ 3,15

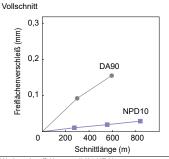
■ Anwendungsbereich


		•		
^	liim	۱ır	111	ım
$\overline{}$	lum	111	Hυ	41 I I

Maschinelle	Werkstückstoff		Drehen		Paignial		
Bearbeitbarkeit	VVEIKSLUCKSLOII	Schru	ıppen	Schlichten	riase	311	Beispiel
Gut	Sinteraluminium		DA10	00			Zylinderlaufbuchse
	Aluminiumguss (ADC12)						Getriebegehäuse, Ölwannen, Zylinderblock, Aluminiumfelgen
	geringer Si-Anteil (AC2B-T6, AC4C-T6)			DA150			Zylinderkopf
Schwierig	hoher SI-Anteil (T6)			1			Zylinderblock


Andere Werkstückstoffe (Nicht-Aluminium)

Maschinelle	Werkstückstoff	Drehen Fräsen		Beispielabschnitt	
Bearbeitbarkeit	WEINSLUCKSLOII	Schruppen	Schlichten	Fiaseii	Deispielabscriffill
Gut	Nichteisenlegierungen	DA1000			Buchse
	Rotguss				Pleuel
	Hartmetall	DA90	NPD10		Stempel, Gesenke, Walzen
Schwierig	Kombination (Al&Fe basiert)		DA90	DA150	Zylinderblock, Lagerdeckel


■ Schnittleistung

 $\label{eq:weak_problem} Werkstückstoff: MMC (Al-20\% SIC) \\ Schneidplatte: CNMX 120408, Halter: PCLN2525 \\ Schnittdaten: v_c=350 m/min, f=0,2 mm/rev, a_p=0,18 mm, nass$

 $\label{eq:weak_problem} Werkstückstoff: Hartmetall (87 HRA) \\ Schneidplatte: DCMW 070204 NF \\ Schnittdaten: v_c=20 m/min, f=0,1 mm/rev, a_p=0,2 mm, nass$

Werkstückstoff: Hartmetall (91 HRA) Schneidplatte: DCMW 11T304 RH (NPD10) DCMW 11T304 NF (DA90) Schnittdaten: v_c = 20 m/min, f = 0,05 mm/rev, a_p = 0,05 mm, trocken

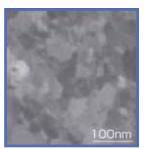
■ Empfohlene Schnittbedingungen

Bedingungen	Werkstoff	Aluminium- legierung	Kupfer- legierung	Glasfaser verst. Kunststoff	Holz oder organische Stoffe	Hartmetall	Kohlenstoff
Schnittgeschw.	V _c (m/min)	~ 3.000	~ 1.000	~ 1.000	~ 4.000	10 ~ 30	100 ~ 600
Vorschub	f (mm/U)	~ 0,2	~ 0,2	~ 0,4	~ 0,4	~ 0,2	~ 1,0
Schnitttiefe	a _p (mm)	~ 3,0	~ 3,0	~ 2,0	-	~ 0,5	~ 2,0

SUMIDIA Binderlos

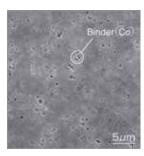
Nano-polykristalliner Diamant

■ Allgemeine Eigenschaften

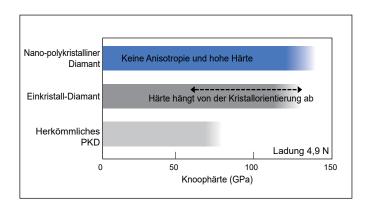

Der nano-polykristalline Diamant ist ein polykristalliner Diamant, der durch die direkte Bindung von nanokristallinen Diamantkörnern ohne Verwendung von Bindemitteln hergestellt wird.

Dieses Material wird nur in unserem Unternehmen verwendet. Im Vergleich zu herkömmlichen PKD-Sorten, in denen Bindemittel enthalten sind, weist es eine höhere Festigkeit sowie eine sehr gute Verschleiß- und Bruchfestigkeit auf.

Die Werkzeugserie SUMIDIA Binderless verfügt über Schneidkanten, die aus hochleistungsfähigem nanopolykristallinem Diamant gefertigt wurden.


Vergleich der Mikrostruktur

Nano-polykristalliner Diamant SEM-Struktur


Mittlerer Durchmesser des Diamantkorns (30 ~ 50 nm)

Herkömmliche PKD REM-Struktur

Mittlerer Durchmesser des Diamantkorns (1 ~ 10 μm)

Härte

SUMIDIA Binderlos

Anwendungsbeispiele

Kugelkopf-Schaftfräser/ Radius Schaftfräser (Hartbearbeitung)

Wendeschneidplatten (Hartbearbeitung)

SUMIDIA Binderlos NPD10 / DA90

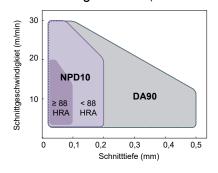
■ Allgemeine Eigenschaften

NPD10 (Nano-Polycrystal-Diamond) wird aus hochhartem polykristallinen Diamant hergestellt, welcher im Gegensatz zum monokristallinen Diamanten kein anisotropisches (richtungsabhängiges) Gefüge aufweist. Dies verleiht der NPD10 eine ausgezeichnete Verschleißbeständigkeit und Bearbeitungsgenauigkeit bei der Schlichtbearbeitung von spröden und harten Materialien wie z.B. Hartmetall und Keramik.

DA90 ist eine polykristalline Diamantsorte, welche aufgrund der großen Diamantpartikel über eine Dichte der Struktur verfügt. Dies, in Kombination mit dem hohen Diamantanteil, verleiht der DA90 eine hohe Verschleißbeständigkeit, was sie ideal für das Schruppen und Vorschlichten von Hartmetall und anderen spröden und harten Materialien macht.

Ein optimiertes Design und eine geänderte Produktionstechnologie wurden entwickelt, um die gleiche Performance zu erreichen wie herkömmliche Werkzeuge, jedoch mit einem höheren Kostennutzen.

Eigenschaften


NPD10:

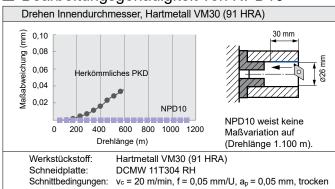
- Ideal für die Schlicht- und Feinbearbeitung von harten und spröden Materialien wie Hartmetall und Keramik.
 Hohe Oberflächengüte, Verschleißbeständigkeit und Formgenauigkeit dank des einzigartigen Gefüges des nano-polykristallinen Diamanten.
 Herausragende Maß- und Formhaltigkeit über lange Zeit
 Werkzeugwechsel und ein damit hergehender Maschinenstillstand wird drastisch reduziert. Dies erhöht die Arbeitseffizienz und reduziert die Gesamtkosten.
- Hervorragende Alternative zum Schleifen Aufgrund der exzellenten Kanten- und Formstabilität in Verbindung mit einer hohen Produktivität stellt die NPD10 eine hervorragende
- Alternative zum Schleifen dar. Aufgrund der exzellenten Kanten- und Formstabilität in Verbindung mit einer hohen Produktivität stellt die NPD10 eine hervorragende Alternative zum Schleifen dar.

DA90:

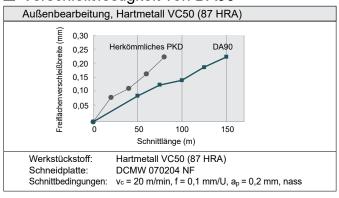
- Ideal für die Schrupp- und Vorschlichtbearbeitung von harten und spröden Materialien einschließlich Hartmetall. Stabile Werkzeugstandzeit bei der Bearbeitung von gesintertem Hartmetall sowie bei der Schruppbearbeitung von harten, spröden Materialien dank einer herausragenden Verschleißbeständigkeit.
- SUMIDIA NF-Schneidplatten
 Höheres Kosten-Nutzen-Verhältnis ggb. herkömmlichen Werkzeugen durch ein optimiertes Design der Schneidegeometrie und eine weiterentwickelte Produktionstechnologie.

■ Anwendungsbereich (Hartmetallbearbeitung)

■ Anwendungsbereich von NPD10 und DA90 (Hartmetall)


Sorte	SUMIDIA Binderlos NPD10			SUMIDIA DA90
Maßtoleranz	© Empfohlen		Δ	Die erste Empfehlung ist NPD10
Standzeit (Verschleißfestigkeit)	0	Empfohlen $a_p \le 0.2 \text{ mm, } f \le 0.1 \text{ mm/U}$	0	ap ≥ 0,2 mm kann ebenfalls verwendet werden
Rohbearbeitung von Hartmetall	X Nicht empfohlen		0	Empfohlen
Oberflächenqualität	0	Empfohlen	Δ	Die erste Empfehlung ist NPD10

■ Empfohlene Schnittbedingungen (Hartmetallbearbeitung)

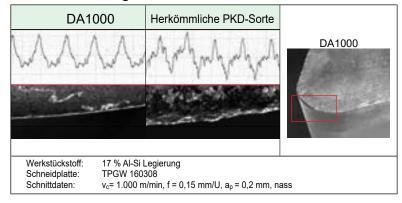

	1	Verkstückstoff		Sorte Schnittbedingung				
HM G	Gruppe	Härte (HRA)	SUMITOMO-HM	30116	Schnittgeschwindigkeit vc (m/min)	Vorschub f (mm/U)	Schnitttiefe ap (mm/U)	
VM, VC	40	≥ 88	G5, D2	NPD10	5– 15 –20	0,03 -0,05 -0,07	0,03 –0,05 –0,07	
VM, VC	70, 60, 50	83 – <88	G7, G6	NPD10	5- 20 -30	0,03 -0,10 -0,20	0,03 –0,10 –0,20	
VM, VC	_	≥ 83	G7, G6, G5, D2	DA90	5- 20 -30	0,03 -0,10 -0,20	0,03 –0,20 –0,50	

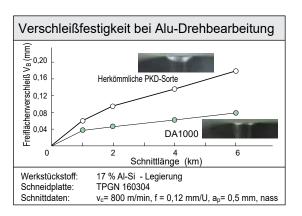
Min. - Optimum - Max., Schnittbedingungen: NPD10: trocken, DA90: nass

■ Bearbeitungsgenauigkeit von NPD10

■ Verschleißfestigkeit von DA90

SUMIDIA DA1000


Eigenschaften


SumiDia DA1000, die gesinterte ultra Feinkorn PKD-Sorte mit extrem hoher Zähigkeit, vergleichbar mit Hartmetall.

SumiDia DA1000 mit deutlich geringerem Bruchrisiko als herkömmliche PKD-Sorten. Gerade bei der Fräsbearbeitung von Aluminiumlegierungen sind deutlich höhere Standzeiten zu erzielen.

Die NF-Ausführung senkt zusätzlich die effektiven Kosten.

■ Schnittleistung

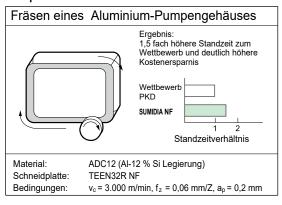
Schneidplatten: NF-Ausführung

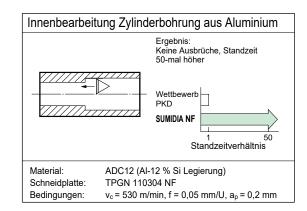
■ Eigenschaften

- Deutliche Kostenersparnis durch effizientes Preis-Leistungsverhältnis
 - Optimiertes Design und Herstellungstechnik für eine kostengünstige Massenproduktion
 - Nachschleifbare Ausführung für eine hohe Kostenersparnis

Weites Anwendungsfeld

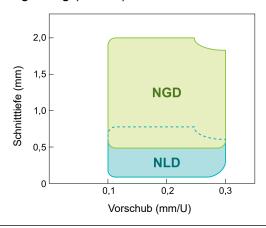
- · Vielzahl verschiedener Plattengeometrien für die Innen- und Außenbearbeitung sowie für Fräsbearbeitungen
- NF- Platten passen auf jedes herkömmliches Haltersystem.


■ Effizienz

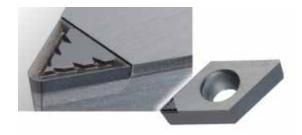

SumiDia NF-Typ Schneidplatten bieten bei hervorragendem Kosten-/Nutzenverhältnis dank optimalem Design und Massenproduktion die gleiche und sehr gute Schnittleistung wie DA1000. Diese Schneidplatten erreichen die hohe Leistung der SUMIDIA DA1000 mit der sehr guten Verschleiß- und Bruchfestigkeit und bieten beste Oberflächengüten.

(NF-Typ Präzisionsschneide)

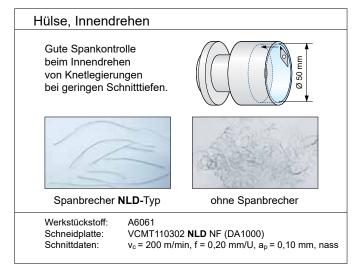
Anwendungsbeispiele



SUMIDIA-WSP Break Master N-LD / -GD - Typ

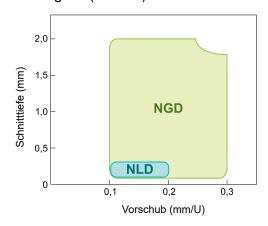


Anwendungsbereich Knetlegierung (A6061)

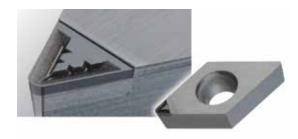


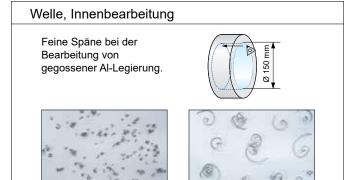
NLD - Typ

Exzellente Spankontrolle bei der Schlichtbearbeitung.


Anwendungsbeispiele

■ Eigenschaften

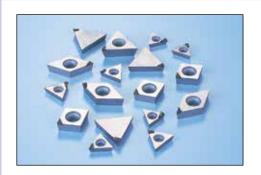

- Bietet hervorragende Spankontrolle im Vorschlichten und der Endbearbeitung von Aluminiumlegierung.
- Löst Probleme mit der Spankontrolle und erhöht die Arbeitseffizienz in signifikantem Maße.
- Lange stabile Standzeiten und gute Bruchfestigkeit durch das zähe PKD Substrat DA1000.


Aluminiumguss (ADC12)

NGD - Typ

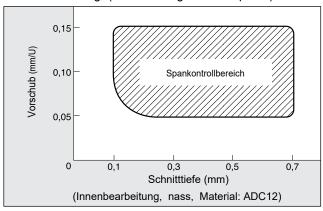
Ausgezeichnete Spankontrolle bei der allgemeinen Bearbeitung.

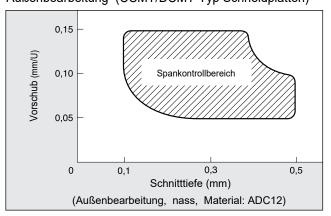
Spanbrecher NGD-Typ


Werkstückstoff: TPMT110304 **NGD** NF (DA1000) Schneidplatte: Schnittdaten:

 $v_c = 400 \text{ m/min, } f = 0.23 \text{ mm/U, } a_p = 1.20 \text{ mm, nass}$

ohne Spanbrecher


SUMIDIA-Einwegplatte Break Master DM - Typ



■ Anwendungsbereich

Innenbearbeitung (60° dreieckige Schneidplatte)

Außenbearbeitung (CCMT/DCMT-Typ Schneidplatten)

■ Empfohlene Bedingungen

Innenbearbeitung (60° dreieckige Schneidplatte)

Vorschub	Schnitttiefe	Bedingung
−0,15 mm/U	−0,7 mm	nass

Kopierdrehen (55°, 80° rhombische Schneidplatte)

	· · · · · · · · · · · · · · · · · · ·	
Vorschub	Schnitttiefe	Bedingung
–0,15 mm/U	−0,5 mm	nass

Für Planbearbeitung, ap sollte kleiner 0,4 mm sein

■ Eigenschaften

Wirtschaftliche Einwegplatte

• Vergleichbar mit SumiBoron CBN Einwegplatten

Spanbrecherform für effiziente Spanabfuhr

 DM Spanbrecher Typ löst effektiv und sicher alle Spanbruchprobleme

Breite Produktpalette für jeden Anwendungsbereich

 80° und 55° Platten erweitern den Anwendungsbereich dieser Produktserie

■ Spankontrolle

Break Master DM-Typ

Ohne Spanbrecher

Anwendungsbeispiel

Bearbeitung	Bedingungen	Ergebnis
Material: AC2A-T6 Anwendung: Bohrung	v_c = 300 m/min f = 0,06 mm/U a_p = 0,35 mm nass	Oberflächenqualität besser Ra = 1 µm Kleine, Optimale Spanform Es bleiben keine Späne in der Bohrung

Serie


Außenbearbeitung		Innenbearbeitung	
F 1	CCMT 0602L/R-DM NU		TPMT 0802L/R-DM NU
	CCMT 09T3L/R-DM NU	<u> </u>	TPMT 0902L/R-DM NU
	DCMT 0702L/R-DM NU		TPMR 1103 L/R-DM NU ^(*)
	DCMT 11T3L/R-DM NU	\triangle	TPMR 1603 L/R-DM NU ^(*)

(*) Lager in Japan auf Anfrage

SUMIBORON / SUMIDIA

Schneidplatten & Werkzeuge

M1-M80

SUMIBORON /	SUMIDIA -	Wendeschr	neidplatten
		C / 80°	rhombisch

D / 55° rhombisch

R / rund S / quadratisch

T / dreieckig

Ţ.

V / 35° rhombisch

W / Trigon Spezial SUMIDIA Binderlos

SUMIBORON / SUMIDIA - Präzisionswerkzeuge SUMIBORON

SUMIDIA

Hochgeschwindigkeitsfräser für Nichteisenmetalle

SUMIBORON "BN Finish Mill"
"Helical Master"
"Mould Finish Master"
SUMIDIA "Mould Finish Master" Binderlos
SUMIDIA Bohrer

Plattenbezeichnung		
CC 7° pos. Typ		
CP 11° pos. Typ	M7	
CN _ neg. Typ	M9-13	
DC 7° pos. Type	M14-17	
DN _ neg. Typ	M18-21	
RN _ neg. Typ		
SC 7° pos. Typ	M23	
SN neg. Typ	M24	
TB 5° pos. Typ	M25	
TC 7° pos. Typ	M26	
TN _ neg. Typ	M27-30	
TP 11° pos. Typ (ohne Loch)	M31	
TP 11° pos. Typ (mit Loch)	M32-35	
VB 5° pos. Typ	M36-37	
VC 7° pos. Typ	M38-39	
VN neg. Typ	M40-42	
WN _ neg. Typ	M43	
ZNEX negpos. Typ		
Negpos. Typ		
Auswahl	M46-47	

BNBB -Typ Ausbohrwerkzeuge...... M52

DABB -Typ Ausbohrwerkzeug...... M57

 RF -Typ Planfräser
 M70

 SRF -Typ Planfräser
 M71

ANX-Typ Planfräser......M58-69

DAL / DDL / DML -Typ PKD-Bohrer...... M78-79

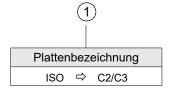
BNES -Typ Schaftfräser...... M74

BNBP -Typ Mikro-Kugelbahnschaftfräser..... M75

S

/**c**/

BSME / SEXC -Typ CBN Bohrstangensysteme	M48-51	
DNDD T A L L	MEO	



Nachschleifbar

CNMA 120408

Zusatzinformation Tabelle 1

Tabelle 1

Symbol	Beschreibung
В	CBN voll belegt

Einwegplatte

CNGG 120408 N-SV NC WG

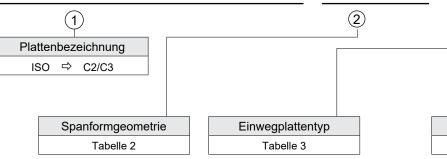


Tabelle 2

Symbol	Beschreibung
_	Standard Typ
LF LE	Scharfkantig Scharfkantig-nur verrundet
LT	Scharfe Schneidkante ohne Radius
LS	Geringe Schnittkraft
ES	Für höhere Schnittgeschwindigkeit und Vorschübe
HS	Verstärkte Schneidkante
US	Verstärkte Schneidkante
N-FV N-LV N-SV	Spanbrecher

Tabelle 3		
Symbol	Einwegplatte	CBN-Sorte
NC	Beschichtetes SUMIBORON	BNC2115, BNC2125 BNC2010, BNC2020 BNC100, BNC160 BNC200, BNC300 BNC500
NU	Unbeschichtete CBN-Sorte	BNX10, BNX20 BN1000, BN2000 BN350, BN7000, BN7115,7500
	Binderloses SUMIBORON	NCB100
NS	Unbeschichtete CBN-Sorte	BNX25

"Wiper"-Typ Tabelle 4

Tabelle 4

(3)

Symbol	Beschreibung
WG	Beim Schlichten 0,05 ≤ f ≤ 0,20
WH	Beim hohen Vorschub 0,20 ≤ f < 0,40
W	Oberflächengüten Standard: R _z 1,6–3,2μm

f: Vorschub (mm/U)

Anzahl der Schneidecken Tabelle 5

Schneidenanzahl	Тур
1 Schneidecke	einschneidig
2 Schneidecken	
3 Schneidecken	mohroohnoidia
4 Schneidecken	mehrschneidig
6 Schneidecken	
	1 Schneidecke 2 Schneidecken 3 Schneidecken 4 Schneidecken

Nachschleifbar

CNMA 120408 RH

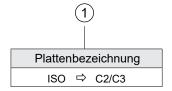
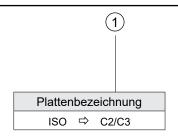
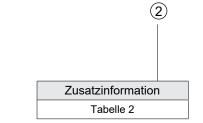


Tabelle 1


Symbol	Beschreibung
RH	Verrundete Schneidkantenausführung


Einwegplatte

CNMA 120408

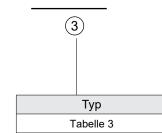


Tabelle 2

Symbol	Beschreibung								
N-LD	Spanbrooker (neutral)								
N-GD	Spanbrecher (neutral)								
R-DM	Spanbrecher (rechtsschneidend)								
L-DM	Spanbrecher (linksschneidend)								

Tabelle 3

Symbol	Beschreibun	g	
NF	NF-Schneidplatte	\Rightarrow	L26
NU	Einwegplatte		

7° Freiwinkel 80° rhombisch

Beschichtet

	Abmes	sungen	(mm)	
CC	L	IC	S	D ₁
0602	6,45	6,35	2,38	2,8
09T3	9,7	9,525	3,97	4,4

Gehärteter Stahl Grauguss N Nichteisenmetalle
S Superlegierungen
Gesinterte Komponenten

ш	Occinion to Hom	ponenten
	Hartmet./Hartes	sprödes Mat.

CCGT / CCGW •• Unbeschichtet **Beschichtet** CBN BBNC2125 BNC2125 BNC2010 BNC2020 BNC200 BNC2 G-Klasse SumiBoron (CBN, "Multi-Corner" Einwegplatten) Plattenform ISO Kat.-Nr. **CCGT 060204 N-FV NC2** 000 • 0 **CCGT 09T304 N-FV NC2** 0.4 • **CCGT 09T308 N-FV NC2** 0,8 . . . • • • **CCGT 09T304 N-LV NC2** Mit 2 CBN-Schneidecken **CBN** mit Spanbrecher CCGT 09T308 N-LV NC2 8,0 • CCGW 060202 NC2 CCGW 060204 NC2 0,4 CCGW 060208 NC2 **CCGW 09T302 NC2** • 0 CCGW 09T304 NC2 0,4 • • • • Mit 2 CBN-Schneidecken **CCGW 09T308 NC2** 8,0 • • • CCGW 09T304 NC-W2 • Standardtvp mit **CCGW 09T308 NC-W2** 0,8 • "Allround"- Schneidkanten **CCGW 09T304 NC-WG2** 0.4 • CCGW 09T308 NC-WG2 . . . 0,8 • **CCGW 09T304 NC-WH2** 0.4 • • • • CCGW 09T308 NC-WH2 0,8 • • • • CCGW 060202 LE-NC2 0,2 CCGW 060204 LE-NC2 0,4 **CCGW 09T302 LE-NC2** 0,2 LE - Typ CCGW 09T304 LE-NC2 0.4 • geringe Schnittkraft **CCGW 09T308 LE-NC2** 0,8 Mit 2 CBN-Schneidecken CCGW 060202 LT-NC2 0,2 CCGW 060204 LT-NC2 0,4 **CCGW 09T302 LT-NC2** 0,2 **CCGW 09T304 LT-NC2** 0,4 **LT** - Typ Scharfe Schneidkanten Mit 2 CBN-Schneidecken **CCGW 09T308 LT-NC2** 0,8 0,2 0,4 CCGW 060202 LS-NC2 CCGW 060204 LS-NC2 • CCGW 060208 LS-NC2 8,0 00 • **CCGW 09T302 LS-NC2** 0,2 |o|o0 **CCGW 09T304 LS-NC2** 0,4 • LS - Typ Mit 2 CBN-Schneidecken 0,8 geringe Schnittkraft **CCGW 09T308 LS-NC2** • CCGW 060208 HS-NC2 8,0 CCGW 09T304 HS-NC2 0.4 **CCGW 09T308 HS-NC2** 0,8 • • • HS - Typ

/c

S

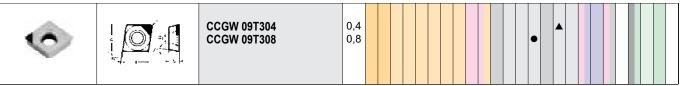
Mit 2 CBN-Schneidecken

verstärkte Schneidkanten

Unbeschichtet

Unbeschichtet

CC	CC L IC S										
0602	0602 6,45 6,35 2,38										
09T3	9T3 9,7 9,525 3,97										
03X1	X1 3,5 1,4										
04X1	04X1 4,3 1,8										
1204	1204 12,9 12,7 4,76										


CBN

H Gehärteter Stahl Grauguss Nichteisenmetalle S Superlegierungen
M Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

CEW / CCGW

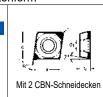
SumiBoron (Ci	BIN, Einwegschne	elapiatten)		\mathcal{C}	ပ်	<u> </u>	<u> </u>	<u> </u>	5	<u>خاك</u>	<u> </u>	12	<u> </u>			35	200	71	SS	ا ک	35	10	Ď
Platte	nform	ISO KatNr.	RE	6	6		5	盲	6	2 2	盲	圖	6		6	<u> </u>		B		22	ă	DA	岂
LF - Typ geringe Schnittkraft		CCEW 03X102 LF-NU	0,2														0	0					
0		CCEW 03X102 LT-NU CCEW 03X104 LT-NU	0,2 0,4											•									
LT - Typ Scharfe Schneidkanten		CCEW 04X102 LT-NU CCEW 04X104 LT-NU	0,2 0,4											0									

● G-Klasse SumiBoron (Nachschleifbare CBN-Schneidplatten)

SumiBoron (CBN, Einwegschneidplatten)

G-Klasse Sur	HIBOTON (CBIN, E	inwegschneidplatten)											
		CCGW 060204 NS CCGW 09T304 NS CCGW 09T308 NS	0,4 0,4 0,8						•				
•		CCGW 060202 NU CCGW 060204 NU CCGW 060208 NU CCGW 09T302 NU CCGW 09T304 NU CCGW 09T308 NU	0,2 0,4 0,8 0,2 0,4 0,8					•	4	. •	•	0	
LT - Typ Scharfe Schneidkanten		CCGW 060202 LT-NU CCGW 060204 LT-NU CCGW 060208 LT-NU CCGW 09T302 LT-NU CCGW 09T304 LT-NU CCGW 09T308 LT-NU	0,2 0,4 0,8 0,2 0,4 0,8				000000						
HS - Typ verstärkte Schneidkanten		CCGW 060202 HS-NU CCGW 060204 HS-NU CCGW 09T302 HS-NU CCGW 09T304 HS-NU CCGW 09T308 HS-NU	0,2 0,4 0,2 0,4 0,8				0000						

7° Freiwinkel Lochausführung 80° rhombisch


> Abmessungen (mm) CC S D_1 2,38 0602--6.35 2,8 6.45 09T3--9,7 9,525 3,97 4,4 Unbeschichtet

Gehärteter Stahl Grauguss Nichteisenmetalle Superlegierungen M Gesinterte Komponenten

Hartmet./Hartes sprödes Mat.

CCGT	CCGW ●	00000
● G-Klasse S	SumiBoron (CBN, "N	Multi-Corner" Einw
Plat	tenform	ISO KatNr.
Break Master - FV, LV		CCGT 060204 N-F
•		CCCT OCTOOA N E

Platte	Ì
Break Master - FV, LV	l
0	
	l
CBN mit Spanbrecher	

CCGW 060204 NU2

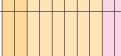
CCGW 09T304 NU2

CCGW 09T308 NU2

CBN

Unbeschichtet

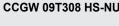
Mit 2 CBN-Schneidecken


CCGW 09T304 NU-WG2

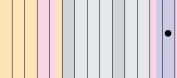
CCGW 09T308 NU-WG2

0,4

0,8

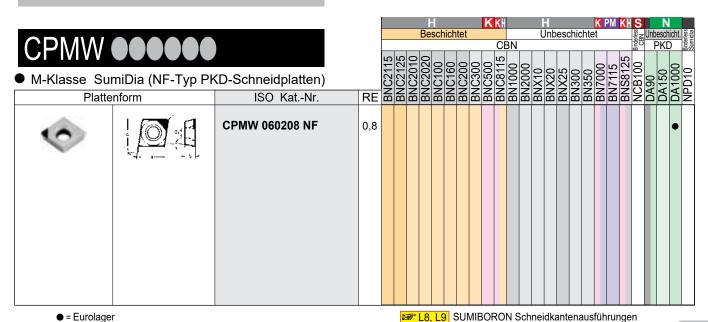


S



Unbeschichtet

CPGW **0000**


Beschichtet

	Abmessungen (mm)									
CP	L	S	D ₁							
0602	6,45	6,35	2,38	2,8						
0802		7,94	2,38	3,4						
0903		9,525	3,18	4,4						

Gehärteter Stahl Grauguss N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

								(CBN							Din	둘이	Pk	(D	E S	
● G-Klasse Su		Multi-Corner" Einweg	gplatten) RE	BNC2115 BNC2125		BNC2020 BNC100	BNC160	BNC200 BNC300	BNC500	BN1000	BN2000 BNX10	BNX20	BNX25	BN300 BN350	BN7000	BN7115	BNS8125	NCB100	DASU DA150	DA 1000	NPD10
	Mit 2 CBN-Schneidecken	CPGW 080202 NC2 CPGW 080204 NC2 CPGW 090302 NC2 CPGW 090304 NC2	0,2 0,4 0,2 0,4		0000																

Unbeschichtet

○ = Japanlager

<u>/c/</u>

R)

S

(W)

 \mathbf{z}

Beschichtet

KH

CBN

Gehärteter Stahl

Nichteisenmetalle Superlegierungen

PM Gesinterte Komponenten

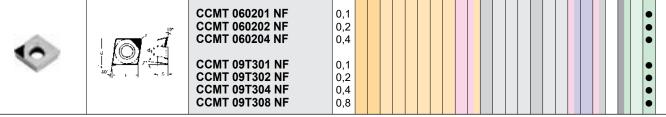
Hartmet./Hartes sprödes Mat.

Unbeschicht.

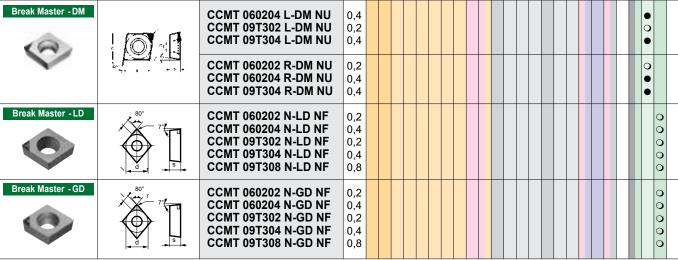
Grauguss

Unbeschichtet

SUMIBORON / SUMIDIA Wendeschneidplatten


80° rhombisch 7° Freiwinkel

> Abmessungen (mm) D_1 CC - 1 IC S 0602--2,8 09T3--9,7 9,525 3,97 4.4 Unbeschichtet 03X1--3,5 1,4 1,9 04X1--4,3 1,8 2.3


CCMT / CCMW

Wi-Masse SumiDia (Nachschief	bare PND-Schneidplatteri)		<u>ن</u>	<u>ن ان</u>	<u>ن (د</u>	<u>ان</u>	<u>0</u>	<u> </u>	<u>ٽ ک</u>	$\tilde{\mathbb{S}}$	2 2	\succeq	\geq	<u> </u>	35	\geq	<u>~ ŏ</u>	٥	6	2	
Plattenform	ISO KatNr.	RE		2 2			B	8		8		B	B		BN	뮵	6	5 2	A	8	3 生
	CCMT 060202 CCMT 060204 CCMT 09T302 CCMT 09T304	0,2 0,4 0,2 0,4																		• • •	

M-Klasse SumiDia (NF-Typ PKD-Schneidplatten)

SumiDia (PKD, "Break Master" Einwegplatten) M-Klasse

SumiDia (NF-Typ PKD-Schneidplatten)

	CCMW 03X104 NF CCMW 04X102 NF CCMW 04X104 NF CCMW 060202 NF CCMW 060204 NF CCMW 09T302 NF CCMW 09T304 NF	0,2 0,4 0,2 0,4 0,2 0,4 0,2 0,4 0,2				00000000	
A A A B B B B B B B B B B	CCMW 09T308 NF	0,8				0	_

● M-Klasse Su	miDia (PKD, binderlos)											
	CCMW 03X102 RH),2										0
	CCMW 03X104 RH	0,4										0
4	CCMW 04X102 RH),2										0
	CCMW 04X104 RH	0,4										O
	00	0,2										0
	00	0,4										3
	55	0,2										ŏ
		0,4										o
	CCMW 09T308 RH	0,8										\circ

C

 (\mathbf{R})

S

 $\langle \mathbf{w} \rangle$

Unbeschichtet

80° rhombisch O° Freiwinkel Lochausführung

Beschichtet

	Abmes	sungen	(mm)	
CN	L	IC	S	D ₁
1204	12,9	12,7	4,76	5,16

H Gehärteter Stahl
K Grauguss
N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten
Hartmet./Hartes sprödes Mat.

CNGA		
CINOA		

CNGA												СВ			J		<u></u>		_	_	Binder	_	PKI		Binder Sum)
		_	en) RE	115	125			80	8	8	8	13	9	3 _		2			3	107 107	3 6	3		00	0
	•	lulti-Corner" Einwegplatt	en)	S 2			٤١٤	įΣ	2	ဋ	5	8		Ž	Ž	X	130	1350		- 0°	3 5	190	1150	1100	<u>б</u>
Platte	nform	ISO KatNr.	RE	面	6	තිබ්	ממ	面	面	面	面	කි	ත්	ממ	ā	面	面	6	ה מל	מֿ מֿ	iΖ	2			Ż
	Mit 2 CBN-Schneidecken	CNGA 120404 NC2 CNGA 120408 NC2 CNGA 120412 NC2 CNGA 120416 NC2 CNGA 120420 NC2 CNGA 120424 NC2	0,4 0,8 1,2 1,6 2,0 2,4		0		0	000	O	000															
	Mit 4 CBN-Schneidecken	CNGA 120402 NC4 CNGA 120404 NC4 CNGA 120408 NC4 CNGA 120412 NC4 CNGA 120416 NC4 CNGA 120420 NC4 CNGA 120424 NC4	0,2 0,4 0,8 1,2 1,6 2,0 2,4	0 • • • 0 0 0	•				O	• • • • • •	000														
Standardtyp mit "Allround"- Schneidkanten		CNGA 120404 NC-W4 CNGA 120408 NC-W4	0,4 0,8	•	•			•	1		•														
	Wiper (Wiper-Typ)	CNGA 120404 NC-WG4 CNGA 120408 NC-WG4 CNGA 120412 NC-WG4	0,4 0,8 1,2	•				•																	
	(1)1/	CNGA 120404 NC-WH4 CNGA 120408 NC-WH4 CNGA 120412 NC-WH4	0,4 0,8 1,2	• • •					•																
LE - Typ geringe Schnittkraft	Mit 2 CBN-Schneidecken	CNGA 120404 LE-NC2 CNGA 120408 LE-NC2 CNGA 120412 LE-NC2	0,4 0,8 1,2		-	•																			
LT - Typ scharfe Schneidkanten	Mit 2 CBN-Schneidecken	CNGA 120402 LT-NC2 CNGA 120404 LT-NC2 CNGA 120408 LT-NC2 CNGA 120412 LT-NC2	0,2 0,4 0,8 1,2																						
	Mit 2 CBN-Schneidecken	CNGA 120402 LS-NC2 CNGA 120404 LS-NC2 CNGA 120408 LS-NC2 CNGA 120412 LS-NC2	0,2 0,4 0,8 1,2		0			•	•	• • •															
LS - Typ geringe Schnittkraft	Mit 4 CBN-Schneidecken	CNGA 120404 LS-NC4 CNGA 120408 LS-NC4 CNGA 120412 LS-NC4	0,4 0,8 1,2					0																	
ES - Typ stabilisiert gegen Kolk	Mit 4 CBN-Schneidecken	CNGA 120404 ES-NC4 CNGA 120408 ES-NC4 CNGA 120412 ES-NC4	0,4 0,8 1,2																						

80° rhombisch O° Freiwinkel Lochausführung

CN__ L IC S D

ichtet

	Abmes	sungen	(mm)		H Gehärteter Stahl
CN	L	IC	S	D ₁	K Grauguss
					N Nichteisenmetalle
204	12,9	12,7	4,76	5,16	S Superlegierungen
					PM Gesinterte Komponenten
					Hartmet./Hartes sprödes Mat.

		Beschichtet				12	204	1.	2,9	<u> </u>	12,7		4,76	5 5	5,16		P	MG	esi	nte	rte	Kor		one		n Mat.
	CNGA/	CNGG ●	00000						H esch				K K	BN			nbe	sch	icht	K et	PM	KH	Sinderless	Jnbes PK	N schich	Sumidia
	● G-Klasse Sur	miBoron (CBN, "M	lulti-Corner" Einw	egplatte	n) RE	NC2115	NC2125	NC2070	NC100	NC160	NC200	NC300	NC500	N1000	N2000	NX10	NX20	NX25	N350	N7000	N7115	NS8125	CB100	A90	A1000	PD10
	Platte	nform Mit 2 CBN-Schneidecken	ISO KatNr. CNGA 120404 HS- CNGA 120408 HS- CNGA 120412 HS-	NC2 (0,4 0,8 1,2	B	•			•	•	• • • • • • • • • • • • • • • • • • •	<u> </u>		IB I	B				B	B	<u>B</u>	Ž	ממ	<u>ا</u>	iZ
	HS - Typ verstärkte Schneidkanten	Mit 4 CBN-Schneidecken	CNGA 120404 HS- CNGA 120408 HS- CNGA 120412 HS-	NC4	0,4 0,8 1,2	\circ	0	0 0 0)		0		0000													
	Break Master - FV, LV, SV		CNGG 120404 N-F CNGG 120408 N-F CNGG 120412 N-F	V NC4	0,8	- 1	- 1				•															
7	CBN mit Spanbrecher	Mit 4 CBN-Schneidecken	CNGG 120404 N-L CNGG 120408 N-L CNGG 120412 N-L	V NC4	0,8	•				•	•															
			CNGG 120408 N-S CNGG 120412 N-S		0,8 1,2			•		0	•															
7																										

 $\hat{\mathbf{Z}}$

SUMIBURUN/SUMIDIA-Schneidplatten

Unbeschichtet

Unbeschichtet

	Abmes	sungen	(mm)	
CN	L	IC	S	D ₁
1204	12,9	12,7	4,76	5,16

H Gehärteter Stahl
K Grauguss
N Nichteisenmetalle
S Superlegierungen
Gesinterte Komponenten
Hartmet./Hartes sprödes Mat.

CNGA •••••

CNGA												СВІ	N_		1				_	_	Binder		PKI		Binder Sum)
	,,	lulti-Corner" Einwegplatt	en) RE	115	125	010	020	36	8	8	8	12	38	3 _		2			3;	BN/115 RNS8125	3 5	3	0	8	0
			en)	2	2	20		25		S	S				Z N	X	8	N35		- 00 20 20 20 20 20 20 20 20 20 20 20 20 2	3,5	A90	A15	A10	PD1
Platte	nform	ISO KatNr. CNGA 120404 NS2 CNGA 120408 NS2 CNGA 120412 NS2	0,4 0,8 1,2	B	B	<u> </u>	<u> </u>	<u> </u>		B	B	m c	ם מ			• • •	B	<u> </u>	ממ	ממ	i Z	בות ח	Ď	Δ	<u>Z</u>
	Mit 2 CBN-Schneidecken	CNGA 120404 NU2 CNGA 120408 NU2 CNGA 120412 NU2	0,4 0,8 1,2																	•					
•		CNGA 120404 NU-W2 CNGA 120408 NU-W2	0,4 0,8																						
	Wiper	CNGA 120404 NU-WG2 CNGA 120408 NU-WG2 CNGA 120412 NU-WG2	0,4 0,8 1,2																						
	(Wiper-Typ)	CNGA 120404 NU-WH2 CNGA 120408 NU-WH2	0,4 0,8																						
LF - Typ geringe Schnittkraft	Mit 2 CBN-Schneidecken	CNGA 120404 LF-NU2 CNGA 120408 LF-NU2	0,4 0,8) (C						
LE - Typ geringe Schnittkraft	Mit 2 CBN-Schneidecken	CNGA 120404 LE-NU2 CNGA 120408 LE-NU2	0,4 0,8																	2					
LT - Typ scharfe Schneidkanten	Mit 2 CBN-Schneidecken	CNGA 120404 LT-NU2 CNGA 120408 LT-NU2 CNGA 120412 LT-NU2	0,4 0,8 1,2																						
LS - Typ geringe Schnittkraft	Mit 2 CBN-Schneidecken	CNGA 120404 LS-NU2	0,4																	C					
HT- Typ verstärkte Schneidkanten	Mit 2 CBN-Schneidecken	CNGA 120408 HT-NU2 CNGA 120412 HT-NU2	0,8 1,2															0							

80° rhombisch 0° Freiwinkel Lochausführung

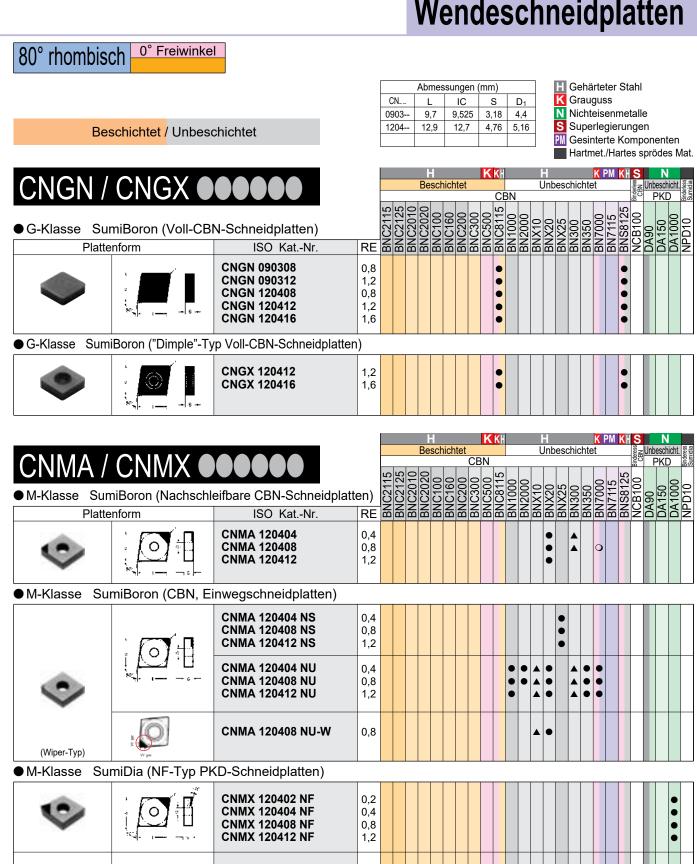
Gehärteter Stahl

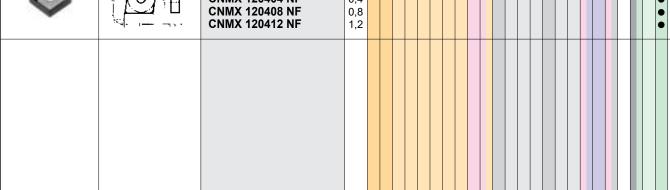
Grauguss

Nichteisenmetalle
Superlegierungen
Gesinterte Komponenten

Unbeschichtet

Hartmet./Hartes sprödes Mat.


CNGA / CNGM •••••


				L							CB	<u>N</u>								E C	_ <u>P</u>	<u>KD</u>	Bind
● G-Klasse Sumi	iBoron (CBN, "Multi	-Corner" Einwegplatten)	RE	C2115	C2125	C2010	C100	C160	C200	2200	C8115	1000	X10	X20	X25	300	2000	7115	S8125	B100	06	150	1000
Platte	nform	ISO KatNr.	RE	BN	BN	BN	B B	B	BN		M I	S S	BN	BN	BN	M N	S S	N N	B	2	ă.	S i	3
•		CNGA 120404 HS-NU2 CNGA 120408 HS-NU2 CNGA 120412 HS-NU2	0,4 0,8 1,2									0 0 0					Н						
HS - Typ verstärkte Schneidkanten	Mit 2 CBN-Schneidecken																				Ш		
US - Typ verstärkte Schneidkanten	Mit 2 CBN-Schneidecken	CNGA 120404 US-NU2	0,4															0					
Break Master - LV		CNGM 120404 N-LV NU2 CNGM 120412 N-LV NU2	0,4 1,2									•											
CBN mit Spanbrecher	Mit 2 CBN-Schneidecken																ı				Ш		

G-Klasse SumiBoron (CBN, binderlos)

• G-Masse Su	inibolon (CDN, bi	idelios)								
		CNGA 120404 NU CNGA 120408 NU CNGA 120412 NU	0,4 0,8 1,2						000	

 $\hat{\mathbf{z}}$

/c/

D

R

S

 $\langle \mathbf{w} \rangle$

 $\left(\mathbf{z}\right)$

7° Freiwinkel 55° rhombisch

Beschichtet

	Abmes	sungen	(mm)	
DC	L	IC	S	D ₁
0702	7,75	6,35	2,38	2,8
11T3	11,6	9,525	3,97	4,4

Beschichtet

•

Gehärteter Stahl Grauguss Nichteisenmetalle Superlegierungen M Gesinterte Komponenten

Hartmet./Hartes sprödes Mat.

Unbeschichtet

CBN

DCCT	•••••

BNC2020 BNC2020 BNC2020 BNC2020 BNC20 ● G-Klasse SumiBoron (CBN, "Multi-Corner" Einwegplatten)

Platte	nfo
Break Master - FV, LV	
CBN mit Spanbrecher	, N

ISO Kat.-Nr.

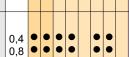
DCGW 070204 NC2 DCGW 070208 NC2

DCGW 070202 NC2

0,4

0,4

8,0

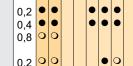


DCGW 11T308 NC-WG2

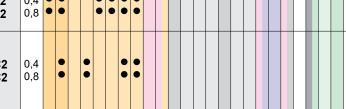
DCGW 11T304 NC-WG2

 $\left(\mathbf{z}\right)$

S



DCGW 070202 LS-NC2 DCGW 070204 LS-NC2
DCGW 070208 LS-NC2



DCGW 11T304 HS-NC DCGW 11T308 HS-NC
--

^{● =} Eurolager ○ = Japanlager

Unbeschichtet

55° rhombisch 7° Freiwinkel Lochausführung

Unbeschichtet

Abmessungen (mm)											
DC	L	IC	S	D ₁							
0702	7,75	6,35	2,38	2,8							
11T3	11,6	9,525	3,97	4,4							

CBN

Beschichtet

H Gehärteter Stahl
K Grauguss
N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten
Hartmet./Hartes sprödes Mat.

DCCT	
	' DCGW

Platte	nform	fulti-Corner" Einwegplatt	RF	NE NE	XI			NE NE			Ê	줆)A8	Ä.	Ž
		DCGT 070204 N-FV NU2	0,4														Ī	Ī	T	
Break Master - FV, LV		DCGT 11T304 N-FV NU2 DCGT 11T308 N-FV NU2	0,4							,										
CBN mit Spanbrecher	Mit 2 CBN-Schneidecken	DCGT 11T304 N-LV NU2 DCGT 11T308 N-LV NU2	0,4 0,8																	
		DCGW 070202 NU2 DCGW 070204 NU2 DCGW 070208 NU2	0,2 0,4 0,8								•		•	•	(O				
	Mit 2 CBN-Schneidecken	DCGW 11T302 NU2 DCGW 11T304 NU2 DCGW 11T308 NU2	0,2 0,4 0,8								•		•	•		0				
	169	DCGW 11T304 NU-WG2 DCGW 11T308 NU-WG2	0,4 0,8																	
	(Wiper-Typ)	DCGW 11T304 NU-WH2	0,4							•										
- Typ arfkantig	Mit 2 CBN-Schneidecken	DCGW 11T302 LF-NU2 DCGW 11T304 LF-NU2 DCGW 11T308 LF-NU2	0,2 0,4 0,8											((•				
- Typ nge Schnittkraft	Mit 2 CBN-Schneidecken	DCGW 11T302 LE-NU2 DCGW 11T304 LE-NU2 DCGW 11T308 LE-NU2	0,2 0,4 0,8													0				
- Typ nge Schnittkraft	Mit 2 CBN-Schneidecken	DCGW 11T302 LS-NU2 DCGW 11T304 LS-NU2 DCGW 11T308 LS-NU2	0,2 0,4 0,8													0				
- Typ	0 70 TO 1 8	DCGW 070208 HS-NU2 DCGW 11T304 HS-NU2 DCGW 11T308 HS-NU2	0,8 0,4 0,8																	
stärkte Schneidkanten	Mit 2 CBN-Schneidecken																			

7° Freiwinkel Lochausführung 55° rhombisch

> DC. IC 0702--2,38 7,75 6,35 11T3--11,6 9,525 3,97 Unbeschichtet

Abmessungen (mm) Gehärteter Stahl Grauguss $D_{1} \\$ Nichteisenmetalle 2,8 Superlegierungen 4,4 PM Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

KKH

OCCT / DCCW A

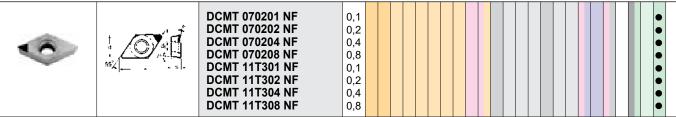
DCGT /	DCCW				_		Bes	schie	chtet		K	ΚΗ			Ur	bes	chi	chte		M	ΚH	S EzU	Inbeso	chicht	rless
	DCCW				ıo		\sim					CB									10	<u>E</u> O	PK	D	Bind
● G-Klasse Sur	niBoron (CBN. Ei	nwegschneidplatten)		3211	32125	32010	3202	900	BNC200	300	3500	3811		300		250	00	20	000	115	38125	3100	2 2	000	010
Platte	•	ISO KatNr.	RE	BNC	BNC	BN	BN		BNG	BN	BNC		N C				BN3	BN3	BN ₇	BN7	BNS		DA DA	PA:	M
		DCGW 11T304 NS DCGW 11T308 NS	0,4 0,8													•									
•		DCGW 070202 NU DCGW 070204 NU DCGW 070208 NU	0,2 0,4 0,8										•	• 4			A	•	•			0			
	55%. 1	DCGW 11T301 NU DCGW 11T302 NU DCGW 11T304 NU DCGW 11T308 NU DCGW 11T312 NU	0,1 0,2 0,4 0,8 1,2														A	•	•			•			
LF - Typ scharfkantig	55% of 70%	DCGW 11T302 LF-NU	0,2																0						
LT - Typ scharfe Schneidkanten		DCGW 070202 LT-NU DCGW 070204 LT-NU DCGW 070208 LT-NU DCGW 11T302 LT-NU DCGW 11T304 LT-NU DCGW 11T308 LT-NU	0,2 0,4 0,8 0,2 0,4 0,8																						
HS - Typ verstärkte Schneidkanten	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DCGW 11T312 LT-NU DCGW 070202 HS-NU DCGW 070204 HS-NU DCGW 11T302 HS-NU DCGW 11T304 HS-NU DCGW 11T308 HS-NU	0,2 0,4 0,2 0,4 0,8											C											

Unbeschichtet

CBN

Unbeschichtet

	Abmessungen (mm)												
DC	L	IC	S	D ₁									
0702	7,75	6,35	2,38	2,8									
11T3	11,6	9,525	3,97	4,4									


H Gehärteter Stahl
K Grauguss
N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten
Hartmet./Hartes sprödes Mat.

DCMT / DCMW •••••

● M-Klasse SumiDia (Nachschleifbare PKD-Schneidplatten)

• III Tilacco Callibia (Itacilo	monbaro i RB comiolapiatto	'''/	12	191	<u> </u>	<u> </u>	<u> </u>	$\underline{\bigcirc}$	기도		×∣×	<u> </u>	2	ಌ ೭	\sim	<u>S</u>	ΜÍ	ນ ∠	- T	- [
Plattenform	ISO KatNr.	RE	B	6		盲	B	8	盲	6		后	6	面面	B	B	2	٤		追
1 d d d d d d d d d d d d d d d d d d d	DCMT 070201 DCMT 070202 DCMT 070204 DCMT 11T302 DCMT 11T304 DCMT 11T308	0,1 0,2 0,4 0,2 0,4 0,8																		

● M-Klasse SumiDia (NF-Typ PKD-Schneidplatten)

● M-Klasse SumiDia (PKD, "Break Master" Einwegplatten)

Break Master - DM		DCMT 070202 L-DM NU DCMT 070204 L-DM NU DCMT 11T304 L-DM NU	0,2 0,4 0,4							•	
Break Master - DM		DCMT 070202 R-DM NU DCMT 070204 R-DM NU DCMT 11T302 R-DM NU DCMT 11T304 R-DM NU	0,2 0,4 0,2 0,4							0	
Break Master - LD	55° r 7° r 5 s	DCMT 070202 N-LD NF DCMT 070204 N-LD NF DCMT 11T302 N-LD NF DCMT 11T304 N-LD NF DCMT 11T308 N-LD NF	0,2 0,4 0,2 0,4 0,8								0 0 0 0
Break Master - GD	55° r 7° d s	DCMT 070202 N-GD NF DCMT 070204 N-GD NF DCMT 11T302 N-GD NF DCMT 11T304 N-GD NF DCMT 11T308 N-GD NF	0,2 0,4 0,2 0,4 0,8								0 0 0 0

● M-Klasse SumiDia (NF-Typ PKD-Schneidplatten)

DCMW 070202 NF DCMW 070204 NF DCMW 11T302 NF DCMW 11T304 NF DCMW 11T308 NF	0,4 0,2 0,4						00000	
DCMW 111308 N	0,8						0	

● M-Klasse SumiDia (PKD, binderlos)

	DCMW 070202 RH DCMW 070204 RH DCMW 11T302 RH DCMW 11T304 RH DCMW 11T308 RH	0,2 0,4 0,2 0,4 0,8										00000

 $\langle {f c}
angle$

 (\mathbf{R})

S

0° Freiwinkel Lochausführung 55° rhombisch

Beschichtet

Abmessungen (mm)									
DN	L	IC	S	D ₁					
1104	11,6	9,525	4,76	3,81					
1504	15,5	12,7	4,76	5,16					
1506	15,5	12,7	6,35	5,16					

|--|

DNGA •							Bes	chic	chte	t		C	BN		U	Inbe	esc	hich	tet	_		-	CBN	Inbe	schir	cht. Silver
		fulti-Corner" Einwegpla		2115	2125	2010	2020	88							0	0.	2	0	٥	3!	15	27.5 CZ L S	8	Ţ,		30
Platte	niboron (CBN, "N nform	ISO KatNr.	tten) RE	BNC	BNC	BNC	BNC		בול מומ				BN 10	BN20	BNX1	BNXZ	BNX	BN30	5N3	BN	BN71	SNS	NCB(DA90	DA15	NA10 NPD
7 1000		DNGA 110404 NC2 DNGA 110408 NC2 DNGA 110412 NC2	0,4 0,8 1,2	•	•	o 0	•			•					1											
	Mit 2 CBN-Schneidecken	DNGA 150404 NC2 DNGA 150408 NC2 DNGA 150412 NC2 DNGA 150416 NC2 DNGA 150420 NC2 DNGA 150424 NC2	0,4 0,8 1,2 1,6 2,0 2,4		000	0 0 0	0000)															
	565	DNGA 150402 NC4 DNGA 150404 NC4 DNGA 150408 NC4 DNGA 150412 NC4 DNGA 150416 NC4 DNGA 150420 NC4 DNGA 150424 NC4	0,2 0,4 0,8 1,2 1,6 2,0 2,4	00000	00000	00000	0																			
Standardtyp mit "Allround"- Schneidkanten	Mit 4 CBN-Schneidecken	DNGA 150604 NC4 DNGA 150608 NC4 DNGA 150612 NC4	0,4 0,8 1,3		•	•	•																			
		DNGA 150404 NC-WG4 DNGA 150408 NC-WG4	0,4 0,8				0																			
	469	DNGA 150604 NC-WG4 DNGA 150608 NC-WG4 DNGA 150612 NC-WG4	0,4 0,8 1,2		•	ullet	•																			
	(Wiper-Typ)	DNGA 150404 NC-WH4 DNGA 150408 NC-WH4	0,4	_	00																			ı		
		DNGA 150604 NC-WH4 DNGA 150608 NC-WH4 DNGA 150612 NC-WH4	0,4 0,8 1,2		•	ullet	•	•																		
		DNGA 150404 LE-NC2 DNGA 150408 LE-NC2 DNGA 150412 LE-NC2	0,4 0,8 1,2			000																				
LE - Typ geringe Schnittkraft	Mit 2 CBN-Schneidecken	DNGA 150604 LE-NC2 DNGA 150608 LE-NC2 DNGA 150612 LE-NC2	0,4 0,8 1,2			•																				
		DNGA 150402 LT-NC2 DNGA 150404 LT-NC2 DNGA 150408 LT-NC2 DNGA 150412 LT-NC2	0,2 0,4 0,8 1,2				0000																			
LT - Typ scharfe Schneidkanten	Mit 2 CBN-Schneidecken	DNGA 150604 LT-NC2 DNGA 150608 LT-NC2 DNGA 150612 LT-NC2	0,4 0,8 1,2				•																			

● = Eurolager

○ = Japanlager

0° Freiwinkel Lochausführung 55° rhombisch

Beschichtet

Abmessungen (mm)											
DN	L	IC	S	D ₁							
1504	15,5	12,7	4,76	5,16							
1506	15,5	12,7	6,35	5,16							

Н
K
N
S
PM

KKH H KPMKHS N

DNGA	A / DNGG	
• • • • • •	0 'D (0D)	

T)N(jA / .	DNGG	00000				E	3es	chic	ntet		_	CE			U	nbe	esch	nich	htet	IVI K	derless	ξ Un	besch	icht.	derless
	DITO 0			2	12	0	$\frac{1}{2}$					S CE		_						7	3 E		PKI		唇の
●G-Klasse Sur	niBoron (CBN, "M	/ulti-Corner" Einwegplatt	ten)	2211	2212	Š	770	7100	2200	3300	3500	3811	8				35	3	320	115	310	; 	20	000	70
Platte	nform	fulti-Corner" Einwegplatt	RE	B	BN				BN BN	BN	BNC	BNC	BN 4					N C	S C			DAS	DA	DA	볼
8		DNGA 150402 LS-NC2 DNGA 150404 LS-NC2 DNGA 150408 LS-NC2 DNGA 150412 LS-NC2	0,2 0,4 0,8 1,2	0	0					000															
10. To	Mit 2 CBN-Schneidecken	DNGA 150604 LS-NC2 DNGA 150608 LS-NC2 DNGA 150612 LS-NC2	0,4 0,8 1,2		•				•	•															
LS - Typ geringe Schnittkraft	565/ Mit 4 CBN-Schneidecken	DNGA 150408 LS-NC4	0,8					0																	
	Mit 2 CBN-Schneidecken	DNGA 150604 ES-NC2 DNGA 150608 ES-NC2 DNGA 150612 ES-NC2	0,4 0,8 1,2				•																		
ES - Typ stabilisiert gegen Kolk	Mit 4 CBN-Schneidecken	DNGA 150404 ES-NC4 DNGA 150408 ES-NC4 DNGA 150412 ES-NC4	0,4 0,8 1,2				0																		
	Mit 2 CBN-Schneidecken	DNGA 150604 HS-NC2 DNGA 150608 HS-NC2 DNGA 150612 HS-NC2	0,4 0,8 1,2				1	•	•	•															
HS - Typ verstärkte Schneidkanten	Mit 4 CBN-Schneidecken	DNGA 150404 HS-NC4 DNGA 150408 HS-NC4 DNGA 150412 HS-NC4	0,4 0,8 1,2	O	$ \mathbf{o} $		2	0		000	0														
		DNGG 150404 N-FV NC4 DNGG 150408 N-FV NC4 DNGG 150412 N-FV NC4	0,4 0,8 1,2	0	$ \mathbf{o} $		o	0	000													ı			
Proof: Master TV IV CV		DNGG 150604 N-FV NC4 DNGG 150608 N-FV NC4 DNGG 150612 N-FV NC4	0,8					•	•																
Break Master - FV, LV, SV	†	DNGG 150404 N-LV NC4 DNGG 150408 N-LV NC4 DNGG 150412 N-LV NC4	0,4 0,8 1,2	0		\mathbf{o}	o	0	000													l			
CBN mit Spanbrecher	Mit 4 CBN-Schneidecken	DNGG 150604 N-LV NC4 DNGG 150608 N-LV NC4 DNGG 150612 N-LV NC4	0,8				•	•	•																
		DNGG 150408 N-SV NC4 DNGG 150412 N-SV NC4							0																
		DNGG 150608 N-SV NC4 DNGG 150612 N-SV NC4			•	•	•		•																

0° Freiwinkel Lochausführung 55° rhombisch

Unbeschichtet

	Abmes	sungen	(mm)	
DN	L	IC	S	D ₁
1504	15,5	12,7	4,76	5,16
1506	15,5	12,7	6,35	5,16

Gehärteter Stahl Grauguss N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten

Hartmet./Hartes sprödes Mat.

Unbeschichtet

CBN

DNI	C^{Λ}	/ DN	IGM		
\square	JA.	/ UI			

● G-Klasse Sur	miBoron (CBN, "M	lulti-Corner" Einwegplatt	en) RE	2115	2125	2010	7100	160	3200	2000	38115	000	000	20	25	200	000	115	8125	3100	0 4	000	NPD10
Platte	• •	ISO KatNr.	RE	BN	BN		N N		BNG	BNG	BNC	BN	BNZ			BN3	BN7	BN	BNS	NE	Ž Ž	NA TA	NP.
		DNGA 150404 NU2 DNGA 150408 NU2 DNGA 150412 NU2	0,4 0,8 1,2										0	0		a		0					
9	Mit 2 CBN-Schneidecken	DNGA 150604 NU2 DNGA 150608 NU2 DNGA 150612 NU2	0,4 0,8 1,2									•	•	•		A •							
	Wo9	DNGA 150404 NU-WG2	0,4										0										
	(Wiper Typ)	DNGA 150404 NU-WH2 DNGA 150408 NU-WH2	0,4 0,8										0										
•	Mit 2 CBN-Schneidecken	DNGA 150408 LF-NU2	0,8														0						
LT - Typ scharfe Schneidkanten	Mit 2 CBN-Schneidecken	DNGA 150404 LT-NU2 DNGA 150408 LT-NU2 DNGA 150412 LT-NU2	0,4 0,8 1,2									,	0										
HS - Typ verstärkte Schneidkanten	Mit 2 CBN-Schneidecken	DNGA 150404 HS-NU2 DNGA 150408 HS-NU2 DNGA 150412 HS-NU2	0,4 0,8 1,2									,	0				0						
Break Master - LV	1 0	DNGM 150404 N-LV NU2 DNGM 150408 N-LV NU2 DNGM 150412 N-LV NU2	0,4 0,8 1,2									,	0										
CBN mit Spanbrecher	Mit 2 CBN-Schneidecken	DNGM 150608 N-LV NU2	0,8										•										

iiberen (OBIT, Sindense	<u>, </u>			
DNGA	150404 NU 150408 NU 150412 NU	0,4 0,8 1,2		0 0

Unbeschichtet

Unbeschichtet

Beschichtet / Unbeschichtet

Abmessungen (mm)										
DN	L	IC	S	D ₁						
1103		9,525	3,18							
1506	15,5	12,7	4,76	5,16						
1506	15,5	12,7	6,35	5,16						

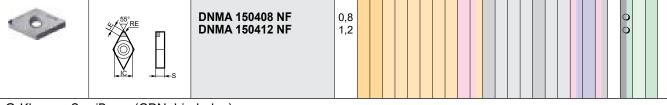
CBN

CBN

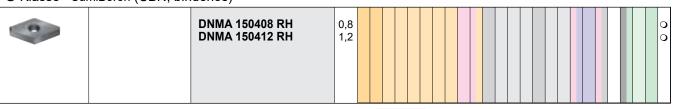
Beschichtet

Gehärteter Stahl Grauguss N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

● G-Klasse SumiBoron	ı (Voll-CBN-Schneidplatten)		S	$\frac{3}{2}$	<u> </u>	3 2	2	<u> </u>	3 5	8	흰	<u> 2 2</u>	<u> </u>	2	80	35	7	288	ت 9	35	19	5
Plattenform	ISO KatNr.	RE	M M	찖													M M		20	S A	DA	닐
	DNGN 110308 DNGN 110312	0,8 1,2								• •								•				


M-Klasse SumiBoron (Nachschleifbare CBN-Schneidplatte

• W-Klasse Our	IIIDOIOII (INACIISCII	ichbarc Obiv-Ochriciapia		밍	일		의일	일			フ ーフ	-	- I	-				_	-		7	נ
			RE	窗	窗	面	r a	面	面	6	र्क वि	面	r a	面	面	面面	面	面	面	žζ	AD D	Ē
		DNMA 150404	0,4											o								
		DNMA 150604 DNMA 150608 DNMA 150612	0,4 0,8 1,2											•		A						


M-Klasse SumiBoron (CBN, Einwegschneidplatten)

	DNMA 150408 NS DNMA 150604 NS CNMA 150608 NS	0,8 0,4 0,8				•				
•	DNMA 150401 NU DNMA 150402 NU DNMA 150404 NU DNMA 150408 NU DNMA 150412 NU	0,1 0,2 0,4 0,8 1,2		0	A C			0		
	DNMA 150604 NU DNMA 150608 NU DNMA 150612 NU	0,4 0,8 1,2		•	•	· .	•	•		

M-Klasse SumiDia (NF-Typ PKD-Schneidplatten)

SumiBoron (CBN, binderlos)

/**c**/

Unbeschicht. PKD

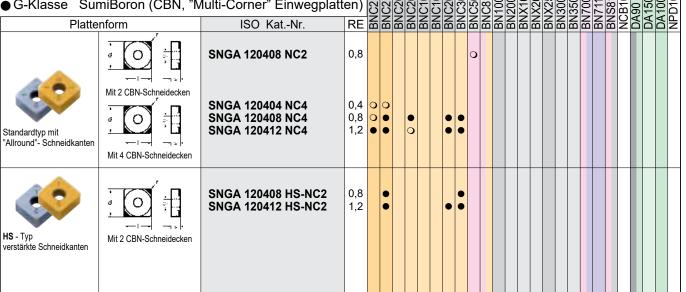
SUMIBORON / SUMIDIA

Wendeschneidplatten

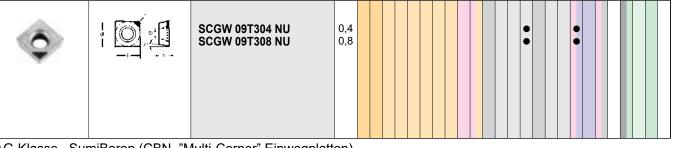
0° Freiwinkel Rund-Typ Gehärteter Stahl Abmessungen (mm) D_1 Grauguss IC S 0903--9,525 9,525 3,18 Nichteisenmetalle Beschichtet / Unbeschichtet 3,18 1203--12 7 127 Superlegierungen 12,7 4,76 PM Gesinterte Komponenten Hartmet./Hartes sprödes Mat. RNGN ••• Beschichtet Unbeschichtet CBN BNC2115
BNC2125
BNC2125
BNC2125
BNC2020
BNC2020
BNC200
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC3000
BN G-Klasse SumiBoron (Voll-CBN-Schneidplatten) Plattenform ISO Kat.-Nr. **RNGN 090300 RNGN 120300 RNGN 120400** Voll-CBN SumiBoron (Voll-CBN-belegte Schneidplatten) G-Klasse **RNGN 090300 B** RNGN 120400 B Voll-CBN

Unbeschichtet

CBN


90° viereckig 7°/0° Freiwinkel Lochausführung

Beschichtet / Unbeschichtet


	Abmes	sungen ((mm)	
SN	L	IC	S	D ₁
09T3	9,525	9,525	3,97	4,4
1204	12,7	12,7	4,76	5,16

Gehärteter Stahl Grauguss Nichteisenmetalle S Superlegierungen
M Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

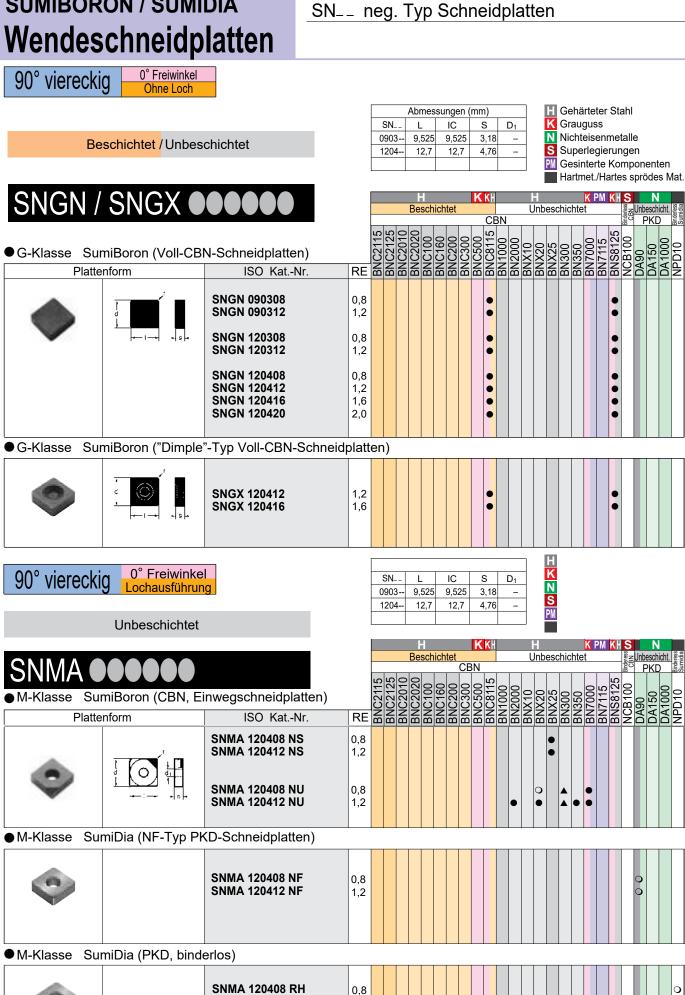
SCGW / SNGA

G-Klasse SumiBoron (CBN, Einwegschneidplatten)

SumiBoron (CBN, "Multi-Corner" Einwegplatten) G-Klasse

•	d j j j j j j j j j j j j j j j j j j j	SNGA 120404 NU2 SNGA 120408 NU2 SNGA 120412 NU2	0,4 0,8 1,2				0	0	000			
LT - Typ scharfe Schneidkanten	d Single Mit 2 CBN-Schneidecken	SNGA 120404 LT-NU2 SNGA 120408 LT-NU2 SNGA 120412 LT-NU2	0,4 0,8 1,2				0					
HS - Typ verstärkte Schneidkanten	d	SNGA 120404 HS-NU2 SNGA 120408 HS-NU2 SNGA 120412 HS-NU2	0,4 0,8 1,2				0					

/**c**/

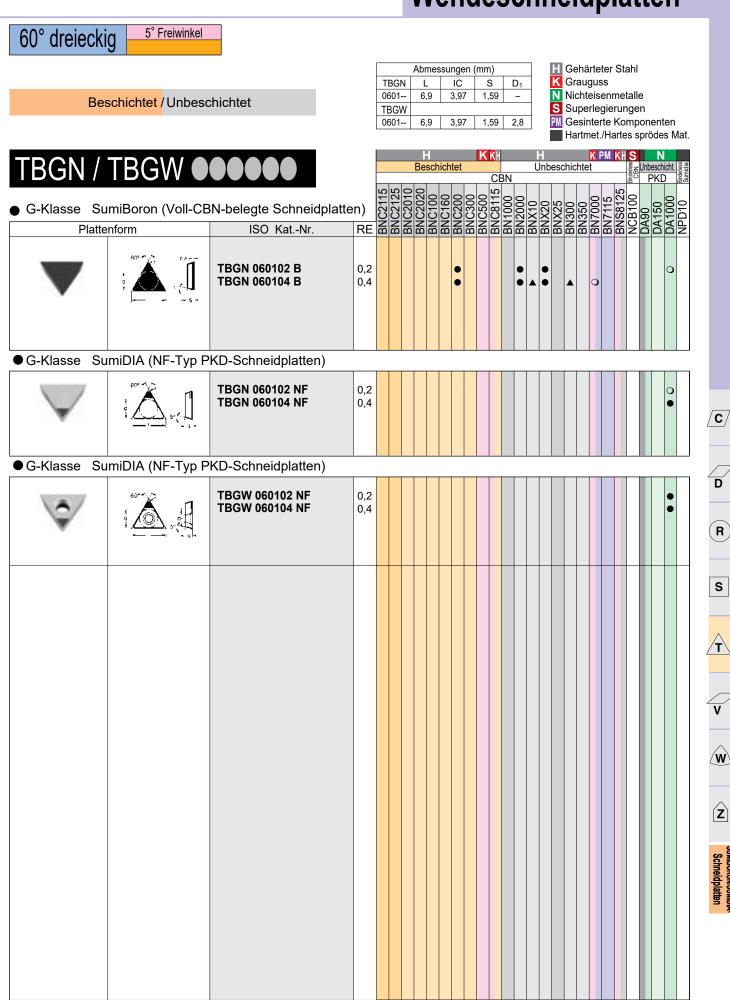


SUMIBORON / SUMIDIA

● = Eurolager

○ = Japanlager

SNMA 120412 RH


0,8

1.2

SUMIBORON/SUMIDIA-Schneidplatten

 $/\mathbf{c}_{j}$

 (\mathbf{R})

R

S

60° dreieckig

7° Freiwinkel Lochausführung

Beschichtet / Unbeschichtet

	Abmes	sungen	(mm)	
TC	L	IC	S	D ₁
0902	9,62	5,56	2,38	2,5
1102	11,0	6,35	2,38	2,8
16T3	16,5	9,525	3,97	4,3

Gehärteter Stahl Grauguss

Unbeschichtet

N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten

Hartmet./Hartes sprödes Mat.

Inbeschicht.

TCGW •••••

						Ė	sesc	hich	tet		'DN		U	nbes	cnic	cnte	t		dorloc		nbesc	hichi	Binderles Sumidia
● G-Klasse Sumil	Boron (CBN, Einweg	gschneidplatten+"Multi-Co	rner")	IC2115	IC2125	C2010	C2020	C160	IC200	C300	1000 1000 1000		IX10	X20	300	1350	17000	17115	28125				
Platte	nform	ISO KatNr.	RE	B	B				BN			BN	BN			BN	B			$\frac{2}{2}$		کاد	上
		TCGW 090204 NC TCGW 090208 NC TCGW 110202 NC	0,4 0,8		•				•														
•		TCGW 110204 NC TCGW 110208 NC	0,2 0,4 0,8	•	• •	- 1			• •														
	Mit 3 CBN-Schneidecken	TCGW 16T304 NC3 TCGW 16T308 NC3	0,4		•				•														
	,63 <u>%</u>	TCGW 090204 NU TCGW 090208 NU	0,4 0,8														•						
0		TCGW 110202 NU TCGW 110204 NU TCGW 110208 NU	0,2 0,4 0,8								•	•	A	•			•						
		TCGW 16T304 NU TCGW 16T308 NU	0,4										•	•			•						

I OIVI I				15	25	원		0	0	2 2	12	0	_					2	25			_	
● M-Klasse Sur	miDia (NF-Typ Pł	(D-Schneidplatten)	RE	IC21	IC21	020	2/2	C16	1020	200	C81	1100	X 100	X20	IX25	300	000	1711	1881)B10	90	100	
Platte	nform	ISO KatNr.	RE	B	图				8			6			B		8	B	B	Z		2 2	造
6		TCMT 090202 NF TCMT 090204 NF	0,2 0,4																		l		
*	1 <u>494</u> , <u>1</u>	TCMT 110201 NF TCMT 110202 NF TCMT 110204 NF	0,1 0,2 0,4																		l		•

60° dreieckig 0° Freiwinkel Lochausführung

Beschichtet

	Abmes	sungen ((mm)	
TN	L	IC	S	D ₁
1604	16,5	9,525	4,76	3,81

H Gehärteter Stahl
K Grauguss Grauguss N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

TNGA •••••

TNGA •	00000					В		ichte			KH CI	BN				chic	chte			Sinde		PKI	hicht.	Binderless Sumidia
		1ulti-Corner" Einwegplatt	en) RE	JC2115	VC2125	C2020	VC100	VC160	CZ00	10500	JC8115	11000	12000	1X10	1X25	1300	1350	17000	17115	128125 12100	190	1150	DA1000	2D10
Platte	nform	ISO KatNr.	RE	面	6		面	6		5 6	面	窗	fa i	6		面	窗	面	6	'nΣ			7	Ż
	Mit 3 CBN-Schneidecken	TNGA 160404 NC3 TNGA 160408 NC3 TNGA 160412 NC3 TNGA 160416 NC3 TNGA 160420 NC3 TNGA 160424 NC3	0,4 0,8 1,2 1,6 2,0 2,4				-	0)														
Standardtyp mit "Allround"- Schneidkanten	Mit 6 CBN-Schneidecken	TNGA 160402 NC6 TNGA 160404 NC6 TNGA 160408 NC6 TNGA 160412 NC6 TNGA 160416 NC6 TNGA 160420 NC6 TNGA 160424 NC6	1,6 2,0	• • • • • •			0	0																
LE - Typ geringe Schnittkraft	Mit 3 CBN-Schneidecken	TNGA 160404 LE-NC3 TNGA 160408 LE-NC3 TNGA 160412 LE-NC3	0,4 0,8 1,2																					
LT - Typ scharfe Schneidkanten	Mit 3 CBN-Schneidecken	TNGA 160402 LT-NC3 TNGA 160404 LT-NC3 TNGA 160408 LT-NC3 TNGA 160412 LT-NC3	0,2 0,4 0,8 1,2			0 0 0																		
LS - Typ geringe Schnittkraft	d decken	TNGA 160402 LS-NC3 TNGA 160404 LS-NC3 TNGA 160408 LS-NC3 TNGA 160412 LS-NC3	0,2 0,4 0,8 1,2	•	0 • • 0		•	•																
ES - Typ stabilisiert gegen Kolk	Mit 6 CBN-Schneidecken	TNGA 160404 ES-NC6 TNGA 160408 ES-NC6 TNGA 160412 ES-NC6	0,4 0,8 1,2			•																		
	d dil a CBN-Schneidecken	TNGA 160404 HS-NC3 TNGA 160408 HS-NC3 TNGA 160412 HS-NC3	0,4 0,8 1,2		•					•														
HS - Typ verstärkte Schneidkanten		TNGA 160404 HS-NC6 TNGA 160408 HS-NC6 TNGA 160412 HS-NC6	0,4 0,8 1,2	$ \mathbf{o} $	0	00			C															

Mit 6 CBN-Schneidecken

Beschichtet

KKH

CBN

SUMIBORON / SUMIDIA Wendeschneidplatten

60° dreieckig 0° Freiwinkel

> TN_-**Beschichtet** 1604--16,5 9,525 4,76

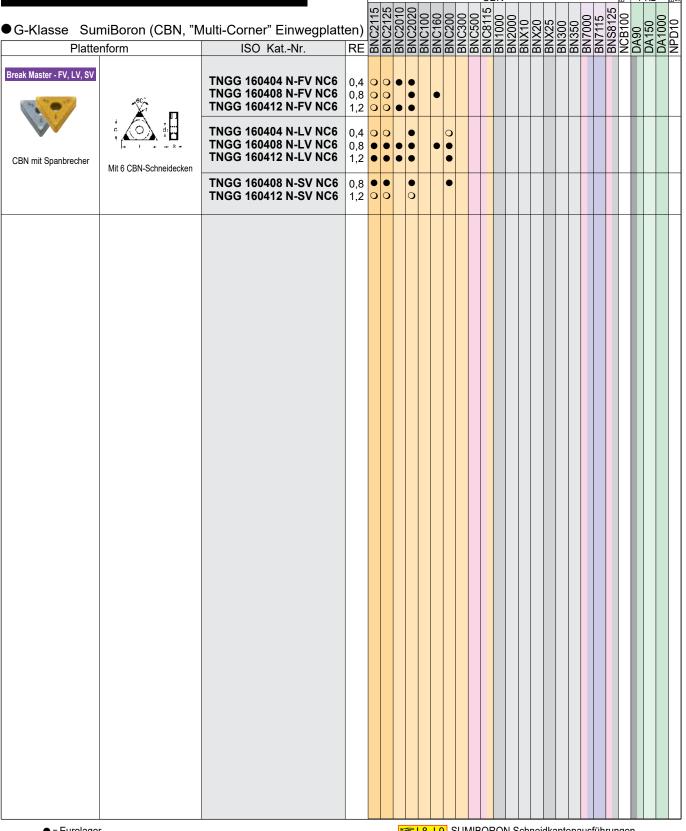
Gehärteter Stahl Abmessungen (mm) Grauguss D_1 Nichteisenmetalle Superlegierungen 3,81 M Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

Unbeschichtet

TNGG •

● G-Klasse SumiBoron (CBN, "Multi-Corner" Einwegplatten)

_	_/



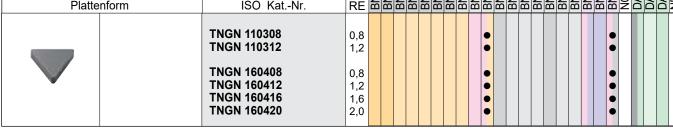
Unbeschichtet

CBN

0° Freiwinkel 60° dreieckig

Beschichtet / Unbeschichtet

	Abmes	sungen ((mm)	
TN	L	IC	S	D ₁
1103		6,35	3,18	-
1604	16,5	9,525	4,76	3,81


__0002

Gehärteter Stahl Grauguss N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

NGA / TNGM ••

● G-Klasse Sur	miBoron (CBN, "M	fulti-Corner" Einwegplatt	en)	IC2115	IC2125	1C201C	CZ0Z1	C160	IC200	10300	009	1287	2000	1X10	1X20	X25	3200	2000	17115	188125	.90 190	DA150	1000	010 ص
Platte	nform	ISO KatNr.	RE	B	面	6		6	面	<u></u>	क्र	200		面	面	6	2 2		B	<u>a</u>	Z 0	2	δ	岂
•		TNGA 160404 NU3 TNGA 160408 NU3 TNGA 160412 NU3	0,4 0,8 1,2										0		000		C	0	000					
	Mit 3 CBN-Schneidecken	TNGA 160404 T NU3 TNGA 160408 T NU3	0,4 0,8										0											
•		TNGA 160404 LF-NU3 TNGA 160408 LF-NU3	0,4 0,8															0	0					
LF / LE - Typ scharfkantig	Mit 3 CBN-Schneidecken	TNGA 160404 LE NU3 TNGA 160408 LE NU3	0,4 0,8																0					
LS - Typ geringe Schnittkraft	Mit 3 CBN-Schneidecken	TNGA 160404 LS NU3	0,4																0					
		TNGA 160408 HT NU3	0,8														C)						
	 	TNGA 160404 HS NU3 TNGA 160408 HS NU3	0,4 0,8															0	0					
•	# A Y A # B	TNGA 160416 HS NU3	1,6																•		۱			
HT, HS, US - Typ verstärkte Schneidkanten	Mit 3 CBN-Schneidecken	TNGA 160404 US NU3	0,4																0					
Break Master - LV	d d	TNGM 160404 N-LV NU3	0,4										0											
CBN mit Spanbrecher	Mit 3 CBN-Schneidecken																							

/**c**/

Unbeschicht.

0° Freiwinkel 60° dreieckig

Unbeschichtet

	Abmes	sungen	(mm)	
TN	L	IC	S	D ₁
1604	16,5	9,525	4,76	3,81

CBN

CBN

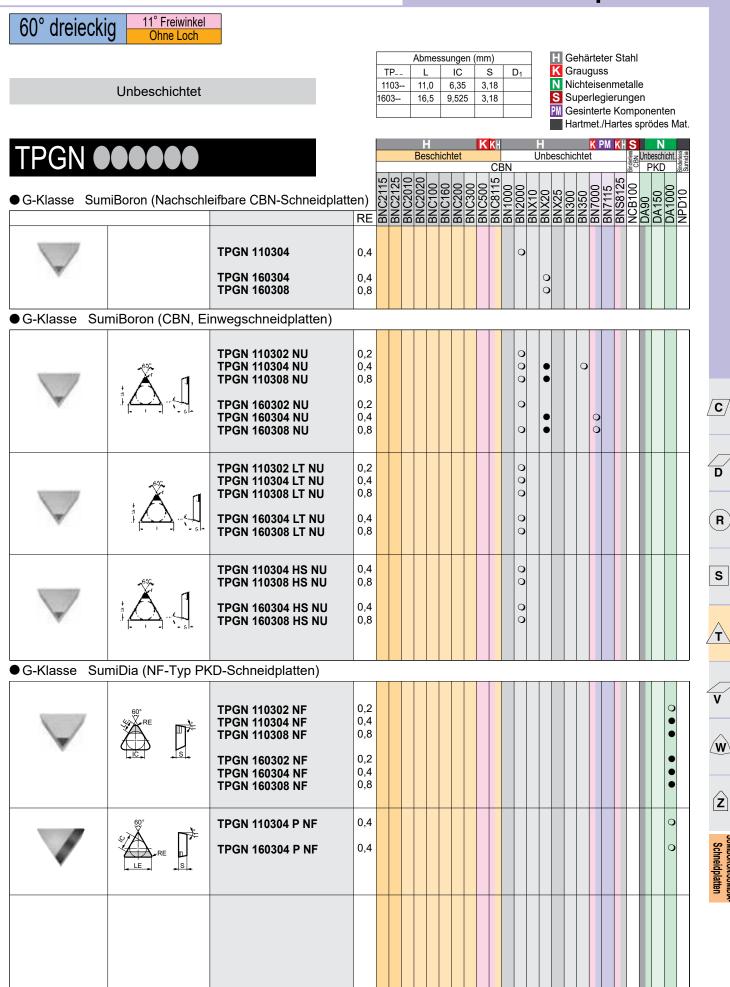
Beschichtet

Gehärteter Stahl Grauguss Nichteisenmetalle Superlegierungen PM Gesinterte Komponenten

Unbeschichtet

Hartmet./Hartes sprödes Mat.

PKD


● M-Klasse SumiBoron (Nachschleifbare CBN-Schneidplatten) Plattenform ISO KatNr. RE M M M M M M M M M M M M M M M M M M M				l						- CI	אוכ							一一		עא	密の
TNMA 160404 0,4	`			VC2115	VC2010	NC2020	VC100	VC200	C 20	<u>8</u>	V100	V 200 X 100	X	X	N300 N350	V7000	N7115	CB100	490	4150	2D10
	Plattenform	SO KatNr.	RE		回回				<u></u>	回回	囧	回回	回回		교 교		<u></u>	ōŽ	(0)		ا∑اد
													•		A						

M-Klasse SumiBoron (CBN, Einwegschneidplatten)

∇	TNMA 160401 NU TNMA 160402 NU TNMA 160404 NU TNMA 160408 NU TNMA 160412 NU	0,1 0,2 0,4 0,8 1,2					0000	A • • • • • • • • • • • • • • • • • • •		•	• 0			
•	TNMA 160408 NS	0,8							0					

● M-Klasse SumiDia (NF-Typ Pk	(D-Schneidplatten)	m BNC211	C212	C201	C100	C160	C2300	C500	1001	2000	X10	X20	300	350	17000	7115	3B100	06)	150	D10
Plattenform	ISO KatNr. RI	E						8			B	BI		B	B		5 2	D	200	3 生 さ
	TNMX 160404 NF 0,4 TNMX 160408 NF 0,4	,4																		0

R

S

 $\langle \mathbf{w} \rangle$

11° Freiwinkel Lochausführung 60° dreieckig

Beschichtet

Abmessungen (mm) D_1 TP_-S IC 0802--8,2 4,76 2,39 2,3 9,62 5,56 2,5 0902--2,38 1102--2,38 2,8 11,0 6,35 1103--3.18 3.4 1604--16,5 9,525 4,76

CBN

2

Beschichtet

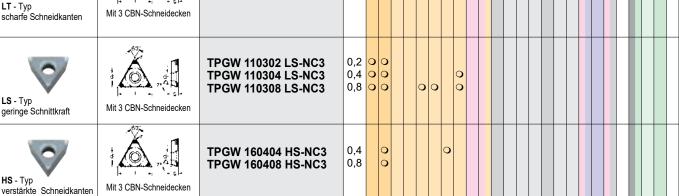
(CO)

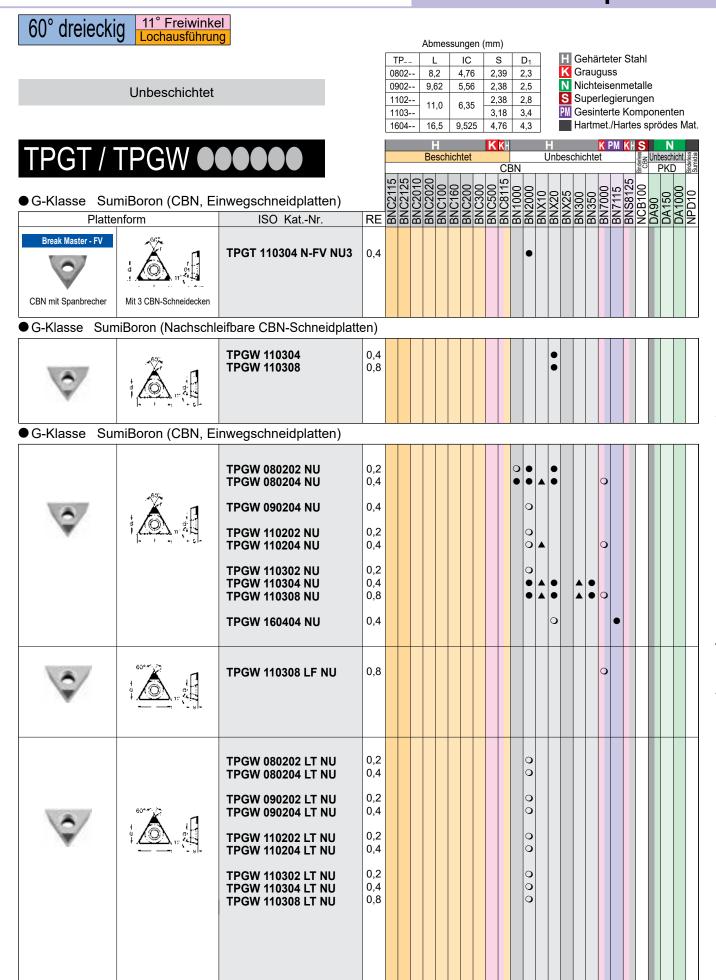
Gehärteter Stahl Grauguss Nichteisenmetalle Superlegierungen PM Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

Unbeschicht. 8 PKD

Unbeschichtet

PGT / TPGW


Plattenform ISO KatNr. RE M M M M M M M M M M M M M M M M M M	●G-Klasse Sur	miBoron (CBN, "N	/lulti-Corner" Einwegplati	ten)	C211	C212	C201	C202	700	C20C	2300	C200	C811	0000	X10	X20	X25	300	2007	7115	S81 2	;B100	06	150	100	בות
TPGT 110304 N-FV NC3	Platte	nform	ISO KatNr.	RE	B	層	B	6			B	B	6			B	BN	6			B	$ \mathbf{z} $	2	2 5	3 2	Ę
	Break Master - FV CBN mit Spanbrecher	d con in contact of the contact of t		- ,		•	00	•	•	•																


G-Klasse SumiBoron (CBN, Einwegschneidplatten)

	A A	TPGW 080202 NC TPGW 080204 NC	0,2 0,4	•	•		•						ı		
Standardtyp mit		TPGW 110304 NC TPGW 110308 NC	0,4 0,8	•	•		•						ı		
"Allround"- Schneidkante															

Standardtyp mit "Allround"- Schneidkante		1PGW 110308 NC	0,8		•		•	•							
●G-Klasse Sur	miBoron (CBN, "M	lulti-Corner" Einwegplatt	en)								•	·			
	u63%	TPGW 080202 NC3 TPGW 080204 NC3	0,2 0,4		00										
0		TPGW 090202 NC3 TPGW 090204 NC3	0,2 0,4											ı	
Standardtyp	Mit 3 CBN-Schneidecken	TPGW 110302 NC3 TPGW 110304 NC3 TPGW 110308 NC3	0,2 0,4 0,8	$ \mathbf{o} $	0			0						ı	
		TPGW 160404 NC3 TPGW 160408 NC3	0,4 0,8												
LE - Typ geringe Schnittkraft	Mit 3 CBN-Schneidecken	TPGW 110302 LE-NC3 TPGW 110304 LE-NC3 TPGW 110308 LE-NC3	0,2 0,4 0,8			000									
LT - Typ scharfe Schneidkanten	Mit 3 CBN-Schneidecken	TPGW 110302 LT-NC3 TPGW 110304 LT-NC3 TPGW 110308 LT-NC3	0,2 0,4 0,8				0								
	Ä	TPGW 110302 LS-NC3 TPGW 110304 LS-NC3	0,2 0,4	00	00				0						

 $\mathsf{C}/$

D

R

S

 $\langle \mathbf{w} \rangle$

 $\left(\mathbf{z}\right)$

11° Freiwinkel Lochausführung 60° dreieckig

Unbeschichtet

Abmessungen (mm) TP__ IC S D_1 0802--4,76 2,39 2,3 8.2 0902--9,62 5,56 2,38 2,5 1102--2,8 2,38 11,0 6,35 1103--3,18 3,4 1604--16,5 9,525 4,76 4,3

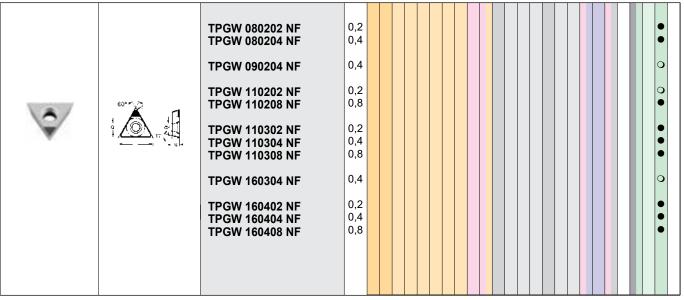
CBN

Beschichtet

H Gehärteter Stahl
K Grauguss Grauguss Nichteisenmetalle Superlegierungen PM Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

Unbeschicht.

Unbeschichtet


TPGW	

● G-Klasse Su	miBoron (CBN, E	inwegschneidplatten)	RE	\overline{C}	C_2	<u>8</u>	3	<u> </u>	$ \tilde{S} $	3	38	3 5	200	$\frac{1}{2}$	Ž	320	02	<u> </u>	5 E	6	200	
Platte	nform	ISO KatNr.	RE	B	图	6	5		8	5					6	8	8	200	i S	200	2 2	岂
\$		TPGW 080202 HS NU TPGW 080204 HS NU TPGW 080208 HS NU TPGW 110204 HS NU TPGW 110302 HS NU TPGW 110304 HS NU TPGW 110308 HS NU	0,2 0,4 0,8 0,4 0,2 0,4 0,8										00000000									

■ G-Klasse SumiBoron (CBN "Multi-Corner" Finwegnlatten)

G-Masse Sui	illibololi (CBN, N	iuiti-Corner Einwegpiati	len)						
	Mit 3 CBN-Schneidecken	TPGW 110204 NU3 TPGW 110208 NU3 TPGW 110304 NU3 TPGW 110308 NU3	0,4 0,8 0,4 0,8				000		
	Mit 3 CBN-Schneidecken	TPGW 110302 LF NU3 TPGW 110304 LF NU3 TPGW 110308 LF NU3	0,2 0,4 0,8				0 0		
	Mit 3 CBN-Schneidecken	TPGW 110304 LE NU3	0,4				C		

SumiDia (NF-Typ PKD-Schneidplatten)

Unbeschichtet

CBN

60° dreieckig 11° Freiwinkel Lochausführung

Unbeschichtet

	Abmes	sungen	(mm)	
TP	L	IC	S	D ₁
0802	8,2	4,76	2,39	2,3
0902	9,62	5,56	2,38	2,5
1102	11,0	6,35	2,38	2,8
1103	11,0	0,33	3,18	3,4
1604	16.5	9.525	4.76	4.3

H Gehärteter Stahl Grauguss N Nichteisenmetalle
S Superlegierungen
M Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

PMT / TPMW

	WIVV U			15	25	010	20	0		0	15						0	2	22 22 22		ND.	
		ak Master" Einwegplatte	n) RE	C21	5		515		300	VC5 C	8			X20	1X25	1300	002	1711	SS1	60	1150	DA1000 NPD10
Plattenfor	rm	ISO KatNr.	RE	面	m	m m	面	ā ā	ā	面	6	מֿמֿ	面	面	面	ة ه	ā	कि	n Z			ΣÌ
Break Master - DM		TPMT 090204 L-DM NU	0,4																		•	
		TPMT 080202 N-LD NF TPMT 080204 N-LD NF	0,2 0,4														ı			ı		0
		TPMT 090202 N-LD NF TPMT 090204 N-LD NF	0,2 0,4														ı					o
Break Master - LD	60° r 7° 7°	TPMT 110202 N-LD NF TPMT 110204 N-LD NF TPMT 110302 N-LD NF TPMT 110304 N-LD NF TPMT 110308 N-LD NF	0,2 0,4 0,2 0,4 0,8																	l		00000
	 	TPMT 160402 N-LD NF TPMT 160404 N-LD NF TPMT 160408 N-LD NF	0,2 0,4 0,8														ı			ı		0
		TPMT 080202 N-GD NF TPMT 080204 N-GD NF	0,2 0,4														١					0
Break Master - GD	60°	TPMT 090202 N-GD NF TPMT 090204 N-GD NF	0,2 0,4														ı			ı		0
	72	TPMT 110202 N-GD NF TPMT 110204 N-GD NF TPMT 110302 N-GD NF TPMT 110304 N-GD NF TPMT 110308 N-GD NF	0,2 0,4 0,2 0,4 0,8																			00000
● M-Klasse SumiD) (NET -:	TPMT 160402 N-GD NF TPMT 160404 N-GD NF TPMT 160408 N-GD NF	0,2 0,4 0,8																			0

M-Klasse SumiDia (NF-Typ PKD-Schneidplatten)

	· , , , ,	· · · · · · · · · · · · · · · · · · ·						
		TPMW 080202 NF	0,2				0	
		TPMW 080204 NF	0,4				0	
CONTRACTOR OF THE PARTY OF THE		TPMW 110302 NF	0,2				0	
		TPMW 110304 NF	0,4				0	
		TPMW 110308 NF	0,8				0	
•		TPMW 160402 NF	0,2				0	
		TPMW 160404 NF	0,4				0	
		TPMW 160408 NF	0,8					
.	:D: - /DI/D I: - I							

M-Klasse SumiDia (PKD, binderlos)

,	,									
	TPMW 080202 RH TPMW 080204 RH TPMW 110302 RH TPMW 110304 RH TPMW 110308 RH TPMW 160402 RH TPMW 160404 RH TPMW 160408 RH	0,2 0,4 0,2 0,4 0,8 0,2 0,4 0,8								

/**c**/

35° rhombisch 5° Freiwinkel Lochausführung

Beschichtet / Unbeschichtet

	Abmes	sungen	(mm)	
VB	L	IC	S	D ₁
1102	11,0	6,35	2,38	2,8
1103	11,0	0,33	3,18	2,0
1604	16,6	9,525	4,76	4,4

- H Gehärteter Stahl
 K Grauguss
 N Nichteisenmetalle
 S Superlegierungen
 M Gesinterte Komponenten
- Hartmet./Hartes sprödes Mat.

VBGW								schi	chte			KH CE	BN.			nbe			itet		M K	Sinderless	Ö	Inbes Pk		- 4	Sumidia
		nwegschneidplatten)	RE	C2115	C2125	C2010	C2020	C100	C160	C300	C200	C8115	1000	2000	X10	X20	XZ5	300	350	7000	7115	20172	00100	30	130	DA1000	
Platte	nform	ISO KatNr.	RE	BN	图	BI BI	M M	B	B R	S S	BN	BN	B	BN	BN	B.			NA C	됢			$\frac{2}{2}$	DASO DA 4E	5 2	5 5	닐
Standardtyp mit "Allround"- Schneidkanten		VBGW 110202 NC VBGW 110204 NC VBGW 110208 NC	0,2 0,4 0,8		•		•																				
		VBGW 110202 NU VBGW 110204 NU VBGW 110208 NU	0,2 0,4 0,8											•		•											
•	35 7 7 8 -	VBGW 110302 NU VBGW 110304 NU VBGW 110308 NU	0,2 0,4 0,8										O	000						0			0				
		VBGW 160402 NU VBGW 160404 NU VBGW 160408 NU	0,2 0,4 0,8										•	•	•	•	4	A	•	•			0				
		VBGW 110302 LT NU VBGW 110304 LT NU VBGW 110308 LT NU	0,2 0,4 0,8											000													
LT - Typ scharfe Schneidkanten	305 8	VBGW 160402 LT NU VBGW 160404 LT NU VBGW 160408 LT NU	0,2 0,4 0,8											000									l				
•		VBGW 110302 HS NU VBGW 110304 HS NU VBGW 110308 HS NU	0,2 0,4 0,8											000													
HS - Typ verstärkte Schneidkanten	39% s (144	VBGW 160404 HS NU VBGW 160408 HS NU	0,4 0,8											0													

Schneidplatten

35° rhombisch 5° Freiwinkel Lochausführung

Beschichtet / Unbeschichtet

	Abmes	sungen	(mm)	
VB	L	IC	S	D ₁
1102	11.0	6,35	2,38	2,8
1103	11,0	0,33	3,18	2,0
1604	16,6	9,525	4,76	4,4

Gehärteter Stahl Grauguss N Nichteisenmetalle
S Superlegierungen
Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

VBGW •••••

VBGW						-	Beso	chich	tet	K	KH			Unk	oeso	chic	htet	PM	KH		Unbr	eschi	cht. 🚝
											CE									Binde	P	YKD	Binde
• 0.14	:D (ODAL WA	lulti-Corner" Einwe ISO KatNr.		2115	125	010		09	000	88	3115	8	3 c	0	S	0	0	3 5	125	8		0	3 <
G-Klasse Sur	niBoron (CBN, "N	fulti-Corner" Einwe	egplatten)		NCZ			Š			Š			Ž	X	N30	N35		NS8	CB1	A90	A15	A PD
Platte	nform	ISO KatNr.	RE	- B	В	8	ם מ	0 00	0	2 0	В	<u> </u>	שומ	m	В	В	@	0 00	B	Z			2 כ
	1 7	VBGW 110304 NU2	0,4																				
-	350		,																				
	Mit 2 CDN Cohnaidealan	VBGW 160404 NU2 VBGW 160408 NU2	-, -									•											
	Mit 2 CBN-Schneidecken	12011 100400 NO2	0,0																				
							+		+											H			
		VBGW 110302 NC2																					
		VBGW 110304 NC2 VBGW 110308 NC2	0,4			0																	
		VBGW 160402 NC2 VBGW 160404 NC2			0	0																	
Standardtyp mit "Allround"- Schneidkanten	Mit 2 CBN-Schneidecken	VBGW 160408 NC2	0,8	0	•				•	•													
Allround - Schneidkanten		VBGW 160412 NC2	1,2	2			•																
		VBGW 160408 LE N	I U2 0,8																				
			9,0																				
																				H			
LE - Typ	35°C	VBGW 160402 LE-N VBGW 160404 LE-N																					
geringe Schnittkraft	Mit 2 CBN-Schneidecken	VBGW 160404 LE-N				•																	
							+		+														
		VBGW 110302 LT-N VBGW 110304 LT-N																					
	1 7																						
	350	VBGW 160402 LT-N VBGW 160404 LT-N																					
LT - Typ	MILO ODNI O L	VBGW 160408 LT-N					•																
scharfe Schneidkanten	Mit 2 CBN-Schneidecken																						
		V/DOW 440000 LO 11	100								П									П			
		VBGW 110302 LS-N VBGW 110304 LS-N		0																			
		VBGW 110308 LS-N		3																			
-		VBGW 160402 LS-N	IC2 0,2		o																		
	55%	VBGW 160404 LS-N	IC2 0,4	•	•																		
LS - Typ geringe Schnittkraft	Mit 2 CBN-Schneidecken	VBGW 160408 LS-N	10,8	3																			
go.nigo connucian	2 ODIT COMPONDEN																						
									+											H			
		VBGW 160404 HS-N VBGW 160408 HS-N			•		•																
		VDGVV 100400 H3-N	102																				
	55%																						
HS - Typ verstärkte Schneidkanten	Mit 2 CBN-Schneidecken																						

7° Freiwinkel Lochausführung 35° rhombisch

Beschichtet / Unbeschichtet

	Abmes	sungen	(mm)	
VC	L	IC	S	D_1
0802	8,3	4,76	2,38	2,3
1103	11,0	6,35	3,18	2,8
1604	16,6	9,525	4,76	4,4

Beschichtet

5 5 5 5 5

CBN

2

Gehärteter Stahl Grauguss Nichteisenmetalle Superlegierungen

Unbeschichtet

PM Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

Unbeschicht.

|--|

●G-Klasse Sur	-Klasse SumiBoron (CBN, Einwegschneidplatte								C20(030	C200	181	2000	X10	BNX20 BNX26	300	350	0002	7115	3B100	06	150	DA1000	2
Platte	nform	ISO KatNr.	RE	B	6		S C	2 2				2 2		B	BN BN	面	BN	6	20 2	5 Z	Δ	M	침	Ξ
		VCGW 080202 NU VCGW 080204 NU	0,2 0,4										0											
*		VCGW 110301 NU VCGW 110302 NU VCGW 110304 NU	0,1 0,2 0,4									C	0							•				
		VCGW 160404 NU VCGW 160408 NU	0,4 0,8																	0				
(*)		VCGW 080202 LT NU VCGW 080204 LT NU VCGW 080208 LT NU	0,2 0,4 0,8										000											
																								╛

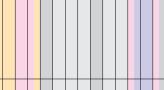
SumiBoron (CBN, "Multi-Corner" Einwegplatten)

Standardtyp mit "Allround"- Schneidkanten	Mit 2 CBN-Schneidecken	VCGW 080202 NC2 VCGW 080204 NC2 VCGW 160404 NC2 VCGW 160408 NC2	0,2 0,4 0,4 0,8) O	300)	0								
LS - Typ geringe Schnittkraft	mit 2 CBN-Schneidecken	VCGW 160404 LS NC2 VCGW 160408 LS NC2	0,4 0,8					0							

•	
ше	T

HS - Typ
verstärkte Schneidkanten
Vorstantic Conniciation

Mit 2 CBN-Schneidecken



Unbeschichtet

Unbeschichtet

	Abmes	sungen	(mm)	
VC	L	IC	S	D ₁
0802	8,3	4,76	2,38	2,3
1103	11,0	6,35	3,18	2,8
1604	16,6	9,525	4,76	4,4
2205		12,7	5,56	5,5

CBN

Beschichtet

H Gehärteter Stahl

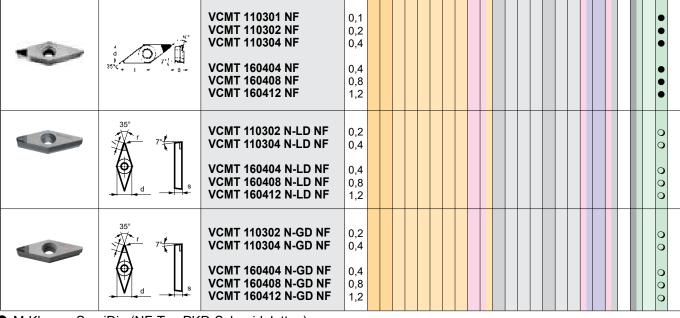
K Grauguss

N Nichteisenmetalle

S Superlegierungen

PM Gesinterte Komponenten

Hartmet./Hartes sprödes Mat.


Unbeschicht.

VCMT / VCGW •••••

M-Klasse (Nachschleifbare Schneidplatten)

• III Tilasso (Tilastissiiisiiisais es	. ,		의	의	의	의	ᆀ	길으		의	의	길		걸	်ကြ	12	! 그	> <u>U</u>	判	6	7	$\sum_{i} f_i ^2$	ᅱ
Plattenform	ISO KatNr.	RE	面	面	面	6	<u> </u>	面	面	ක් i	6	面面	面	面面	面	面	面	ž K	ĭ∣≥	<u> </u>	الم	습;	之
35° RE 5° 10 IC S	VCMT 220530	3,0																				0	
•	VCMW 160404	0,4												0									

M-Klasse SumiDia (NF-Typ PKD-Schneidplatten)

M-Klasse SumiDia (NF-Typ PKD-Schneidplatten)

VCMW 080202 NF VCMW 080204 NF VCMW 110302 NF VCMW 110304 NF VCMW 160402 NF VCMW 160404 NF VCMW 160408 NF VCMW 160412 NF	0,2 0,4 0,2 0,4 0,2 0,4 0,8 1,2							00000000		
VCMW 160408 NF	0,8							000		

M-Klasse SumiDia (PKD, binderlos)

VCMW 080201 RH	ivi-Niasse Su	Tilibia (PND, billidellos)				
		VCMW 080202 RH VCMW 080204 RH VCMW 110302 RH VCMW 110304 RH VCMW 160402 RH VCMW 160404 RH VCMW 160408 RH	0,2 0,4 0,2 0,4 0,2 0,4 0,8			

/c/

0° Freiwinkel Lochausführung 35° rhombisch

Unbeschichtet

	Abmes	sungen	(mm)	
VN	L	IC	S	D ₁
1604	16,6	9,525	4,76	3,81

Gehärteter Stahl Grauguss Nichteisenmetalle Superlegierungen PM Gesinterte Komponenten Hartmet./Hartes sprödes Mat.

Unbeschichtet

VNGA •••••

$V N U = \Delta$				t	sesc	nicnte	ι				U	inbes	cnic	nte	ι		- 5	∉ <u>≲U</u> n	ibescr	iicnt.	흜흗		
VNGA										(CBI	1							i.d	10	nbescr PKD)	Sur
●G-Klasse Sur	G-Klasse SumiBoron (CBN, "Multi-Corner" Einwegpla Plattenform ISO KatNr.							C160	315.5		C8115	2000	X10	X20	300	350	17000	7115	158175			1000	D10
Platte	nform	ISO KatNr.	RE	M	B		N N			BN I			BN	BNX		M	BN		S (26	88	M	Ӈ
•	Mit 2 CBN-Schneidecken	VNGA 160404 NU2 VNGA 160408 NU2	0,4 0,8											0 •			00	•		0			
•	Mit 2 CBN-Schneidecken	VNGA 160404 LT NU2 VNGA 160408 LT NU2	0,4 0,8									0											
•	Mit 2 CBN-Schneidecken	VNGA 160404 HS NU2 VNGA 160408 HS NU2	0,4 0,8									0											

G-Klasse SumiBoron (CBN	, Einwegschneidplatten)							
	VNGA 160404 NU VNGA 160408 NU	0,4					00	

35° rhombisch 0° Freiwinkel Lochausführung

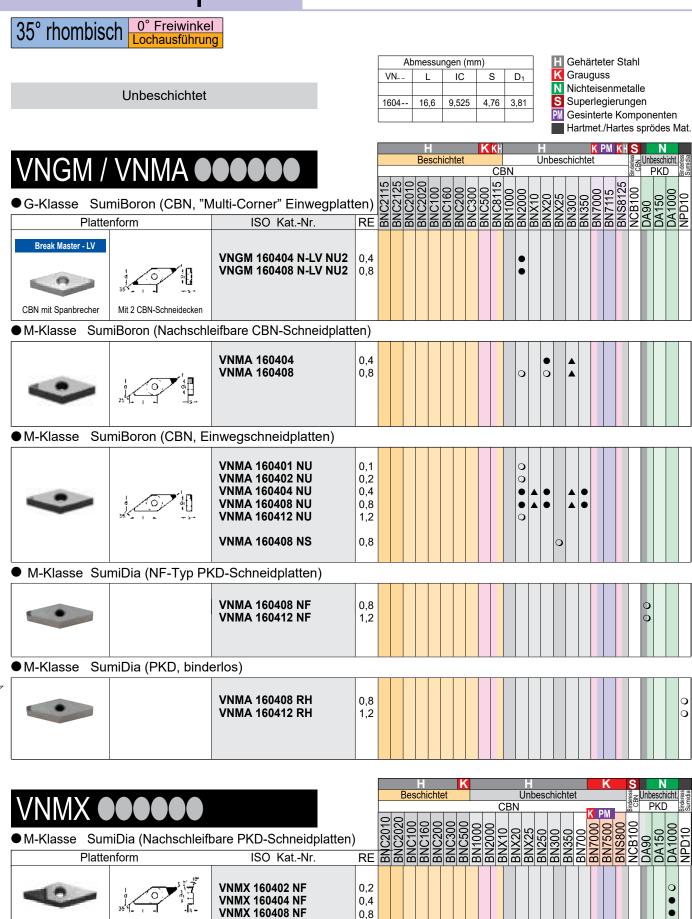
Beschichtet

	Abmes	sungen	(mm)								
VN	L IC S D ₁										
1604	16,6	9,525	4,76	3,81							

H Gehärteter Stahl
K Grauguss
N Nichteisenmetalle
S Superlegierungen
Gesinterte Komponenten
Hartmet./Hartes sprödes Mat.

/NGA / VNGG 👀 Unbeschichtet CBN BNC2115
BNC2125
BNC2010
BNC2020
BNC2020
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC300
BNC3000
BNC3000
BNC3000
BNC3000
BNC3000
BNC3000
BNC3000
BNC3000
BNC3000
BNC3000
BNC3000
BNC3000
BNC3000
BNC30 ■ G-Klasse SumiBoron (CBN, "Multi-Corner" Einwegplatten) Plattenform ISO Kat.-Nr. RE VNGA 160404 NC2 0,4 0 0 0 VNGA 160408 NC2 0 0 0,8 0 VNGA 160412 NC2 1,2 0 Mit 2 CBN-Schneidecken VNGA 160402 NC4 0 0 VNGA 160404 NC4 0.4 000 c|c|c|cVNGA 160408 NC4 0000 8,0 0 Mit 4 CBN-Schneidecken **VNGA 160412 NC4** 1,2 00 VNGA 160402 LT-NC2 0,2 VNGA 160404 LT-NC2 0.4 VNGA 160408 LT-NC2 0,8 VNGA 160412 LT-NC2 1,2 LT - Typ scharfe Schneidkanten Mit 2 CBN-Schneidecken VNGA 160402 LS-NC2 VNGA 160404 LS-NC2 0.4 0 0 VNGA 160408 LS-NC2 0,8 0 0 VNGA 160412 LS-NC2 1,2 O Mit 2 CBN-Schneidecken VNGA 160404 LS-NC4 0,4 **LS** - Typ VNGA 160408 LS-NC4 0,8 0 0 geringe Schnittkraft VNGA 160412 LS-NC4 1,2 Mit 4 CBN-Schneidecken VNGA 160404 HS-NC4 0 0 VNGA 160408 HS-NC4 8,0 o|o0 0 VNGA 160412 HS-NC4 1,2 0 0 0 0 HS - Typ verstärkte Schneidkanten Mit 4 CBN-Schneidecken VNGA 160404 ES-NC4 0.4 VNGA 160408 ES-NC4 0,8 VNGA 160412 ES-NC4 1.2 ES - Typ stabilisiert gegen Kolk Mit 4 CBN-Schneidecken VNGG 160404 N-FV NC4 0,4 Break Master - FV, - LV **VNGG 160408 N-FV NC4** 8,0 • VNGG 160404 N-LV NC4 0,4 0 Mit 4 CBN-Schneidecken CBN mit Spanbrecher **VNGG 160408 N-LV NC4** 8,0 • •

'C/

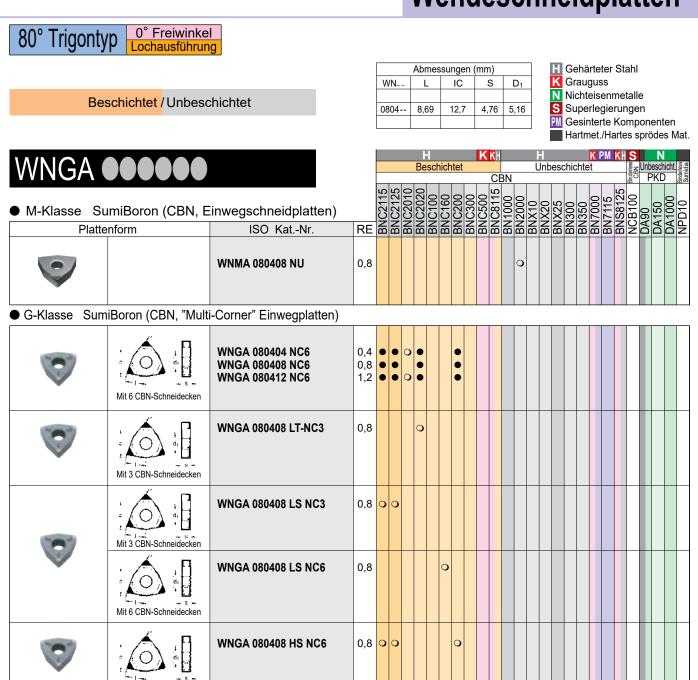

D

R

S

(**w**)

 $\left(\mathbf{z}\right)$


1,2

VNMX 160412

/**C**/

(R)

s

8,0

0,8

0000

000

o|o

 $|\mathbf{o}|$

Z

(W)

 $^{\prime}$ C/

R

S

Mit 6 CBN-Schneidecken

(Wiper-Typ)

WNGA 080408 NC-WG6

WNGA 080408 NC-WH6

80° Spezial

7° Freiwinkel Lochausführung

	Abmessungen (mm)										
WN	L IC S D ₁										
0401	-	4,76	1,69	2,3							

H Gehärteter Stahl
K Grauguss

PIVI	Gesinterte Komponenten
	Hartmet./Hartes sprödes Mat.

Bes	<mark>schichtet</mark> /Unbes	chichtet			01-		-	4,76		1,6		2,3			N S PM	Nicl Sup Ges	hte berl sint	iser egi erte	nme eru e Ko	nge omp	en oon			
ZNEX •	00000			15	25		H Bes			K	СВ	N o c			esc	hich	tet	PN	l <mark>K</mark> l	Sinderless	Unb	N peschi PKD	icht.	Sumidia
	BN, Einwegschnen enform	eidplatten) ISO KatNr.	RE	NC21	NC21	NC2C	NC2 NC2 NC3 NC3 NC3 NC3 NC3 NC3 NC3 NC3 NC3 NC3	NCZC	NC3C	NC5C	NC81		NX10	NX20	NX25	N300	0220	N / 00	NS81	ICB10	A90	A150	74100 1977	ココニ
rialle	HIOTH	ZNEX 040102 NC ZNEX 040104 NC	0,2 0,4	Ш	ш		•	•	В	ш (Ш	10 (2	10 (
©	a	ZNEX 040102 LE-NC ZNEX 040104 LE-NC	0,2 0,4			0																		_
		ZNEX 040102 LT-NC ZNEX 040104 LT-NC	0,2 0,4				0																	
		ZNEX 040102 NU ZNEX 040104 NU	0,2 0,4											•			(

SUMIDIA Binderloses PKD - Wendeschneidplatten in der Sorte NPD10

Negative Platten

				Abm	essunger	n (mm)	_	
Anwendung: Harte	s, sprödes Material		Innen- kreis (IC)	Platten- dicke	Platten- loch- größe	Ecken- radius	Schneiden- länge	NPD10
	Plattenform	ISO KatNr	(10)		grosse			
$\langle \hat{\circ} \rangle$		DNMA 150408 RH	12,70	4,76	5,16	0,8	1,8	0
55° Rhombisch	0	150412 RH	12,70	4,76	5,16	1,2	1,8	O
00 Mionibison								
		SNMA 120408 RH	40.70	4.70	5.40	0,8	1,7	0
		120412 RH	12,70	4,76	5,16	1,2	1,7	0
Quadratisch	The state of the s	-						
		VNMA 160408 RH	0.505	4.70	0.04	0,8	1,8	0
<0>		160412 RH	9,525	4,76	3,81	1,2	1,5	0
35° Rhombisch								

Hinweis: Prozessbedingte Abweichungen im Freiwinkel des Schneideinsatzes sind möglich.

Positive Platten

						Abme	essungen	(mm)								
Anwendung: Harte	es, sprödes	s Material Plattenform	IS	SO KatNr	Innen- kreis (IC)	Platten- dicke	Platten- loch- größe	Ecken- radius	Schneiden- länge	NPD10						
				03X102 RH				0,2	1,3	0						
				03X104 RH	3,50	1,40	1,9	0,4	1,3							
			CCMW	04X102 RH				0,2	1,7	0						
\Diamond				04X104 RH	4,30	1,80	2,3	0,4	1,7	NPD10						
	7°		CCMW	060202 RH	0.05	0.00	0.0	0,2	1,7	0						
80° Rhombisch				060204 RH	6,35	2,38	2,8	0,4	1,7	O						
		4	CCMW	09T302 RH				0,2	1,7							
				09T304 RH	9,525	3,97	4,4	0,4	1,7	0						
				09T308 RH				0,8	1,6							
			DCMW	070202 RH	6.25	2.20	2.0	0,2	2,1	O						
				070204 RH	6,35	2,38	2,8	0,4	2,0							
55° Rhombisch	ombisch 7°		DCMW	11T302 RH				0,2	2,1							
		1		11T304 RH	9,525	3,97	4,4	0,4	1,9	0						
				11T308 RH				0,8	1,6	O						
			TPMW	080202 RH	4,76	2,38	2,3	0,2	1,2	0						
				080204 RH	4,70	2,30	2,3	0,4	1,0	O						
\wedge			TPMW	110302 RH				0,2	1,5	0						
	11°	101	10/	101	101	10/	10/	101		110304 RH	6,35	3,18	3,4	0,4	1,3	0
Dreieckig	''			110308 RH				0,8	1,0							
			TPMW	160402 RH				0,2	2,2	0						
				160404 RH	9,525	4,76	4,4	0,4	2,0	0						
				160408 RH				0,8	1,6							
			VCMW	080201 RH				0,1	2,2							
				080202 RH	4,76	2,38	2,3	0,2	1,9							
_				080204 RH				0,4	1,5							
			VCMW	110302 RH	6,35	3,18	2,8	0,2	2,1							
35° Rhombisch	7°			110304 RH		,,,,		0,4	1,7	0						
		1 15	VCMW	160402 RH				0,2	2,1	O O O O O O O O O O O O O O O O O O O						
				160404 RH	9,525	4,76 4,4 0,4 1				,						
				160408 RH	-,	1,,,,,	','	0,8	1,8							
				160412 RH				12	1.5	O						

Hinweis: Prozessbedingte Abweichungen im Freiwinkel des Schneideinsatzes sind möglich.

Präzisionswerkzeuge

BSME

M48-50

CBN - Ausbohrwerkzeug für sehr kleine Bohrungen

- Vollhartmetallschaft mit gelöteter CBN-Schneide und Innenkühlung
- Für sehr kleine Bohrungen in gehärtetem Stahl
- Mindestbohrungsdurchmesser beträgt 2,5 mm

SEXC

M48-51

CBN - Ausbohrwerkzeug für kleine Bohrungen

- Vollhartmetallschaft mit CBN-Wendeschneidplatte und Innenkühlung
- Für kleine Bohrungen in gehärtetem Stahl
- Mindestbohrungsdurchmesser beträgt 4,0 mm

BNBB

CBN - Ausbohrwerkzeuge für kleine Bohrungen

- Vollhartmetallschaft mit gelöteter CBN-Schneide
- Zum Aufbohren kleiner Bohrungen in gehärtetem Stahl
- Mindestbohrungsdurchmesser beträgt 3,5 mm

BNZ

→ M53

Bohrstange für kleine Bohrungen

- Vollhartmetallschaft für CBN-Schneidplatten
- Zum Innendrehen in gehärtetem
- Mindestbohrungsdurchmesser beträgt 7,0 mm

BNB

→ M53

Bohrstange für kleine Bohrungen

- Vollhartmetallschaft für CBN-Schneidplatten zum Innendrehen in gehärtetem Stahl
- Mindestbohrungsdurchmesser beträgt 10,0 mm

GWB / PSC

CBN Stech-System für gehärteten Stahl

- Doppelklemmsystem für Tangentialplatte
- Stechbreite von 1,5 6,0 mm
- Neue CBN Sorte für unterbrochenen Schnitt
- ISO-PSC Polygon Modular Stechsystem

BNGG

Halter zum Nutenstechen und Außengewindedrehen

- Halter für zwei Operationen in gehärtetem Stahl
- Einstellbar nach dem Nachschleifen

DABB

PKD - Ausbohrwerkzeuge für

Vollhartmetallschaft mit gelöteter PKD-Schneidkante

kleine Bohrungen

- Min.-Bohrungs-ø ist 3,0 mm.
- DABB-C zum Ausbohren DABB-N zum Freistechen

SUMIBORON / SUMIDIA Präzisionswerkzeuge

ANX

→ M58-69

"High Speed" PKD-Planfräser für Nichteisenmetalle

- Vorschubrate von über vf = 30.000 mm/min
- 6 verschiedene Schneidkantenausführungen
- Sehr einfache Montage und Ausrichtung für besten Planlauf
- Präzise Kühlmittelzufuhr direkt zur Schneide
- Fräskörper mit Durchmesserbereich Ø32-160 mm

RF

 \rightarrow M/0

"High Speed" PKD-Planfräser für Aluminium

- Zum Schlichten und Schruppen von Aluminiumlegierungen und Nichteisenmetallen
- Hochpräzision- und "High Speed"-Bearbeitung vc = 5000 m/min
- Fräskörper aus Aluminiumleg.
- Rundlaufabweichung < 0,01 mm
- Einfache Voreinstellung

SRF

 \rightarrow M71

"High Speed" PKD-Planfräser für Aluminium

- "High Speed"-Schlichten von Aluminium bei kleinen Maschinen niedriger Leistungsfähigkeit und auch unter extrem hoher Spindelumdrehung bis n = 20.000
- Wirtschaftliche NF-Typ PKD-Schneidplatten

FMU

 \rightarrow M72-73

"BN Finish Mill" zum Schlichten von Grauguss

- "High speed"-Bearbeitung unter extrem hohem vc = 1500 m/min
- Ausgezeichnete Oberflächengüte Rz = 3,2
- Rundlaufabweichung < 0.01 mm
- Einfache Voreinstellung

BNES

→ M74

"Helical Master"
SUMIBORON - Schaftfräser

- Stabiler VHM-Schaftfräser mit einer spiralförmig gelöteten CBN-Schneide zum Feinstfräsen von gehärtetem Stahl (HRC 50–60)
- Trockenbearbeitung
- Ausgezeichnete Oberflächengüte
- Hohe Genauigkeit
- Sehr gute Spanabfuhr

BNBP

→ M75

"Mould Finish Master" Hocheffizente SUMIBORON Mikro-Radiusfräser

- Hochpräzisionsbearbeitung von gehärtetem Stahl (– HRC 70) mit einer hohen Standzeit
- Extrem zähe Sorte SUMIBORON BN350 verhindert Schneidkantenausbröckelung
- R Genauigkeit: ±0,005 mm

NPDRS / NPDB(S) → M76-77

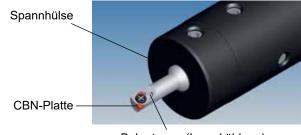
"Mould Finish Master"

SUMIDIA Fräser (binderloses PKD)

- NPDRS Schaftfräser mit Eckenradius
- NPDB(S) –Schaftfräser mit Kugelkopf
- Für die Endbearbeitung von Hartme tall und spröden Werkstückstoffen
- Hochpräzise Bearbeitung und lange Standzeiten

DAL / DDL / DML → M78-79 Hochpräzisions- SUMIDIA-Bohrer

- Vollhartmetallschaft mit gelöteter PKD-Schneidkante
- Zum allg. Schruppen und hochpräzisen Schlichten von Aluminiumlegierungen
- DML-Typ ist geeignet für die Stufen- und Fasbearbeitung

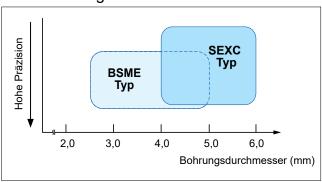


BSME/SEXC-Serie

Merkmale

- neue ultra-kleine Bohrstange mit CBN-Schneide
- Innenkühlung
- einfache Einstellung und Handhabung
- hohe Genauigkeit
- Hartmetallkörper für hohe Steifigkeit
- nur eine Spannhülse für unterschiedliche Bohrstangendurchmesser

Basissystem

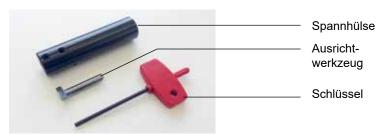


Bohrstange (Innenkühlung)

■ 2 unterschiedliche CBN-Bohrstangensysteme

Z unterschiedliche CBN-Bohrstangensystem	<u></u>
BSME: mit gelöteter CBN-Schneidecke	SEXC: mit austauschbarer Schneidplatte
Min. Bohrungsdurchmesser: Ø 2,5 - 5,0 mm	Min. Bohrungsdurchmesser: Ø 4,0 - 6,0 mm
Einzigartige Form und hervorragende Qualität der Schneidkante (Standard)	Zwei Schneidecken Innenkühlung (Standard)
Klemmschrauben Spannhülse Positionierungsstift Bohrstange	Klemmschrauben Spannhülse Positionierungsstift Bohrstange
Sehr gute Wiederholbarkeit der Bohrstange (Abweichung innerhalb 0,020 mm)	Klemmschrauben Stift für Positionierungsgenauigkeit

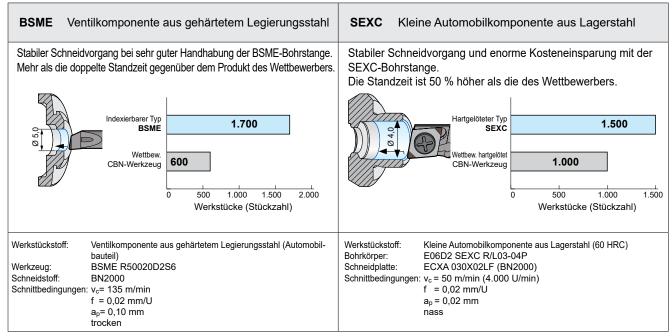
■ Anwendungsbereich



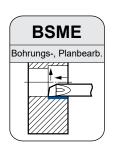
■ Empfohlene Schnittbedingungen

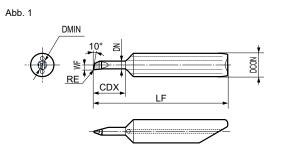
Spindel- geschwindigkeit (n)	>2000 min ⁻¹	Niedrige Schnittgeschwindigkeit kann zu Vibrationen und Ausbruch an der Schneidkante führen.
Schnitttiefe (a _{p)}	0,01 - 0,15 mm	Eine extrem hohe Schnitttiefe kann zu einer stärkeren Abdrängung des Werkzeugs führen, so dass sich die Bearbeitungsgenauigkeit verschlechtert.
Vorschub (f)	0,01 - 0,1 mm/U	-

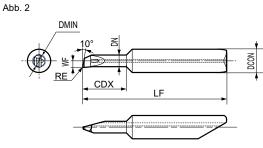
CBN-Bohrstangensysteme BSME/SEXC-Serie


Zubehör

■ Montageanleitung

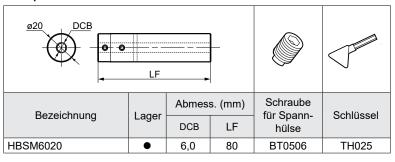



Anwendungsbeispiele



BSME-Serie

BSME-Serie - mit Innenkühlung



Scharfe Schneidkante (ohne Verrundung)

■ Bohrstange

Denoish www.	So	rte			Abme	essungen	(mm)			A b b	Geeignete	
Bezeichnung	BN2	2000	DMINI	DN	\A/E	CDV	1.5	DCON	חר	Abb.	Spannhülse	
	R	L	DMIN	DN	WF	CDX	LF	DCON	RE			
BSME R/L 25020D2S6	•	•				5,3	32,0					
BSME R/L 25020D3S6	•	•	2,5	2,0	1,20	7,8	34,5			1		
BSME R/L 25020D4S6						10,3	37,0					
BSME R/L 30020D2S6	•	•				6,3	32,8					
BSME R/L 30020D3S6	•	•	3,0	2,5	1,45	9,3	35,8					
BSME R/L 30020D4S6						12,3	38,8					
BSME R/L 35020D2S6	•	•				7,3	33,5					
BSME R/L 35020D3S6	•	•	3,5	3,0	1,70	10,8	37,0					
BSME R/L 35020D4S6						14,3	40,5	6.0	0.2		HBSM6020	
BSME R/L 40020D2S6	•	•				8,3	33,9	6,0	0,2		HDSIVIOU2U	
BSME R/L 40020D3S6	•	•	4,0	3,5	1,95	12,3	37,9			2		
BSME R/L 40020D4S6						16,3	41,9					
BSME R/L 45020D2S6	•	•				9,3	35,0					
BSME R/L 45020D3S6	•	•	4,5	4,0	2,20	13,8	39,5					
BSME R/L 45020D4S6						18,3	44,0					
BSME R/L 50020D2S6	•					10,3	35,8					
BSME R/L 50020D3S6	•	•	5,0	4,5	2,45	15,3	40,8					
BSME R/L 50020D4S6						20,3	45,8					

■ Spannhülse und Zubehör

■ Ausrichtwerkzeug

Bezeichungsschlüssel

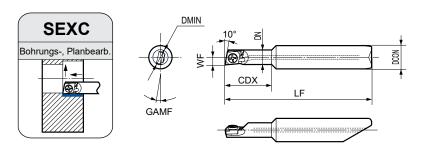
"Spezial-Mini"

Vollhartmetallbohrstange mit Innenkühlung

R: rechtsschneidend L: linksschneidend

Minimaler Bohrungsdurchm. (Ø 3,5 mm) 20

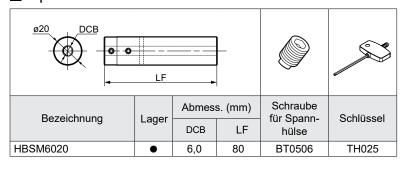
Schneidkanteneckenradius (Ø 0,20 mm) D 3


L/D - Verhältnis der Arbeitslänge

Schaftdurchmesser

SEXC-Serie

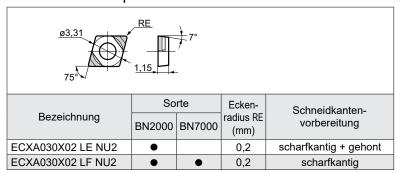
SEXC-Serie - mit Innenkühlung



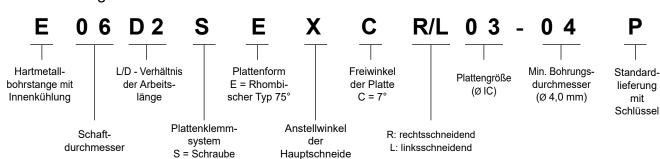
Ersatzteile

Bohrstange

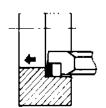
5													
Dozoiohnung	La	ger			Abmes	ssungei	n (mm)			Geeignete	Platten-	(N·m)	Schlüssel
Bezeichnung	R	L	DMIN	DMIN DN WF CDX LF DCG		DCON	GAMF	Spannhülse	schraube	(N·m)	Scriiussei		
E06D2 SEXC R/L 03-04P	•	•	4,0	3,75	1,95	8	33,75		13°		MIB1,6-2,0		
E06D3 SEXC R/L 03-04P	•	•	4,0	3,75	1,95	12	37,75		13		IVIID 1,0-2,0		
E06D2 SEXC R/L 03-05P	•	•	5.0	4,75	2,45	10	35,25	6.0	12°	HBSM6020	MIB1,6-2,5	0.2	SDBSM
E06D3 SEXC R/L 03-05P	•	•	5,0	4,75	2,45	15	40,25	0,0	12	HBSIVIOU20	IVIID 1,0-2,5	0,2	SDBSW
E06D2 SEXC R/L 03-06P	•	•	6.0	5,75	2,95	12	36,75		11°		MIB1,6-3,0		
E06D3 SEXC R/L 03-06P	•	•	0,0	3,73	2,95	18	42,75		11		1VII		

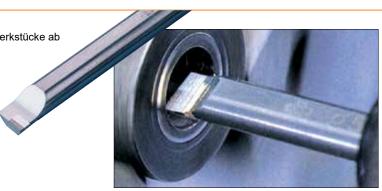

Spannhülse und Zubehör

Ausrichtwerkzeug


CBN-Schneidplatte

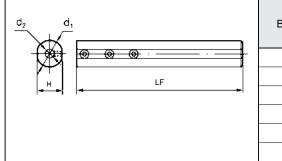
Hinweis:


Der Schlüssel SDBSM wird zum Festziehen der Schraube empfohlen. Bitte überprüfen Sie die Schraube gelegentlich und ersetzen Sie diese, falls notwendig.


■ Bezeichungsschlüssel

BNBB - Typ

BNBB-Typ Ausdrehwerkzeuge zum Innendrehen gehärteter Werkstücke ab einem Durchmesser von 3,5 mm

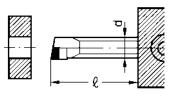


■ "Sumiboron" gelötete Ausdrehwerkzeuge für kleine Bohrungsdurchmesser

	Bezeichnung	Lager		Abmess	sungen	(mm)		Geeigneter	Qualität der
			DMIN	DCON	LF	Н	RE	Halter	gelöteten Schneidkante
BNBB (Hartmetallschaft)	BNBB 03 R	A	3,5	3	60	2,4	0,2	HBB 316	
21.22 (1.12.1.1.1.2.1.1.1.1)	BNBB 04 R	A	4,5	4	60	3,4	0,2	HBB 416	SUMIBORON
	BNBB 05 R	A	5,5	5	80	4,4	0,2	HBB 516	(CBN)
DMIN 3°	BNBB 06 R	A	6,5	6	80	5,4	0,2	HBB 616	BN250
DCON	BNBB 08 R	A	8,5	8	100	7,4	0,2	HBB 816	BN250
LF H									

Halter

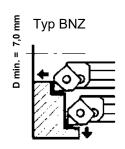
Abmessungen (mm						
Lager	d ₁	LF	d ₂	Н		
•			3			
•			4			
•	16	100	5	15		
•			6			
•			8			
	Lager • • • • • •	Lager d ₁	Lager d ₁ LF	Lager d ₁ LF d ₂		

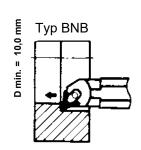

Ersatzteile

Schraube	Schlüssel
BT 0404	TH 020

■ Empfohlene Schnittbedingungen

Werkstoff	SUMIBORON BN250		Hinweise
	Schnittgesch- windigkeit (v _c)	30–150 m/min	Niedrige Schnittgeschwindigkeit kann zu Rattern während der Bearbeitung und Ausbruch an der Schneidkante führen.
Gehärtete Stähle (H _R C45–68)	Vorschub (f)	0,03–0,1 mm/U	-
, , ,	Schnitttiefe (a _p)	0,03–0,2 mm	Eine extrem hohe Schnitttiefe kann zu einer stärkeren Verformung des Werkzeuges führen, so dass sich die Bearbeitungsgenauigkeit verschlechtert.


■ Vorsichtsmaßnahmen beim Gebrauch



 $\{\ell \, \text{max.} = 5 \, \text{x d} \}$

- Ausladung anpassen, um Vibrationen zu vermeiden.
- Bei Verwendung eines gelöteten Bohrwerkzeuges mit kleinem Durchmesser eine möglichst hohe Schnittgeschwindigkeit und niedrige Vorschubrate wählen.

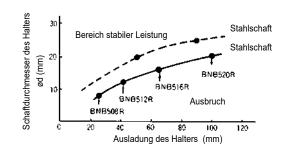
BNZ / BNB - Typ

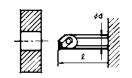
■ Bohrstange für kleine Bohrungsdurchmesser

	Bezeichnung Lager		gor	Abmessungen (mm)			Geeignete			
			yeı	DMIN	DCON	LF	Н	GAMF	Schnei	
BNZ (Vollhartmetallschaft)	BNZ 606 R	•	•	7	6	80	5,5	-14°		9500
	BNZ 608 R			9	8	100	7,5	-12°	ZNEX 040100	
DMIN	BNZ 610 R	(D	11	10	125	9,5	-10°	ZNEX 040100	
	BNZ 612 R	(•	13	12	130	11	-8		ZNEX (CBN)
GAMF - H +	Halter "HBB616" für BNZ606 (ø d = 6 mm)									
BNB (Vollhartmetallschaft)	BNB 508 R/L	•	•	10	8	140	7	-9°		_
	BNB 510 R/L	0		12	10	140	9	-8°		
	BNB 512 R/L	•	•	14	12	160	11	-6°	TBGN 060100	
	BNB 516 R/L	•	•	18	16	180	14	-5°		TBGN (CBN)
	BNB 520 R/L	•	•	22	20	180	18	-4°		(OBIV)
cot										

■ Ersatzteile für BNZ

Halter	Schraube	Schlüssel
BNZ 606 R		
BNZ 608 R	BFTX 0204 N	TRX 06
BNZ 610 R	0,5 ੴ	


■ Ersatzteile für BNB


Halter	Klemmfinger	Klemmschraube	Mutter	Schlüssel	
BNB 508 R/L	BNBC	BH 0306	BNBW-2	TH 020	
BNB 512 R/L	BNBC	FBUP-3-A0-9	BNBW-4	TH 020	
BNB 516 R/L	BNBC	BH 0310	BNBW-4	TH 020	
BNB 520 R/L	BNBC	BH 0310	BNBW-7	TH 020	

■ Empfohlene Schnittbedingungen

Schnittgeschw.	80–120 m/min
Vorschub	0,03–0,1 mm/U
Schnitttiefe	0,03–0,2 mm

■ Leistungsbereich

Härte des Werkstoffs: H_RC 60 Schnittbedingungen: $v_c = 100$ f = 0.1

en: $V_c = 100 \text{ m/min}$ f = 0.1 mm/U $a_p = 0.2 \text{ mm}$

SUMIBORON - Stechhalter GWB / PSC - Typ

CBN Stech-Systeme für gehärteten Stahl

GWB Typ

ISO-PSC Polygon Modular

CGA Stechplatten

Merkmale

Tangentialplatte

Tangential gespannte Platte für höchste Steifigkeit

Doppelklemmsystem

Seitliche Klemmschraube + zusätzliche Spannfinger garantieren höchste Stabilität. Das System ist auch für axiales Verfahren geeignet.

Großes Programm 1,5-6,0 mm

Großes Stechbreitenprogramm und Sorten für Vollschnitt bis unterbrochenen Schnitt

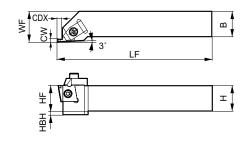
Beschichtete CBN-Sorte BNC30G

Zähe CBN-Sorte für das Stechen in unterbrochenem Schnitt

Sorte	Anwendung	Merkmale
BN250	Vollschnitt	Unbeschichtete CBN-Sorte für Vollschnitt-Stechoperationen
BNC30G	unterbrochener Schnitt	Zähe CBN-Sorte entwickelt für das Stechen in unterbrochenem Schnitt

Stechhalter GWB

Halter


Bezeichnung

GWB R/L 2020-45

GWB R/L 2525-45

GWB R/L 2525-60

Abmessungen (mm)

CW (*)

1,5≤cw≤4,5

4,5≤cw≤6,0

Ersatzteile

		5,0	>		
Einsetzb. Platten Nr.	Spann-	Spann- schraube	Platten- schraube	Feder	Schlüssel
0	TF 72 (Rechte Ausführung) TF 73 (Linke Ausführung)	BX 0520T	BFTX 0511N	GSP 06	TRX 20

Bemerkung: Platten nicht enthalten

Rechte Platten für rechte Halter.

Empfohlenes Anzugsmoment (N·m)

CDX

3,5 - 5,0

5,0

SUMIBORON/SUMIDIA-Werkzeuge

Lager

20 В

20

25

Н

25 25

25

LF

151

(150)

151

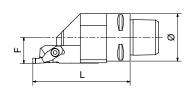
(150)

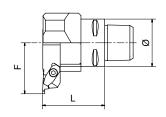
151

WF HF ${\sf HBH}$

25 20 5

30 25

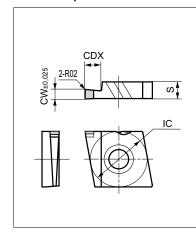

30 25


R

SUMIBORON - Stechhalter GWB / PSC - Typ

ISO-PSC Polygon Modular CGA Stechsystem

■ Grundhalter


							7,5 №	10	
	Bezeichnung	R	L	Ø (mm)	F (mm)	L (mm)	Klemm- schraube	Schlüssel	
	PSC 40GM00 R/L	•	•	40	22	82,0			
	PSC 50GM00 R/L	•	•	50	27	02,0	DETYGOLON	LTOE	
	PSC 40GM90 R/L	•	•	40	43	52,5	BFTX0619N	LT25	
ĺ	PSC 50GM90 R/L	•	•	50	48	55,0			

Kassetten

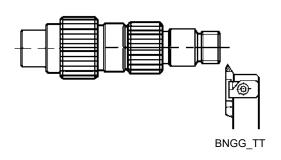
■ Nasselle11						5,0 (m)				3,0 (%)	
Bezeichnung	R	L	Einstech- breite (mm)	Einstech- tiefe (mm)	Stechplatten	Platten- schraube	Schlüssel	Feder	Klemm- finger	Klemm- schraube	Schlüssel
GWBCM R/L 45			1,5–2,0	3,5	0011501						
GWBCINI N/L 43			2,5–3,0	4,0	CGA1504□□0	BFTX0511N	TRX20		SCP4A		LH030
GWBCM R/L 60	•	•	3,5–6,0	5,0	CGA1506□□0						

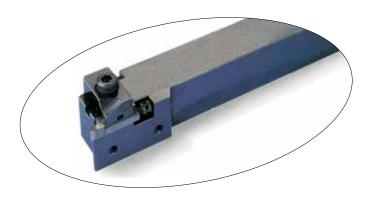
■ Stechplatten

				ger			Ab	mess	ungen (n	nm)	Nr. der		
Bezeichnung	BN	250	BNC	30G	BN2	2000				,	einsetzb.	Zugehörige Halter	
	R	L	R	L	R	L	CW	CDX	IC	S	Platten		
CGA R/L 1504 150	A	A	•	•			1,5	3,5			4,76		
R/L 1504 200	A	A	•			O	2,0	3,3				GWB R/L 2020-45 GWB R/L 2525-45 GWBCM R/L-45	
R/L 1504 250	•	•	•	•			2,5	4,0					
R/L 1504 300	A	A	•	•			3,0	4,0		4,76			
R/L 1504 350	•	•	•	•			3,5		15,875				
R/L 1504 400	•	•	•				4,0		13,073				
R/L 1504 450	•	•		•			4,5	5.0					
CGA R/L 1506 500	•	•	•	•		0	5,0	3,0				OW/D D# 0505 00	
R/L 1506 550	•	A	•	•			5,5			6,35		GWB R/L 2525-60 GWBCM R/L-60	
R/L 1506 600	•	A	•				6,0					OVIDOW TVE-00	

Andere Stechbreiten auf Anfrage

■ Empfohlene Schnittbedingungen

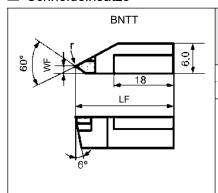

Werkstückstoff	Gehärteter Stahl						
Schnittgeschwindigkeit (m/min)	├ 60	80	120	─ 150			
Vorschub (mm/U)	0,03	0,04	0,08	0,1			
Sorte		BN250,	BNC30G				


Kühlung:

trocken / nass (für Glattschnitt) trocken (für unterbrochenen Schnitt)

Bemerkung: Um thermische Brüche im unterbrochenen Schnitt an der Schneidkante zu verhindern, muss sicher gestellt sein, dass das Werkstück trocken ist.

BNGG - Typ



■ Halter zum Außengewindedrehen

CDX * Gewindebear	eitung
M¥	25
	-
x	255

Bezeichnung	La	ger	Abmessungen (mm)			Geeignete Schneideinsätze
	R	L	WF	CDX	LF	Cominicación
BNGG R/L 2525-TT	A		28,5	5	150	BNTT 1020 R/L BNTT 1530 R/L

Schneideinsätze

		La	ger		Abmossungen (mm)					
Bezeichnung	BN	250	BN	X20	Abmessungen (mm)			1)	Geeignete Halter	
	R	L	R	L	Steigung	RE	LF	S		
BNTT 1020 R/L	A	A	•		1,0-2,0	0,14	25	6,0	BNGG R/L 2525 -TT	
BNTT 1530 R/L	A	A	•		1,5–3,0	0,2	25	6,0	BN00102 2020 11	

^{*} Schneideinsätze auch einsetzbar auf BNG2525R - Halter.

Ersatzteile

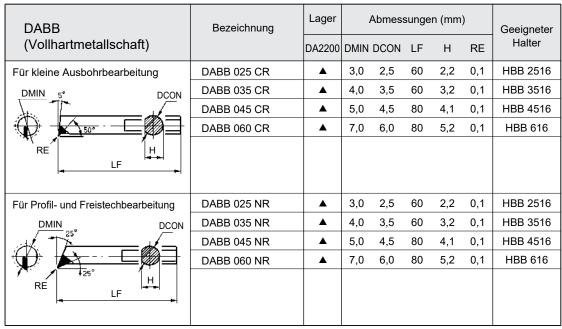
Halter	Anlage	Klemm- pratze	Einstell- schraube	Feder	Schraube	Schlü	issel
4 • • • • • • • • • • • • • • • • • • •	00						
BNGG R/L 2525 - TT	BNGS R/L TT	BNGC R/L	FMJ	GSP 6	ur BX 0414	LH 050 nmpratze) nd LH 030 nlage)	ø1,8x45

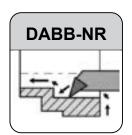
■ Empfohlene Schnittbedingungen

Gewindebearbeitung

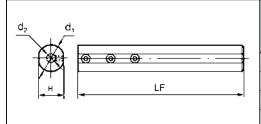
Gewindebearbeitung							
Schnitt- geschw. (v _c)	80-120 m/min						
Vorschub (f)	Max.Steigung: 3,0 mm						


M56


SUMIDIA - Ausdrehwerkzeuge


DABB - Typ

■ SUMIDIA - Ausbohrwerkzeuge für kleine Bohrungsdurchmesser



■ Empfohlene Schnittbedingungen

Spindlumdrehung	Vorschub	Schnitttiefe	Kühlung
mehr als 2000 U/min	0,03 - 0,1 mm/U	0,03 - 0,2 mm	nass

Halter

Pozoiobnung	Logor	Ab	messur	ngen (mi	m)	
Bezeichnung	Lager	d ₁	LF	d ₂	Н	
HBB 2516	•			2,5		ì
HBB 3516	•	16	100	3,5	15	1
HBB 4516	•	10	100	4,5		1
HBB 616	•			6,0		

Ersatzteile

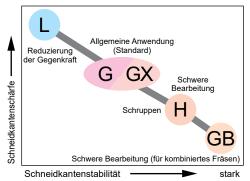
Schraube	Schlüssel
BT 0404	TH 020

■ Eigenschaften

- Drastisch verkürzte Einstellzeit des Planlaufs Die Schraubverbindungen ermöglichen und vereinfachen die sehr leichte Feinjustierung.
- Direkte Kühlmittelzufuhr durch den Schneideinsatz Die interne Kühlmittelzufuhr führt präzise zur Schneidkante und stellt eine hervorragende Spankontrolle sicher.
- Leichter Fräskörper aus Aluminiumlegierung Durch eine Aluminiumlegierung wird bei einem Fräser vom Durchmesse Ø 125 mm mit 22 Zähnen ein Gesamtgewicht von weniger als 1,3 kg erreicht.

Produktpalette

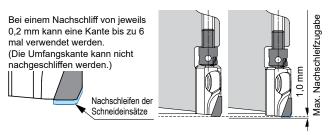
Ausfüh- rung	Bezeichnung	Material	Durchmesserbereich (mm) / Anzahl Zähne									
Aus	Dezeici liding	Material	Ø 25	Ø 30	Ø 32	Ø 40	Ø 50	Ø 63	Ø 80	Ø 100	Ø 125	Ø 160
-e	ANXA 16000RS	Aluminium- legierung		G78					6, 10, 14	8, 12, 18	10, 14, 22	12, 20, 28
Aufsteckfräse	ANXA 16000R (Inch)	Aluminium- legierung	,						6, 10, 14	8, 12, 18	10, 14, 22	12, 20, 28
ufstec	ANXS 16000RS	Stahl		G80		4, 6	4, 6, 9	6, 8, 12	6, 10, 14	8, 12, 18	10, 14, 22	
∢	ANXS 16000R (Inch)	Stahl						6, 8, 12	6, 10, 14	8, 12, 18	10, 14, 22	
Schaft- fräser	ANXS 16000E	Stahl	2	3, 4	3, 4	4, 6	4, 6, 9	\rightarrow	H84			
Modu- lar	ANXS 16000M	Stahl	2	3, 4	3, 4	4, 6		\rightarrow	H86			


Inch Zollbohrung

■ Schneideinsätze - Ausführungen

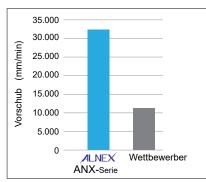
Werkstück- stoff					N				
Anwendung	Schlichten / Leicht- bearbeitung	Allgemeine Anwendung	Schru	ıppen	Mischbearbei- tung *1	Eckenradius- fräsen	Eckenradius- fräsen	Schlichten	Gratfreie / Hoch- glanzbearbeitung
Eigenschaft	Geringe Schnittkraft	Standard	Lange Schneidkante	Stabile Ausführung	Stabile Ausführung	Eckenradius 0,4	Eckenradius 0,8	Wiper	Wiper
Тур	L	G	GX	Н	GB	-	-	W	WS
Schneid- kanten- geometrie	25°	² 01	20.4 R150	Stabile Schneide	Stabile Schneide	R0.4	R0.8	R150	R150
Kantenlänge (*2)	6,0 mm	6,0 mm	9,0 mm	6,0 mm	6,0 mm	6,0 mm	6,0 mm	2,0 mm	_

^{*1} Mischbearbeitung (Aluminiumlegierung und Gusseisen)

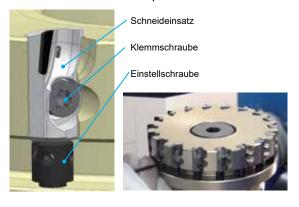

Schneidkantenauswahl

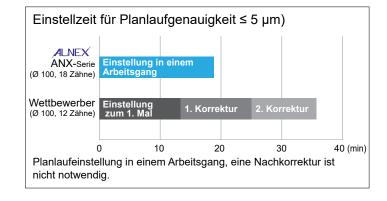
GX-Typ = 9,0 mm

 Geringere Betriebskosten durch eine drastische Verbesserung der Schneideinsätze, Nachschleifzugabe bis 1,0 mm


Wenn Sie nachgeschliffene Schneideinsätze verwenden möchten, so nutzen Sie immer Einsätze gleicher Höhe aus nachgeschliffenen Sets, um die Balance zu halten.

■ Leistungen

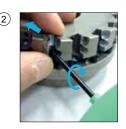

Hochgeschwindigkeitsbearbeitung / Hocheffizientes Fräsen
 Bei der Bearbeitung mit vf = 30.000 mm/min wird eine sehr hohe Produktivität erzielt.


Vergleich: Fräserdurchmesser Ø 100 mm

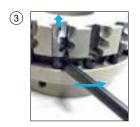
- Sehr kurze Einstellzeit bei bester Planlaufgenauigkeit
- Einfache Schraubklemmung
- Feineinstellungen sind leicht vorzunehmen
- Sehr stabiler Fräskörper

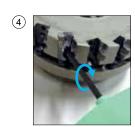
Spankontrolle

Kurze Späne durch direkte Kühlmittelzufuhr


Wettbewerber

Werkstückstoff: Schnittdaten: G-AlSi12Cu $v_c = 2500$ m/min, $f_z = 0.05$ mm/Z, $a_p = 0.5$ mm, nass


■ Einstellung der Schneideinsätze, Ausrichtung des Rundlaufs

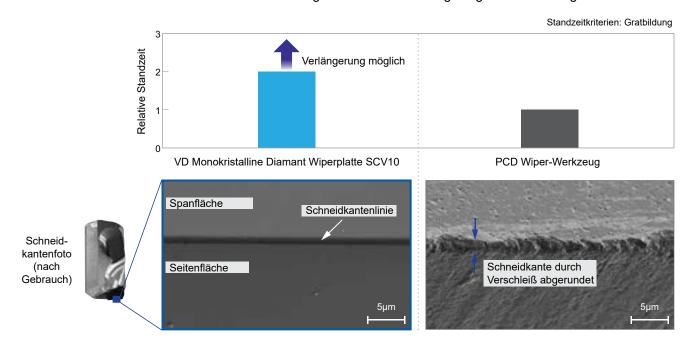

Setzen Sie den Schneideinsatz in den Plattensitz ein.

Während Sie den Schneideinsatz gegen den Sitz drücken, montieren Sie die Klemmschraube mit dem mitgelieferten Schraubenschlüssel und ziehen Sie diese leicht an. (empfohlenes Drehmoment bertägt 1 N·m)

Verwenden Sie den mitgelieferten Schlüssel, um den Planlauf des Fräsers über die vorgesehene Schraube einzustellen.

Ziehen Sie die Klemmschraube vollständig an. (empfohlenes Drehmoment ist 2 N·m)

CVD-Monokristalline-Diamant-Wiperplatte SCV10


Die Wiperplatte besteht aus hochfestem monokristallinem Diamant, der mit der Technologie der Dampfphasensynthese von Sumitomo Electric Hardmetal hergestellt wird.

Die scharfe Schneidkante erzeugt eine gratfreie, spiegelglatte Oberflächenqualität bei der Bearbeitung von Aluminiumlegierungen.

Dank der ausgezeichneten Verschleißfestigkeit bleibt die Schneidkantenschärfe sehr lange erhalten, was zu einer Verringerung der Gesamtwerkzeugkosten führt.

■ Gratfreie Bearbeitung

Die scharfe Schneide und die hohe Verschleißfestigkeit unterdrücken langfristig die Gratbildung.

■ Hochglanzoberfläche

Die scharfe Schneide erzielt schon beim Schneiden eine hochglänzende Oberfläche.

Werkstückoberfläche nach der Bearbeitung

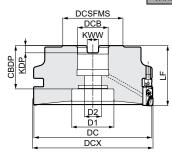
■ Polykristalliner Diamant SUMIDIA DA1000 / DA90

Durch die ideale Kombination von Diamantkorngröße und Bindemittel verfügt SUMIDIA DA1000/DA90 über vielseitige Eigenschaften und eignet sich für die unterschiedlichsten Anwendungen wie die Bearbeitung von Aluminiumlegierungen und Hartmetall.

■ Schneidstoff, Eigenschaften, Anwendung

Schn	eidstoff	Eigenschaften	Anwendung	Diamant- inhalt (%)	Durchschnittliche Korngröße der Diamantpartikel (µm)	Härte HK (GPa)	TRS (GPa)
DA	\1000	Eine hochdichter,gesinteter Schneidstoff aus ultrafeinkörnigem Diamant, der eine ausgezeichnete Verschleiß- und Bruchfestigkeit sowie eine hohe Kantenschärfe aufweist.	Bearbeitung von Aluminiumlegierungen mit hohem Siliziumgehalt, Schruppen, unterbrochene und Schlichtbearbeitung von Aluminiumlegierungen, Schneiden/Bearbeiten von Holz oder Holzplatten, allgemeine Schlichtbearbeitung von Nichteisenmetallen	90–95	≤ 0,5	50–60	≈ 2,60
D	A90	Enthält gröbere Diamantpartikel als andere Sorten und bietet dadurch eine gute Verschleißfestigkeit für die Bearbeitung von Hartmetallen und Aluminium mit hohem Siliziumgehalt. Verfügt über den höchsten Diamantgehalt und ist besonders verschleißfest.	Bearbeitung von Aluminiumlegierungen mit hohem Siliziumgehalt, Bearbeitung von Aluminium-Verbundwerkstoffen (MMC), Schruppbearbeitung von Grünlingen oder vorgesinterten Hartmetallen und keramischen Werkstückstoffen Bearbeitung von gesinterten Keramik/Stein/Gestein	90–95	≤ 50	50–65	≈ 1,10

■ Anwendungsbereiche


	Werkstückstoff	Geeigneter Schneidstoff	Beispiele für Bauteile	
	Gesintertes Aluminium, Aluminium-Knetlegierung		Kolbenbuchsen, Maschinenteile, usw.	
Alumainium	Legierungen für Spritzguss	DA1000	Getriebegehäuse, Ölwanne, Zylinderblock	
Aluminium	Legierungen für Guss Geringer Si-Gehalt (≤ 12%)	DA1000	Zylinderkopf	
	Legierungen für Guss Hoher Si-Gehalt (> 12%)		Zylinderblock	
	Nichteisenhaltige Sinterlegierung	DA1000	Buchse	
Nichteisenmetall	Rotguss, Kohlenstoff	27(1000	Pleuelstange	
	Fe Kombinationen	DA90	Zylinderblock, Gehäusedeckel	

■ ANXA-Fräskörper (Aluminiumlegierung)

Abmessungen (mm)

	Bezei	chnung	Lager	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Anzahl Zähne	Gewicht (kg)
	ANXA	16080RS06	0	78	80	50	50	27	12,4	7	34	35	14	6	0,5
		16080RS10	•	78	80	50	50	27	12,4	7	34	35	14	10	0,5
		16080RS14	•	78	80	50	50	27	12,4	7	34	35	14	14	0,5
		16100RS08	C	98	100	50	59	27	12,4	7	34	35	14	8	0,8
ے		16100RS12	•	98	100	50	50	27	12,4	7	34	35	14	12	0,8
Metrisch		16100RS18	•	98	100	50	50	27	12,4	7	34	35	14	18	0,9
/leti		16125RS10	0	123	125	50	50	27	12,4	7	34	35	14	10	1,2
-		16125RS14	•	123	125	50	50	27	12,4	7	34	35	14	14	1,2
		16125RS22	•	123	125	50	50	27	12,4	7	34	35	14	22	1,3
		16160RS12	0	158	160	80	63	40	16,4	9	35	52	29	12	2,6
		16160RS20	0	158	160	80	63	40	16,4	9	35	52	29	20	2,6
		16160RS28	O	158	160	80	63	40	16,4	9	35	52	29	28	2,6
	ANXA	16080R06	0	78	80	50	50	25,4	9,5	6	34	35	14	6	0,5
		16080R10	0	78	80	50	50	25,4	9,5	6	34	35	14	10	0,5
		16080R14	0	78	80	50	50	25,4	9,5	6	34	35	14	14	0,5
		16100R08	0	98	100	50	50	25,4	9,5	6	34	35	14	8	0,8
		16100R12	0	98	100	50	50	25,4	9,5	6	34	35	14	12	0,9
lnch		16100R18	0	98	100	50	50	25,4	9,5	6	34	35	14	18	0,9
드		16125R10	0	123	125	50	50	25,4	9,5	6	34	35	14	10	1,2
		16125R14	0	123	125	50	50	25,4	9,5	6	34	35	14	14	1,2
		16125R22	0	123	125	50	50	25,4	9,5	6	34	35	14	22	1,3
		16160R12	O	158	160	80	63	38,1	15,9	10	42,5	55	30	12	2,3
		16160R20	0	158	160	80	63	38,1	15,9	10	42,5	55	30	20	2,4
		16160R28	O	158	160	80	63	38,1	15,9	10	42,5	55	30	28	2,6

Die Schneideinsätze werden separat verkauft. Bei Verwendung einer Schneide für die Eckenradiusbearbeitung (ANB1604R/ANB1608R) DC = DCX.

Die Gewichtsangabe beinhaltet das Gewicht des Schneideinsatzes und der Ersatzteile (ohne die Fräseranzugsschraube).

Alle Fräskörper aus Aluminiumlegierung und einem maximalen Schneidendurchmesser (DCX) von Ø 80 bis Ø 125 haben den gleichen Durchmesser (metrisch Ø 27/Zoll Ø 25,4) für den Spanndurchmesser (DCB) des Halters.

■ Identifikation des Fräskörpers

ANX	Α	16	100	R	S	18
			Fräser-		Metrisch	Anzahl
bezeichnung	korper	einsatzgroße	durchmesser	richtung		Zähne

■ Schneideinsätze

Abmessungen (mm)

	Anwendung	SUM	IIDIA							
Hochg	eschw./Leichte Bearb.	N	K	N						
Allgei	meine Anwendung	N	K							
Schru	ıppen	N	K							
	Bezeichnung	DA1000	DA90	SCV10	Schneid- kanten- länge	RE	Form der Wiperkante	Anwendungen	Abb.	Abb. 1 Abb. 2 Abb. 3 Ab
ANB	1600R-L	•		_	6,0	_	linear	Geringe Schnittkraft	1	
	1600R-G	•		_	6,0	_	bogenförmig	General Purpose	1	Abb. 4 16 Abb. 5 16
	1600R-GB		•	_	6,0	_	bogenförmig	Mischbearbeitung*	1	2,0
	1600R-H	•	_	_	6,0	_	bogenförmig	Starke Kante	1	
	1600R-GX	O		_	9,0	_	bogenförmig	Lange Schneide	2	
	1604R	O		-	6,0	0,4	linear	Eckenradius	3	Wiperschneide Wiperschneide
	1608R	O		_	6,0	0,8	linear	Eckenradius	3	
	1600R-W	O		_	2,0	_	bogenförmig	Wiper	4	
	1600R-WS	_	_		_	_	bogenförmig	Wiper	5	

^{*} Gusseisen/Aluminiumlegierung

■ Empfohlene Schnittbedingungen

Si-Gehalt ≤ 12,6 %

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
N	Aluminiumlegierung	_	2.000 –2.500 –3.000	0,05 –0,13 –0,20	DA1000

Si-Gehalt > 12,6 %

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
N	Aluminiumlegierung	_	400 –600 –800	0,05 -0,13 -0,20	DA1000 DA90

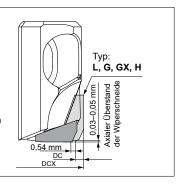
Mischbearbeitung (Gusseisen und Aluminiumlegierung)

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
K	Aluminiumlegierung	_	300 –400 –500	0,05 –0,13 –0,20	DA90

Die oben genannten empfohlenen Schnittbedingungen sind als Richtwerte zu verstehen. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Frsatzteile

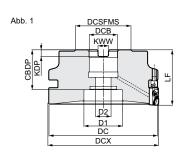

Separat erhältlich.

— LIGHT Geparat emailing								
	Klemmschraube		Einstell- schraube	Schlüssel	Einstell- schlüssel	Fräseranzugs- schraube		Montage- schlüssel
Geeignete Fräser		(N·m)		\$		3	(N·m)	7
ANXA 16080R(S)				TRXW10IP	ANT	BXH1235-D33		
16100R(S)	DVA0210ID	2,0 HI					50	HFVT
16125R(S)	DAAU3 IUIF		ПГЈ	IKAWIUIP				nrvi
16160R(S)						BXH2036-D50	200	

Der Einstellschlüssel (ANT) kann auch zur Höheneinstellung des Fräsers vom Typ RF für die Hochgeschwindigkeitsbearbeitung und des Fräsers vom Typ HF für die Hocheffizienzbearbeitung verwendet werden.

Setup der Wiperschneide

Achten Sie bei der Verwendung der Wiperplatte darauf, dass Sie ein Schneidwerkzeug mit einer geraden Anzahl von Schneidkanten verwenden und die Wiperplatten an gegenüberliegenden Positionen anbringen, um das Gleichgewicht zu halten.


Max. zulässige Spindeldrehzahl

	Ū	•			
В	ezeichnung	n max (min-1)			
ANXA	16080RS06	20.000			
	16080RS10	20.000			
	16080RS14	20.000			
	16100RS08	18.000			
	16100RS12	18.000			
	16100RS18	18.000			
	16125RS10	16.000			
	16125RS14	16.000			
	16125RS22	16.000			
	16160RS12	14.000			
	16160RS20	14.000			
	16160RS28	14.000			
ANXA	16080R06	20.000			
	16080R10	20.000			
	16080R14	20.000			
	16100R08	18.000			
	16100R12	18.000			
	16100R18	18.000			
	16125R10	16.000			
	16125R14	16.000			
	16125R22	16.000			
	16160R12	14.000			
	16160R20	14.000			
	16160R28	14.000			

ANXS 16000 **R(S)**

	Span- winkel	Radial	+5		3 mm	000
	winkel	Axial	+5°	<u>'</u>		90°
\bb.	. 2	DCSFMS	S			
	,	KWW				
900				<u>.</u>		

■ ANXS-Fräskörper (Stahl)

Abmessungen (mm)

	Bezeichnung	Lager	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	D1	D2	Anzahl Zähne	Gewicht (kg)	Abb.
	ANXS 16040RS04	0	38	40	38,5	40	16	8,4	5,6	26	14	9	4	0,3	1
	16040RS06	•	38	40	38,5	40	16	8,4	5,6	26	14	9	6	0,3	1
	16050RS04	O	48	50	48,5	40	22	10,4	6,3	26	18	11	4	0,4	1
	16050RS06	•	48	50	48,5	40	22	10,4	6,3	26	18	11	6	0,4	1
	16050RS09	0	48	50	48,5	40	22	10,4	6,3	26	18	11	9	0,5	1
	16063RS06	O	61	63	50	40	22	10,4	6,3	26	18	11	6	0,7	1
	16063RS08	•	61	63	50	40	22	10,4	6,3	26	18	11	8	0,7	1
당	16063RS12	•	61	63	50	40	22	10,4	6,3	26	18	11	12	0,7	1
Metrisch	16080RS06	0	78	80	50	40	27	12,4	7	34	35	14	6	1,2	1
Ŭ	16080RS10	0	78	80	50	50	27	12,4	7	34	35	14	10	1,2	1
	16080RS14	0	78	80	50	50	27	12,4	7	34	35	14	14	1,2	1
	16100RS08	0	98	100	80	50	32	14,4	8	32	46	-	8	1,9	2
	16100RS12	0	98	100	80	50	32	14,4	8	32	46	_	12	2,0	2
	16100RS18	0	98	100	80	50	32	14,4	8	32	46	-	18	2,0	2
	16125RS10	0	123	125	80	63	40	16,4	9	35	52	-	10	3,8	2
	16125RS14	0	123	125	80	63	40	16,4	9	35	52	-	14	3,9	2
	16125RS22	O	123	125	80	63	40	16,4	9	35	52	_	22	3,9	2
	ANXS 16063R06	0	61	63	50	50	25,4	9,5	6	31	20	14	6	0,9	1
	16063R08	0	61	63	50	50	25,4	9,5	6	31	20	14	8	0,9	1
	16063R12	0	61	63	50	50	25,4	9,5	6	31	20	14	12	0,9	1
	16080R06	0	78	80	50	50	25,4	9,5	6	34	35	14	6	1,2	1
	16080R10	0	78	80	50	50	25,4	9,5	6	34	35	14	10	1,2	1
lnch	16080R14	0	78	80	50	50	25,4	9,5	6	34	35	14	14	1,2	1
⊑	16100R08	0	98	100	80	50	31,75	12,7	8	36	42	-	8	1,9	2
	16100R12	0	98	100	80	50	31,75	12,7	8	36	42	-	12	2,0	2
	16100R18	0	98	100	80	50	31,75	12,7	8	36	42	_	18	2,0	2
	16125R10	0	123	125	80	63	38,1	15,9	10	42,5	52	-	10	3,9	2
	16125R14	0	123	125	80	63	38,1	15,9	10	42,5	52	-	14	3,9	2
	16125R22	0	123	125	80	63	38,1	15,9	10	42,5	52	_	22	3,9	2

Die Schneideinsätze werden separat verkauft. Bei Verwendung einer Schneide für die Eckenradiusbearbeitung (ANB1604R/ANB1608R) DC = DCX. Die Gewichtsangabe umfasst das Gewicht des Schneideinsatzes und der Ersatzteile (ohne die Fräseranzugsschraube).

■ Identifikation des Fräskörpers

ANX	S	16	100	R	S	18
Fräser- bezeichnung	Stahl- körper	Schneid- einsatzgröße		Schneid- richtung	Metrisch	Anzahl Zähne

■ Schneideinsätze

Abmessungen (mm)

Anwendung	SUN	11DIA						,	
Hochgeschw./Leichte Bearb.	N	N	N						
Allgemeine Anwendung	N	K							
Schruppen	N	N							
Bezeichnung	DA1000	DA90	SCV10	Schneid- kanten- länge	RE	Form der Wiperkante	Anwendungen	Abb.	Abb. 1 Abb. 2 Abb. 3 Ab
ANB 1600R-L	•		_	6,0	_	linear	Geringe Schnittkraft	1	
1600R-G	•		_	6,0	_	bogenförmig	General Purpose	1	Abb. 4 16 Abb. 5 16
1600R-GB		•	_	6,0	_	bogenförmig	Mischbearbeitung*	1	2,0
1600R-H	•	-	_	6,0	_	bogenförmig	Starke Kante	1	
1600R-GX	O		_	9,0	_	bogenförmig	Lange Schneide	2	
1604R	0		_	6,0	0,4	linear	Eckenradius	3	Wiperschneide Wiperschneide
1608R	0		_	6,0	0,8	linear	Eckenradius	3	
1600R-W	O		_	2,0	_	bogenförmig	Wiper	4	
1600R-WS	_	_		_	_	bogenförmig	Wiper	5	

^{*} Gusseisen/Aluminiumlegierung

■ Empfohlene Schnittbedingungen

Si-Gehalt ≤ 12,6 %

Min. - Optimum - Max.

<u></u>									
ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte				
N	Aluminiumlegierung	_	2.000 –2.500 –3.000	0,05 –0,13 –0,20	DA1000				

Si-Gehalt > 1	2,6 %
---------------	-------

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v₀ (m/min)	Vorschub fz (mm/Z)	Sorte	
N	Aluminiumlegierung	_	400 –600 –800	0,05 –0,13 –0,20	DA1000 DA90	Ì

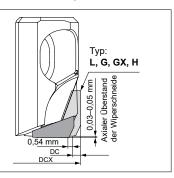
Mischbearbeitung (Gusseisen und Aluminiumlegierung)

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v₀ (m/min)	Vorschub fz (mm/Z)	Sorte
K	Aluminiumlegierung	_	300 –400 –500	0,05 –0,13 –0,20	DA90

Die oben genannten empfohlenen Schnittbedingungen sind als Richtwerte zu verstehen. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Ersatzteile

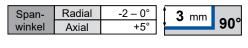

Separat erhältlich.

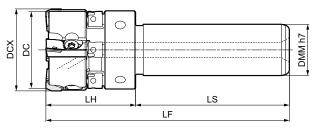
		Klemm- Einst schraube schra		Schlüssel	Einstell- schlüssel	Fräseranzugs- schraube		Montage- schlüssel
Geeignete Fräser		(N·m)		L.		3 ====	(N·m)	7
ANXS 16040RS						BXH0825-D13	15	
16050RS				TRXW10IP	ANT	BXH1030-D16	25	
16063RS	BXA0310IP	20	2,0 HFJ			DVII 1020-D 10	25	
16080RS		2,0				BXH1235-D33	50	HFVT
16100RS						BXH1635-D40	100	
16125RS						BXH2036-D50	200	ПЕХІ
16063R						BXH1235-D18	40	
16080R	BXA0310IP	2.0	HFJ	TRXW10IP	ANT	BXH1235-D33	50	
16100R	BXAU310IP	P 2,0) HFJ	IKAWIUIF	ANI	BXH1635-D40	100	
16125R						BXH2036-D50	200	

Der Einstellschlüssel (ANT) kann auch zur Höheneinstellung des Fräsers vom Typ RF für die Hochgeschwindigkeitsbearbeitung und des Fräsers vom Typ HF für die Hocheffizienzbearbeitung verwendet werden.

Setup der Wiperschneide

Achten Sie bei der Verwendung der Wiperplatte darauf, dass Sie ein Schneidwerkzeug mit einer geraden Anzahl von Schneidkanten verwenden und die Wiperplatten an gegenüberliegenden Positionen anbringen, um das Gleichgewicht zu halten.




Max. zulässige Spindeldrehzahl

В	ezeichnung	n max (min-1)
ANXS	16040RS04	25.000
	16040RS06	25.000
	16050RS04	25.000
	16050RS06	25.000
	16050RS09	25.000
	16063RS06	22.000
	16063RS08	22.000
	16063RS12	22.000
	16080RS06	20.000
	16080RS10	20.000
	16080RS14	20.000
	16100RS08	18.000
	16100RS12	18.000
	16100RS18	18.000
	16125RS10	16.000
	16125RS14	16.000
	16125RS22	16.000
ANXS	16063R06	22.000
	16063R08	22.000
	16063R12	22.000
	16080R06	20.000
	16080R10	20.000
	16080R14	20.000
	16100R08	18.000
	16100R12	18.000
	16100R18	18.000
	16125R10	16.000
	16125R14	16.000
	16125R22	16.000

■ ANXS-Fräskörper (Stahl)

Abmessungen (mm)

Bezeichnung	Lager	DC	DCX	DMM	LH	LS	LF	Anzahl Zähne	Gewicht (kg)
ANXS 16025E02	•	23	25	20	35	60	95	2	0,2
16030E03	•	28	30	20	35	60	95	3	0,3
16030E04	•	28	30	20	35	60	95	4	0,3
16032E03	•	30	32	20	35	60	95	3	0,3
16032E04	•	30	32	20	35	60	95	4	0,3
16040E04	•	38	40	20	40	60	100	4	0,4
16040E06	•	38	40	20	40	60	100	6	0,5
16050E04	0	48	50	32	40	80	120	4	1,0
16050E06	•	48	50	32	40	80	120	6	1,0
16050E09	•	48	50	32	40	80	120	9	1,0

Die Schneideinsätze werden separat verkauft. Bei Verwendung einer Schneide für die Eckenradiusbearbeitung (ANB1604R/ANB1608R) DC = DCX. Die Gewichtsangabe umfasst das Gewicht des Schneideinsatzes und der Ersatzteile.

■ Identifikation des Fräskörpers

ANX	S	16	032	Ε	04
Fräser-	Stahl-	Schneid-	Fräser-	Schaft-	Anzahl
bezeichnung	körper	einsatzgröße	durchmesser	ausführung	Zähne

■ Schneideinsätze

Abmessungen (mm)

	Anwendung	SUM	1IDIA	CVD						
Hochg	eschw./Leichte Bearb.	N	K							
Allge	meine Anwendung	N								
Schru	ıppen	N	K							
	Bezeichnung	DA1000	DA90	SCV10	Schneid- kanten- länge	RE	Form der Wiperkante	Anwendungen	Abb.	Abb. 1 Abb. 2 Abb. 3 Abb. 3 Abb. 3 Abb. 1 Abb. 2 Abb. 3 Ab
ANB	1600R-L	•		_	6,0	_	linear	Geringe Schnittkraft	1	
	1600R-G	•		_	6,0	-	bogenförmig	General Purpose	1	Abb. 4 16 Abb. 5 16
	1600R-GB		$ \bullet $	_	6,0	_	bogenförmig	Mischbearbeitung*	1	→ 2,0
	1600R-H	•	-	_	6,0	_	bogenförmig	Starke Kante	1	
	1600R-GX	O		_	9,0	_	bogenförmig	Lange Schneide	2	
	1604R	O		_	6,0	0,4	linear	Eckenradius	3	Wiperschneide Wiperschneide
	1608R	O		_	6,0	0,8	linear	Eckenradius	3	
	1600R-W	O		_	2,0	-	bogenförmig	Wiper	4	
	1600R-WS	_	_		_	_	bogenförmig	Wiper	5	

^{*} Gusseisen/Aluminiumlegierung

■ Empfohlene Schnittbedingungen

Si-Gehalt ≤ 12,6 %

Min. - Optimum - Max

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
N	Aluminiumlegierung	_	2.000 –2.500 –3.000	0,05 –0,13 –0,20	DA1000

Si-Gehalt > 12,6 %

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
N	Aluminiumlegierung	_	400 –600 –800	0,05 –0,13 –0,20	DA1000 DA90

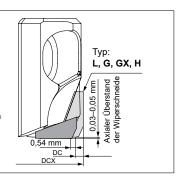
Mischbearbeitung (Gusseisen und Aluminiumlegierung)

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v₀ (m/min)	Vorschub fz (mm/Z)	Sorte
K	Aluminiumlegierung	_	300 –400 –500	0,05 –0,13 –0,20	DA90

Die oben genannten empfohlenen Schnittbedingungen sind als Richtwerte zu verstehen. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Ersatzteile


Separat erhältlich.

						Coparat ornation
	Klemmschraube		Einstell- schraube	Schlüssel	Einstell- schlüssel	Montage- schlüssel
Geeignete Fräser		(N·m)		5		Z.
ANXS 160E	BXA0310IP	2,0	HFJ	TRXW10IP	ANT	HFVT

Der Einstellschlüssel (ANT) kann auch zur Höheneinstellung des Fräsers vom Typ RF für die Hochgeschwindigkeitsbearbeitung und des Fräsers vom Typ HF für die Hocheffizienzbearbeitung verwendet werden.

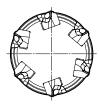
Setup der Wiperschneide

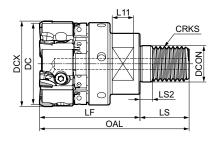
Achten Sie bei der Verwendung der Wiperplatte darauf, dass Sie ein Schneidwerkzeug mit einer geraden Anzahl von Schneidkanten verwenden und die Wiperplatten an gegenüberliegenden Positionen anbringen, um das Gleichgewicht zu halten.

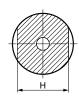
■ Max. zulässige Spindeldrehzahl

Bezeichnung	n max (min-1)
ANXS 16025E02	10.000
16030E03	10.000
16030E04	10.000
16032E03	10.000
16032E04	10.000
16040E04	10.000
16040E06	10.000
16050E04	10.000
16050E06	10.000
16050E09	10.000

Alnex ANXS 16000 M

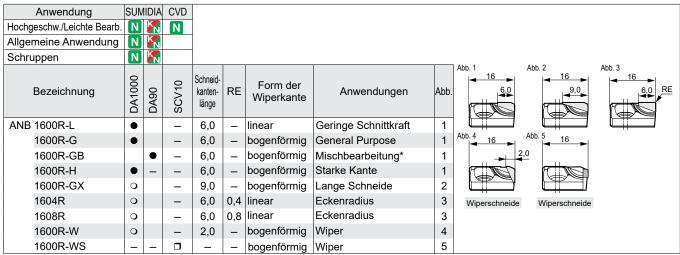



Modularfräser


Span-	Radial	-2 – 0°
winkel	Axial	+5°

■ ANXS-Fräskörper (Stahl)

Abmessungen (mm)


Bezeichnung	Lager	DC	DCX	DCON	CRKS	OAL	LF	LS2	LS	L11	Н	Anzahl Zähne	Gewicht (kg)
ANXS 16025M12Z02	0	23	25	12,5	M12	61	40	5	21	10	19	2	0,1
16030M16Z03	0	28	30	17,0	M16	70	47	5	23	10	24	3	0,2
16030M16Z04	0	28	30	17,0	M16	70	47	5	23	10	24	4	0,2
16032M16Z03	0	30	32	17,0	M16	70	47	5	23	10	24	3	0,3
16032M16Z04	0	30	32	17,0	M16	70	47	5	23	10	24	4	0,3
16040M16Z04	0	38	40	17,0	M16	70	47	5	23	10	24	4	0,4
16040M16Z06	0	38	40	17,0	M16	70	47	5	23	10	24	6	0,4

Die Schneideinsätze werden separat verkauft. Bei Verwendung einer Schneide für die Eckenradiusbearbeitung (ANB1604R/ANB1608R) DC = DCX. Die Gewichtsangabe umfasst das Gewicht des Schneideinsatzes und der Ersatzteile.

■ Identifikation des Fräskörpers

ANX	5	16	032	W116	Z 03
Fräser- bezeichnung	Stahl- körper	Schneid- einsatzgröße	Fräser- durchmesser	Schrauben- größe	Anzahl Schneidein- sätze

Schneideinsätze

Gusseisen/Aluminiumlegierung

■ Empfohlene Schnittbedingungen

Si-Gehalt ≤ 12,6 %

Si-Gehalt ≤ 12,6 % Min Optimum - Max.									
ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte				
N	Aluminiumlegierung	_	2.000 –2.500 –3.000	0,05 –0,13 –0,20	DA1000				

Si-Gehalt > 12.6 %

Min	Optimum	 Max.
-----	---------	--------------------------

15	so	Werkstückstoff	Härte	Schnittgeschwindig- keit v _c (m/min)	Vorschub fz (mm/Z)	Sorte
	N	Aluminiumlegierung	_	400 –600 –800	0,05 –0,13 –0,20	DA1000 DA90

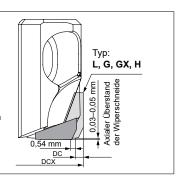
Mischbearbeitung (Gusseisen und Aluminiumlegierung)

Min. - Optimum - Max.

ISO	Werkstückstoff	Härte	Schnittgeschwindig- keit vc (m/min)	Vorschub fz (mm/Z)	Sorte
K	Aluminiumlegierung	_	300 –400 –500	0,05 –0,13 –0,20	DA90

Die oben genannten empfohlenen Schnittbedingungen sind als Richtwerte zu verstehen. Die tatsächlichen Zerspanungsbedingungen variieren je nach Bearbeitungsmaschine, Anwendung und Einspannung. Die Werte sollten entsprechend der aktuellen Bedingungen angepasst werden.

Ersatzteile

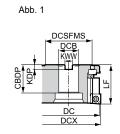

Sanarat	orhältlich

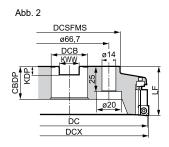
	Klemmsch	Klemmschraube		Schlüssel	Einstell- schlüssel	Montage- schlüssel
Geeignete Fräser		(N·m)		\$		7
ANXS160M_Z	BXA0310IP	2,0	HFJ	TRXW10IP	ANT	HFVT

Der Einstellschlüssel (ANT) kann auch zur Höheneinstellung des Fräsers vom Typ RF für die Hochgeschwindigkeitsbearbeitung und des Fräsers vom Typ HF für die Hocheffizienzbearbeitung verwendet werden

Setup der Wiperschneide

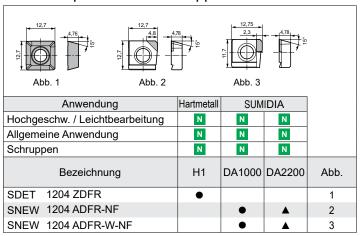
Achten Sie bei der Verwendung der Wiperplatte darauf, dass Sie ein Schneidwerkzeug mit einer geraden Anzahl von Schneidkanten verwenden und die Wiperplatten an gegenüberliegenden Positionen anbringen, um das Gleichgewicht zu halten.



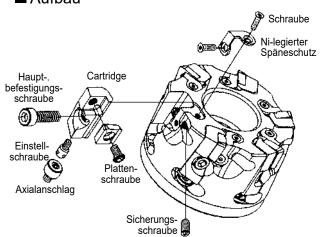

■ Max. zulässige Spindeldrehzahl

Bezeichnung	n max (min-1)
ANXS 16025M12Z02	10.000
16030M16Z03	10.000
16030M16Z04	10.000
16032M16Z03	10.000
16032M16Z04	10.000
16040M16Z04	10.000
16040M16Z06	10.000

Für die Hochgeschwindigkeitsbearbeitung von Aluminium



Fräskörper


Bezeichnung			Abmessungen (mm)							max. Schnitt-	Gewicht	Abb.	
Bezeichhung	Lager	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	Zähne	tiefe	(Kg)	ADD.
RF 4080 RS	•	80	82	60	50	27	12,4	7,0	29	6		0,7	1
RF 4100 RS		100	102	75	50	32	14,4	8,5	29	6	20	1,0	1
4125 RS	•	125	127	75	63	40	16,4	9,5	29	8	3,0	1,6	1
4160 RS		160	162	100	63	40	16,4	9,5	29	10		2,6	2

Bemerkung: PKD-Einsätze und Fräsplatten sind nicht im Lieferumfang enthalten.

■ Schneidplatten zum Schruppen und Schlichten

Aufbau

■ "Sumidia"-Einsätze

PKD-Sorte DA2200	Bezeichn.	Lager
Standard-Typ	RFB	•
Wiper-Typ	RFBW	•

Gewichtsausgleicheinsatz

RFD

■ Kassetten

Kassetten	Bezeichn.	Lager
Für Hartmetallplatte	RFR	•
Für "Sumidia"-Platte	RFF	•

■ Auswahl von Schneidplatten

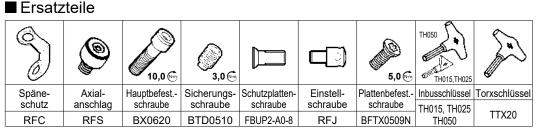
Zur einfachen Justierung: PKD-Einsatz: RFB

PKD-Einsatz: RFB (Wiper-Typ)

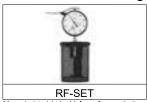
Zum Schlichten :

Kassette: RFF

PKD-Platte: SNEW 1204 ADFR-NF (Standard)


SNEW 1204 ADFR-W-NF (Wiper-Typ)

Sorte: DA2200


Zum Schruppen :

Kassette: RFR

Unbeschichtete Hartmetallschneidplatte
Typ: SDET 1204 ZDFR, Sorte: H1
SDET 1204 ZDFR, Sorte: H1

■ Einstellvorrichtung

Messuhr ist nicht im Lieferumfang enthalten.

M70

SUMIBORC

SUMIDIA - Planfräser SRF - Typ

Für die Hochgeschwindigkeitsbearbeitung von Aluminium

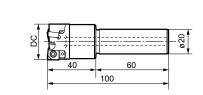
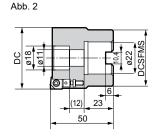
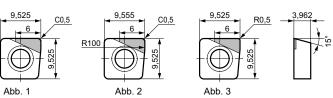



Abb. 1

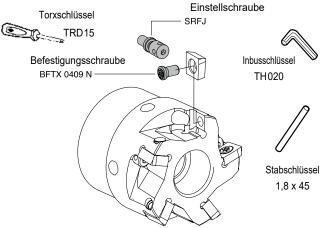


Fräskörper

Bezeichnung		Abmessu	ıngen (mm)	Anzahl der	Abb.	Gewicht
Dezeichhung	Lager	DC	DCSFMS	Zähne	ADD.	(Kg)
SRF 30 R-ST	0	30	-	3	1	0,34
SRF 40 R-ST	0	40	-	4	1	0,50
SRF 50 RS		50	46,5	5	2	0,59
SRF 63 RS		63	45,0	6	2	0,67
		_			, ,	

Fräsplatten sind nicht im Lieferumfang enthalten.

■ PKD-Schneidplatten



Anwendung	SUMIDIA
Hochgeschw. / Leichtbearbeitung	N
Allgemeine Anwendung	N
Schruppen	N
Bezeichnung	DA1000

Schruppen	N		
Bezeichnung		Ausführung der Schneidenecke	Abb.
SNEW 09T3 ADTR-NF		Standard-Typ	1
09T3 ADTR-U-NF		"Wiper"- Typ	2
09T3 ADTR-R-NF	0	Radius-Typ	3

- Standard- und Wiper- Wendeschneidplatten k\u00f6nnen auf dem gleichen Messerkopf verwendet werden.
- Bei Vibrationen sollten zur Stabilisierung Standardplatten mit Eckenradius benutzt werden. Wiper-Platten sind nicht geeignet.
- Die Wendeschneidplatten k\u00f6nnen bis zu drei mal nachgeschliffen werden (bis zum IC Durchmesser 9.225 mm)
- Bei Verwendung von nachgeschliffenen Wendeschneidplatten empfiehlt es sich, die Einsatzhöhe und den Schneiddurchmesser mit einem Werkzeugvoreinstellgerät zu bestätigen
- Verwenden Sie keine neuen und nachgeschliffenen Platten gleichzeitig.
 Ebenso sollten Platten, die unterschiedlich oft nachgeschliffen wurden, nicht gleichzeitig benutzt werden.

■ Ersatzteile

■ Max. Schnitttiefe (SRF50RS, Zahnanzahl: 5)

Die enthaltenen Hinweise auf die max. Schnitttiefe wurden durch interne Versuche ermittelt. "O" kennzeichnet den möglichen Anwendungsbereich. Die Schnittdaten sollten auf die aktuellen Maschinen- und Materialmerkmale abgestimmt sein.

	Vorschubg	eschwindigkeit, v	f (mm/min)					
Vorschub	2.500	4.000	5.000					
Schnitttiefe	Vorschub, f _z (mm/Zahn)							
(mm)	0,05	0,08	0,10					
0,5	0	0	0					
1,0	0	0	0					
1,5	0	0	0					
2,0	0	0	0					
2,5	0	0	0					
3,0	0	0	0					
3,5	0	0	_					
4,0	0	_	_					
4,5	0	_	_					
5,0	0	_	_					

Schnittbedingungen

Fräskopf: SRF 50 RS

Schneidplatten: SNEW 09T3 ADFR-NF (DA1000)

Spindel-U/min: 10.000 Schnittbreite: 35 mm

■ Empfohlene Schnittbedingungen für RF und SRF-Typ Planfräser

Manusatii al		Anwendung	Calaraidaanta	Schnittgeschwir	ndigkeit (m/min)	Vorschub	Schnitttiefe (mm)		
vverkstuck	Werkstückstoff		Schneidsorte	RF- Typ	SRF- Typ	(mm/Zahn)	RF- Typ	SRF- Typ	
	0: 140.0/	Schlichten	DA1000 (PKD)	2.000-5.000	-4.000				
Aluminium-	Si < 13 %	SI < 13 %	Schruppen	H1 (Hartmetall)	1.000-2.500	_	0.05.00	2.0	5.0
legierungen	0: > 40.0/	Schlichten	DA1000 (PKD)	400-800	- 800	0,05–0,2	- 3,0	- 5,0	
	Si ≥ 13 %		H1 (Hartmetall)	200-400	_				

Für "High Speed"- Bearbeitung von Grauguss

■ Eigenschaften

- Hochleistungsplanfräser zum Schlichten von Grauguss mit extrem hohen Schnittgeschwindigkeiten v_c = 1.500 m/min
- Ausgezeichnete Oberflächengüte Rz = 3,2 (Ra = 1,0)
- Fliehkraftsichere Konstruktion
- Rundlaufabweichung < 0,01 mm
- Einfache Vorabeinstellung der Schneiden mit Hilfe der Einstellvorrichtung
- Kostenreduzierung durch wirtschaftliche CBN-Platten

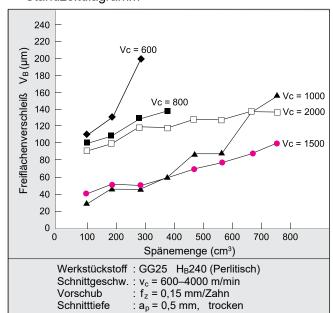
Anwendung

GG25 - GG30 (HB200 - 250) Grauguss mit perlitischem Grundgefüge und ferritischem Grundgefüge (HB130 – 160) Beispiel: Motorblock, Zylinderkopf usw.

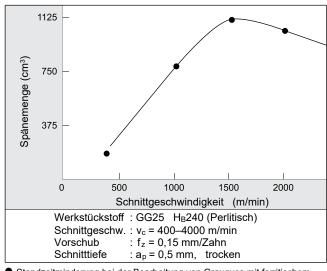
Ausführung

FMU-Typ: ø 80–ø 315 mm CBN-Schneidplatte: SNEW1203ADTR/L CBN-Schneidplatte mit reduzierten Schnittkräften: SNEW1203ADTR/L-S

■ Empfohlene Schnittbedingungen


Schnittgeschwindigkeit: $v_c = 800-2000 \text{ m/min}$ Vorschub: $f_z = 0.1-0.3 \text{ mm/Zahn}$ Schnitttiefe: $a_p = \leq 0.5 \text{ mm}$

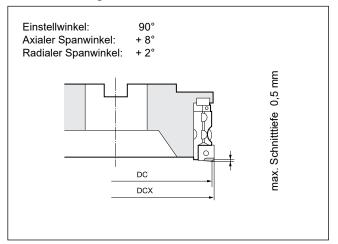
Trockenbearbeitung



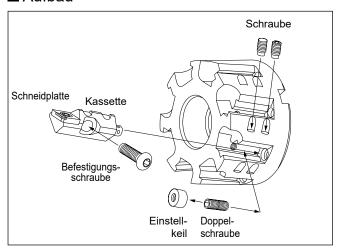
Leistungsvergleich

Standzeitdiagramm

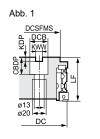
Erzielte Standzeiten

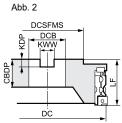


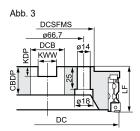
- Standzeitminderung bei der Bearbeitung von Grauguss mit ferritischem Grundgefüge, Kugelgraphitguß sowie legierten Gußwerkstoffen.
- Trockenbearbeitung ist empfohlen. Bei der Naßbearbeitung verursacht Thermoschockempfindlichkeit frühzeitige Ausbröckelung an der Schneidkante.

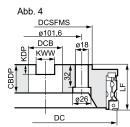

M72

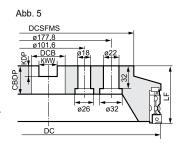
FMU - Typ


■ Ausführung



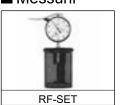

Aufbau




Fräskörper

	Dozeichnung	Lagar		Abmessungen (mm)								max. Schnitt-	Gewicht	Abb.
	Bezeichnung	Lager	DC	DCX	DCSFMS	LF	DCB	KWW	KDP	CBDP	der Zähne	tiefe	(Kg)	ADD.
FMU	4080 RS		80	82,8	60	63	27	12,4	7,0	25	6		1,6	1
FMU	4100 RS	•	100	102,8	76	63	32	14,4	8,5	29	8		2,4	2
	4125 RS		125	127,8	75	63	40	16,4	9,5	29	10		3,4	2
	4160 RS		160	162,8	100	63	40	16,4	9,5	29	12	0,5	5,6	3
FMU	4200 RS		200	202,8	130	63	60	25,7	14,0	38	16		9,2	4
	4250 RS		250	252,8	130	63	60	25,7	14,0	38	20		14,3	4
FMU	4315 RS		315	317,8	240	80	60	25,7	14,0	40	24		27,8	5

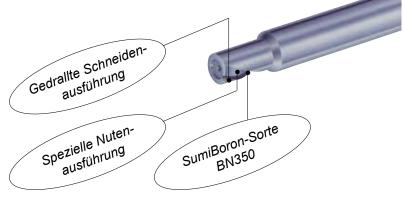
■ "Sumiboron"-Schneidplatten

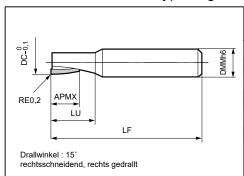

Kassetten

	5,0 €		0		
Kassette	Schraube	Einstellschraube	O-Ring	Torxschlüssel	Stabschlüssel
FMUU	BFTX0509N	FMUJ	P3	TRX20	1,8 x 45

■ Ersatzteile

Befestschraube	Schraube	Einstellkeil	Doppelschraube	Schlüssel	Schlüssel	Schlüssel
BH0620	BTD0609	FMUE	WB5-10	TH040	LH030	LH025

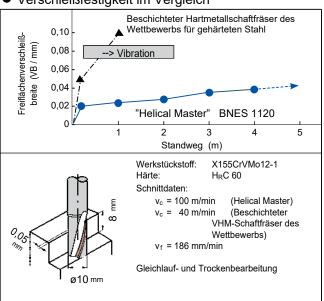

Messuhr


Messuhr ist nicht im Lieferumfang enthalten.

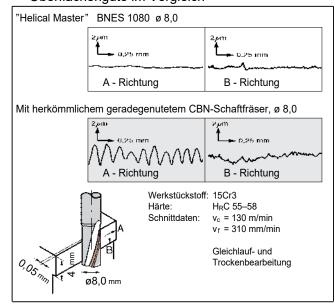
SUMIBORON "Helical Master" **BNES-Typ**

■ Schaftfräser BNES-Typ mit gedrallter CBN-Schneide

Bezeichnung	Lager	Abmessungen (mm)							
Bezeichnung	BN350	DC	DMM	APMX	LU	LF			
BNES 1060	O	6,0	10	7,0	11	60			
BNES 1080	0	8,0	10	10,0	14	70			
BNES 1100	0	10,0	12	12,0	17	75			
BNES 1120	0	12,0	12	14,0	20	80			
BNES 1140	0	14,0	16	16,0	21,5	80			

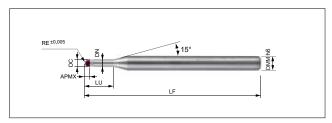

■ Empfohlene Schnittbedingungen

Schnittgeschwindigkeit: vc (m/min), Umdrehung: n (U/min), Vorschub pro Zahn: fz (mm/Zahn), Tischvorschub: vf (mm/min)


Anwendungsbeispiel	DC	DC $\frac{\text{Gehärteter Stahl (H}_{R}\text{C 50-57)}}{\text{V}_{c} = 100-170 \text{ m/min}} \frac{\text{Gehärteter Stahl (H}_{R}\text{C 50-57)}}{\text{V}_{c} = 80-150 \text{m/m}}$				· · · ·	,		
M	ø 6–8	a _e ≤ 0,1 _{mm}	n = 4000–9000	v _{f (mm/min)} = 240–540	a _e ≤ 0,08 _{mm}	n = 3200-8000	v _{f (mm/min)} = 150–370		
, a	ø 10–12	a _e ≤ 0,15 _{mm}	n = 2700-5400	V _{f (mm/min)} = 180-360	a _e ≤ 0,12 _{mm}	n = 2100-4800	Vf (mm/min) 120-270		
	ø 14–16	a _e ≤ 0,2 _{mm}	n = 2000-3800	v _{f (mm/min)} = 140–260	a _e ≤ 0,15 _{mm}	n = 1600–3400	v _{f (mm/min)} = 110–230		
Schnitttiefe : a _p ≤ DC	Empfohlen wird	Gleichlauffräse	erhang der Schn	0,					

Leistung


Verschleißfestigkeit im Vergleich


Oberflächengüte im Vergleich

BNBP-Typ

■ Schaftfräser

■ Vorzüge / Anwendung

- Hochpräzisionsbearbeitung von gehärtetem Stahl (~ HRC70) mit einer hohen Standzeit
- Extrem zähe Sorte SUMIBORON BN350 verhindert Schneidkantenausbröckelung
- R Genauigkeit: ±0,005 mm
- Bezeichnungsschlüssel

BNBP 2 R020 - 012 4

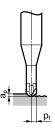
Anzahl der Zähne

Anzahl der Zähne

Schaft - ø

Halslänge (LU)

Radius der Schneide

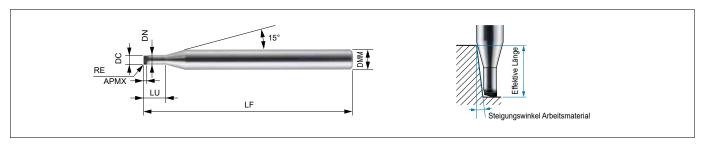

Abmessungen (mm)

								tornessungen (mm)
Bezeichnung	Lager	RE	DC	APMX	LU	LF	DN	DMM
BNBP 2R0200124	•	0,20	0,4	0,3	1,2	50	0,37	4
2R0200126	•	0,20	0,4	0,3	1,2	50	0,37	6
2R0200204	0	0,20	0,4	0,3	2,0	50	0,37	4
2R0200304	0	0,20	0,4	0,3	3,0	50	0,37	4
2R0200404	O	0,20	0,4	0,3	4,0	50	0,37	4
BNBP 2R0300154	•	0,30	0,6	0,4	1,5	50	0,57	4
2R0300156	•	0,30	0,6	0,4	1,5	50	0,57	6
2R0300304	0	0,30	0,6	0,4	3,0	50	0,57	4
2R0300404	O	0,30	0,6	0,4	4,0	50	0,57	4
2R0300504	0	0,30	0,6	0,4	5,0	50	0,57	4
2R0300604	O	0,30	0,6	0,4	0,6	50	0,57	4
BNBP 2R0500254	•	0,50	1,0	0,6	2,5	50	0,97	4
2R0500256	•	0,50	1,0	0,6	2,5	50	0,97	6
2R0500304	O	0,50	1,0	0,6	3,0	50	0,97	4
2R0500404	0	0,50	1,0	0,6	4,0	50	0,97	4
2R0500604	O	0,50	1,0	0,6	0,6	50	0,97	4
2R0500804	0	0,50	1,0	0,6	8,0	50	0,97	4
BNBP 2R0750404	O	0,75	1,5	0,9	4,0	50	1,47	4
2R0750406	•	0,75	1,5	0,9	4,0	50	1,47	6
BNBP 2R1000554	•	1,00	2,0	1,4	5,5	50	1,97	4
2R1000556	•	1,00	2,0	1,4	5,5	50	1,97	6
2R1000804	O	1,00	2,0	1,4	8,0	50	1,97	4
								Sorte: BN350

Sorte: BN350

■ Empfohlene Schnittbedingungen

	- Emplement Commuscumgangen												
Werl	kstoff	STAVA	X, NAK80,	SKD61 (< 5	2HRC)	ELMA	X, DC53, S	KD11 (< 62	HRC)		YXR3, SKH	(< 70HRC))
RE (mm)	LU (mm)	Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	ap (mm)	pf (mm)	Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	ap (mm)	pf (mm)	Spindeldrehzahl (min ⁻¹)	Vorschub (mm/min)	ap (mm)	pf (mm)
	1,2	40.000	1.000	0,005	0,010	40.000	800	0,005	0,010	40.000	600	0,005	0,005
0.0	2,0	40.000	800	0,005	0,010	40.000	600	0,005	0,010	40.000	400	0,005	0,005
0,2	3,0	40.000	600	0,005	0,010	40.000	500	0,005	0,010	40.000	300	0,005	0,005
	4,0	40.000	500	0,005	0,010	40.000	400	0,005	0,005	40.000	200	0,005	0,005
	1,5	40.000	1.600	0,020	0,020	40.000	1.400	0,010	0,020	40.000	1.200	0,010	0,020
	2,0	40.000	1.500	0,010	0,020	40.000	1.300	0,010	0,020	40.000	1.100	0,010	0,010
0,3	3,0	40.000	1.400	0,010	0,020	40.000	1.200	0,010	0,020	40.000	1.000	0,010	0,010
0,3	4,0	30.000	1.200	0,010	0,010	30.000	1.000	0,010	0,010	30.000	700	0,005	0,010
	5,0	30.000	800	0,010	0,010	30.000	700	0,005	0,010	30.000	600	0,005	0,005
	6,0	30.000	600	0,005	0,010	30.000	500	0,005	0,005	30.000	400	0,005	0,005
	2,5	40.000	2.800	0,040	0,050	40.000	2.800	0,030	0,040	40.000	2.200	0,020	0,030
	3,0	40.000	2.600	0,040	0,050	40.000	2.600	0,030	0,040	40.000	2.100	0,020	0,030
0,5	4,0	40.000	2.400	0,030	0,050	40.000	2.400	0,020	0,030	40.000	2.000	0,020	0,020
	6,0	25.000	1.500	0,020	0,030	25.000	1.500	0,010	0,020	25.000	1.300	0,010	0,010
	8,0	16.000	1.200	0,020	0,020	16.000	1.100	0,010	0,020	16.000	850	0,010	0,010
0,75	4,0	32.000	2.400	0,030	0,030	32.000	2.200	0,020	0,030	32.000	2.000	0,020	0,020
1,0	5,5	40.000	4.000	0,050	0,050	40.000	4.000	0,030	0,030	40.000	3.000	0,020	0,030
1,0	8,0	32.000	3.000	0,030	0,050	32.000	2.600	0,020	0,030	32.000	2.200	0,010	0,020


Wichtige Hinweise

- (1) Durch eine stabile Maschine ist eine Hochleistungszerspanung gewährleistet.
- (2) Luftkühlung oder MMS (Minimalmengenschmierung) wird empfohlen.
- (3) Möglich kürzere Ausladung halten, um Vibration zu vermeiden.

NPDRS - Typ

SUMIDIA Binderless - Schaftfräser mit Eckenradius Typ NPDRS

■ Body Typ NPDRS (für Standard-Schlichtanwendungen)

, ,,	`					U	,						
Bezeichnung	Lager			Abme	ssungen	(mm)			Ec Stei	hte effektiv gungswink	ve Länge b cels des Ar	ezüglich obeitsmate	des rials
Bozolomiang	NPD10	DC	RE	APMX	LU	LF	DN	DMM	0,5°	1°	1,5°	2°	3°
NPDRS 1020 R002-006	0	0,2	0,02	0,10	0,6	40	0,175	4	0,61	0,62	0,63	0,64	0,66
1020 R005-006	0	0,2	0,05	0,10	0,6	40	0,175	4	0,61	0,62	0,63	0,64	0,66
1030 R002-010	0	0,3	0,02	0,15	1,0	40	0,27	4	1,01	1,03	1,04	1,06	1,09
1030 R005-010	0	0,3	0,05	0,15	1,0	40	0,27	4	1,01	1,03	1,04	1,06	1,09
1050 R005-015	0	0,5	0,05	0,25	1,5	40	0,47	4	1,61	1,66	1,72	1,78	1,92
NPDRS 1050 R010-015	0	0,5	0,10	0,25	1,5	40	0,47	4	1,61	1,66	1,71	1,77	1,91
1100 R005-030	0	1,0	0,05	0,55	3,0	40	0,95	4	3,40	3,52	3,65	3,78	4,08
1100 R010-030	0	1,0	0,10	0,55	3,0	40	0,95	4	3,40	3,52	3,64	3,77	4,07
1100 R020-030	0	1,0	0,20	0,55	3,0	40	0,95	4	3,40	3,51	3,63	3,76	4,05
1200 R005-040	0	2,0	0,05	0,55	4,0	40	1,95	4	4,44	4,59	4,75	4,93	5,33
NPDRS 1200 R010-040	0	2,0	0,10	0,55	4,0	40	1,95	4	4,43	4,59	4,75	4,92	5,31
1200 R020-040	0	2,0	0,20	0,55	4,0	40	1,95	4	4,43	4,58	4,74	4,91	5,29

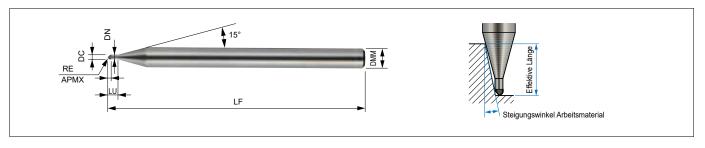
Bezeichungsschlüssel

Kombinationen Schnittkreisdurchmesser und Spitzenradius

DC	RE 0,02	RE 0,05	RE 0,1	RE 0,2
0,2	0	0		
0,3	0	0		
0,5		0	0	
1,0		0	0	0
2,0		0	0	0

■ Empfohlene Schnittbedingungen

- Für eine stabile Schnittleistung eine Maschine mit hoher Stabilität verwenden.
- Nicht-wasserlösliches Kühlmittel empfohlen. Als Kühlnebel oder externes Kühlmittel zuführen.
 Brandschutzmaßnahmen treffen, um Brandgefahren durch Funkenbildung bei der Bearbeitung oder durch Bruch des Werkzeugs zu vermeiden.
- Werkzeugüberhang so weit wie möglich reduzieren.
- Schnittbedingungen wie erforderlich anpassen, da sich die Stabilität der Maschine und andere Bedingungen verändern können.
- In der Tabelle angegebene Schnitttiefen sind als maximale Tiefenangaben zu verstehen. Die tatsächliche Schnitttiefe an die gewünschte Oberflächengüte anpassen.


Werksti	ückstoff	Hartmetall								
RE (mm)	LU	Spindeldreh- zahl (min ⁻¹)	Vorschub (mm/min)	a _p (mm)	ae (mm)					
0,2	0,10	40.000	100	0,001	0,001					
0,3	0,15	40.000	150	0,002	0,001					
0,5	0,25	40.000	200	0,003	0,001					
1,0	0,55	40.000	400	0,005	0,003					
2,0	0,55	40.000	600	0,010	0,005					

NPDB(S) - Typ

SUMIDIA Binderless Kugelkopf-Schaftfräser Typ NPDBS / Typ NPDB

■ Body Typ NPDBS (für Standard-Schlichtanwendungen)

Bezeichnung	Lager			Abme	ssungen	(mm)			Ec Stei	hte effektiv gungswink	ve Länge b kels des Ai	ezüglich orbeitsmate	des rials
Bozolomang	NPD10	RE	DC	APMX	LU	LF	DN	DMM	0,5°	1°	1,5°	2°	3°
NPDBS 1010-004	O	0,1	0,2	0,1	0,4	40	0,18	4	0,44	0,45	0,46	0,47	0,49
1020–008	O	0,2	0,4	0,2	0,8	40	0,38	4	0,83	0,84	0,85	0,86	0,89
1030–010	O	0,3	0,6	0,3	1,0	40	0,58	4	1,05	1,08	1,10	1,13	1,20
1050–020	O	0,5	1,0	0,5	2,0	40	0,95	4	2,08	2,13	2,19	2,24	2,38
1100–030	O	1,0	2,0	1,0	3,0	40	1,95	4	3,13	3,20	3,27	3,35	3,53

■ Body Typ NPDB (für hochpräzise Schlichtanwendungen)

Bezeichnung	Lager			Abme	essungen	(mm)			Ec Stei	hte effektiv gungswinl	ve Länge b kels des Ai	ezüglich orbeitsmate	des rials
Bozolomiang	NPD10	RE	DC	APMX	LU	LF	DN	DMM	0,5°	1°	1,5°	2°	3°
NPDB 1010-004	0	0,1	0,2	0,1	0,4	40	0,18	4	0,44	0,45	0,46	0,47	0,49
1020–008	0	0,2	0,4	0,2	0,8	40	0,38	4	0,83	0,84	0,85	0,86	0,89
1030–010	0	0,3	0,6	0,3	1,0	40	0,58	4	1,05	1,08	1,10	1,13	1,20
1050–020	0	0,5	1,0	0,5	2,0	40	0,95	4	2,08	2,13	2,19	2,24	2,38
1100–030	O	1,0	2,0	1,0	3,0	40	1,95	4	3,13	3,20	3,27	3,35	3,53

■ Bezeichungsschlüssel

■ Empfohlene Schnittbedingungen

- Für eine stabile Schnittleistung eine Maschine mit hoher Stabilität verwenden.
- Nicht-wasserlösliches Kühlmittel empfohlen. Als Kühlnebel oder externes Kühlmittel zuführen.
 Brandschutzmaßnahmen treffen, um Brandgefahren durch Funkenbildung bei der Bearbeitung oder durch Bruch des Werkzeugs zu vermeiden.
- Werkzeugüberhang so weit wie möglich reduzieren.
- Schnittbedingungen wie erforderlich anpassen, da sich die Stabilität der Maschine und andere Bedingungen verändern können.
- In der Tabelle angegebene Schnitttiefen sind als maximale Tiefenangaben zu verstehen. Die tatsächliche Schnitttiefe an die gewünschte Oberflächengüte anpassen.

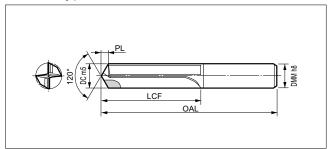
● Flache Oberflächengüte

Werkstü	ckstoffe	Hartmetall					
RE (mm)	LU	Spindeldreh- zahl (min ⁻¹)	Vorschub (mm/min)	a _p (mm)	ae (mm)		
0,1	0,4	40.000	100	0,001	0,001		
0,2	0,8	40.000	150	0,001	0,001		
0,3	1,0	40.000	200	0,001	0,001		
0,5	2,0	40.000	400	0,001	0,003		
1,0	3,0	40.000	600	0,001	0,005		

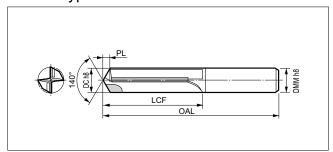
Nachbildung Oberflächengüte

Werkstü	ickstoffe		Hartme	etall		
RE (mm)	LU	Spindeldreh- zahl (min ⁻¹)	Vorschub (mm/min)	a _p (mm)	ae (mm)	
0,1	0,4	40.000	100	0,001	0,001	
0,2	0,8	40.000	150	0,002	0,001	
0,3	1,0	40.000	200	0,003	0,001	
0,5	2,0	40.000	400	0,005	0,003	
1,0	3,0	40.000	600	0,010	0,005	

SUMIDIA - Bohrer


DAL/DDL/DML - Typ

Für präzise Bohrungen von Aluminiumlegierungen


- Hochpräzisions DAL Typ erreicht Bohrungsqualitäten von IT Klasse 7–8.
- DDL Typ erreicht Bohrungsqualitäten von IT Klasse 11–12.
- DML entspricht dem DDL Typ mit 2 zusätzlichen Fasschneiden.

■ DAL Typ

Bezeichnung	DA2200	DC (DMM)	LCF	OAL	PL
DAL 0500H - 0600H		Ø5 ≤ DC ≤ Ø6	31,6	84,6	1,6
0601H - 0700H		Ø6 < DC ≤ Ø7	36,9	91,9	1,9
0701H - 0800H		Ø7 < DC ≤ Ø8	37,2	92,2	2,2
0801H - 0900H		Ø8 < DC ≤ Ø9	42,5	102,5	2,5
0901H – 1000H		Ø9 < DC ≤ Ø10	42,8	102,8	2,8
1001H – 1100H		Ø10 < DC ≤ Ø11	53,1	113,1	3,1
1101H – 1200H		Ø11 < DC ≤ Ø12	53,4	113,4	3,4

■ DDL Typ

Bezeichnung	DA2200	DC (DMM)	LCF	OAL	PL
DDL 050V - 060V		Ø5 ≤ DC ≤ Ø6	31,5	81,0	1,0
061V - 070V		Ø6 < DC ≤ Ø7	36,2	91,2	1,2
071V - 080V		Ø7 < DC ≤ Ø8	36,4	91,4	1,4
081V - 090V		Ø8 < DC ≤ Ø9	41,6	101,6	1,6
091V – 100V		Ø9 < DC ≤ Ø10	41,7	101,7	1,7
101V – 110V		Ø10 < DC ≤ Ø11	51,9	111,9	1,9
111V – 120V		Ø11 < DC ≤ Ø12	52,1	112,1	2,1

■ Empfohlene Schnittbedingungen

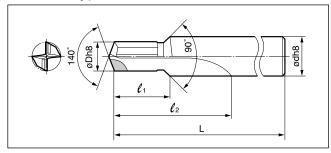
DC (mm)	Schnittgeschw. (m/min)	Vorschub (mm/U)	Bohrtiefe L/D	Kühlung
<8	80–250	0,05–0,2	unter 3 x D	wasser- lösliche
≥ 8 ≤ 12	00-250	0,1–0,3	untersxD	Emulsion

■ Bearbeitungshinweis:

- Die Maschinenspindel sollte eine hohe Steifigkeit besitzen und es sollten Präzisionswerkzeughalter verwendet werden.
- Auf ausreichende Kühlung direkt am Bohrloch achten.

■ Anwendungsbeispiele (DAL Typ)

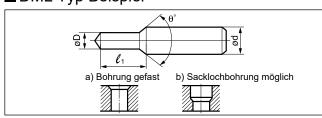
Anwendungs- beispiel	Werkstück- stoff	Schnitt- bedingungen	Ergebnis
200,000	A390 Si 16 - 18%	v _c = 100 m/min f = 0,1 mm/U	Mit VHM-Bohrer war die Toleranzgrenze nach 2000 Bohrungen erreicht. Mit SumiDia Bohrer wurden über 30.000 Bohrungen gefertigt.
\$15.0 -0.043		v _c = 120 m/min f = 0,12 mm/U	• Durchschnittlich 40,000 Bohrungen je Nachschliff • Oberflächengüte Ry = 1µm
- SS - SS - SS - SS - SS - SS - SS - S	G-AlSi9Cu3Fe Druckguss	v _c = 90 m/min f = 0,08 mm/U	• Über 50.000 Bohrungen und kein Standzeitende.


■ Anwendungsbeispiele (DDL Typ)

Anwendungs- beispiel	Werkstück- stoff	Schnitt- bedingungen	Ergebnis
20	ADC12 Si 9,6 - 12% Aluminium- druckguss	v _c = 214 m/min f = 0,14 mm/U	Erster Nachschliff nach 100.000 Bohrungen
	ADC12 Si 9,6 - 12% Aluminium- druckguss	v _c = 200 m/min f = 0,17 mm/U	• Erster Nachschliff nach 74.000 Bohrungen (2.000m)
- 24 -	AC2A Aluminium- guss	vc = 234 m/min f = 0,28 mm/U	• Erster Nachschliff nach 80.000 Bohrungen (1920m)

SUMIDIA - Bohrer DAL/DDL/DML - Typ

■ DML - Typ



Gewinde- größe	Bezeichnung	Lager DA2200	øD	ød	L	e 1	l 2
M6	DML 050V		5	8	90	18	36
M8	DML 068V		6,8	10	104	24	48
M10	DML 085V		8,5	12	122	30	60
M12	DML 103V		10,3	14	136	36	72

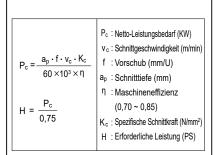
■ Anwendungsbeispiele (DML Typ)

Anwendungs- beispiel	Werkstück- stoff	Schnitt- bedingungen	Ergebnis
17 • 1	G-AlSi7Mg Aluminum Guss	vc = 100 m/min f = 0,1 mm/U	Erster Nachschliff nach 150.000 Bohrungen Standzeit mit VHM- Bohrer 500 Bohrungen. 30-fache Standzeit gegenüber VHM-Bohrer
- 19	AC2C-T2 Aluminum- guss	vc = 210 m/min f = 0,15 mm/U	100.000 Bohrungen (1.900m) und kein Standzeitende. Bohren und Fasen in einem Arbeitsgang
23	G-AlSi7Mg Aluminium- guss	v _c = 250 m/min f = 0,2 mm/U	80.000 Bohrungen (1,840m) und kein Standzeitende. Bohren und Fasen in einem Arbeitsgang

■ DML Typ Beispiel

(1) θ° ist kleiner 180°.
 (2) Die Fasschneiden sind Fertigungsbedingt aus VHM, es können auf Wunsch PCD Schneiden eingesetzt werden.

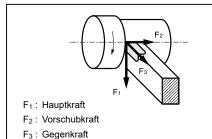
Verweise auf technische Anleitungen


Face Milling Cuide CONTINCTOR AND CLARGE METICO OF A MICE MACE - Continued And Annie of A Grande Annie Annie of Annie		Multi-Oriel Trouble Shooting Guide
According to the second	Land All Comments of the Comme	
The state of the s	◆ SUMTOMO	

Grundlagen des Drehens	N2
Werkzeugausfälle und Abhilfemaßnahmen	N3-4
Spankontrolle	N5
Grundlagen des Fräsens	
Werkzeugausfälle und Abhilfemaßnahmen	N9
Grundlagen des Schaftfräsens	N10-11
Werkzeugausfälle und Abhilfemaßnahmen	
WorkZougustaillo una / Ib/illioniais/id/illion	INIZ
Grundlagen des Bohrens	N13-15
Probleme und Abhilfe	N16
CLIMIDODON TUM	
SUMIBORON zum	
Bearbeiten von gehärtetem Stahl	
Bearbeiten von gehärtetem Stahl Bearbeiten von Gusseisen	
Bearbeiten von gehärtetem Stahl	
Bearbeiten von gehärtetem Stahl Bearbeiten von Gusseisen	N18
Bearbeiten von gehärtetem Stahl Bearbeiten von Gusseisen Bearbeiten von schwer zu zerspanenden	N18 N19
Bearbeiten von gehärtetem Stahl Bearbeiten von Gusseisen Bearbeiten von schwer zu zerspanenden Materialien	N18 N19
Bearbeiten von gehärtetem Stahl Bearbeiten von Gusseisen Bearbeiten von schwer zu zerspanenden Materialien Probleme und Abhilfe	N18 N19
Bearbeiten von gehärtetem Stahl Bearbeiten von Gusseisen Bearbeiten von schwer zu zerspanenden Materialien Probleme und Abhilfe Referenzen	N18 N19 N20
Bearbeiten von gehärtetem Stahl Bearbeiten von Gusseisen Bearbeiten von schwer zu zerspanenden Materialien Probleme und Abhilfe Referenzen Stahl- und Nichteisenmetall Klassifizierung	N18 N19 N20 N21-25
Bearbeiten von gehärtetem Stahl Bearbeiten von Gusseisen Bearbeiten von schwer zu zerspanenden Materialien Probleme und Abhilfe Referenzen Stahl- und Nichteisenmetall Klassifizierung Härteskalen-Vergleichstabelle	N18 N19 N20 N21-25 N26
Bearbeiten von gehärtetem Stahl Bearbeiten von Gusseisen Bearbeiten von schwer zu zerspanenden Materialien Probleme und Abhilfe Referenzen Stahl- und Nichteisenmetall Klassifizierung	N18 N19 N20 N21-25 N26

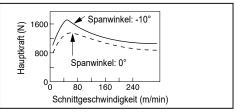
Technische Anleitung

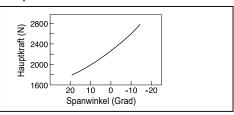
Grundlagen des Drehens


■ Berechnung des Leistungsbedarfs

Grober Wert der spezifischen Schnittkraft (Kc)

 $\begin{array}{ll} \mbox{Allg. Stahl:} & 2.500 \sim 3.000 \mbox{ N/mm}^2 \\ \mbox{Guss:} & 1.500 \mbox{ N/mm}^2 \\ \mbox{Aluminium:} & 800 \mbox{ N/mm}^2 \end{array}$


Schnittkraft


Berechnung der Schnittkraft

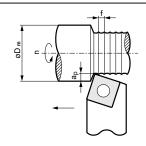
	P : Schnittkraft (N)
P= K _c ⋅ q	K _c : Spezifische Schnittkraft (N/mm²)
_ k _c xa _p xf	q : Spanfläche (mm²)
1000	a _p : Schnitttiefe (mm)
	f : Vorschub (mm/U)

■ Schnittgeschwindigkeit und Schnittkraft

■ Spanwinkel und Schnittkraft

■ Berechnung der Schnittgeschwindigkeit

① Berechnung der Drehzahl aus der Schnittgeschwindigkeit

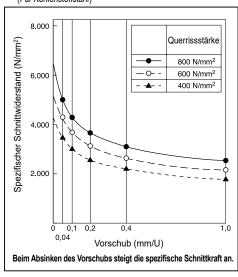

(Bsp.)
$$v_c = 150 \text{ m/min}, D = 100 \text{ mm}$$

$$n = \frac{1000 \times 150}{3,14 \times 100} = 478 \text{ (min}^{-1})$$

② Berechnung der Schnittgeschwindigkeit aus der Drehzahl

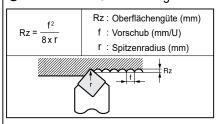
Siehe obige Tabelle

n : Drehzahl (min-1)


v_c : Schnittgeschwindigkeit (m/min)

f : Vorschub (mm/U)

a_p: Schnitttiefe (mm)


D_m: Werkstückdurchmesser (mm)

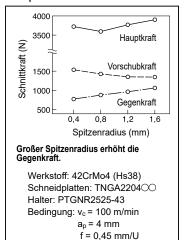
■ Vorschub und spezifische Schnittkraft (Für Kohlenstoffstahl)

■ Oberflächengüte

Theoretische Oberflächengüte

Tatsächliche Oberflächengüte

Stahl

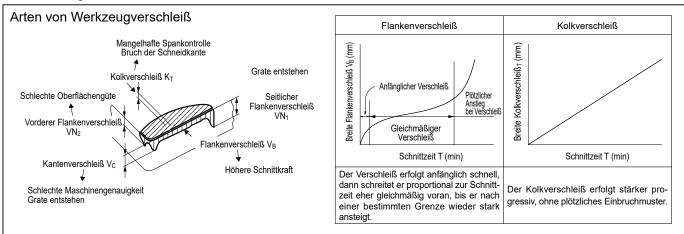

Theoretische Oberflächengüte x 1,5–3

Theoretische Oberflächengüte x 3-5

Verbesserung der Oberflächengüte

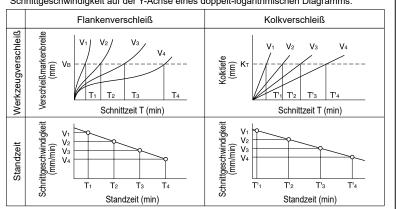
- ① Verwenden Sie eine Schneidplatte mit größerem Spitzenradius.
- ② Optimieren Sie die Schnittgeschwindigkeit und den Vorschub, so dass es nicht zur Entstehung einer Aufbauschneide kommt.
- Wählen Sie eine Schneidplatte mit geeignetem Schneidstoff.
- Werwenden Sie eine Wiper-Schneidplatte.

■ Spitzenradius und Schnittkraft



Technische Anleitung Werkzeugausfälle und Standzeit

■ Arten von Werkzeugausfällen


Kategorie	Nr.	Name des Ausfalls	Ursache des Ausfalls
Mecha- nisch	1~5 6 7	Verschleiß Abplatzung Teil- Aus- bruch	Abrieb durch Haftstoffe am Werkstoff. Kleine Abplatzungen durch hohe Schnittbelastung oder Rattern. Durch die Einwirkung einer übermäßigen mechanischen Kraft auf die Schneidkante.
Chemisch	8 9 10 11	Kolkverschleiß Plastische Verformung Kammrissbildung Aufbauschneide	Thermische Ermüdung durch Erhitzen und Abkühlen bei Schnittunterbrechungen.

■ Werkzeugverschleiß

■ Standzeit (V-T)

Messung der relativen Standzeiten bei vorgegebenem Verschleiß bei unterschiedlichen Schnittgeschwindigkeiten, dann Eintragung der Standzeit auf der X-Achse und der Schnittgeschwindigkeit auf der Y-Achse eines doppelt-logarithmischen Diagramms.

■ Leitfaden zur Fehlersuche beim Drehen

	Fehlermerkmal	Ursache	Gegenmaßnahmen
	Übermäßiger Flankenverschleiß	 Schneidstoff hat zu geringe Verschleißfestigkeit Schnittgeschwindigkeit ist zu hoch Vorschubgeschwindigkeit ist zu langsam 	- Wählen Sie einen verschleißfesteren Schneidstoff P30 ⇔ P20 ⇔ P10 K20 ⇔ K10 ⇔ K01 - Verwenden Sie eine Schneidplatte mit größerem Spanwinkel
	Übermäßiger Kolkverschleiß	Schneidstoff hat zu geringe Kolkverschleißfestigkeit Spanwinkel ist zu klein Schnittgeschwindigkeit ist zu hoch	- Wählen Sie einen kolkverschleißbeständigeren Schneidstoff P30 ⇔ P20 ⇔ P10 K20 ⇔ K10 ⇔ K01 - Verwenden Sie eine Schneidplatte mit größerem Spanwinkel - Wählen Sie einen geeigneten Spanbrecher - Senken Sie die Schnittgeschwindigkeit
	Mikroausbrüche an Schneidkante	 Vorschubgeschwindigkeit und Schnitttiefe sind zu hoch Schneidstoff hat zu geringe Zähigkeit 	- Senken Sie die Schnitttiefe und den Vorschub - Verwenden Sie zähere Schneidstoffe P10 ⇒ P20 ⇒ P30
Ausfall der Werkzeugkante		 - Unzureichende Schneidkantenstabilität - Vorschubgeschwindigkeit und Schnitttiefe sind zu hoch 	K01 ⇔ K10 ⇔ K20 - Wählen Sie einen Spanbrecher mit stabiler Schneidkante - Verringern Sie den Spanwinkel - Vorschubgeschwindigkeiten und Schnitttiefen reduzieren - Wenn durch Aufbauschneide verursacht, verwenden Sie z. B. eine Cermetsorte
	Bruch der Schneidkante	 Schneidstoff hat eine zu geringe Zähigkeit Unzureichende Schneidkantenstabilität Zu hohe Belastung der Wendeschneidplatte 	- Verwenden Sie zähere Schneidstoffe P10 ⇒ P20 ⇒ P30 K01 ⇒ K10 ⇒ K20 - Verwenden Sie eine Schneidplatte mit stabilerer Schneidkante - Wählen Sie eine einseitige Schneidplatte - Wählen Sie eine größere Schneidplatte - Verringern Sie die Schnitttiefe und den Vorschub
	Aufbauschneide	 Falsche Schneidstoff-Auswahl Ungenügende Schneidkantenschärfe Schnittgeschwindigkeit ist zu niedrig Vorschubgeschwindigkeit ist zu niedrig 	 - Verwenden Sie einen Spanbrecher mit größerem Spanwinkel - Verbessern Sie die Kühlmittelzufuhr - Schnittgeschwindigkeiten erhöhen
	Plastische Verformung	 Schneidstoff hat zu geringe Temperaturbeständigkeit Schnittgeschwindigkeit ist zu hoch Vorschubgeschwindigkeit ist zu hoch Schnitttiefe ist zu groß Nicht genügend Kühlmittel 	- Schneidstoff mit höherer Kolkverschleißfestigkeit und Hitzebeständigkeit auswählen - Eine Schneidplatte mit größerem Spanwinkel verwenden - Schnittgeschwindigkeit verringern - Vorschubgeschwindigkeiten und Schnitttiefen reduzieren - Für ausreichend Kühlmittel sorgen
	Kerbverschleiß	 Schneidstoff hat zu geringe Verschleißfestigkeit Spanwinkel ist zu klein Schnittgeschwindigkeit ist zu hoch 	- Wählen Sie einen verschleißbeständigen Schneidstoff P30 ⇔ P20 ⇔ P10 K20 ⇔ K10 ⇔ K01 - Schneidplatte mit größerem Spanwinkel verwenden - Ändern Sie die Schnitttiefe, um die Kerbposition zu verschieben

Spankontrolle

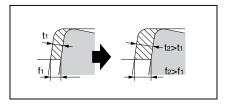
■ Art der Spanerzeugung

	а	b	С	d		
Form						
Bedingung	Kontinuierliche Späne mit glatter Oberfläche.	Span wird durch den Scherwinkel abgeschert und abgetrennt.	Späne sehen wie von der Oberfläche abgerissen aus.	Späne brechen, bevor der Schneidpunkt erreicht wird.		
Anwendung	Stahl, rostfreier Stahl	Stahl, rostfreier Stahl (geringe Geschwindigkeit)	Stahl, Grauguss (sehr geringe Geschwindigkeit, sehr geringer Vorschub)	Grauguss, Kohlenstoffstahl		
tor	Einfach ← Werkstückdeformation → Schwierig					
Einflussfaktor	Groß -	← Span	winkel —	► Klein		
snjju	Klein -	← Schni	tttiefe	► Groß		
市	Schnell -	Schnittgeso	chwindigkeit	► Langsam		

■ Art der Spankontrolle

Vorschub	Α	В	С	D	Е
Starker Vorschub	F		供		14.
Geringer Vorschub	题	A Tries	例	1977	33
NC-Drehmaschine (Zur Automatisierung)	×	×	0	0	Δ
Allgemeine Drehmaschine (Zur Sicherheit)	×	0	0	○~△	×

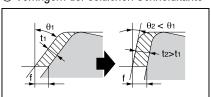
Gut: C-Typ, D-Typ

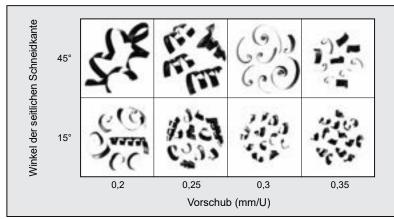

A-Typ: Wickelt sich um das Werkzeug oder Werkstück, beschädigt die bearbeitete Oberfläche und beeinträchtigt die Sicherheit.

B-Typ: Voluminös, verursacht Probleme beim automatischen Spanförderer und es kommt leicht zu Mikroausbrüchen.

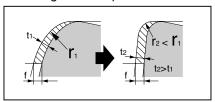
E-Typ: Verursacht Herumfliegen der Späne, schlechtere Oberflächenqualität wegen Rattern, Mikroausbrüchen, großer Schnittkraft und hohen Temperaturen.

■ Faktor zur Verbesserung der Spankontrolle

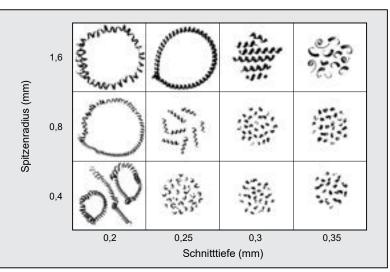

① Erhöhen des Vorschubs


Bei Erhöhung des Vorschubs werden die Späne dicker und die Spankontrolle verbessert sich.

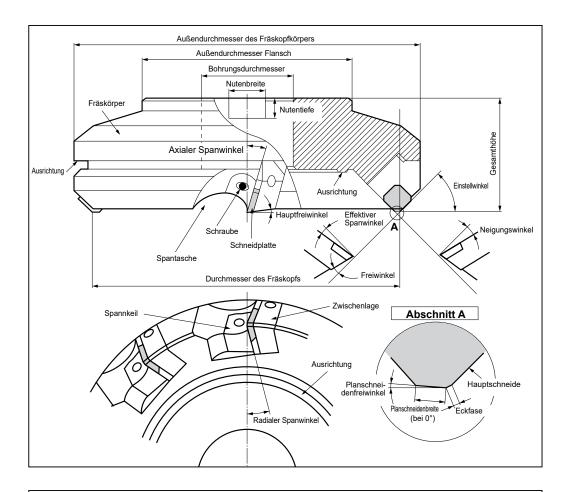
Schnitttiefe (mm) 2,0 Vorschub (mm/U)


② Verringern der seitlichen Schneidkante

Selbst bei gleichem Vorschub werden die Späne bei kleinerem Winkel der seitlichen Schneidkante dicker und die Spankontrolle verbessert sich.



③ Verringern des Spitzenradius


Selbst bei gleicher Schnitttiefe werden die Späne bei kleinerem Spitzenradius dicker und die Spankontrolle verbessert sich.

* Der Schnittwiderstand steigt proportional zur Breite der Kontaktfläche an. Daher steigen bei einem größeren Spitzenradius der Schnittwiderstand und die Gegenkraft an, es kann auch zum Rattern kommen. Allerdings würde bei gleichem Vorschub ein geringerer Spitzenradius zu einer schlechteren Oberflächengüte führen.

Grundlagen des Fräsens

■ Bestandteile eines Fräskopfes

■ Leistungsbedarf

Berechnung der Netto-Antriebsleistung

 $a_p \cdot a_e \cdot v_f \cdot K_c$ $60 \times 10^6 \times \eta$

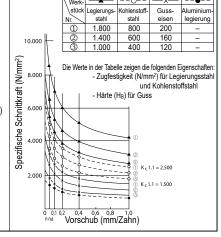
Leistung

H= Pc

Pc : Netto-Antriebsleistung (KW) H: Erforderliche Leistung (PS)

Q : Zeitspanvolumen (cm3min) a_e : Eingriffsbreite (mm/min)

v_f: Vorschubgeschwindigkeit (mm/min)


Zeitspanvolumen

 $a_p \times a_e \times v_f$ _ (cm³/min) 1.000

a_p : Schnitttiefe (mm) η : Maschineneffizienz (0,70~0,85) K_c : Spezifische Schnittkraft (N/mm²)

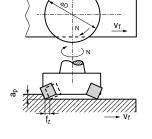
z. B. Rauigkeitswert Stahl: 2.500 ~ 3.000 Guss: 1.500

Beziehung zwischen Vorschub, Werkstoff, spezifischer Schnittkraft

Berechnen der Schnittgeschwindigkeit

$$v_c = \frac{\pi \times D \times n}{1.000}$$

v_c : Schnittgeschwindigkeit (m/min)

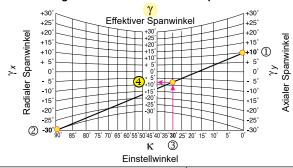

● Berechnung des Vorschubs D: Fräskopfdurchmesser (mm)

n : Drehzahl (U/min)

 $v_f = f_z \times z \times n$

v_f: Vorschubgeschwindigkeit (mm/min) f_z: Vorschub pro Zahn (mm/Zahn)

z : Anzahl der Zähne


Technische Anleitung

Grundlagen des Fräsens

■ Einfluss der verschiedenen Schneidwinkel und ihre Funktion

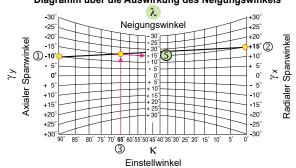

	Beschreibung	Code	Funktionen	Auswirkung
① ②	Axialer Spanwinkel Radialer Spanwinkel	$\gamma_y \\ \gamma_x$	Kontrolliert die Spanabfuhrrichtung, beeinflusst die Haftung der Späne und die Schubkraft usw.	Spanwinkel können von positiv bis negativ variieren (groß bis klein), mit typischen Kombinationen aus Positiv-und-Negativ, Positiv-und-Positiv- oder Negativ-und-Negativ-Konfigurationen.
3	Einstellwinkel	К	Kontrolliert die Spandicke und die Spanabfuhr	Bei kleinerem Einstellwinkel: Hierdurch soll die Spandicke verringert und die Schneidlast erleichtert werden. Dadurch leichteres Schneiden mit geringerer Schnittkraft.
4	Effektiver Spanwinkel (Wirksamer Spanwinkel)	γ	Kontrolliert die Schnittleistung und die Erhaltung der Schneidkante	Bei positivem (großen) Spanwinkel: Die Schnittleistung wird erhöht sowie eine gute Spankontrolle gewährleistet, jedoch wird die Schneidkante geschwächt. Bei negativem (kleinen) Spanwinkel: Die Schneidkante wird stabiler und die Späne werden mehr gestaucht.
\$	Neigungswinkel	λ	Kontrolliert die Spanabfuhr	- Bei positivem (großen) Neigungswinkel: Zufriedenstellende Späneabfuhr, weniger Schnittwiderstand, jedoch geringere Stärke der Schneidkante.
6	Planschneidenfreiwinkel	α_f	Kontrolliert die Oberflächengüte	Ein geringerer Freiwinkel erzeugt eine bessere Oberflächengüte.
7	Freiwinkel	α	Kontrolliert die Kantenfestigkeit, Standzeit und Rattern usw.	

Diagramm über den effektiven Spanwinkel

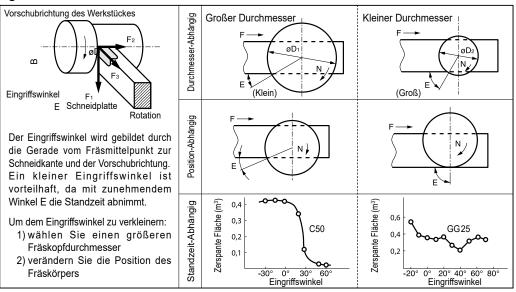
Formel: $\tan \gamma = \tan \gamma_x \cdot \sin \kappa + \tan \gamma_y \cdot \cos \kappa$

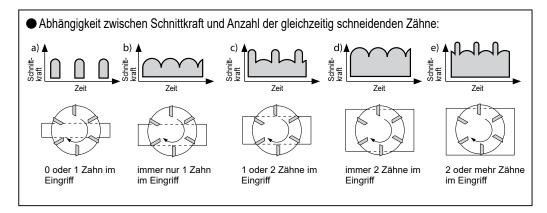
Diagramm über die Auswirkung des Neigungswinkels

Beispiel:

① γ_y : Axialer Spanwinkel = -10°
② γ_x : Radialer Spanwinkel = +10°
③ κ : Einstellwinkel = 65°

Ergebnis: Neigungswinkel $\lambda = -15^\circ$

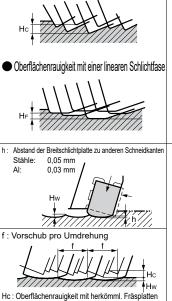

Formel: $\tan \lambda = \tan \gamma_y \cdot \sin \kappa - \tan \gamma_x \cdot \cos \kappa$


■ Spanwinkelkombination

	Negativ - Positiv	Doppelt - Positiv	Doppel - Negativ
Die Auswirkungen der verschiedenen Winkelkonfigurationen auf die Spanbildung und die Spanabfuhr. Spanabfuhrrichtung Rotation	Radialer Spanwinkel (Negativ) Axialer Spanwinkel Einstellwinkel (Positiv) (45° ~ 60°)	Radialer Spanwinkel (Positiv) Axialer Spanwinkel Einstellwinkel (Positiv) (60° ~ 75°)	Radialer Spanwinkel (Negativ) Axialer Spanwinkel Einstellwinkel (Negativ) (60° ~ 75°)
Vorteil	Sehr gute Spanform bei guter Spanabfuhr	Sehr weicher Schnitt	Doppelseitige Wendeplatte einsetzbar, höhere Schneikantenstabilität
Nachteil	Es können nur einseitige Schneidplatten verwendet werden	Geringere Schneidkantenstabilität, nur einseitige Wendeplatten können verwendet werden	Stumpfer Schnitt
Anwendung	Für Stahl, Grauguss, rostfreien Stahl, Legierungsstahl	Zum allgemeinen Fräsen von Stahl Für Werkstücke mit geringer Stabilität	Bearbeitung von Grauguss, geringere Spantiefen bei Stahl
Typischer Fräskopf	WGX, WGC, UFO	DPG	DNX, DGC, DNF
Späne (Bsp.) Werkstückstoff: 37Cr4 $v_c = 130 \text{ m/min}$ $f_z = 0,23 \text{ mm/Zahn}$ $a_p = 3 \text{ mm}$		000	999

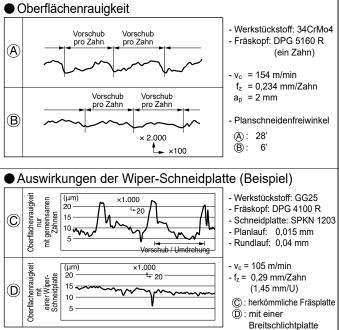
Grundlagen des Fräsens

■ Beziehung zwischen Eingriffswinkel und Standzeit



■ Erhöhung der Oberflächengüte

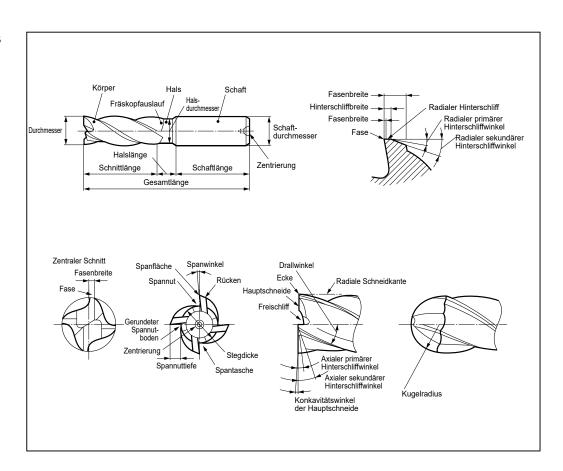
- ① Standardfräsplatte mit Schlichtfase


 Durch das Anbringen einer breiten
 Fase an allen Wendeplatten
 wirken diese ähnlich wie eine
 Schneidplatte.
 - Platten mit einer linearen Fase (Planschneidenfreiwinkel: 15` - 1°)
 - Platten mit einer gewölbten Schlichtfase (Radius der Wölbung: 500mm)
- ② Einsatz einer Breitschlichtplatte
 Bei dieser Methode werden eine
 oder zwei sogenannte Breitschlichtplatten eingesetzt, die
 durch ihre gewölbte Schneide eine
 breitere Schneidfläche ergeben und
 somit die Unebenheiten anderer
 - (Gilt für WGC-, RF-Typen usw.)

Zähne überschneiden.

Hw: Oberflächenrauigkeit mit Breitschlichtplatte

Oberflächenrauigkeit ohne Schlichtfase



Technische Anleitung Werkzeugausfall, Abhilfemaßnahmen

■ Leitfaden für die Fehlersuche beim Fräsen

	Fehler	Grund	dlegende Abhilfemaßnahmen	Beispiele für Abhilfemaßnahmen
	Übermäßiger Flankenverschleiß	Sorte (gilt auch für alle folgenden Eingaben) Schnitt- bedingungen	- Verschleißfeste Sorte wählen. Hartmetall P30 ⇔ P20 ⇔ K10 ⇔ { Beschichtet Cermet - Schnittgeschwindigkeit verringern und Vorschub erhöhen.	- Empfohlene Schneidstoffe der Schneidplatten Stahl Grauguss Nichteisenlegierung Schlichten T250A (Cermet) ACK200 (Beschichtetes Hartmetall) (Beschichtetes Hartmetall) (Beschichtetes Hartmetall) (Beschichtetes Hartmetall)
Ausfall der Schneidkante	Übermäßiger Kolkverschleiß	Werkzeug- material Schnitt- bedingungen	Wählen Sie einen kolkverschleißfesten Schneidstoff. Schnittgeschwindigkeit, Schnitttiefe und Vorschub verringern.	- Empfohlene Schneidstoffe der Schneidplatten Stahl Grauguss Nichteisenlegierung ACK200 Schlichten T250A (Cermet) (Beschichtetes Hartmetall) DA1000 (SUMIDIA) ACP100 ACK200 DL1000 Schruppen (Beschichtetes Hartmetall) (Beschichtetes Hartmetall)
	Ausbröckelungen an der Schneidkante	Werkzeug- material Schnitt- bedingungen Werkzeug- Design	 Wählen Sie einen zäheren Schneidstoff. P10 ⇔ P20 ⇔ P30 K01 ⇔ K10 ⇔ K20 Verringern Sie den Vorschub. Wählen Sie eine Negativ-Positiv-Fräskopfkonfiguration mit einem großen Einstellwinkel. Verstärken Sie die Schneidkante (Honen). Wählen Sie eine Schneidplatte mit starker Kante (G → H). 	Richten Sie sich nach den empfohlenen Schnittbedingungen aus der Auflistung im allgemeinen Katalog
	Teilweiser Bruch der Schneidkanten	Schnitt- bedingungen Werkzeug- Design	 Im Falle von zu geringer Geschwindigkeit und niedrigem Vorschub eine Sorte wählen, die eine Aufbauschneide verhindert. Bei Warmrissbildung eine Sorte wählen, die gegen Warmrisse beständig ist. Wählen Sie die geeigneten Bedingungen für die jeweilige Anwendung. Fräskörper mit negativ-positiver (oder negativer) Schneidengeometrie mit einem großen Einstellwinkel verwenden. Verstärken Sie die Schneidkante (Honen). Wählen Sie eine Schneidplatte mit starker Kante (G → H). Größere Schneidplatte (insbes. Dicke) verwenden. 	- Empfohlene Schneidstoffe der Schneidplatten Stahl Grauguss ACP300 ACK300 (Beschichtetes Hartmetall) (Beschichtetes Hartmetall) - Empfohlener Fräskopf: WaveMill WGX-Typ - Schneidplattendicke: 3,18 → 4,76 mm - Schneidplattentyp: Standard → Mit starker Kante - Schnittbedingungen: Richten Sie sich nach den empfohlenen Schnittbedingungen aus der Auflistung im allgemeinen Katalog
Sonstige	Schlechte Oberflächengüte	Werkzeug- material Schnitt- bedingungen Werkzeug- Design	 Wählen Sie einen weniger haftanfälligen Schneidstoff. Hartmetall → Cermet Erhöhen Sie die Schnittgeschwindigkeiten. Verbessern Sie Planlauf der Schneidkanten. (Verwenden Sie einen Fräskopf mit weniger Schlag) (Befestigen Sie die richtige Schneidplatten) Schlichtplatte verwenden. Verwenden Sie Spezialfräsköpfe für das Schlichten. 	Schneid- T250A BN700 DA1000
	Rattern	Schnitt- bedingungen Werkzeug- Design Sonstige	 Verringern Sie den Vorschub. Wählen Sie einen Fräskopf mit großem Spanwinkel und scharfen Schneidkanten. Fräskörper mit ungleicher Teilung verwenden. Aufspannen des Werkstücks und Fräskörpers verbessern. Leichtschneidenden Kopf verwenden. 	- Empfohlener Fräskopf: Für Stahl: WaveMill WGX-Typ Für Grauguss: DNX-Typ Für Nichteisenlegierung: Hochgeschwindigkeitsfräskopf für Aluminium RF-Typ
	Schlechte Spankontrolle Riefen auf dem Werkstück	Design Werkzeug- Design Schnitt-	 Verringern Sie die Anzahl der Zähne. Vergrößern Sie die Spantasche. Wählen Sie einen großen Anstellwinkel. Wählen Sie eine Schneidplatte mit scharfer Schneidkante. (G → L). Verringern Sie den Vorschub. 	- Empfohlener Fräskopf: WaveMill WGX-Typ - Empfohlener Fräskopf: WaveMill WGX-Typ
	Gratbildung am Werkstück	Werkzeug- Design Schnitt-	- Leichtlaufenden Fräser verwenden. - Erhöhen Sie den Vorschub.	- Empfohlener Fräskopf: WaveMill WGX-Typ + FG Spanbrecher DGC-Typ + FG Spanbrecher

■ Bestandteile eines Schaftfräsers

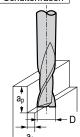
■ Berechnen der Schnittbedingungen

Schnittgeschwindigkeit

$$V_c = \frac{\pi \cdot D \cdot n}{1.000}$$

$$n = \frac{1.000 \cdot v_c}{1.000 \cdot v_c}$$

Vorschub


$$v_f = f \times n$$

$$v_f = f_z \times z \times n$$

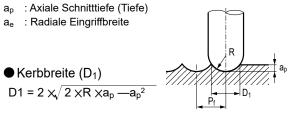
Schnitttiefe

$$f_z = \frac{V_f}{7 \times p}$$

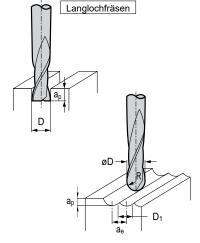
v_c: Schnittgeschwindigkeit (m/min)

D: Schaftfräserdurchmesser (mm)

n : Drehzahl (min-1)

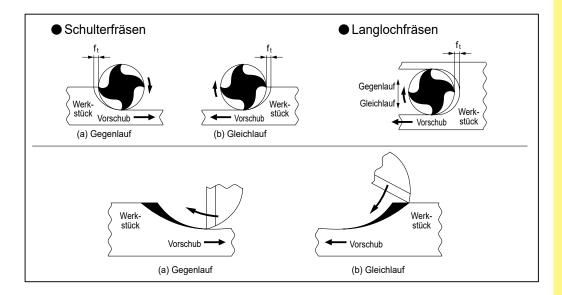

v_f: Vorschubgeschwindigkeit (mm/min)

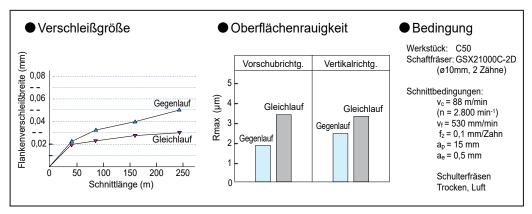
Vorschub pro Umdrehung (mm/U)


Vorschub pro Zahn (mm/Zahn)

z: Anzahl der Zähne

(Kugelbahnfräser)




 Schnittgeschwindigkeit und Vorschub werden mit derselben Formel berechnet wie beim rechteckigen Schaftfräser.

Technische Anleitung **Grundlagen des Schaftfräsens**

■ Gegenlauf- und Gleichlauffräsen

■ Beziehung zwischen Schnittbedingung und Ablenkung

Schneidfläche

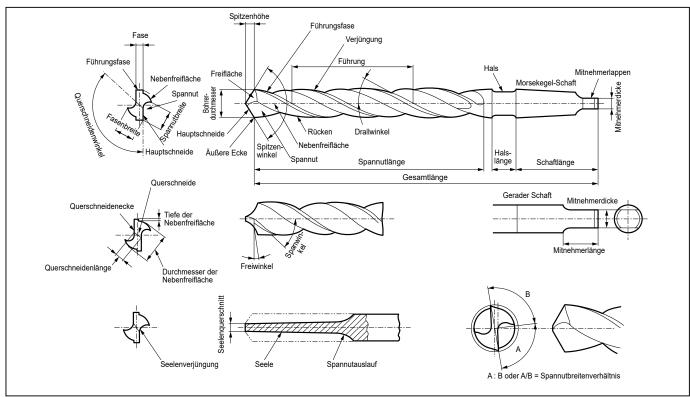
Referenzfläche

→ | | ←

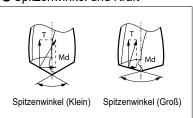
100μm

)			Schulterfräsen			Langlochfräsen					
	Schaftfräser		Werkstoff: Vorgehärteter Stahl (40HRC) Schnittdaten: v _c = 25 m/min a _p = 12 mm a _e = 0,8 mm		Werkstoff: Vorgehärteter Stahl (40HRC) Schnittdaten: v _c = 25 m/min a _p = 8 mm a _e = 8 mm Gegen-lauf- seite Gegen-lauf- seite						
	Kat Anzahl Drall- Nr. Zähne winkel		Drall-	Vors 0,16 r		Vors 0,11 i		Vors 0,05		Vors 0,03	
			ler winkel				ırt	,	rt	A	
				Gegenlauf	Gleichlauf	Gegenlauf	Gleichlauf	Gegenlauf	Gleichlauf	Gegenlauf	Gleichlauf
	SSM 2080	2	30°					1		<u>Z</u>	
	SSM 4080	4	30°					1		7	;

Technische Anleitung Werkzeugausfall, Abhilfemaßnahmen

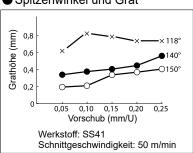

■ Leitfaden zur Fehlersuche beim Schaftfräsen

	Ausfall		Ursache	Abhilfemaßnahmen
	Großer Freiflächenverschleiß an den Stirn- und Nebenschneiden	Schnitt- bedingungen Werkz.form Werkz.material	Vorschubgeschwindigkeit ist zu hochDer Freiwinkel ist zu klein	 Schnittgeschwindigkeit und Vorschub verringern Kühlmittel: Emulsion Auf Ölbasis Zu einem angemessenen Freiwinkel wechseln Ein Substrat mit höherer Verschleißbeständigkeit auswählen Ein beschichtetes Werkzeug verwenden
Ausfall der Schneidkante	Ausbröckelungen an der Schneidkante	Schnitt- bedingungen Maschine und Sonstiges	- Vorschubgeschwindigkeit ist zu hoch - Schnitttiefe ist zu tief - Werkzeugüberhang ist zu lang - Werkstückeinspannungen sind schwach - Werkzeug ist nicht fest eingespannt - Spindelspiel ist zu groß	 Gleichlauffräsen verwenden Vorschub verringern Schnitttiefe verringern Werkzeugüberhang auf korrekte Länge einstellen Werkstück stabiler einspannen Sicherstellen, dass das Werkzeug ordnungsgemäß im Spannfutter sitzt Spindelspiel verringern Spannzange überprüfen
4	Fräserbruch während der Bearbeitung	Schnitt- bedingungen	- Schnittgeschwindigkeit ist zu niedrig - Vorschubgeschwindigkeit ist zu hoch - Schnitttiefe ist zu groß - Werkzeugüberhang ist zu lang - Schneidkante ist zu lang	- Schnittgeschwindigkeit erhöhen - Vorschub verringern - Schnitttiefe verringern - Werkzeugüberhang so weit wie möglich reduzieren - Ein Werkzeug mit kürzerer Schneidkante auswählen - Spannzange überprüfen
	Schulterversatz	Schnitt- bedingungen Werkz.form	 Vorschubgeschwindigkeit ist zu hoch Schnittliefe ist zu groß Werkzeugüberhang ist zu lang Gleichlauffräsen Drallwinkel ist zu groß 	 Schnittgeschwindigkeit verringern Schnitttiefe verringern Werkzeugüberhang auf korrekte Länge einstellen Richtung auf Gegenlauf wechseln Ein Werkzeug mit kleinerem Drallwinkel verwenden
egi	Unzureichende Oberflächenqualität	Schnitt- bedingungen	- Gegenlauffräsen - Vorschubgeschwindigkeit ist zu hoch - Schnittliefe ist zu groß - Spänestau	- Gleichlauffräsen verwenden - Schnittgeschwindigkeit verringern - Schnitttiefe verkleinern - Druckluft verwenden - Anzahl der Spannuten erhöhen - Größeren Drallwinkel wählen - Schneidkante verkürzen
Sonstige	Rattern / Vibrationen	Schnitt- bedingungen Werkz.form Maschine und Sonstiges	 Unzureichende Kühlmittelzufuhr Schnittgeschwindigkeit ist zu hoch Gegenlauffräsen Werkzeugüberhang ist zu lang Spanwinkel ist zu groß Unzureichende Einspannstabilität von Werkzeug und Werkstück 	 - Kühlmittelzufuhr verbessern - Schnittgeschwindigkeit verringern - Richtung auf Gleichlauf wechseln - Werkzeugüberhang auf korrekte Länge einstellen - Ein Werkzeug mit angemessenem Spanwinkel verwenden - Verbesserung der Einspannstabilität von Werkzeug und Werkstück
	Spänestau	Schnitt- bedingungen Werkz.form	 Vorschubgeschwindigkeit ist zu hoch Schnittliefe ist zu groß Zähnezahl zu hoch Spänestau 	 Vorschub verringern Schnitttiefe verringern Anzahl der Zähne reduzieren Erhöhung der Kühlmittelmenge

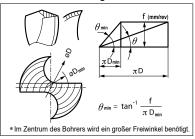

Technische Anleitung

Grundlagen des Bohrens

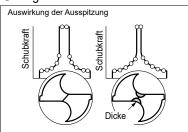
■ Bestandteile eines Bohrers



Spitzenwinkel und Kraft


Wenn der Spitzenwinkel groß ist, wird die Schubkraft groß, aber das Drehmoment wird klein

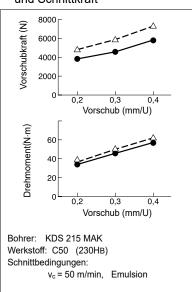
Spitzenwinkel und Grat



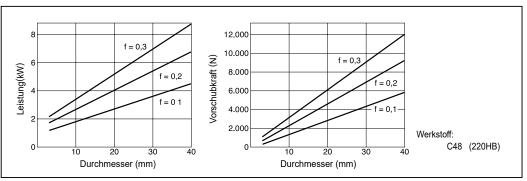
Bei einem großen Spitzenwinkel wird die Grathöhe gering.

Min. Anforderung Freiwinkel

Stegdicke und Schubkraft


Die Ausspitzung verringert die auf die Querschneide konzentriere Schubkraft, macht die Bohrkante scharf und verbessert die Spankontrolle. Auch die Standzeit erhöht sich.

● Verringern Sie die Querschneidenbreite durch Ausspitzung


S-Typ: Allgemein verwendeter Standardtyp. N-Typ: Geeignet für dünne Werkstücke. X-Typ: Für schwer zu zerspanende Materialien oder zum Tieflochbohren.

Breite der Kantenbehandlung und Schnittkraft

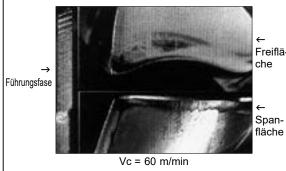
Grundlagen des Bohrens

■ Referenz für Leistungsbedarf und Vorschubkraft

■ Auswahl der Schnittbedingungen

 Kontrolle der Schnittkraft für Maschine mit geringer Stabilität

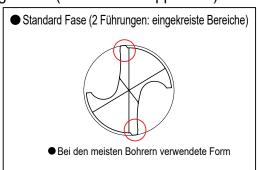
Die folgende Tabelle zeigt die Beziehung zwischen der Kantenbehandlungsbreite und der Schnittkraft. Wenn ein durch die Schnittkraft verursachtes Problem auftritt, sollten Sie entweder den Vorschub oder die Kantenbehandlungsbreite verringern.

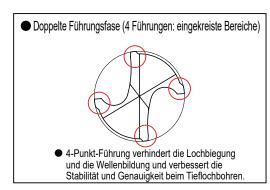

	Bedingung		Kantenbehandlungsbreite				
			0,15	mm	0,05 mm		
	V _c (m/min)	f (mm/U)	Drehmoment (N• m)	Schubkraft (N)	Drehmoment (N• m)	Schubkraft (N)	
	40	0,38	12,8	2.820	12,0	2.520	
	50	0,30	10,8	2.520	9,4	1.920	
	60	0,25	9,2	2.320	7,6	1.640	
	60	0,15	6,4	1.640	5,2	1.100	

Bohrer: ø10 Werkstoff: C50 (230 HB)

 Empfehlung für die Hochgeschwindigkeits-Bearbeitung

Wenn beim Bohren unter den normalen empfohlenen Schnittbedingungen noch Kapazität bei der Maschinenleistung und der Stabilität vorhanden ist, empfehlen wir höhere Bohrgeschwindigkeiten.



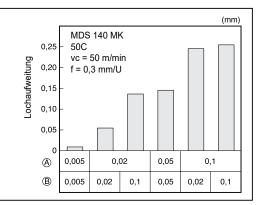

Vc = 120 m/min

Werkstoff: C50 (230 HB) Schnittdaten: f = 0.3 mm/U $a_p = 50 \text{ mm}$

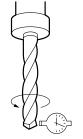
Standzeit: 600 Löcher (Schnittlänge: 30 m)

■ Erklärung der Führungsfasen (Einzel und Doppelfase)

Grundlagen des Bohrens


■ Rundlaufgenauigkeit

Rundlaufgenauigkeit der Schneidkantenhöhe B und der Ausspitzung A sind wichtig.

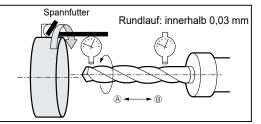

(A): Die Rundlaufgenauigkeit der Ausspitzung

B : Die Differenz der Schneidkantenhöhe

■ Periphere Rundlaufgenauigkeit beim Rotieren des Werkzeugs

Der Bohrerrundlauf bei Montage in der Maschinenspindel muss innerhalb von 0,03 mm liegen. Bei einem großen Rundlauf wird auch das Bohrloch groß, was zu einem Anstieg der horizontalen Schnittkraft führt und einen Bruch des Bohrers zur Folgen haben kann, wenn die Maschine oder die Werkstückeinspannung nicht die nötige Stabilität aufweist.

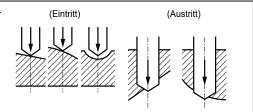
Peripherer Rundlauf (mm) Lochaufweitung Horizontale Schnittkraft 0 0,005 (mm) 0 10 (kg) 0,005 0,005


Bohrer: Werkstoff: MDS120MK C50 (230 HB)

Werkstoff: C50 (230 HB) Schnittdaten: $v_c = 50 \text{ m/min}, f = 0,3 \text{ mm/U}, a_p = 38 \text{ mm}$ Emulsion

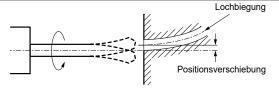
Rundlauf: innerhalb 0,03 mm

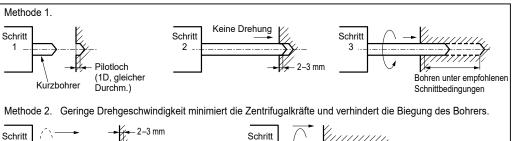
■ Periphere Rundlaufgenauigkeit beim Rotieren des Werkstücks


Bei Verwendung in einer Drehmaschine muss der Rundlauf bei Punkt A innerhalb von 0,03 mm liegen, dieser Wert muss auch an Punkt B gleich sein.

■ Einfluss auf die Werkstückoberfläche

 Werkstück mit abgeschrägter oder unebener Oberfläche

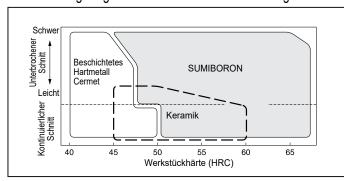

Wenn die Oberfläche des Locheintritts oder -austritts abgeschrägt oder uneben ist, sollte der Vorschub an diesen Stellen auf 0,1–0,15 mm/U verringert werden.


- Verwendung von Langbohrern
- Problem

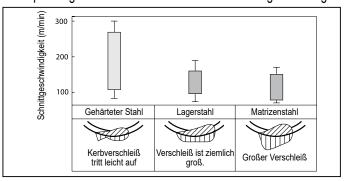
Bei Verwendung von langen Bohrern der Typen XHGS, XHT, DAK oder SMDH-D mit hohen Drehgeschwindigkeiten kann der Rundlauf der Bohrspitze eine Positionsverschiebung am Eintrittspunkt verursachen, was zu einer Biegung des Bohrlochs und schließlich zum Bohrerbruch führt.

(n = 100-300 U/min) (f = 0,15-0,2 mm/U)

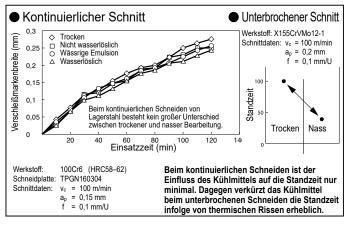
Abhilfemaßnahmen

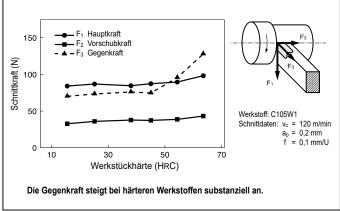


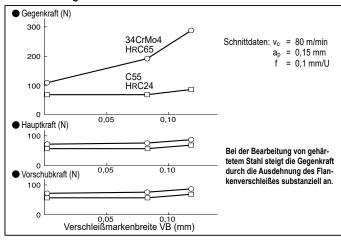
Probleme und Abhilfe

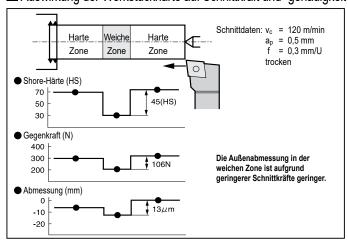

■ Störungsbeseitigung Bohren

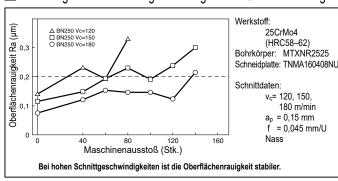
	Problem		Grundlegende Abhilfe	Beispiele zur Abhilfe
	Extremer Verschleiß an der Schneidkante	Schnitt-be- dingung Kühlmittel	 Nutzen Sie höhere Schnittgeschwindigkeitsbereiche. Erhöhen Sie die Vorschübe. Erhöhen Sie den Kühlmitteldruck der inneren Kühlmittelzufuhr. Nutzen Sie Emulsion mit höherem Ölanteil. 	 - Vc = 80–100 m/min - Beziehen Sie sich auf die aufgeführten Daten im Katalog. - Kleiner 1,5 MPa.
erflächengüte Problem am Bohrer	Abplatzungen an der Querschneide	Werkzeug- ausführung Schnitt- bedingung Sonstiges	 Vergrößern Sie die Größe der Querschneide. Vergrößern Sie die Schneidkantenverrundung. Reduzieren Sie den Vorschub beim Eintritt. Verbessern Sie die Stabilität der Werkstückspannung. 	- f = 0,05–0,1mm/U.
	Abplatzungen an der Nebenschneide	Werkzeug- ausführung Schnitt- bedingung Kühlmittel Sonstiges	Vergrößern Sie die Schneidkantenverrundung. Reduzieren Sie die Führungsfasenbreite. Reduzieren Sie die Schnittgeschwindikeit. Erhöhen Sie den Vorschub. Nutzen Sie Emulsion mit höherem Ölanteil. Verbessern Sie die Stabilität der Werkstückspannung.	- Beziehen Sie sich auf die aufgeführten Daten im Katalog.
	Verschleiß der Führungsfase	Werkzeug- ausführung Schnitt- bedingung Kühlmittel Sonstiges	- Vergrößern Sie die Verjüngung Reduzieren Sie die Führungsfasenbreite Reduzieren Sie die Schnittgeschwindigkeit Erhöhen Sie den Vorschub. - Nutzen Sie Emulsion mit höherem Ölanteil Verbessern Sie die Stabilität der Werkstückspannung.	- Beziehen Sie sich auf die aufgeführten Daten im Katalog.
	Bohrerbruch	Werkzeug- ausführung Schnitt- bedingung Kühlmittel Sonstiges	 - Vergrößern Sie die Verjüngung. - Reduzieren Sie die Führungsfasenbreite. - Reduzieren Sie die Schnittgeschwindigkeit. - Erhöhen Sie den Vorschub. - Nutzen Sie Emulsion mit höherem Ölanteil. - Verbessern Sie die Stabilität der Werkstückspannung. 	- Beziehen Sie sich auf die aufgeführten Daten im Katalog.
	Übermaß der Bohrung	Werkzeug- ausführung Schnitt- bedingung Kühlmittel Sonstiges	Verbessern Sie die Steifigkeit des Bohrers insgesamt (starke Seele, kleine Spannut). Reduzierung des Spitzenwinkels. Reduzieren Sie den Vorschub beim Eintritt. Reduzieren Sie die Schnittgeschwindigkeit. Verbessern Sie die Stabilität der Werkstückspannung. Verbessern Sie die Genauigkeit der Bohrerspannung.	 - 130°-120° - f = 0,05-0,1 mm/min. - Beziehen Sie sich auf die aufgeführten Daten im Katalog. - Rundlauf des Bohrers kleiner 0,02 mm
ð	Schlechte Oberflächengüte	Werkzeug- ausführung Schnitt- bedingung Kühlmittel	- Vergrößern Sie die Verjüngung.- Erhöhen Sie die Schnittgeschwindigkeit.- Nutzen Sie Emulsion mit höherem Ölanteil.	- Beziehen Sie sich auf die aufgeführten Daten im Katalog.
Unbefriedigende	Verlaufende Bohrung	Werkzeug- ausführung Schnitt- bedingung Sonstiges	 - Verringern Sie die Schneidkantenverrundung. - Verringern Sie die Vorschübe. - Verbessern Sie die Stabilität der Werkstückspannung. - Verbessern Sie die Genauigkeit der Bohrerspannung. - Erhöhen Sie die Steifigkeit der Bohrereinspanung. 	- Beziehen Sie sich auf die aufgeführten Daten im Katalog Rundlauf des Bohrers kleiner 0,02 mm.
iges	Spänestau	Schnitt- bedingung Kühlmittel	- Erhöhen Sie die Schnittgeschwindigkeit Erhöhen Sie die Vorschübe Reduzieren Sie den Kühlmitteldruck bei der Verwendung von Innenkühlung.	- Beziehen Sie sich auf die aufgeführten Daten im Katalog. - Kleiner 1,5 MPa.
Sonstiges	Lange Fließspäne	Werkzeug- ausführung Schnitt- bedingung Kühlmittel	 Reduzieren Sie die Schneidkantenverrundung. Erhöhen Sie den Vorschub. Reduzieren Sie den Kühlmitteldruck bei der Verwendung von Innenkühlung. 	- Beziehen Sie sich auf die aufgeführten Daten im Katalog. - Kleiner 1,5 MPa.

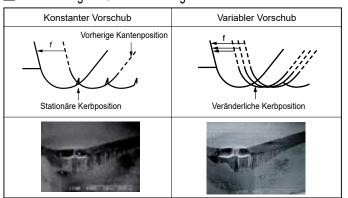

Technische Anleitung Bearbeiten von gehärtetem Stahl


Anwendungsdiagramm der verschiedenen Werkzeugmaterialien Empfehlungen für Werkstückmaterialien und Schnittgeschwindigkeit


Einfluss des Kühlmittels auf die Standzeit

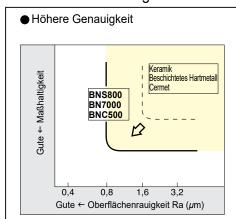

■ Beziehung zwischen Werkstückhärte und Schnittkräften

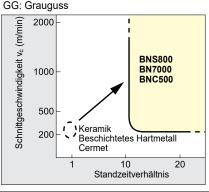

■ Beziehung zwischen Flankenverschleiß und Schnittkraft

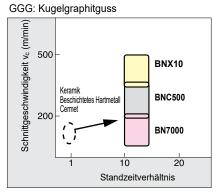


Auswirkung der Werkstückhärte auf Schnittkraft und -genauigkeit

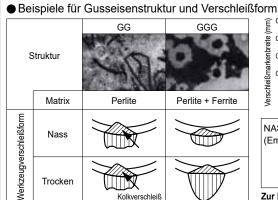
■ Beziehung zwischen Schnittgeschwindigkeit und Oberflächenrauigkeit 🔳 Verbesserung der Oberflächenrauigkeit durch Ändern des Vorschubs

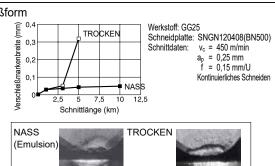


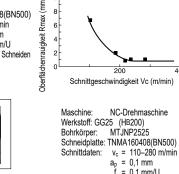

Bei einer Änderung des Vorschubs verschiebt sich die Kerbposition über eine größere Fläche, die Oberflächengüte steigt und der Kerbverschleiß sinkt.


Technische Anleitung Bearbeiten von Gusseisen

■ Vorteile der Nutzung von SUMIBORON bei der Bearbeitung von Grauguss




● Längere Standzeit bei höheren Schnittgeschwindigkeiten GG: Grauguss



■ Drehen

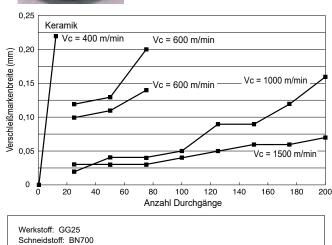
6

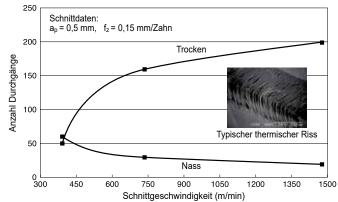
4

Zur Bearbeitung von Gusseisen mit SUMIBORON sollten die Schnittgeschwindigkeiten (Vc) mindestens 200 m/min betragen. Das Nass-Schneiden wird empfohlen.

a_p = 0,1 mm f = 0,1 mm/U NASS

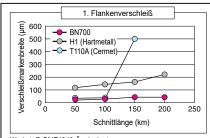
Fräsen

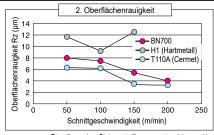

SUMIBORON BN Finish Mill EASY

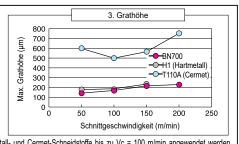

- Hochgeschwindigkeits-Bearbeitung Vc = 2000 m/min
- Oberflächenrauigkeit Rz = 3,2 (Ra = 1,0)

 $(v_c \ge 200 \text{ m/min})$

- Wirtschaftliche Schneidplatte verringert die Betriebskosten
- Einfaches Einstellen der Schneidplatte mit einer Einstelllehre
- Sicherheitskonstruktion zum Schutz vor Zentrifugalkräften unter Hochgeschwindigkeits-Bedingungen

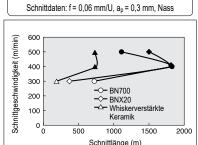


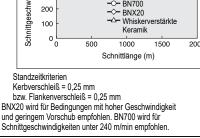

Schnittdaten: $a_p = 0.5 \text{ mm}$, $f_z = 0.1 \text{ mm/Zahn}$, Trocken

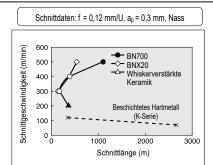


Für die Hochgeschwindigkeits-Bearbeitung von Gusseisen mit SUMIBORON wird Trockenschneiden empfohlen.

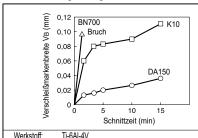
■ Sintermetall


Werkstoff: SMF4040-Äquivalent
Prozessdetails: e100-300 mm stark unterbrochenes Plandrehen mit Nuten und
Bohrlöchern. (nach 40 Durchgängen)
Schneidplatte: TNGA160404 Schnittdaten: f = 0,1 mm/U, d = 0,1 mm, Nass


Für allgemeine Sintermetallkomponenten können Hartmetall- und Cermet-Schneidstoffe bis zu Vc = 100 m/min angewendet werden. Allerdings nimmt bei etwa Vc = 120 m/min der Verschleiß schnell zu, und die Oberflächenrauigkeit verschlechtert sich mit zunehmenden Graten. SUMIBORON dagegen zeichnet sich durch hohe Stabilität und ausgezeichnete Verschleißbeständigkeit, Gratvermeidung und gute Oberflächenrauigkeit besonders bei hohen Geschwindigkeiten aus.


Hitzebeständige Legierung

Ni-Basislegierung



Standzeitkriterien Kerbverschleiß = 0,25 mm bzw. Flankenverschleiß = 0,25 mm BN700 wird für das Schneiden mit hohen Vorschüben empfohlen. (Über f = 0,1 mm/U)

● Ti-Basislegierung

Schneidplatte: DNM120404NF Schnittdaten: v_c = 100 m/min, a_p = 0,1 mm, f = 0,05 mm/U, Nass SUMIDIA-Positiv-Schneidplatten eignen sich hervorragend für Ti-Legierungen, aufgrund ihrer hohen Schneidkantenfestigkeit und der hohen Verschleißbeständigkeit. 0,12 BN700 K10

0,10 Bruch

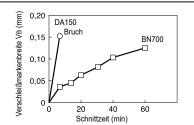
0,06

0,08

0,04

0,02

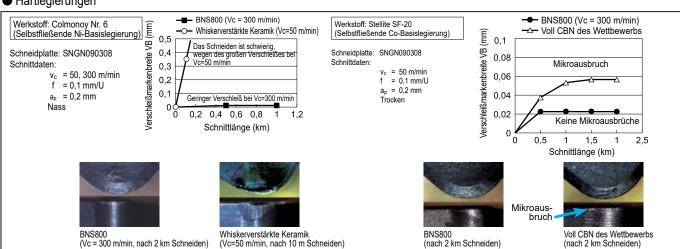
0,02


0,02

0,02

Schnittzeit (min)

Schneidplatte: DNM120404NF Schnittdaten: $v_c = 100 \, \text{m/min}$, $a_p = 0.1 \, \text{mm}$, $f = 0.05 \, \text{mm/U}$, Nass SUMIDIA-Positiv-Schneidplatten eignen sich hervorragend für Ti-Legierungen, aufgrund ihrer hohen Schneidkantenfestigkeit und der hohen Verschleißbeständigkeit.


Werkstoff

Schneidplatte: DNMA150412
Schnittdaten: Vc = 120 m/min, a₀ = 0,3mm, f = 0,25 mm/U, Nass
Die Negativ-Schneidplatte BN700 ist perfekt für das hocheffiziente
Schneiden geeignet. (Für große Schnittleife und hohe Vorschübe)

Werkstoff:

Hartlegierungen

Probleme und Abhilfe

	Problem		Abhilfemaßnahmen
	Großer Flankenverschleiß	Werkzeugmaterial Werkzeug-Design Schnittbedingung	 Wählen Sie einen verschleißbeständigeren Schneidstoff. Verringern Sie die Schnittkraft. Verringern Sie NL-Breite und -Winkel. Positiv-Schneidplatten bevorzugt. Überprüfen Sie die Schnittgeschwindigkeit. Senken Sie die Schnittgeschwindigkeit auf unter 200 m/min. Höhere Vorschübe senken die Gesamtkontaktzeit zwischen Werkzeug und Werkstück.
	Großer Kolkverschleiß	Werkzeugmaterial	- Es werden kolkverschleißbeständige Schneidstoffe empfohlen Kontinuierliches ~ Leicht unterbrochenes Schneiden = BNC2010 - Leichtes ~ Mittleres unterbrochenes Schneiden = BNX20 - Mittleres ~ Stark unterbrochenes Schneiden = BNX25
	Bruch am Kolkboden	Werkzeug-Design Schnittbedingung	 Bestimmen Sie die Schneidkantengeometrie nach gründlicher Inspektion der verwendeten Schneidplatten. Schärfen Sie die Schneidkante, um Kolkverschleiß zu verhindern. Stärken Sie die Schneidkante, um Kolkbrüche zu verhindern. Überprüfen Sie die Schnittgeschwindigkeit. Senken Sie die Schnittgeschwindigkeit auf unter 200 m/min. Es werden höhere Vorschübe empfohlen.
Ausfall der Schneidkante	Abplatzung	Werkzeugmaterial Werkzeug-Design Schnittbedingung	 - Das Abplatzen wird durch hohe Gegenkräfte verursacht, die im Zusammenhang mit dem Flankenverschleiß stehen. - Wählen Sie einen verschleißbeständigeren Schneidstoff. - Eine schärfere Schneidkante trägt zur Verhinderung des Abplatzens be Verringern Sie NL-Winkel und Breite. - Positiv-Schneidplatten bevorzugt. - Verringern Sie den Flankenverschleiß durch geringere Geschwindigkeit und höhere Vorschüb Eine Senkung der Gesamtkontaktzeit zwischen Werkzeug und Werkstück verringert den Flankenverschleiß
Austali der	Mikroausbrüche an Kerbposition	Schnittbedingung	 Wenn die Oberflächengüte beeinträchtigt ist, sollten Sie die Methode "Variabler Vorschub" in Erwägung ziehen, um die Güte zu verbessern. Bei anderen Ursachen sollten Sie die Abhilfemaßnahmen wie bei normalem Verschleiß nutzen.
	Mikroausbrüche an Kerbposition	Werkzeugmaterial Werkzeug-Design Schnittbedingung	 Verursacht durch Stöße auf die Schneidkante. Auch Rattern kann ein beitragender Faktor sein. Wählen Sie einen zäheren Schneidstoff. Verstärken Sie die Schneidkante. Großer NL-Winkel, Honen. Höhere Vorschübe werden empfohlen, um die Anzahl der Stöße zu verhindern.
	Mikroausbrüche an Spitzenposition	Werkzeugmaterial Werkzeug-Design Schnittbedingung	 Verursacht durch Stöße auf die Schneidkante. Auch Rattern kann ein beitragender Faktor sein. Wählen Sie einen zäheren Schneidstoff. Verstärken Sie die Schneidkante. Großer NL-Winkel, Honen. Höhere Vorschübe werden empfohlen, um die Anzahl der Stöße zu verhindern.
	Thermischer Riss	Schnittbedingung Werkzeug-Design	- Temperaturschocks erzeugen vertikale Risslinien über die Schneidkante hinweq - Es wird die vollständig trockene Bearbeitung empfohlen Wenn bereits die trockene Bearbeitung erfolgt, ist eine Senkung der Schneidtemperaturen und Schnittkräfte erforderlich Verringern Sie Schnittgeschwindigkeit, Vorschub und Schnitttiefe Schärfen Sie die Schneidkante Wählen Sie einen Schneidstoff mit höherer thermischer Leitfähigkeit aus

Werkzeugmaterial

- Wählen Sie einen Schneidstoff mit höherer thermischer Leitfähigkeit aus.

■ Stahl- und Nichteisenmetall Klassifizierung

Kohlenstoffstahl

JIS	AISI	DIN
S10C	1010	C10
S15C	1015	C15
S20C	1020	C22
S25C	1025	C25
S30C	1030	C30
S35C	1035	C35
S40C	1040	C40
S45C	1045	C45
S50C	1049	C50
S55C	1055	C55

Ni-Cr-Mo-Stahl

SNCM220	8620	21NiCrMo2
SNCM240	8640	_
SNCM415	_	_
SNCM420	4320	_
SNCM439	4340	40NiCrMo6
SNCM447	_	34NiCrMo6

Cr-Stahl

SCr415	_	15CrMo5
SCr420	5120	20Cr4
SCr430	5130	34Cr4
SCr435	5132	37Cr4
SCr440	5140	41Cr4
SCr445	5147	_

Cr-Mo-Stahl

• •		
SCM415	_	15CrMo5
SCM420	_	20CrMo5
SCM430	4131	25CrMo4
SCM435	4137	34CrMo4
SCM440	4140	42CrMo4
SCM445	4145	_

Mn-Stahl und Mn-Cr-Stahl für Konstruktionen

SMn420	1522	_
SMn433	1534	_
SMn438	1541	_
SMn443	1541	_
SMnC420	_	_
SMnC443	_	_

Cr-Mo-Stahl

SK1	_	_
SK2	W1-11 ¹ /2	_
SK3	W1-10	C105W1
SK4	W1-9	_
SK5	W1-8	C80W1
SK6	_	C80W1
SK7		C70W2
		•

Schnellarbeitsstahl

JIS	AISI	DIN
SKH2	T1	_
SKH3	T4	S18-1-2-5
SKH10	T15	S12-1-4-5
SKH51	M2	S6-5-2
SKH52	M3–1	_
SKH53	M3-2	S6-5-3
SKH54	M4	_
SKH56	M36	_

Legierter Werkzeugstahl

SKS11	F2	_
SKS51	L6	_
SKS43	W2-9 ¹ /2	_
SKD1	D3	X210Cr12
SKD11	D2	X155CrVMo12-1
SKD61	_	X40CrVMo5-1

Grauguss

• • • • • • • • • • • • • • • • • • • •	="	
FC100	No 20B	GG-10
FC150	No 25B	GG-15
FC200	No 30B	GG-20
FC250	No 35B	GG-25
FC300	No 45B	GG-30
FC350	No 50B	GG-35

Kugelgraphitguss

• · · · · · · · · · · · · · · · · · · ·						
FCD400	60-40-18	GGG-40				
FCD450	_	GGG-40.3				
FCD500	80-55-06	GGG-50				
FCD600	_	GGG-60				
FCD700	100-70-03	GGG-70				

• Ferritischer rostfreier Stahl

SUS405	405	X10CrAl13
SUS429	429	_
SUS430	430	X6Cr17
SUS430F	430F	X7CrMo18
SUS434	434	X6CrMo17 1

Martensitischer rostfreier Stahl

•					
403	_				
410	X10Cr13				
416	_				
420	X20Cr13				
420F	_				
431	X20CrNi17 2				
440A	_				
440B	_				
440C	_				
	410 416 420 420F 431 440A 440B				

Austenitischer rostfreier Stahl

<u> </u>						
JIS	AISI	DIN				
SUS201	201	_				
SUS202	202	_				
SUS301	301	X12CrNi17 7				
SUS302	302	_				
SUS302B	302B	_				
SUS303	303	X10CrNiS18 9				
SUS303Se	303Se	_				
SUS304	304	X5CrNiS18 10				
SUS304L	304L	X2CrNi19 11				
SUS304NI	304N	_				
SUS305	305	X5CrNi18 12				
SUS308	308	_				
SUS309S	309S	_				
SUS310S	310S	_				
SUS316	316	X5CrMo17 12 2				
SUS316L	316L	X2CrNiMo17 13 2				
SUS316N	316N	_				
SUS317	317	_				
SUS317L	317L	X2CrNiMo18 16 4				
SUS321	321	X6CrNiTi18 10				
SUS347	347	X6CrNiNb18 10				
SUS384	384					

Hitzebeständiger Stahl

_	_
_	_
_	X53CrMnNi21 9
_	_
_	_
309	_
310	CrNi2520
N08330	_
	310

Ferritischer hitzebeständiger Stahl

SUH21	_	CrAl1205
SUH409	409	X6CrTi12
SUH446	446	_

Martensitischer hitzebeständiger Stahl

• Martensitischer Hitzebestandiger Otani					
SUH1	_	X45CrSi9 3			
SUH3	_	_			
SUH4	_	_			
SUH11	_	_			
SUH600	_	_			

■ Stahl- und Nichteisenmetall Klassifizierung

P Kohlenstoffstahl - Baustahl

JIS	AISI/ASTM	DIN/EN	GB	BS	AFNOR	ГОСТ
S10C	1008 1010	C10E C10R 1.1122	08 10	040A10 045A10 045M10	XC10	08 10
S12C	1012	_	_	040A12	XC12	_
S15C	1015	C15E C15R 1.1132	15	055M15	_	15
S20C	1020	C22 CK22	20	070M20	_	20
S25C	1025	C25 C25E C25R C16D 1.0415	25	_	_	25
S30C	1030	C30 C30E C30R	30	080A30 080M30	_	30
S35C	1035	C35 C35E C35R 1.1172	35	080A35 080M36	_	35
S40C	1040 C40E	C40 C40E C40R 1.1186	40	060A40 080A40 080M40	_	40
S43C	1042 1043	_	_	080A42	XC42H1 XC42H2	40Γ
S45C	1045 1045H	C45 C45E C45R 1.1191 1.1192	45	060A45 080M46	XC45	45
S50C	1049	C50 C50E C50R 1.1206	50	080M50	XC50	50
S53C	1050 1053	_	50Mn	080A52	XC54	
S55C	1055	C55 C55E C55R 1.1203	55	070M55	XC55H1 XC55H2	55
S58C	1060	C60 C60E C60R	60	060A57 080A57	XC60	_
S60C	1059	C60E 1.1221	60 60Mn	_	_	60
S09CK	1010	C10E C10R	_	045A10 045M10	XC10	_
S15CK	1015	C15E C15R	_	_	XC12	_
S20CK	_	CK22	_	_	XC18	_

P Cr-Mo-Stahl

JIS	AISI/ASTM	DIN/EN	GB	BS	AFNOR	ГОСТ
SCM415	_	18CrMo4 1.7243	15CrMo	_	_	15XM
SCM420	_	20MoCr4 1.7321	20CrMo	708M20	_	20XM
SCM421	4121	18CrMo4 22CrMoS35 1.7243	20CrMn- Mo	_	_	25ΧΓM
SCM425	_	25CrMo 1.7218	25CrMo	_	_	_
SCM430	4130	_	30CrMo	708A30	30CD4	30XM
SCM435	4135 4137	34CrMo4 1.7220	35CrMo	708A37 709A37	34CD4 38CD4 35CD4	35XM
SCM440	4142 4140	42CrMo4 42CrMoS4 1.7225	42CrMo	708M40 708A40 708A42 709A42 709M40	42CD4	38XM
SCM445	4145 4150	50CrMo4 1.7228	50CrMo	708A47	_	_

P Mn-Stahl und Mn-Cr-Stahl für Konstruktionen

Will Staril and Will St Staril for Renot actioner						
SMn420	1522 1524	18Mn5 1.0436	20Mn2	150M19 120M19	20M5	20Г
SMn433	1330	28Mn6 1.1170	30Mn2	-	_	30Г2
SMn438	1335 1541	_	35Mn2	150M36	40M6	35Г2
SMn443	1340 1345 1541	_	40Mn2 45Mn2	135M40 150M36	35M5	35Г2 45Г2
SMnC420	5120	20MnCr5 1.7147	20CrMn	_	_	18ХГ
SMnC443	5140	41Cr4 1.7035	40CrMn	_	_	_

P Kohlenstoff - Werkzeugstahl

SK140 SK1 W2-13A W1-13 — T13 — Y2140 — SK120 SK2 W1-11 1/2 W1-10 1/2 C120U 1.1555 T12 BW1C Y2120 y12 SK105 SK3 W1-10 W1-10 1/2 C105U 1.1545 C105W1 T11 BW1B Y1105 — SK95 SK4 W1-9 W1-9 1/2 C105U 1.1545 T10 BW1A Y190 Y180 y10 SK85 SK5 W1-8C W1-8 C80W1 T8Mn BW1A — y8 SK80 W1-8A C80U 1.1525 T8 — — y8 SK70 1070 C70U 1.1520 T7 — — y7							
SK2 W1-11 1/2 1.1555 T12 BW1C Y2120 y12 SK105 SK3 W1-10 W1-10 1/2 C105U 1.1545 C105W1 T11 BW1B Y1105 — SK95 SK4 W1-9 W1-9 1/2 C105U 1.1545 T10 BW1A Y190 Y180 y10 SK85 SK5 W1-8C W1-8 C80W1 T8Mn BW1A — y8F SK80 W1-8A C80U 1.1525 T8 — — y8 SK70 1070 C70U T7 — — y7		-	_	T13		Y ₂ 140	
SK105 SK3 W1-10 W1-10 1/2 1.1545 C105W1 T11 BW1B Y1105 — SK95 SK4 W1-9 W1-9 1/2 C105U 1.1545 T10 BW1A Y190 Y180 y10 SK85 SK5 W1-8C W1-8 C80W1 T8Mn BW1A — y8F SK80 W1-8A C80U 1.1525 T8 — — y8 SK70 1070 C70U T7 — — y7		W1-11 1/2		T12	BW1C	Y ₂ 120	y12
SK4 W1-9 1/2 1.1545 I 10 BW1A Y180 Y10 SK85 W1-8C C80W1 T8Mn BW1A — y8F SK80 W1-8A C80U T8 — — y8 SK70 1070 C70U T7 — — y7			1.1545	T11	BW1B	Y ₁ 105	
SK5 W1-8 C80W1 18Mn BW1A — y81 SK80 W1-8A C80U 1.1525 T8 — — y8 SK70 1070 C70U T7 — — y7				T10	BW1A		y10
SK80 W1-8A 1.1525 18 — — y8 SK70 1070 C70U T7 — — y7			C80W1	T8Mn	BW1A	_	у8Г
SK/0 10/0 2 2 2 1/ _ //	SK80	W1-8A		Т8	_	_	y8
	SK70	1070		Т7	_	_	у7

P Cr -Stahl

_						
JIS	AISI/ASTM	DIN/EN	GB	BS	AFNOR	гост
SCr415	5115	17Cr3 1.7016	15Cr	_	_	15X
SCr420	5120	_	20Cr	_	20MC5	20X
SCr430	5130 5132	34Cr4 34CrS4 1.7033	30Cr	530A30 530A32	32C4	30X
SCr435	5135	37Cr4 1.7034	35Cr	530A36	38C4	35X
SCr440	5140	41Cr4 41CrS4 1.7035	40Cr	530M40 530A40	42C4	40X
SCr445	5147	_	45Cr	_	_	45X

P Ni-Cr-Stahl

INI-CI	NI-CI-Staff								
SNC415	4720 4715	20NiCrMo2-2 10NiCr5-4 17CrNi6-6 1.5918 1.5805 1.6523	20CrNi 12CrNi2 15CrNi6K		_	20XH 12XH			
SNC236	3140 4337	41crCrMo7-3-2 34CrNiMo6	40CrNi 34CrNi2	_	_	40XH			
SNC246	8645	_	45CrNi	_	_	45XH			
SNC815	E3310	15NiCr13 1.5752	12CrNi3		_	12XH3A			
SNC620	_	20NiCrMo13-4 1.6660	20CrNi3	_	_	20XH3A			
SNC631	_	30NiCrMo16-6 1.6747	30CrNi3	_	_	30XH3A			
SNC836	_	35NiCrMo16 1.6773	37CrNi3	_	_	_			

P Ni-Cr-Mo-Stahl

- 111 01	IVIO Otal	••				
SNCM220	8615 8617 8620 8622 4718	20NiCrMo2-2 20NiCrMoS2-2 17NiCrMo6 1.6566 1.6523	20CrNiMo 18CrMnNiMo 20NiCrMoK	805A20 805M20 805A22 805M22	20NCD 2	20XH2M 18XHГМ
SNCM240	8637 8640	39NiCrMo3 1.6510	40CrNiMo	_	_	40XH2MA
SNCM415	_	_	_	_	_	
SNCM420	4320	17NiCrMo6-4	20CrNi2Mo		_	20XH2M (20XHM)
SNCM439	4340	41NiCrMo7-3-2 1.6563	40CrNi2Mo	_	_	40XH2MA
SNCM447	4340	41NiCrMo7-3-2 1.6563	45CrNiMoV	_	_	_

P Schnellarbeitsstahl

JIS	AISI/ASTM	DIN/EN	GB	BS	AFNOR	ГОСТ
SKH2	T1	HS18-0-1 1.3355	W18Cr4V	BT1	Z80WCV 18-04-01	P18
SKH3	T4	S18-1-2-5	_	BT4	Z80WKCV 18-05-04-01	_
SKH4	Т5	_	_	BT5	Z80WKCV 18-10-04-02	_
SKH10	T15	S12-1-4-5	W12Cr4V5Co5	BT15	Z160WKCV 12-05-05-04	P12K5V5
SKH51	M2	S6-5-2 1.3339	W6Mo5Cr4V2	BM2	Z160WDCV 06-05-04-02	P6M5ø2
SKH52	M3-1	HS6-6-2 1.3350	W6Mo6Cr4V2	_	_	_
SKH53	M3-2	S6-5-3 HS6-5-3 1.3344	W6Mo5Cr4V3	_	Z160WDCV 06-05-04-03	P6M5ø3
SKH54	M4	_	W6Mo5Cr4V4	BM4	Z130WDCV 06-05-04-04	_
SKH55	M35 M41	S6-5-2-5 HS6-5-2-5 1.3243	W6Mo5Cr4V2Co5	BM35	Z190WDCV 06-05-05-04-02	P6M5K5
SKH56	M36	_	_	_	_	_
SKH57	M48	HS10-4-3-10 1.3207	W10Mo4Cr4V3Co10	_	Z130WKCDV 10-10-04-04-03	_
SKH58	M7	HS2-8-2 1.3348	W2Mo9Cr4V2	_	Z100DCWV 09-04-02-02	_
SKH59	M42	HS2-10-1-8 1.3247	W2Mo9Cr4VCo8	BM42	Z130DKCWV 09-08-04-02-01	P2M9K8ø

P Legierter Werkzeugstahl

SKS11	F2	_	_	_	_	_
SKS2	_	105WCr6	_	_	105WC13	_
SKS51	L6	_	_	_	_	_
SKS41	_	_	4CrW2Si	_	_	4XB2C
SKS43	W2-9 1/2	_	_	BW2	Y₁105V	_
SKS44	W2-8 1/2	_	_	_	_	_
SKS3	O1	95MnWCr5 1.2825	9CrWMn	_	_	9ХВГ
SKS31	07	105WCr6	CrWMn	_	105WC31	ХВГ
SKD1	D3	X210Cr12 1.2080	Cr12	BD3	X200Cr12	X12
SKD4	_	_	30W4Cr2V	BH21	Z32WCV5	_
SKD5	H21	X30WCrV9-3 1.2581	3Cr2W8V	BH21	Z30WCV9	3X2B8ø
SKD6	H11	X37CrMoV5-1 1.2343	4Cr5MoSiV	BH11	X38CrMoV5	4X5MøC
SKD61	H13	X40CrMoV5-1 1.2344	4Cr5MoSiV1	BH13	Z40CDV5	4X5Mø1C
SKD7	H10	X32CrMoV33 1.2365	3Cr3Mo3V	BH10	32DCV28	_
SKD8	H19	38CrCoWV18-17-17 1.2661	3Cr3Mo3VCo3	BH19	_	_
SKD10	D2	X153CrMoV12 1.2379	Cr12Mo1V1	_	_	X12M1ø1
SKD11	D2 D4	_	Cr12MoV	BD2	X160CrMoV12	X12Mø
SKD12	A2	X100CrMoV5 1.2363	Cr5Mo1V	BA2	Z100CDV5	_

■ Stahl- und Nichteisenmetall Klassifizierung

M Ferritischer rostfreier Stahl

JIS	AISI/ASTM	DIN/EN	GB	BS	AFNOR	ГОСТ
SUS405	405 S40500	X10CrAl13 1.4002	0Cr13Al 06Cr13Al	405S17	26CA13	_
SUS429	429 S42900	_	1Cr15 10Cr15 022Cr15NbTi	_		_
SUS430	430 S43000	X6Cr17 1.4016	1Cr17 10Cr15 S11710	430S17	Z8C17	12X17
SUS430F	430F S43020	X12CrMoS17	Y1Cr17 Y10Cr17	_	210CF17	_
SUS434	434 S43400	X6CrMo17-1 1.4113	1Cr17Mo 10Cr17Mo	434S17	Z8CD17.01	_

Martensitischer rostfreier Stahl

ivi iviai te	Marteristischer fostifeler Staffi									
SUS410	410 S41010	X10Cr13 1.4006	12Cr13 1Cr13	410S21	Z13C13	12X13				
SUS403	403 S40300	_	12Cr12 1Cr12	_	_	_				
SUS444	444 S44400	X2CrMoTi18-2 1.4521	019Cr19Mo2NbTi 00Cr18Mo2	_	_	_				
SUS416	416 S41600	X12CrS13 1.4005	Y12Cr13 Y1Cr13	416S21	Z12CF13	_				
SUS420J1	420 S42000	X20Cr13 1.4021	20Cr13 2Cr13	420S29	Z20C13	20X13				
SUS420J2	420 S42000	X30Cr13 1.4028	30Cr13 3Cr13	420S45	Z30C13	30X13				
SUS420F	420G S42020	X29Cr13 1.4029	Y30Cr13 Y3Cr13	_	Z30CF13	_				
SUS431	431 S43100	X17CrNi16-2	17Cr16Ni2	431S29	_	_				
SUS440C	440C S44004	_	108Cr17 11Cr17	_	Z100CD17	_				

M Rostfreier Stahl (ausscheidungsgehärtetes Gefüge)

_		`	0 0	,		,
SUS630	630 S17400	X5CrNiCuNb16-4 1.4542	0Cr17Ni4Cu4Nb 05Cr17Ni4Cu4Nb	_	Z6CNU17.04	
SUS631	631 S17700	X7CrNiAl17-7 1.4568	0Cr17Ni7Al 07Cr17Ni7Al	_	Z8CNA17.07	09Х17Н7 Ю

M Austenitischer rostfreier Stahl

W Aust	eniuschei	rosureier	Stani			
JIS	AISI/ASTM	DIN/EN	GB	BS	AFNOR	гост
SUS201	201 S20100	X12crMnNiN17-7-5 1.4372	1Cr17Mn6Ni5N 12Cr17Mn6Ni5N	_	Z12CMN17-07Az	_
SUS202	202 S20200	X12CrMnNiN18-9-5 1.4373	1Cr18Mn9Ni5N 12Cr18Mn9Ni5N	284S16	_	_
SUS301	301 S30100	X12CrNi17 7 1.4319 1.4310	1Cr17Ni7 12Cr17Ni7	_	Z12CN17.07	17X18H9
SUS302	302 S30200	X9CrNi18-9 1.4325	1Cr18Ni9 12Cr18Ni9	302S25	Z10CN18.09	12X18H9
SUS302B	302B S30215	_	1Cr18Ni9Si3 12Cr18Ni9Si3		_	_
SUS303	303 S30300	X8CrNiS18-9 X10CrNiS189 1.4305	Y1Cr18Ni9 Y12Cr18Ni9	303S21	Z10CNF18.09	_
SUS303Se	303Se S30323	_	Y12Cr18Ni9Se Y1Cr18Ni9Se	303S41	_	12X18H10E
SUS304	304 S30400	X5CrNi18-10 1.4301	0Cr18Ni9 06Cr19Ni10	304S31	Z6CN18.09	08X18H10
SUS304L	304L S30403	X2CrNi19-11 1.4306	00Cr19Ni10 022Cr19Ni10	304S11	Z2CN18.10	03X18H11
SUS304N1	304N S30451	X5CrNiN19-9 1.4315	06Cr19Ni10N 06Cr19Ni10NbN		Z6CN19-09Az	_
SUS305	305 S30500	X2CrNiN18-10 1.4311	1Cr18Ni12 10Cr18Ni12	305S19	Z8CN18.12	_
SUS309S	309S S30908	X6CrNi23-13 1.4950	0Cr23Ni13 06Cr23Ni13	ı	_	0X23H12
SUS310S	310S S31008	X6CrNi25-20 1.4951	0Cr25Ni20 06Cr25Ni20	_	_	08X23H20
SUS316	316 S31600	X5CrNiMo17-12-2 1.4401	0Cr17Ni12Mo2 06Cr17Ni12Mo2	316S31	Z7CND17.12	_
SUS316L	316L S31603	X2CrNiMo17-12-2 1.4404	00Cr17Ni12Mo2 022Cr17Ni12Mo2	316S11	Z2CND17.12	03X17H14M2
SUS316N	316N S31651	_	0Cr17Ni12Mo2N 06Cr17Ni12Mo2N		_	_
SUS317	317 S31700	_	0Cr19Ni13Mo3 06Cr19Ni13Mo3	317S16	_	_
SUS317L	317L S31703	X2CrNiMo18-15-4 1.4438	00Cr19Ni13Mo3 022Cr19Ni13Mo3	317S12	Z2CND19.15	03X19H13M3
SUS321	321 S32100	X6CrNiTi18-10 1.4541	0Cr18Ni10Ti 06Cr18Ni1Ti	321S31	Z6CNT18.10	08X18H10T
SUS347	347 S34700	X6CrNiNb18-10 1.4550	0Cr18Ni11Nb 06Cr18Ni11Nb	347S31	Z6CNNb18.10	08X18H12Б

S Ferritischer hitzebeständiger Stahl

JIS	AISI/ASTM	DIN/EN	GB	BS	AFNOR	ГОСТ
SUH409	409 S40900	X6CrTi12	06Cr11Ti 0Cr11T1	409S19	Z6CT12	_
SUH446	446 \$44600	_	2Cr25N 16Cr25N	_	Z12C24	_

S Martensitischer hitzebeständiger Stahl

SUH1	_	_	45Cr9Si3	401S45	Z45CS9	_
SUH3	_	_	4Cr10Si2Mo 40Cr10Si2Mo	_	Z40CSD10	40X10C2M
SUH4	_	_	8Cr20Si2Ni 80Cr20Si2Ni	443S65	Z80CSN20.02	_
SUH11	_	_	4Cr9Si2 42Cr9Si2		_	40X 9C2
SUH600	_	_	2Cr12MoVNbN 18Cr12MoVNbN	_	_	_
SUH616	616 S42200	_	2Cr12NiMoWV 22Cr12NiWMoV	_	_	_

S Austenitischer hitzebeständiger Stahl

7 tactorities interpretation						
SUH31	_	_	4Cr14Ni14W2Mo	331S42	_	45X14H14B2M
SUH35	-	X53CrMnNiN21-9-4 1.4871	5Cr21Mn9Ni4N 53Cr21Mn9Ni4N	349S52	Z52CMN21.09	55Х20Г9АН4
SUH36	_	X53CrMnNi21 9	_	349S54	Z55CMN21-09Az	55Х20Г9АН4
SUH37	_	X15CrNiSi20-12 1.4828	22Cr21Ni12N 2Cr21Ni12N	381S34	_	_
SUH38	_	_	_	_	_	_
SUH309	309 S30900	X12CrNi23-13 1.4833	16Cr23Ni13 2Cr23Ni13	309S24	Z15CN24.13	20X23H12
SUH310	310 S31000	_	2Cr25Ni21 20Cr25Ni20	310S24	Z15CN25.20	_
SUH330	_	X12CrNiMnMoN25-18-6-5 1.4565	1Cr16Ni35 12Cr16Ni35	_	Z12NCS35.16	_

K Grauguss

FC100	No 20B	GG-10	HT100	100	_	Cy10
FC150	No 25B	GG-15	HT150	150	FGL150	Cy15
FC200	No 30B	GG-20	HT200	200	FGL200	Cy20
FC250	No 35B	GG-25	HT250	250	FGL250	Cy25
FC300	No 45B	GG-30	HT300	300	FGL300	Cy30
FC350	No 50B	GG-35	HT350	350	FGL350	Cy35

Kugelgraphitguss

- Ragoigraphingaco									
FCD400	60-40-18	GGG-40	QT400-18	400/17	FGS370-17	By40			
FCD450	_	GGG-40.3	QT450-10	420/12	FGS400-12	By45			
FCD500	80-55-06	GGG-50	QT500-7	500/7	FGS500-7	By50			
FCD600	_	GGG-60	QT600-3	600/7	FGS600-2	By60			
FCD700	100-70-03	GGG-70	QT700-2	700/2	FGS700-2	By70			
FCD800	120-90-02	GGG-80	_	800/2	FGS800-2	By80			

N Aluminium und Al-Legierungen

JIS	AISI/ASTM	DIN/EN	GB	BS	AFNOR	ГОСТ
A1060P	1060	EN AW-1060	L2	_	_	_
A1050P	1050	A199.50	1A50	_	_	_
A1100P	1100	EN AW-1100	L5-1	_	_	_
A1200P	1200	EN AW-1200	L5	EN AW-1200	EN AW-1200	_
A2014P	2014	EN AW-2014	LD10	EN AW-2014	EN AW-2014	_
A2017P	2017	EN AW-2017	2A11(LY11)	EN AW-2017	EN AW-2017	_
A2219P	2219	EN AW-2219	2A16(LY16)	_	_	_
A2024P	2024	EN AW-2024	2A12(LY12)	EN AW-2024	EN AW-2024	_
A2124P	2124	EN AW-2124	2A12(LY12)	_	_	_
A3003P	3003	EN AW-3003	LF21	EN AW-3003	EN AW-3003	_
A3004P	3004	EN AW-3004	3004	_	_	_
A3005P	3005	EN AW-3005	3005	_	_	_
A3015P	3105	EN AW-3105	3105	_	_	_
A5005P	5005	EN AW-5005	5005	_	_	_
A5050P	5050	EN AW-5050	_	_	_	_
A5052P	5052	EN AW-5052	5A02	EN AW-5052	EN AW-5052	_
A5154P	5154	-	LF3	_	_	_
A5254P	5254	-	LF3	_	_	_
A5454P	5454	EN AW-5454	5454	EN AW-5454	EN AW-5454	_
A5456P	5456	EN AW-5456	_			
A6101P	6101	EN AW-6101	6101			
A6061P	6061	EN AW-6061	6061(LD30)	EN AW-6061	EN AW-6061	
A7075P	7075	EN AW-7075	7A04	EN AW-7075	EN AW-7075	
A7178P	7178	EN AW-7178	7A03(LC3)	_	_	_

N Aluminium-Druckguss

7						
ADC1	A413.0	EN AC-44300	YL102	_	_	_
ADC3	A360.0	EN AC-43400	YL104	EN AC-43400	EN AC-43400	_
ADC5	518.0	_	Al-Mg7	_	_	_
ADC10	_	EN AC-46000	YL112	_	_	_
ADC12	_	_	YL113	LM20	_	_
ADC14	B390.0	_	_	_	_	_
AC4C	357	G-AlSi7Mg	ZAISi7Mg1A	LM25	A-S7G-03	_
AC4CH	356	G-AlSi7Mg	ZALSi7Mg	LM25	A-S7G	_
_	308	G-AlSi6Cu4	ZAISi5Cu6Mg	LM21	_	_

H Gehärteter Stahl

C4BS	440A	X100CrMo13	7Cr17	_	_	_	
AC4A	610	X110CrMoV15	_	_	_	_	
AC4A	0-2	X65CrMo14	_	_	_	_	

■ Härtevergleichstabelle

● Ungefährer metrischer Wert und Brinell-Härte von Stahl

Brinell-		Rockwe	ell-Härte		Vickers-	Shore-	
Härte 10 mm	"A"-Skala-	"B"-Skala-	"C"-Skala-	"D"-Skala-	Härte	Härte	Streck-
Kugel	Diamant, Brale 60 kgf	100 kgf	Diamant,	Diamant,	50 kgf		grenze (N/mm²)
(HB)	(HRA)	(HRB)	(HRC)	(HRD)	(HV)	(HS)	(,)
_	85,6	_	68,0	76,9	940	97	_
<u> </u>	85,3	-	67,5	76,5	920	96	
<u> </u>	85,0		67,0	76,1	900	95	
767	84,7	_	66,4	75,7	880	93	_
757	84,4		65,9	75,3	860	92	
745	84,1		65,3	74,8	840	91	_
733	83,8		64,7	74,3	820	90	<u> </u>
722	83,4	_	64,0	73,8	800	88	_
712	_	_	_	_	_	_	_
710	83,0	<u> </u>	63,3	73,3	780	87	
698	82,6	_	62,5	72,6	760	86	_
684	82,2	_	61,8	72,1	740	_	_
682	82,2	_	61,7	72,0	737	84	_
670	81,8	-	61,0	71,5	720	83	_
656	81,3	_	60,1	70,8	700	_	_
653	81,2	_	60,0	70,7	697	81	_
647	81,1	_	59,7	70,5	690	_	_
638	80,8	_	59,2	70,1	680	80	_
630	80,6	_	58,8	69,8	670	_	_
627	80,5	-	58,7	69,8	667	79	_
601	79,8	_	57,3	68,7	640	77	_
578	79,1	_	56,0	67,7	615	75	_
555	78,4	_	54,7	66,7	591	73	2055
534	77,8	_	53,5	65,8	569	71	1985
514	76,9	-	52,1	64,7	547	70	1890
495	76,3	_	51,0	63,8	528	68	1820
477	75,6	_	49,6	62,7	508	66	1730
461	74,9	_	48,5	61,7	491	65	1670
444	74,2		47,1	60,8	472	63	1585
429	73,4	_	45,7	59,7	455	61	1510
415	72,8	-	44,5	58,8	440	59	1460
401	72,0	_	43,1	57,8	425	58	1390
388	71,4	-	41,8	56,8	410	56	1330
375	70,6	_	40,4	55,7	396	54	1270
363	70,0	-	39,1	54,6	383	52	1220
352	69,3	(110,0)	37,9	53,8	372	51	1180
341	68,7	(109,0)	36,6	52,8	360	50	1130
331	68,1	(108,5)	35,5	51,9	350	48	1095

Brinell-			Vickers-	Shore-			
Härte 10 mm	"A"-Skala-	"B"-Skala-	"C"-Skala-	"D"-Skala-	Härte	Härte	Streck-
Kugel	Diamant,	100 kgf	Diamant,	Diamant,	50 kgf		grenze
3.000 kgf (HB)	Brale 60 kgf (HRA)	1/10"-Kugel (HRB)	Brale 150 kgf (HRC)	Brale 100 kgf (HRD)	(HV)	(HS)	(N/mm ²)
321	67,5	(108,0)	34,3	50,1	339	47	1060
311	66,9	(107,5)	33,1	50,0	328	46	1025
302	66,3	(107,0)	32,1	49,3	319	45	1005
293	65,7	(106,0)	30,9	48,3	309	43	970
285	65,3	(105,5)	29,9	47,6	301	_	950
277	64,6	(104,5)	28,8	46,7	292	41	925
269	64,1	(104,0)	27,6	45,9	284	40	895
262	63,6	(103,0)	26,6	45,0	276	39	875
255	63,0	(102,0)	25,4	44,2	269	38	850
248	62,6	(101,0)	24,2	43,2	261	37	825
241	61,8	100,0	22,8	42,0	253	36	800
235	61,4	99,0	21,7	41,4	247	35	785
229	60,8	98,2	20,5	40,5	241	34	765
223	_	97,3	(18,8)	_	234	_	_
217	_	96,4	(17,5)	_	228	33	725
212	_	95,5	(16,0)	_	222	_	705
207	_	94,6	(15,2)	_	218	32	690
201	_	93,8	(13,8)	_	212	31	675
197	_	92,8	(12,7)	_	207	30	655
192	<u>—</u>	91,9	(11,5)	_	202	29	640
187	_	90,7	(10,0)	_	196	_	620
183	<u>—</u>	90,0	(9,0)	<u> </u>	192	28	615
179	_	89,0	(8,0)	_	188	27	600
174	_	87,8	(6,4)	_	182	_	585
170	_	86,8	(5,4)	_	178	26	570
167	_	86,0	(4,4)	_	175	_	560
163	<u>—</u>	85,0	(3,3)	_	171	25	545
156	_	82,9	(0,9)	_	163	_	525
149	_	80,8	_	_	156	23	505
143	_	78,7	_	_	150	22	490
137	_	76,4	_	_	143	21	460
131	_	74,0	<u> </u>	_	137	_	450
126	_	72,0	_	_	132	20	435
121	_	69,8		_	127	19	415
116	-	67,6		<u> </u>	122	18	400
111		65,7	_	_	117	15	385

Werte in () werden selten benutzt und sind nur als Ergänzung aufgeführt.
 Die Rockwell-Skalen A, C und D verwenden einen Diamantkegel.
 1 N/mm² = 1 MPa

■ Rauigkeit von geschlichteten Oberflächen

Arten der Messung der Oberflächenrauigkeit

Arten	Symbol	Ermittlungsmethode	Beschreibende Abbildung
Maximale Höhe	* 1) Ry	Das ist der Wert (in µm), der vom tiefsten Tal bis zur höchsten Spitze der Referenzlinie gemessen wird, ℓ, extrahiert aus dem Profil. (Vernachlässigt ungewöhnlich hohe Spitzen und tiefe Täler, da sie als Fehler betrachtet werden.)	
Zehn-Punkt-Mittenrauigkeit	* 2) Rz	Extrahieren Sie aus dem Profil einen Abschnitt als Referenzlinie, ℓ . Wählen Sie die 5 höchsten Spitzen und die 5 tiefsten Täler. Messen Sie den Abstand zwischen den beiden Linien, und drücken Sie ihn in μ m aus. (1 μ m = 0,001mm)	Rz= (Yp+Ypx+Ypx+Ypx+Ypy+Yyx+Yyx+Yyx+Yyx)
Berechnete Rauigkeit	Ra	Bei dieser Methode geht es darum, eine Mittellinie zwischen den Spitzen und Tälern innerhalb der Referenzlinie zu ermitteln, ¿Falten Sie entlang der Mittellinie, um die Täler und die Spitzen zu überlagern. (Schraffierte Abschnitte mit gestrichelter Begrenzungslinie in der rechten Abbildung). Ermitteln Sie den gesamten schraffierten Bereich und teilen Sie ihn durch ¿in µm.	Rauigkeitskurve f

Die designierten Werte der obigen Arten der Oberflächenrauigkeit, die Standard-Referenzlängenwerte und die Dreiecksymbol-Klassifikationen sind in der Tabelle rechts dargestellt.

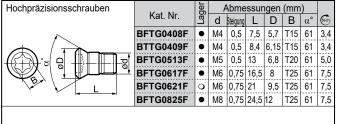
* ¹) Ry : Gemäß neuem **JIS B 0601**:2001 (Altes Symbol: Rz) * ²) Rz : Gemäß neuem **JIS B 0601**:2001 (Altes Symbol: Rz_{JIS})

Designierte Werte für * 1) Ry	Designierte Werte für * 2) Rz	Designierte Werte für Ra	Standard-Re- ferenzlängen- werte, ℓ (mm)	Dreieck- Symbole
(0,05\$) 0,1\$ 0,2\$ 0,4\$	(0,05Z) 0,1Z 0,2Z 0,4Z	(0,013a) 0,025a 0,05a 0,10a		
0,8S	0,8Z	0,20a	0,25	
1,6S 3,2S 6,3S	1,6Z 3,2Z 6,3Z	0,4a 0,8a 1,6a	0,8	>>>
12,5S (18S) 25S	12,5Z (18Z) 25Z	3,2a 6,3a	2,5	$\vee\!\!\vee$
(35S) 50S (70S) 100S	(35Z) 50Z (70Z) 100Z	12,5a 25a	_	∇
(140S) 200S (280S) 400S (560S)	(140Z) 200Z (280Z) 400Z (560Z)	(50a) (100a)	_	_

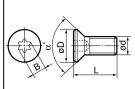
Anmerkungen: Die designierten Werte in Klammern gelten nicht, außer bei anderslautender Angabe.

Ersatzteile

P1-P8



Schrauben	.P2-P4
Kniehebel, Zwischenlagen, Muttern,	.P4-P6
Stifte, Exzenterstifte	.P7
Coblüncal	DO


Schrauben

■ Schrauben

Torx-	-Sen	ksch	nrau	ben

	Lager	F	Abme	ssur	igen	(mm)	
Kat. Nr.	Lag	d	Steigung	L	D	В	α°	(N-m)
BFTX016033	0	M1,6	0,35	3,3	2,6	T6	60	0,2
BFTX02508	•	M2,5	0,45	7,5	3,45	T8	60	-
BFTX0309		М3	0,5	8,8	4,2	T10	60	-
BFTX03508	•	M3,5	0,6	8	5,1	T10	52	2,0
BFTX03584	•	M3,5	0,6	7,4	5,2	T15	60	3,0
BFTX03588	•	M3,5	0,6	8,8	5,2	T15	60	3,4
BFTX0408	•	M4	0,7	8	5,5	T15	60	-
BFTX0414	•	M4	0,7	14,5	5,5	T15	60	3,0
BFTX0515		M5	0,8	15	7	T20	60	-
BFTX0613		M6	1,0	13	9	T25	60	-
BFTX0615		M6	1,0	15	9	T25	60	-
BFTX0617		M6	1,0	17	9	T25	60	-

IZ-4 NI-	Lager	F	Abme	ssur	igen	(mm	1)	
Kat. Nr.	Ē	d	Steigung	L	D	В	α°	N-m
BFTX0203A	•	M2	0,4	3	2,7	T6	90	0,5
BFTX0204A	•	M2	0,4	4,3	2,7	T6	90	0,5
BFTX0305A	•	МЗ	0,5	5,3	4,3	T10	90	-
BFTX0306A	•	МЗ	0,5	5,8	4,3	T10	90	2,0
BFTX0307A	•	МЗ	0,5	6,8	4,3	T10	90	2,0
BFTX0407A	•	M4	0,7	7,3	5,6	T15	90	3,4
BFTX0410A	•	M4	0,7	10,3	5,6	T15	90	3,4
BFTX0509A	•	M5	0,8	9,3	6,9	T20	90	5,0

Abmessungen (mm)

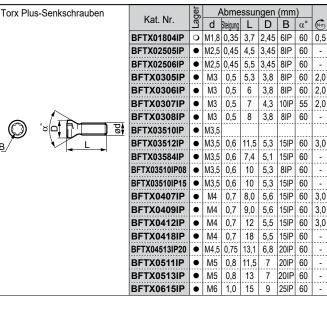
Abmessungen (mm)

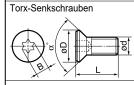
d Steigung L D B α°

9,6 5,6

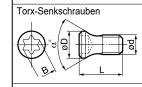
T8 60 1,1

	Kat. Nr.	Lac	d	Steigung	L	D	В	α°	
	BFTX01604N	•	M1,6	0,35	4,2	2,4	T6	60	0,2
	BFTX0203N	•	M2	0,4	3	2,7	T6	60	0,5
	BFTX0204N	•	M2	0,4	4,3	2,7	T6	60	0,5
	BFTX02205N	•	M2,5	0,45	4,5	3	T6	60	0,5
	BFTX2206NT	0	M2,2	0,45	6	3,2	T1,8	60	0,7
	BFTX02505N	•	M2,5	0,45	4,5	3,45	T8	60	1,1
	BFTX02506N	•	M2,5	0,45	5,5	3,45	T8	60	1,5
	BFTX02508NV	•	M2,5	0,45	7,5	3,5	T8	60	1,5
	BFTX0306N	0	М3	0,5	5,8	4,2	T10	60	2,0
	BFTX0307N	•	МЗ	0,5	6,5	4,2	T10	60	2,0
B	BFTX03085N	0	М3	0,5	8,5	5,4	T10	60	-
	BFTX0309N	•	М3	0,5	9	4,2	T10	60	3,0
	BFTX0312N	0	М3	0,5	12	5,4	T10	60	-
	BFTX03509N	•	M3,5	0,6	8,5	4,9	T10	60	-
	BFTX0406N	•	M4	0,7	6	5,6	T15	60	-
	BFTX0407N	•	M4	0,7	7	5,6	T15	60	3,0
	BFTX0409N	•	M4	0,7	9	5,6	T15	60	3,4
	BFTX0412N	•	M4	0,7	12	5,5	T15	60	3,0
	BFTX0509N	•	M5	0,8	9	7	T20	60	5,0
	BFTX0511N	•	M5	0,8	11,5	7	T20	60	5,0
	BFTX0513N	•	M5	0,8	13	7	T20	60	5,0
	BFTX0515N	•	M5	0,8	15	7	T20	60	-
	BFTX0615N	•	M6	1,0	15	9	T25	60	5,0
	BFTX0619N	•	M6	1,0	19	9	T25	60	5,0

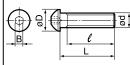

Kat. Nr.


BFTX0410T8L •

BFTX0410T8R •


M4 0,7

Schrauben


14 ()	ager	A	\bme	ssur	igen	(mm)	
Kat. Nr.	Га	d	Steigung	L	D	В	α°	(N-m)
BFTX03510SD		M3,5	0,6	10	5,3	T10	60	2,0
BFTX03517SD		M3,5	0,6	17	5,3	T10	60	2,0
BFTX0517SD		M5	0,8	17	7,2	T20	60	5,0
BFTX0618SD		M6	1,0	18		T25	60	7,5

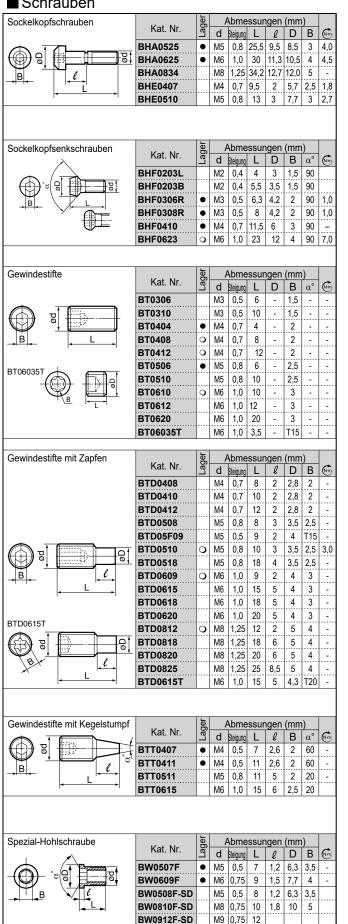
IZ-4 NI-	age.	P	Abme	ssur	ngen	(mm)	
Kat. Nr.	La	d	Steigung	L	D	В	α°	N-m
		M2,2					60	-
3FTY02206	•	M2,2	0,45	5,6	3,05	T7	60	1,0

Linsenkopfschrauben

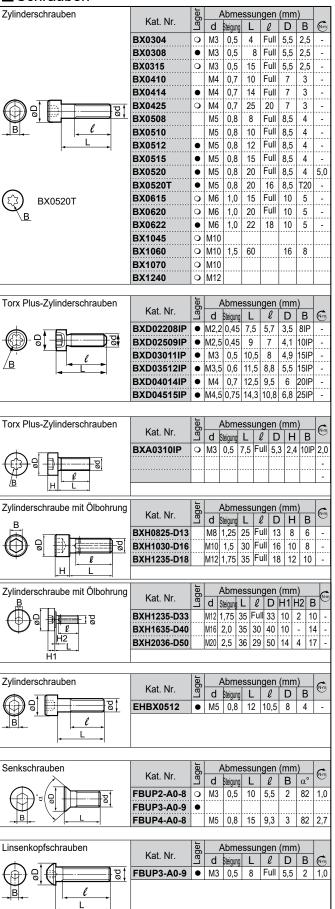
mit Innensechskant

T-Typ als Torx-Schrauben

(BH410T)

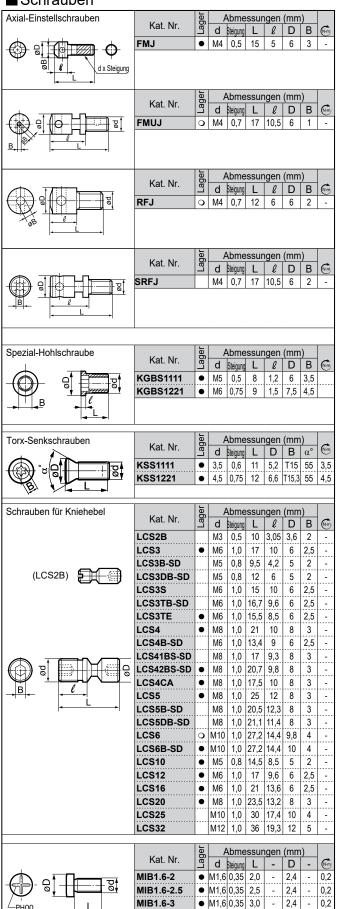

	IZ (NI	Lager		bme	ssur	ngen	(mm)	
	Kat. Nr.	Га́	d	Steigung	L	l	D	В	(N-m)
	BH0304		M3	0,5	4	Full	5,5	2	-
	BH0306	•	М3	0,5	6	Full	5,5	2	-
	BH0308 (FBUP3-A0-9)	•	М3	0,5	8	Full	5,5	2	1,0
	BH0310	•	М3	0,5	10	Full	5,5	2	-
	BH0315	0	М3	0,5	10	Full	5,5	2	-
. 4	BH03504	•	M3,5	0,6	4	Full	7	2	-
\$ ‡	BH0408	O	M4	0,7	8	Full	6	2,5	-
	BH0415		M4	0,7	15	Full	7,5	2,5	-
	BH0510		M5	0,8	10	Full	9,5	3	-
	BH0516	•	M5	0,8	16	14,4	9,5	3	-
	BH0616	•	M6	1,0	16	14	10,5	4	-
	BH0620	•	M6	1,0	20	Full	10,5	4	-
	BH0824R		M8	1,25	24	20	12	4	-
	BH0824L		M8	1,25	24	20	12	4	-
	BH0825		M8	1,25	25	22,5	14	5	-
	BH0830R	0	M8	1,25	30	26	12	4	-
	BH0830L	•	M8	1,25	30	26	12	4	-
	BH0832	l	M8	1,25	32	29,5	14	5	-
	BH1030R		M10	1,5	30	26	14	5	-
	BH1030L	•	M10	1,5	30	26	14	5	-
	BH1036R	<u></u>	M10	1,5	36	32	14	5	-
	BH1036L		M10	1,5	36	32	14	5	-

Torx-Senkschrauben

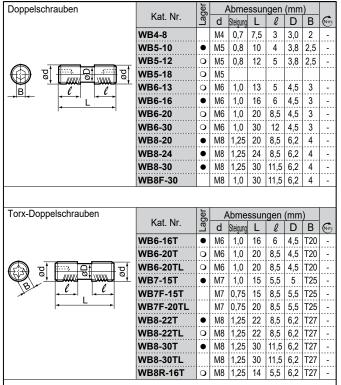

Ersatzteile

ERSATZTEILE Schrauben

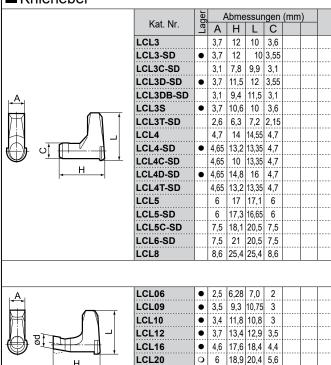
Schrauben



Schrauben

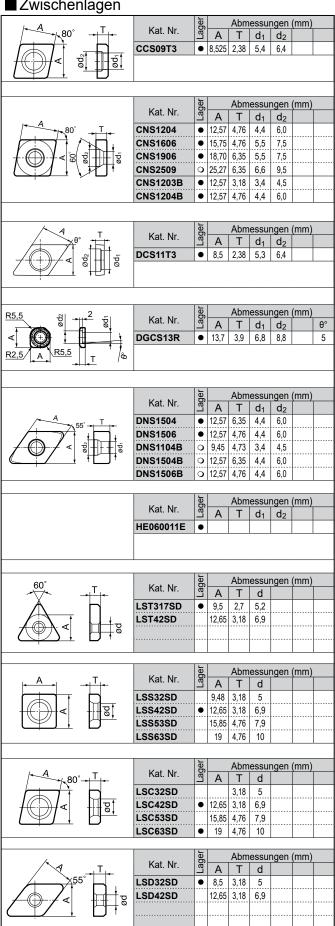


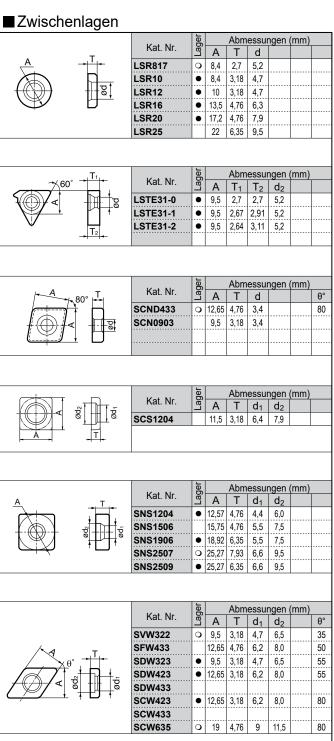
Schrauben, Kniehebel

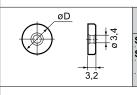

■ Schrauben

■ Doppelschrauben

Kniehebel

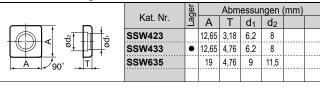

LCL32


8,5 26,8 29,8

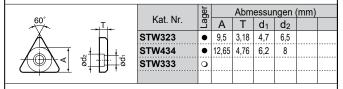

Ersatzteile

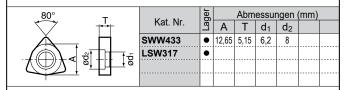
ERSATZTEILE Zwischenlagen

Zwischenlagen

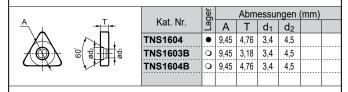


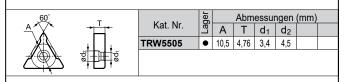
12 ()	age		Abm	essur	ngen	(mm)	
Kat. Nr.	Ľa	D					
SRND32	•	9,5					
SRND42	0	12,7					

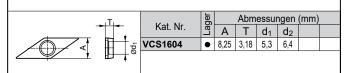

		IZ-4 No	ger		Abm	essur	ngen	(mm)	
_	Π.	Kat. Nr.	La	Α	Т	d			
 ⊕ ∢	### B	SSND423		12,5	3,18	3,4			
		SSND423Z	O						
A	<u> </u>	SSND433	0	12,5	4,76	3,4			


Zwischenlagen, Muttern

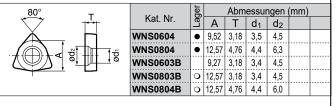
■ Zwischenlagen

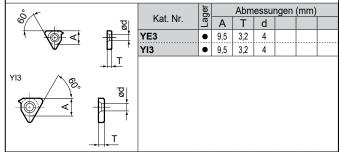



60° т	IZ (NI	ger		Abm	essui	ngen	(mm)	
- -	Kat. Nr.	Га́	Α	Т	d			θ°
<u> </u>	STPD322	•	8,4	3,18	3,4			6
/ ⊕}\< 8 ± 1 \	STPD422	O	11,0	3,18	3,4			6



60°	Т	IZ I NI	ger		Abm	essui	ngen	(mm)	
λ	#	Kat. Nr.	La	Α	Т	d ₁	d ₂		θ°
	h—, _	TCS16T3		8,8	2,38	5,3	6,3		7





A	T	Kat Nu	ger		Abm	essui	ngen	(mm)	
	~ 	Kat. Nr.	La	Α	Т	d ₁	d ₂		
		VNS1604	•	9,45	4,76	3,4	4,5		
	, 🗀 '								

■ Zwischenlagen

	IZ (NI	Lager		Abm	essur	ngen	(mm)	
	Kat. Nr.	Ĕ	Α	Т	d ₁	d_2		
	WFXS4R	•	10,17	3,0	5,5	7,5		
	IZ (NI	ger		Abm	essur	ngen	(mm)	
	Kat. Nr.	Lager	Α	Abm	essur d ₁	ngen d ₂	(mm)	θ°
	Kat. Nr.	Lager	A 10,7	Abm T 3,0		· .	(mm)	θ° 5
A Sodia		Lager		Т	d ₁	d ₂	(mm)	
		Lager		Т	d ₁	d ₂	(mm)	

Zwischenlage

The second secon	Kot Nr I	ger							
		La	d	L	Н				
	PWSS4R	•	4,6	15	8				

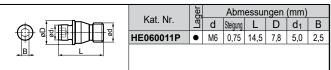
■ Ring

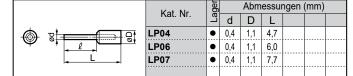
	п		Abmessungen (mm)							
ød		Kat. Nr.	La	Α	В	Т	d			
B T	ER03		7	2,6	0,6	3				
	ER04	•	9	3,5	0,6	4				
	ER05	•	11	4,3	0,6	5				
- '` →										

Muttern

В

L L

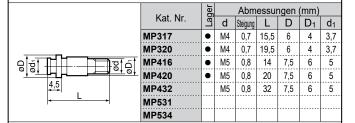

	Kat. Nr.			Abm	iessu	ngen	(mm)	
	Kat. Nr.	[a	L					
	BNBW-2	•	3					
M3×0,5	BNBW-4	ာ	4					
	BNBW-7	O	7					
	17 . 11			Abm	essu	ngen	(mm)	
	Kat. Nr.	-ager	Ч		D	R		


		17 / 11	-ager		Abm	essui	ngen	(mm)	
1		Kat. Nr.	Ĕ	d	L	D	В		
		CPM32N	•	M4	7,5	7	3		
B	CPM43N	•	M5	8,5	7	3			
	CPM43S	0	M5	6	7	3			
→ □ □									
	1	16 ()	-ager		Abm	essui	ngen	(mm)	
	- 8 0	Kat. Nr.	Ž	d	Steigung	L	D	В	
		CPV33N	•	M4	0,5	6,0	6,0	2,5	
1 11									

ERSATZTEILE

Stifte, Exzenterstifte

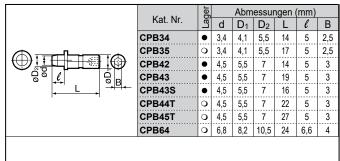
■ Stifte



ger

Abmessungen (mm)

	rat. Nr.	La	d	Н	L		
	LSP3		5	3,5	5,5		
	LSP3SD	•	5	3,5	5,5		
	LSP4		6,7	4	7		
	LSP4SD		6,7	4	7		
	LSP5SD		7,7	4,5	8,5		
T S	LSP6SD		9,85	5,9	11,1		
## + # · · · · · · · · · · · · · · · · ·	LSP8		13,05	10	12		
- L	LSP10	•	5	3,3	6,5		
	LSP16	•	6,6	4,5	9		
	LSP20	•	8,2	5,5	9		
	LSP25	0	9,8	6,5	11		
	LSP32		13	10	12	 	


\sim		ger	Abmessungen (mm)						
		Ľa	d		L	D		θ°	
	SPP308		3,2		8	4,8		120	

		ger	Abmessungen (mm)						
		Ľá			L	D			
	SPP3	•			14	3,2			

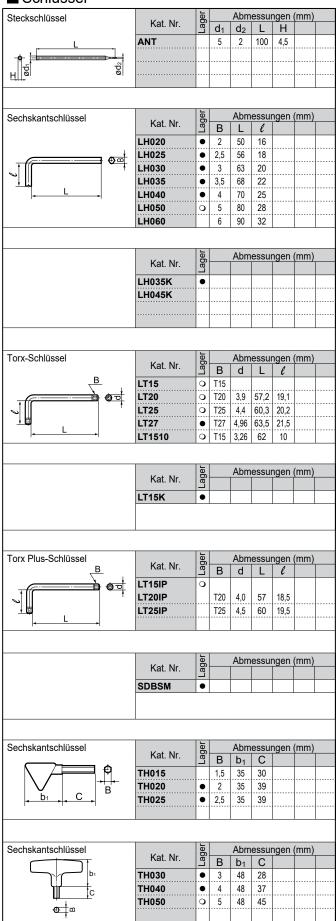
øD	IZ (N	ger		Abm	essui	ngen	(mm)	
>	Kat. Nr.	Lag	d ₁	d ₂	L	D	ℓ_1	ℓ_2
	VP20	•	M3,5	M4	12,0	5,0	≥4,5	≥4,5
ℓ_1	VP25	•	M3,5	M4	17,0	5,0	≥4,5	≥4,5
	VP32	•	M3,5	M4	24,0	5,0	≥4,5	≥4,5

	ØD2	Kat. Nr.	B Abmessungen (mm)								
			Lag	d	Steigung	L	l	D ₁	D ₂		
		VP32B	•	M3,5	0,6	8,0	1,4	5,0	6,5		
		VP40B	•	M3,5	0,6	11,5	1,4	5,0	6,5		
	L										
	-										

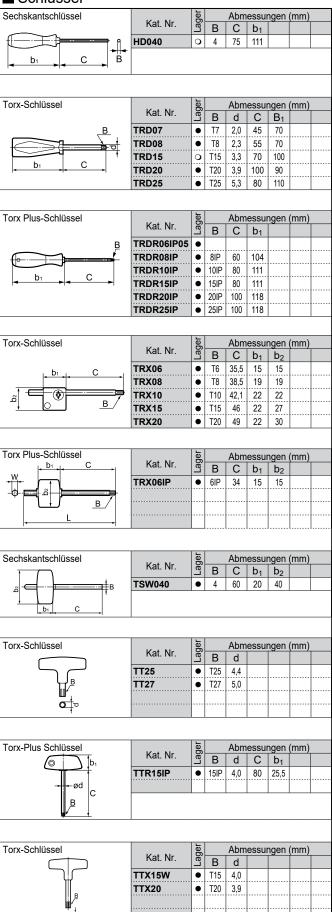
Exzenterstifte

	Kat Na 8	ger						
	Kat. Nr.	La	d	D_1	D ₂	L	ℓ	В
Θ (e) Q (g)	CPU304C	O	3,3	5,5	-	10	3,5	3
L B								
"								

Schlüssel


Sechskantschlüssel (Torx Plus)	IZ-4 NI-	ger		Abm	essui	ngen	(mm)	
b ₁	Kat. Nr.	Ľá	В	d	С	b ₁	b ₂	
F B	TRXW10IP		10IP	2,6	40	75	40	
2 B								

		ager	(mm)				
75	Kat. Nr.	Ľać	В	d			
24,5 B (10)	TRB10IP	•	10IP	4			
	TRB15IP	•	15IP	4			
	TRB20IP	•	20IP	4,55			
(1-7)	TRB25IP	•	25IP	5			


	ger				
10	Kat. Nr.	Lag	D	L	Bemerkungen
	HPS1015	•	32	99,4	Für 10IP, 15IP
	HPL2025		35,5	110,3	Für 20IP, 25IP
H H					

Schlüssel

Schlüssel

■ Schlüssel

P9-P22

	Α	
16ER*****CB	F64	Gewindeschneidplatte
16IR*****CB	F65	Gewindeschneidplatte
1,8x45	G83, G85, M56, M71, M73	Ersatzteile
AECT*****PEFRA	G72, G73, H61, H63	WSP
AFBSM**	M50, M51	Ersatzteile
ANB****R	G79, G81, H85, H87, M63, M65, M67, M69	
ANB****R-G	G79, G81, H85, H87, M63, M65, M67, M69	
ANB****R-GB	G79, G81, H85, H87, M63, M65, M67, M69	
ANB***R-H	G79, G81, H85, H87, M63, M65, M67, M69	
ANB****R-L	G79, G81, H85, H87, M63, M65, M67, M69	
ANB****R-W	G79, G81, H85, H87, M63, M65, M67, M69	SUMIDIA-Schneideinsätz
ANB****R-WS	G79, G81, H85, H87, M63, M65, M67, M69	SUMIDIA-Schneideinsätz
ANB****R-GX	G79, G81, H85, H87, M63, M65, M67, M69	SUMIDIA-Schneideinsätz
ANT	P3	Ersatzteile
ANXA*****R**	G74, G78, H82, M58, M62	Fräskopf
ANXA****RS**	G74, G78, H82, M58, M62	Fräskopf
ANXS****E**	G74, H82, H84, M58, M66	Schaftfräser mit WSF
ANXS****M**	G74, H82, H86, M58, M68	Modularfräser
ANXS*****R**	G74, G80, H82, M58, M64	Fräskopf
ANXS*****RS**	G74, G80, H82, M58, M64	Fräskopf
AOET*****PEER-F	G41, G51, G57, H27, H37,	WSP
	H39, H41, H45, H49, H53	
AOET*****PEER-P**	G41, H27, H37, H39, H41,	WSP
	H49.	
AOET*****PEFR-S	G41, G51, G57, H27, H37	WSP
12110	H39, H41, H45, H49, H53	
^		MCD
AOET**T3**PEER-F	G41, G49, G55, H27, H31,	WSP
	H33, H35, H43, H47, H51	
AOET**T3**PEER-P**	G41, H27, H31, H33, H35,	WSP
	H43, H47,	
AOET**T3**PEFR-S	G41, G49, G55, H27, H31,	WSP
	H33, H35, H43, H47, H51	
AOMT*****PEER-G	G41, G51, G57, H27, H37,	WSP
	H39, H41, H45, H49, H53	
AOMT*****PEER-H	G41, G51, G57, H27, H37,	WSP
TELITI	H39, H41, H45, H49, H53	
^^^AT*****D□□□ I		MCD
AOMT*****PEER-L	G41, G51, G57, H27, H37,	WSP
	H39, H41, H45, H49, H53	
AOMT**T3**PEER-G	G41, G49, G55, H27, H31,	WSP
	H33, H35, H43, H47, H51	
AOMT**T3**PEER-H	G41, G49, G55, H27, H31,	WSP
	H33, H35, H43, H47, H51	
ASM****	J36	Schaftfräser
ASM****DL	J30	Schaftfräser
ASM****DL-R**	J30	Schaftfräser
AXET*****PEFR-S	G58, G59, H57, H58, H65, H66	
AXMT*****PDER-G	G58, H56	WSP
AXMT*****PDER-H	G58, H56	WSP
AXMT*****PDER-L	G58, H56	WSP
AXMT*****PDFR-S	G58, H56	WSP
AXMT*****PEER-E	G58, G59, H57, H58, H65, H66	WSP
AXMT*****PEER-EH	G58, G59, H57, H58, H65, H66	
AXMT*****PEER-G	G58, G59, H57, H58, H65, H66	
AXMT*****PEER-H		
	G58, G59, H57, H58, H65, H66	
	G58, G59, H58, H66	WSP
AXMT*****PEER-L		

	В	
B***-SCLC R/L ****-**	E14	Bohrstange
B***-SDQC R/L ****-**	E17	Bohrstange
B***-SDUC R/L ****-**	E16	Bohrstange
B***-STUP R/L ****-**	E20	Bohrstange
BBT**M*-**	H5	Spannfutter
BBT**M**-**	H5	Spannfutter
BCS**	F56, F58	Ersatzteile
BFTG****F	P2	Ersatzteile
BFTX****	P2	Ersatzteile
BFTX****	P2	Ersatzteile
BFTX***A	P2	Ersatzteile
BFTX****IP	P2	Ersatzteile
BFTX****IPS	F43	Ersatzteile
BFTX*****IP**	P2	Ersatzteile
BFTX*****IPS	F43	Ersatzteile
BFTX****N	P2	Ersatzteile
BFTX****N	P2	
BFTX****NV		Ersatzteile
	P2	Ersatzteile
BFTX****SD	P2	Ersatzteile
BFTX****SD	P2	Ersatzteile
BFTX****T8 R/L BFTY*****	F20, P2	Ersatzteile
	P2	Ersatzteile
BH****	P2	Ersatzteile
BH****	P2	Ersatzteile
BH**** R/L	P2	Ersatzteile
BHA****	P3	Ersatzteile
BHF****	P3	Ersatzteile
BNB*** R/L	M53	Bohrstange
BNBB**R	M52	Bohrstange
BNBC	M53	Ersatzteile
DINDC	IVIJJ	
BNBP 2R***-*** *	J41, M75	SUMIBORON-Schaftfräser
BNBP 2R***-*** *	J41, M75	SUMIBORON-Schaftfräser
BNBP 2R***-*** * BNBW-*	J41, M75 P6	SUMIBORON-Schaftfräser Ersatzteile
BNBP 2R***-*** * BNBW-* BNES****	J41, M75 P6 J40, M74	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser
BNBP 2R***.**** BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT	J41, M75 P6 J40, M74 M56	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile
BNBP 2R***.**** BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT	J41, M75 P6 J40, M74 M56 M56	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter
BNBP 2R***.**** BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT	J41, M75 P6 J40, M74 M56 M56	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP
BNBP 2R***.**** BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT**** R/L	J41, M75 P6 J40, M74 M56 M56 M56 M56	SUMBORON-Schaftfräser Ersatzteile SUMBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMBORON-WSP Bohrstange
BNBP 2R***.**** BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT**** R/L BNZ***R BSME R/L *****D*S6	J41, M75 P6 J40, M74 M56 M56 M56 M56 M56 M56 M56	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP
BNBP 2R***.**** BNBW.* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT**** R/L BNZ***R BSME R/L *****D*S6 BT****	J41, M75 P6 J40, M74 M56 M56 M56 M56 M56 M57 M58 M59 M59 M59 M59 M50 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange
BNBP 2R***.**** BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT**** R/L BNZ***R BSME R/L *****D*S6	J41, M75 P6 J40, M74 M56 M56 M56 M56 M56 M56 M56 M50	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile
BNBP 2R***.**** BNBW.* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L *****D*S6 BT**** BT****E	J41, M75 P6 J40, M74 M56 M56 M56 M56 M50 M50 P3 F26, F30	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L *****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L ******D*S6 BT***** BT*****E BT*****T BTD*****	J41, M75 P6 J40, M74 M56 M56 M56 M56 M50 P3 F26, F30 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile Ersatzteile Ersatzteile
BNBP 2R***,*** * BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT**** R/L BNZ***R BSME R/L *****D*S6 BT***** BT****E BT*****E BT*****T	J41, M75 P6 J40, M74 M56 M56 M56 M56 M50 P3 F26, F30 P3 P3 D30	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile WSP
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L *****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L ******D*S6 BT***** BT*****E BT******T BTD***** BTR***** BTR***** BTT*****	J41, M75 P6 J40, M74 M56 M56 M56 M56 M50 P3 F26, F30 P3 P3 D30 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L *****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L ******D*S6 BT**** BT*****E BT******* BTT***** BTT***** BTT***** BTT***** BTT***** BTT***** BTT***** BTT***** BU*****F	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 P3 D30 P3 P3	SUMBORON-Schaftfräser Ersatzteile SUMBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT**** R/L BNZ***R BSME R/L ******D*S6 BT**** BT*****E BT****** BT****** BTT***** BTD***** BTR**** BTR**** BW****F BW****F-SD	J41, M75 P6 J40, M74 M56 M56 M56 M53 M50 P3 F26, F30 P3 P3 D30 P3 P3 P3 P3	SUMBORON-Schaftfräser Ersatzteile SUMBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT**** R/L BNZ***R BSME R/L ******D*S6 BT**** BT*****E BT****** BTT***** BTD***** BTD***** BTT***** BW****F BW****F-SD BWS***	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L ******D*S6 BT**** BT*****E BT******* BT****** BTT***** BTR***** BTR***** BW****F BW****F BW****F BWS*** BX*****	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMBORON-Schaftfräser Ersatzteile SUMBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L ******D*\$6 BT**** BT*****E BT****** BT****** BTT***** BTD**** BTT****** BTT***** BTT***** BTT***** BTT***** BTT***** BTT***** BTT****** BTT***** BTT***** BTT***** BTT***** BTT***** BTT***** BTT****** BTT***** BTT***** BTT***** BTT***** BTT***** BTT***** BTT****** BTT**** BTT**** BTT***** BTT***** BTT***** BTT***** BTT***** BTT****** BTT****** BTT****** BTT***** BTT****** BTT***** BTT***** BTT***** BTT***** BTT****** BTT***** BTT***** BTT	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 P3 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L *****D*S6 BT**** BT*****E BT****** BT***** BTT***** BTD**** BTR***** BW****F BW****F-SD BWS*** BX***** BXA*****IP	J41, M75 P6 J40, M74 M56 M56 M56 M58 M50 P3 F26, F30 P3 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L ******D*\$6 BT**** BT***** BT***** BT***** BT***** BT***** BW*****F-SD BWS*** BX***** BX***** BXA*****IP BXA*****D**	J41, M75 P6 J40, M74 M56 M56 M56 M58 M50 P3 F26, F30 P3 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile
BNBP 2R***.**** BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L *****-D*S6 BT**** BT***** BT***** BT***** BT***** BT***** BTR***** BTR***** BY*****F-SD BWS** BX***** BXA*****IP BXA*****IP BXH******* BXBR******* BXBR******* BXBR******** BXBR******** BXBR********* BXBR********* BXBR********* BXBR**********	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMBORON-Schaftfräser Ersatzteile SUMBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L *****D*S6 BT**** BT*****E BT******T BTD**** BTR***** BTT***** BW****F BW****F BW****F BX****** BX****** BXA*****IP BXA*****R BXBR******* BXBR*******R BXBR******R BXBR********* BXBR**********	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Bohrstange Bohrstange
BNBP 2R***.**** BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L *****-D*S6 BT**** BT***** BT***** BT***** BT***** BT***** BTR***** BTR***** BY*****F-SD BWS** BX***** BXA*****IP BXA*****IP BXH******* BXBR******* BXBR******* BXBR******** BXBR******** BXBR********* BXBR********* BXBR********* BXBR**********	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L *****D*S6 BT**** BT*****E BT******T BTD**** BTR***** BTT***** BW****F BW****F BW****F BX****** BX****** BXA*****IP BXA*****R BXBR******* BXBR*******R BXBR******R BXBR********* BXBR**********	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Bohrstange Bohrstange
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L *****D*S6 BT**** BT*****E BT******T BTD**** BTR***** BTT***** BW****F BW****F BW****F BX****** BX****** BXA*****IP BXA*****R BXBR******* BXBR*******R BXBR******R BXBR********* BXBR**********	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Bohrstange Bohrstange
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L *****D*S6 BT**** BT*****E BT******T BTD**** BTR***** BTT***** BW****F BW****F BW****F BX****** BX****** BXA*****IP BXA*****R BXBR******* BXBR*******R BXBR******R BXBR********* BXBR**********	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Bohrstange Bohrstange
BNBP 2R********* BNBW-* BNES**** BNGC R/L BNGG R/L ****-TT BNGS R/L TT BNTT***** R/L BNZ***R BSME R/L *****D*S6 BT**** BT*****E BT******T BTD**** BTR***** BTT***** BW****F BW****F BW****F BX****** BX****** BXA*****IP BXA*****R BXBR******* BXBR*******R BXBR******R BXBR********* BXBR**********	J41, M75 P6 J40, M74 M56 M56 M56 M56 M53 M50 P3 F26, F30 P3 D30 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	SUMIBORON-Schaftfräser Ersatzteile SUMIBORON-Schaftfräser Ersatzteile Halter Ersatzteile SUMIBORON-WSP Bohrstange Bohrstange Ersatzteile Bohrstange Bohrstange

Inde

Index

C - C

	С	
C***-SCLP R/L **	E15	Bohrstange
C***-SSKP R/L **	E18	Bohrstange
C***-STUB R/L **	E20	Bohrstange
C***-STUP R/L **	E20	Bohrstange
C***-SWUB R/L **	E23	Bohrstange
CBC*	D25	Ersatzteile
CBC****	D25	Ersatzteile
CBD4 R/L	D25	Ersatzteile
CBS**	D25	Ersatzteile
CCET*****LFY/RFY	C63	WSP
CCET**T***LFY/RFY	C63	WSP
CCET**X***LFY/RFY	C63	WSP
CCET**X****LFY/RFY	C63	WSP
CCEW**X***LF-NU	M5	SUMIBORON-WSP
CCEW**X***LT-NU	M5	SUMIBORON-WSP
CCGT*****LAY/RAY	C65	WSP
CCGT**X***LFY/RFY	C65	WSP
CCGT*****LFX/RFX	C64	WSP
CCGT******LFX/RFX	C64	WSP
CCGT**T***LFX/RFX	C64	WSP
CCGT**T****LFX/RFX	C64	WSP
CCGT**X***LFYS/RFYS	C64	WSP
CCGT**X****LFYS/RFYS	C64	WSP
CCGT******M NFC	C64	WSP
CCGT*****M NSC	C65	WSP
CCGT*****M NSI	C65	WSP
CCGT*****NAG	C65	WSP
CCGT*****NFV NC2	M4	SUMIBORON-WSP
CCGT*****NFV NU2	M6	SUMIBORON-WSP
CCGT*****NLV NC2	M4	SUMIBORON-WSP
CCGT*****NLV NU2	M6	SUMIBORON-WSP
CCGT*****NSC	C65	WSP
CCGW**T***	M5	SUMIBORON-WSP
CCGW*****HS-NC2	M4	SUMIBORON-WSP
CCGW******HS-NU	M5	SUMIBORON-WSP
CCGW*****HS-NU2	M6	SUMIBORON-WSP
CCGW******LE-NC2	M4	SUMIBORON-WSP
CCGW*****LS-NC2	M4	SUMIBORON-WSP
CCGW******LT-NU	M5	SUMIBORON-WSP
CCGW******LT-NC2	M4	SUMIBORON-WSP
CCGW******NC-2	M4	SUMIBORON-WSP
CCGW*****NC-W2	M4	SUMIBORON-WSP
CCGW******NC-WG2	M4	SUMIBORON-WSP
CCGW******NC-WH2	M4	SUMIBORON-WSP
CCGW******NS	M5	SUMIBORON-WSP
CCGW******NU	M5	SUMIBORON-WSP
CCGW******NU-2	M6	SUMIBORON-WSP
CCGW******NU-WG2	M6	SUMIBORON-WSP
CCGW******NU-WH2	M6	SUMIBORON-WSP
CCH***	G67, H11, H12	Ersatzteile
CCLN R/L ****-***	D25	Halter
CCLN R/L - CCM 6B L/R	F50	Ersatzteile
CCM 8 LONG	D25, D26	Ersatzteile
CCM 8 UL	D25, D26 D25, F50	Ersatzteile Ersatzteile
CCM 8 UR	F50	
CCM 8 UK	M8	Ersatzteile SUMIDIA-WSP
	M8	SUMIDIA-WSP SUMIDIA-WSP
CCMT*****L/R-DM NU CCMT*****NF		
	M8 C66	SUMIDIA-WSP WSP
CCMT*****NFB CCMT*****NFP	C66	WSP
CCMT*****NGD NF	M8	SUMIDIA-WSP
OCIVITI INGU INF	IVIU	GOIVIIDIA-VVOP

I		
CCMT*****NGU	C67	WSP
CCMT*****NLD NF	M8	SUMIDIA-WSP
CCMT*****NLB	C66	WSP
CCMT*****NLU	C66	WSP
CCMT*****NLU-W	C66	WSP
CCMT*****NMU	C67	WSP
CCMT*****NSC	C67	WSP
CCMT*****NSK	C67	WSP
CCMT*****NSU	C66	WSP
CCMT**T***NUS	C67	WSP
CCMW*****	C67	WSP
CCMW*****NF	M8	SUMIDIA-WSP
CCMW*****RH	M8, M45	SUMIDIA-WSP
CCMW**T***	C67	WSP
CCS**T*	P5	Ersatzteile
CGA R/L **** ***		
	M55	SUMIBORON-WSP
CNGA*****	C26	WSP
CNGA*****ES-NC4	M9	SUMIBORON-WSP
CNGA*****HS-NC2	M10	SUMIBORON-WSP
CNGA*****HS-NC4	M10	SUMIBORON-WSP
CNGA*****HS-NU2	M12	SUMIBORON-WSP
CNGA*****HT-NU2	M11	SUMIBORON-WSP
CNGA*****LE-NU2	M11	SUMIBORON-WSP
CNGA*****LE-NC2	M9	SUMIBORON-WSP
CNGA*****LF-NU2	M11	SUMIBORON-WSP
CNGA*****LS-NU2	M11	SUMIBORON-WSP
CNGA*****LS-NC2	M9	SUMIBORON-WSP
CNGA*****LS-NC4	M9	SUMIBORON-WSP
CNGA*****LT-NU2	M11	SUMIBORON-WSP
CNGA*****LT-NC2	M9	SUMIBORON-WSP
CNGA*****NC-2	M9	SUMIBORON-WSP
CNGA*****NC-4	M9	SUMIBORON-WSP
CNGA NC-4 CNGA******NC-W4	M9	SUMIBORON-WSP
CNGA NC-W4 CNGA******NC-WG4	M9	
CNGA NC-WG4 CNGA*****NC-WH4		SUMIBORON-WSP
	M9	SUMIBORON-WSP
CNGA*****NU	M12	SUMIBORON-WSP
CNGA*****NU-2	M11	SUMIBORON-WSP
CNGA*****NS-2	M11	SUMIBORON-WSP
CNGA*****NU-W2	M11	SUMIBORON-WSP
CNGA*****NU-WG2	M11	SUMIBORON-WSP
CNGA*****NU-WH2	M11	SUMIBORON-WSP
CNGA*****US-NU2	M12	SUMIBORON-WSP
CNGG*****LAX/RAX	C28	WSP
CNGG*****NEF	C28	WSP
CNGG*****NFV NC4	M10	SUMIBORON-WSP
CNGG*****NLV NC4	M10	SUMIBORON-WSP
CNGG*****NSV NC4	M10	SUMIBORON-WSP
CNGG*****NGH	C28	WSP
CNGG*****NSU	C28	WSP
CNGM*****NLV NU2	M12	SUMIBORON-WSP
CNGN*****	M13	SUMIBORON-WSP
CNGX*****	M13	SUMIBORON-WSP
CNMA*****	C28	WSP
CNMA*****	M13	SUMIBORON-WSP
CNMA*****NS	M13	SUMIBORON-WSP
CNMA*****NU	M13	SUMIBORON-WSP
CNMA*****NU-W	M13	SUMIBORON-WSP
CNMG*****NEF	C20	WSP
CNMG*****NEG	C22	WSP
CNMG*****NEM	C23	WSP
CNMG*****NEX	C22	WSP
CNMG*****NFA	C20	WSP

C - D

Index

CNMG*****NFB	C20	WSP
CNMG*****NFE	C20	WSP
CNMG*****NFL	C20	WSP
CNMG*****NGE	C22	WSP
CNMG*****NGU	C21	WSP
CNMG*****NGU-W	C21	WSP
CNMG*****NGZ	C25	WSP
CNMG*****NLU	C20	WSP
CNMG*****NLU-W		WSP
	C20	
CNMG*****NME	C23	WSP
CNMG*****NMU	C23	WSP
CNMG*****NMX	C24	WSP
CNMG*****NSE	C21	WSP
CNMG*****NSE-W	C21	WSP
CNMG*****NSU	C21	WSP
CNMG*****NSX		
	C21	WSP
CNMG*****NUG	C22	WSP
CNMG*****NUP	C23	WSP
CNMG*****NUX	C24	WSP
CNMG*****NUZ	C25	WSP
CNMM*****NHF	C26	WSP
CNMM*****NHG	C26	WSP
CNMM*****NHP	C26	WSP
CNMM*****NHU	C27	WSP
CNMM*****NHW	C27	WSP
CNMM*****NMH	C26	WSP
	C26	
CNMM*****NMP	C26	WSP
CNMX*****NF	M13	SUMIDIA-WSP
CNMX*****L/R		WSP
	C26	
CNS****	P5	Ersatzteile
CNS****B	P5	Ersatzteile
CDR**	D7	Ercatztaila
CPB**	P7	Ersatzteile
CPB** CPB**S	P7 P7	Ersatzteile Ersatzteile
CPB**S CPB**T	P7 P7	Ersatzteile Ersatzteile
CPB**S CPB**T CPGT*****NSD	P7 P7 C66	Ersatzteile Ersatzteile WSP
CPB**S CPB**T CPGT*****NSD CPGW*****NC2	P7 P7 C66 M7	Ersatzteile Ersatzteile WSP SUMIBORON-WSP
CPB**S CPB**T CPGT*****NSD	P7 P7 C66	Ersatzteile Ersatzteile WSP
CPB**S CPB**T CPGT*****NSD CPGW******NC2 CP-M*-**-*	P7 P7 C66 M7 F20	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile
CPB**S CPB**T CPGT*****NSD CPGW*****NC2 CP-M*-**-* CPM**N	P7 P7 C66 M7 F20 P6	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile
CPB**S CPB**T CPGT*****NSD CPGW*****NC2 CP-M*-**-* CPM**N CPM**S	P7 P7 C66 M7 F20 P6	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile
CPB**S CPB**T CPGT*****NSD CPGW*****NC2 CP-M*-**-* CPM**N	P7 P7 C66 M7 F20 P6	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile
CPB**S CPB**T CPGT*****NSD CPGW*****NC2 CP-M*-**-* CPM**N CPM**S	P7 P7 C66 M7 F20 P6 P6	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT*****NFB	P7 P7 C66 M7 F20 P6 P6 C69	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP
CPB**S CPB**T CPGT******NSD CPGW*******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NUS CPMT******NGU	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NUS CPMT******NEB CPMT******NEB	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW*******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NUS CPMT******NGU	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NUS CPMT******NEB CPMT******NEB	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH*****NUS CPMT*****NB CPMT*****NB CPMT*****NGU CPMT*****NLB CPMT*****NLB CPMT*****NLB CPMT******NLU CPMT******NLU-W	P7 P7 C66 M7 F20 P6 C69 C68 C69 C68 C68 C68	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW********* CPM**N CPM**S CPMH******NUS CPMT******NGU CPMT******NGU CPMT******NLB CPMT******NLB CPMT******NLU CPMT******NLU-W CPMT******NMU	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C68 C68 C68	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH*****NUS CPMT*****NB CPMT*****NB CPMT*****NB CPMT*****NB CPMT*****NB CPMT*****NB CPMT*****NB CPMT*****NB	P7 P7 C66 M7 F20 P6 C69 C68 C69 C68 C68 C68	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW********* CPM**N CPM**S CPMH******NUS CPMT******NGU CPMT******NGU CPMT******NLB CPMT******NLB CPMT******NLU CPMT******NLU-W CPMT******NMU	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C68 C68 C68	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NFB CPMT******NFB CPMT******NGU CPMT******NLU CPMT******NLU-W CPMT*****NLU-W CPMT******NLU-W CPMT******NLU-W CPMT******NLU-W CPMT*****NLU-W CPMT*****NLU-W CPMT******NLU-W CPMT******NLU-W CPMT******NLU-W CPMT******NLU-W CPMT******NLU-W CPMT******NLU-W CPMT******NLU-W CPMT******NLU-W CPMT******NLU-W CPMT*******NLU-W CPMT*******NLU-W CPMT******NLU-W CPMT*******NLU-W CPMT*******NLU-W CPMT*******NLU-W CPMT*******NLU-W CPMT*******NLU-W CPMT*******NLU-W CPMT*******NLU-W CPMT*******NLU-W CPMT********NLU-W CPMT*********NLU-W CPMT*********NLU-W CPMT**********NLU-W CPMT************************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C68 C68 C68 C69 C68	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT*****NFB CPMT*****NFB CPMT*****NLU CPMT*****NLU CPMT*****NLU-W CPMT*****NLU-W CPMT*****NLU-W CPMT*****NSU CPMT*****NSU CPMT*****NSU CPMT*****NSU CPMT******NSU CPMT******NSU CPMT******NSU CPMT******NSU CPMT******NSU CPMT******NSU	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C68 C69 C68 C69 C68 C69 C69 C69	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*_**-* CPM**N CPM**S CPMH******NUS CPMT*****NFB CPMT*****NFB CPMT*****NUS CPMT*****NUS CPMT*****NUS CPMT*****NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMUS******NUS CPMUS******NUS CPMUS******NUS CPMUS******NUS CPMUS******NUS CPMUS*******NUS CPMUS*******NUS CPMUS*******NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS*******NUS CPMUS*******NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS*******NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS*********NUS CPMUS*********NUS CPMUS********NUS CPMUS*********NUS CPMUS********NUS CPMUS********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS**********NUS CPMUS************************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C68 C69 C68 C69 C68 C69 C69 C69 C7 C7 C8 C8 C7 C8 C8 C8 C8 C8 C8 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP SUMIDIA-WSP Ersatzteile
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT*****NFB CPMT*****NFB CPMT*****NLU CPMT*****NLU CPMT*****NLU-W CPMT*****NLU-W CPMT*****NLU-W CPMT*****NSU CPMT*****NSU CPMT*****NSU CPMT*****NSU CPMT******NSU CPMT******NSU CPMT******NSU CPMT******NSU CPMT******NSU CPMT******NSU	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C68 C69 C68 C69 C68 C69 C69 C69	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*_**-* CPM**N CPM**S CPMH******NUS CPMT*****NFB CPMT*****NFB CPMT*****NUS CPMT*****NUS CPMT*****NUS CPMT*****NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMUS******NUS CPMUS******NUS CPMUS******NUS CPMUS******NUS CPMUS******NUS CPMUS*******NUS CPMUS*******NUS CPMUS*******NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS*******NUS CPMUS*******NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS*******NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS********NUS CPMUS*********NUS CPMUS*********NUS CPMUS********NUS CPMUS*********NUS CPMUS********NUS CPMUS********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS*********NUS CPMUS**********NUS CPMUS************************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C68 C69 C68 C69 C68 C69 C69 C69 C7 C7 C8 C8 C7 C8 C8 C8 C8 C8 C8 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP SUMIDIA-WSP Ersatzteile
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NFB CPMT******NFB CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMUS************************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C68 C69 C68 C69 C69 C69 C69 C69 C69 C69 C69 C69 C69	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP SUMIDIA-WSP Ersatzteile Ersatzteile
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NFB CPMT******NFB CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT*******NLU CPMT******NLU CPMT******NLU CPMT************************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C68 C69 C69 C69 C69 C69 C69 C69 C69 C69 C69	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP Ersatzteile USP WSP WSP WSP WSP WSP WSP WSP WSP WSP W
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT*****NFB CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT************************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C68 C69 C68 C69 C69 C69 C69 C69 C69 C69 C69 C69 C69	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP SUMIDIA-WSP Ersatzteile Ersatzteile
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NFB CPMT******NFB CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT*******NLU CPMT******NLU CPMT******NLU CPMT************************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C68 C69 C69 C69 C69 C69 C69 C69 C69 C69 C69	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP Ersatzteile USP WSP WSP WSP WSP WSP WSP WSP WSP WSP W
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT*****NFB CPMT******NFB CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT******NUS CPMT************************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C69 C69 C69 C69 C69 D26 D26 D25 D25	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP USP WSP WSP WSP WSP WSP HIGH A CONTROL OF THE CONTROL OF
CPB**S CPB**T CPGT******NSD CPGW*******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NB CPMT******NB CPMT******NU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT*******NLU CPMT********** CSBN R/L ****-**** CSKN R/L ****-*** CTL******NL/R	P7 P7 C66 M7 F20 P6 P6 C69 C68 C68 C68 C68 C68 C69 C69 C69 C69 C69 D26 D26 D25 F54	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP HSP WSP WSP WSP WSP WSP HSP WSP HSP WSP HSP HSP HSP HSP HSP HSP HSP HSP HSP H
CPB**S CPB**T CPGT******NSD CPGW*******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NUS *************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C69 C69 C69 C69 D26 D26 D25 F54 F54	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NB CPMT******NB CPMT******NU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT******NLU CPMT*******NLU CPMT*******NLU CPMT************************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C68 C68 C68 C68 C69 C69 C69 C69 C69 D26 D26 D25 F54	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP HSP WSP WSP WSP WSP WSP HSP WSP HSP WSP HSP HSP HSP HSP HSP HSP HSP HSP HSP H
CPB**S CPB**T CPGT******NSD CPGW*******NC2 CP-M*-**-* CPM*N CPM**S CPMH******NUS CPMT******NUS *************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C69 C69 C69 C69 D26 D26 D25 F54 F54	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW*******NC2 CP-M*-**-* CPM*N CPM**S CPMH******NUS CPMT******NUS *************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C69 C69 C69 C69 D26 D26 D25 F54 F54	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW*******NC2 CP-M*-**-* CPM*N CPM**S CPMH******NUS CPMT******NUS *************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C69 C69 C69 C69 D26 D26 D25 F54 F54	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW*******NC2 CP-M*-**-* CPM**N CPM**S CPMH******NUS CPMT******NUS *************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C69 C69 C69 C69 D26 D26 D25 F54 F54	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
CPB**S CPB**T CPGT******NSD CPGW*******NC2 CP-M*-**-* CPM*N CPM**S CPMH******NUS CPMT******NUS *************************	P7 P7 C66 M7 F20 P6 P6 C69 C68 C69 C68 C68 C69 C69 C69 C69 C69 D26 D26 D25 F54 F54	Ersatzteile Ersatzteile WSP SUMIBORON-WSP Ersatzteile Ersatzteile Ersatzteile WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP

	D	
D***-DCLC R/L ****-**	E8	Bohrstange
D***-DDUN R/L ****-**	E9	Bohrstange
D***-DTFN R/L ****-**	E12	Bohrstange
D***-DWLN R/L ****-**	E13	Bohrstange
D***-SCLC R/L ****-**	E14	Bohrstange
D***-SDQC R/L ****-**	E17	Bohrstange
D***-SDUC R/L ****-**	E16	Bohrstange
D***-STUP R/L ****-**	E20	Bohrstange
D***-SVUB R/L ****-**	E21	Bohrstange
D***-SVZB R/L ****-**	E21	Bohrstange
DABB***C-R	M57	SUMIDIA Bohrstange
DABB***N-R	M57	SUMIDIA Bohrstange
DAL****H	M78	SUMIDIA drill
DC R/L-*	D25	Ersatzteile
DCGT*****LAY/RAY	C72	WSP
DCGT*****LFX/RFX	C70	WSP
DCGT*****LFX/RFX	C70	WSP
DCGT*****LFY/RFY	C71	WSP
DCGT*****LFY/RFY	C71	WSP
DCGT*****LFYS/RFYS	C70	WSP
DCGT******LFYS/RFYS	C70	WSP
DCGT*****LSD/RSD	C71	WSP
DCGT*****M NFC	C70	WSP
DCGT*****M NSC	C72	WSP
DCGT*****M NSI	C72	WSP
DCGT*****NAG	C71	WSP
DCGT*****N-FV NC2	M14	SUMIBORON-WSP
DCGT*****N-FV NU2	M15	SUMIBORON-WSP
DCGT*****N-LV NC2	M14	SUMIBORON-WSP
DCGT*****N-LV NU2	M15	SUMIBORON-WSP
DCGT*****NSC	C72	WSP
DCGW******	C72	WSP
DCGW*****HS-NC2	M14	SUMIBORON-WSP
DCGW******HS-NU	M16	SUMIBORON-WSP
DCGW H5-NU2 DCGW******LE-NC2	M15	SUMIBORON-WSP
DCGW LE-NC2 DCGW******LE-NU2	M14 M15	SUMIBORON-WSP SUMIBORON-WSP
DCGW******LF-NU	M16	SUMIBORON-WSP
DCGW******LF-NU2	M15	SUMIBORON-WSP
DCGW******LS-NC2	M14	SUMIBORON-WSP
DCGW******LT-NU	M16	SUMIBORON-WSP
DCGW******LT-NC2	M14	SUMIBORON-WSP
DCGW******LU-NC2	M15	SUMIBORON-WSP
DCGW******NC-2	M14	SUMIBORON-WSP
DCGW*****NC-WG2	M14	SUMIBORON-WSP
DCGW*****NC-WH2	M14	SUMIBORON-WSP
DCGW*****NS	M16	SUMIBORON-WSP
DCGW*****NU	M16	SUMIBORON-WSP
DCGW*****NU-2	M15	SUMIBORON-WSP
DCGW*****NU-WG2	M15	SUMIBORON-WSP
DCGW*****NU-WH2	M15	SUMIBORON-WSP
DCLN R/L ****-	D12	Halter
DCMT*****	M17	SUMIDIA-WSP
DCMT******L/R-DM NU	M17	SUMIDIA-WSP
DCMT*****NF	M17	SUMIDIA-WSP
DCMT*****NFB	C73	WSP
DCMT*****NFP	C73	WSP
DCMT*****NGD NF	M17	SUMIDIA-WSP
DCMT*****NGU	C73	WSP
DCMT*****NLD NF	M17	SUMIDIA-WSP
DCMT*****NLB	C73	WSP

D - D

DCMT*****NLU	C73	WSP
DCMT*****NMU	C73	WSP
DCMT*****NSK	C73	WSP
DCMT*****NSU	C73	WSP
DCMW*****		WSP
	C73	
DCMW*****NF	M17	SUMIDIA-WSP
DCMW*****RH	M17, M45	SUMIDIA-WSP
DCMX**T***NLUW	C73	WSP
DCS**T*	P5	Ersatzteile
DDHN R/L ****-***	D13	Halter
DDJN R/L ****-***	D13	Halter
DDL***V	M78	SUMIDIA drill
DDNN N ****-***	D13	Halter
DFC****E	H16, H17	Schaftfräser mit WSP
DFC*****E**	H17	Schaftfräser mit WSP
DFCM****E		
	H16, H17	Schaftfräser mit WSP
DFCM****E**	H17	Schaftfräser mit WSP
DFC*****RS	G24, H16	Fräskopf
DFCF****RS	G24, H16	Fräskopf
DFCM****RS	G24, H16	Fräskopf
DGC****EW	H6	Schaftfräser mit WSP
DGC****RS	G8	Fräskopf
DGCF****RS	G8	Fräskopf
DGCM****RS		
	G8	Fräskopf
DGCS**R	P5	Ersatzteile
DML***V	M79	SUMIDIA drill
DMSW****E	H8	Schaftfräser mit WSP
DMSW****EL	H8	Schaftfräser mit WSP
DMSW****M	H9	Schaftfräser mit WSP
DMSW****R	G63, G66	Fräskopf
DMSW****RS	G63, G66	Fräskopf
DNGA*****	C34	WSP
DNOA	004	VVOI
D110144444E01100		OLUMBO DOMENOD
DNGA*****ES-NC2	M19	SUMIBORON-WSP
	M19 M19	
DNGA*****ES-NC4	M19	SUMIBORON-WSP
DNGA*****ES-NC4 DNGA*****HS-NC2	M19 M19	SUMIBORON-WSP SUMIBORON-WSP
DNGA*****ES-NC4	M19	SUMIBORON-WSP
DNGA******B-NC4 DNGA******HS-NC2 DNGA******HS-NC4	M19 M19 M19	SUMIBORON-WSP SUMIBORON-WSP
DNGA******BS-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NU2	M19 M19 M19 M20	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******BS-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NU2 DNGA******LE-NC2	M19 M19 M19 M20 M18	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******BS-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NU2	M19 M19 M19 M20	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NU2 DNGA*******LE-NC2 DNGA*******LF-NU2	M19 M19 M19 M20 M18 M20	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NU2 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2	M19 M19 M19 M20 M18 M20 M19	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LS-NC2	M19 M19 M19 M20 M18 M20 M19	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NU2 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2	M19 M19 M19 M20 M18 M20 M19	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NU2 DNGA******LF-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LS-NC4 DNGA******LT-NC2	M19 M19 M19 M20 M18 M20 M18 M20 M19 M19	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LS-NC4 DNGA******LT-NC2 DNGA******LT-NU2	M19 M19 M19 M20 M18 M20 M18 M20 M19 M19	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LS-NC4 DNGA******LT-NC2 DNGA******LT-NU2 DNGA******LT-NU2	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M19 M18	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LS-NC4 DNGA******LT-NC2 DNGA******LT-NU2	M19 M19 M19 M20 M18 M20 M18 M20 M19 M19	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LS-NC4 DNGA******LT-NC2 DNGA******LT-NU2 DNGA******LT-NU2 DNGA******NC-2 DNGA*****NC-4	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M19 M18 M20 M18 M20	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LS-NC4 DNGA******LT-NC2 DNGA******LT-NU2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M19 M18 M20 M18 M20 M18	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LS-NC4 DNGA******LT-NC2 DNGA******NC-2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NC-WH4	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M19 M18 M20 M18 M20	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LS-NC4 DNGA******LT-NC2 DNGA******LT-NU2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M19 M18 M20 M18 M20 M18	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA*******BS-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LE-NC2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA*****LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NC-WH4 DNGA*****NU	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M18 M18 M18 M20	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA*******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA******LT-NC2 DNGA******NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NC-WH4 DNGA*****NU	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M19 M18 M20 M18 M20 M18 M18 M18 M18 M18 M18 M20 M20 M20 M20	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA*******NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA******NC-2 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NC-WH4 DNGA*****NU DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-WG2	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M18 M18 M18 M20	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA*******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA******LT-NC2 DNGA******NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NC-WH4 DNGA*****NU	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M19 M18 M20 M18 M20 M18 M18 M18 M18 M18 M18 M20 M20 M20 M20	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******NC2 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NC2 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA******NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WH4 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-WG2 DNGA*****NU-WH2	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M18 M20 M18 M20 M18 M18 M20 M18 M18 M18 M18 M18 M20 M20 M20 M20 M20	SUMIBORON-WSP SUMIBORON-WSP
DNGA******NC2 DNGA******HS-NC2 DNGA*****HS-NC4 DNGA*****HS-NC2 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA******NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WH4 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WH2 DNGG******NU-WH2	M19 M19 M19 M19 M20 M18 M20 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M20 M18 M18 M20 M20 M20 M20 M20 C36	SUMIBORON-WSP SUMIBORON-WSP
DNGA******NC2 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NC2 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA******NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WH4 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-WG2 DNGA*****NU-WH2	M19 M19 M19 M19 M20 M18 M20 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M20 M18 M18 M18 M20 M20 M20 M20 M20 C36 C36	SUMIBORON-WSP SUMIBORON-WSP
DNGA******NC2 DNGA******HS-NC2 DNGA*****HS-NC4 DNGA*****HS-NC2 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA******NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WH4 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WH2 DNGG******NU-WH2	M19 M19 M19 M19 M20 M18 M20 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M20 M18 M18 M20 M20 M20 M20 M20 C36	SUMIBORON-WSP SUMIBORON-WSP
DNGA******HS-NC4 DNGA*****HS-NC2 DNGA*****HS-NC4 DNGA*****HS-NC2 DNGA*****LE-NC2 DNGA*****LF-NU2 DNGA*****LS-NC2 DNGA*****LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NC-WH4 DNGA****NU-WH2 DNGA*****NU-WG2 DNGA*****NU-WH2 DNGG******LAX/RAX DNGG*****NEF	M19 M19 M19 M19 M20 M18 M20 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M20 M20 M20 M20 M20 M20 C36 C36	SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LE-NC2 DNGA******LE-NC2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NC-WH4 DNGA****NU-WH2 DNGA*****NU-WG2 DNGA*****NU-WH2 DNGG******NU-WH2 DNGG******LUM/RUM DNGG*****NEF DNGG*****NEF	M19 M19 M19 M19 M20 M18 M20 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M20 M18 M18 COMBO M20 M20 M20 M20 M20 M20 M20 M20 M20 M20	SUMIBORON-WSP SUMIBORON-WSP
DNGA******HS-NC4 DNGA*****HS-NC2 DNGA*****HS-NC4 DNGA*****HS-NC2 DNGA*****LE-NC2 DNGA*****LF-NU2 DNGA*****LS-NC2 DNGA*****LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NC-WH4 DNGA****NU-WH2 DNGA*****NU-WG2 DNGA*****NU-WH2 DNGG******LAX/RAX DNGG*****NEF	M19 M19 M19 M19 M20 M18 M20 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M20 M20 M20 M20 M20 M20 C36 C36	SUMIBORON-WSP SUMIBORON-WSP
DNGA******ES-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******HS-NU2 DNGA******LE-NC2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA******NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NU-WG2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGG******LAX/RAX DNGG******NEF DNGG*****NEV NC4 DNGG******NEF DNGG******NEV NC4	M19 M19 M19 M19 M20 M18 M20 M19 M19 M18 M20 M18 M20 M18 M20 M18 M20 M18 M18 COMMAN M18 M18 M18 M18 M18 M18 M18 M19 M19 M20 M20 M20 M20 M20 M20 M20 M20 M20 M20	SUMIBORON-WSP SUMIBORON-WSP
DNGA******NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LF-NC2 DNGA******LF-NC2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WH4 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGG*****NU-WH2	M19 M19 M19 M20 M18 M20 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M20 M18 M18 M18 M18 M18 M18 M19 M19 M20 M20 M20 M20 M20 M20 M20 M20 M20 M20	SUMIBORON-WSP WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******HS-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LF-NU2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WH4 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG******NU-WH2 DNGG******NU-WH2 DNGG******NU-WH2 DNGG******NU-WH2 DNGG******NU-WH2 DNGG******NU-WH2 DNGG******NU-WH2 DNGG******NU-WH2 DNGG******NU-WH2 DNGG*******NU-WH2 DNGG******NU-WH2 DNGG******NU-WH2 DNGG*******NU-WH2 DNGG******NU-WH2 DNGG*******NU-WH2 DNGG*******NU-WH2 DNGG*******NU-WH2 DNGG*******NU-WH2 DNGG*******NU-WH2	M19 M19 M19 M20 M18 M20 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M20 M20 M20 M20 M20 M20 M20 M20 M20 C36 C36 C36 C36 C36 C36 C36 C36 C36 C36	SUMIBORON-WSP SUMIBORON-WSP
DNGA******NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LF-NC2 DNGA******LF-NC2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WH4 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGG*****NU-WH2	M19 M19 M19 M20 M18 M20 M19 M19 M19 M18 M20 M18 M20 M18 M20 M18 M18 M20 M18 M18 M18 M18 M18 M18 M19 M19 M20 M20 M20 M20 M20 M20 M20 M20 M20 M20	SUMIBORON-WSP WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******HS-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LF-NU2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WH4 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG******NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG******NU-WH2	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M18 M20 M18 M20 M18 M18 M20 M18 M18 M18 M18 M18 M18 M18 M19 M20 M20 M20 M20 M20 M20 M20 M20 M20 M20	SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******NC-2 DNGA******LT-NC2 DNGA******NC-2 DNGA******LT-NC2 DNGA******LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGG*****NU-WG2 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M18 M20 M18 M20 M18 M18 M18 M18 M18 M18 M18 M18 M18 M19 M20 M20 M20 M20 M20 M20 M20 M20 M20 M20	SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******HS-NC4 DNGA******HS-NC2 DNGA******HS-NC4 DNGA******LF-NU2 DNGA******LF-NU2 DNGA******LS-NC2 DNGA******LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WH4 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGA*****NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG******NU-WH2 DNGG*****NU-WH2 DNGG*****NU-WH2 DNGG******NU-WH2	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M18 M20 M18 M20 M18 M18 M20 M18 M18 M18 M18 M18 M18 M18 M19 M20 M20 M20 M20 M20 M20 M20 M20 M20 M20	SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
DNGA******NC-2 DNGA******LT-NC2 DNGA******NC-2 DNGA******LT-NC2 DNGA******LT-NC2 DNGA*****NC-2 DNGA*****NC-4 DNGA*****NC-4 DNGA*****NC-WG4 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGA*****NU-WG2 DNGG*****NU-WG2 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4 DNGG*****NU-WC4	M19 M19 M19 M20 M18 M20 M19 M19 M19 M19 M18 M20 M18 M20 M18 M18 M18 M18 M18 M18 M18 M18 M18 M19 M20 M20 M20 M20 M20 M20 M20 M20 M20 M20	SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP

DNMA*****	C35	 WSP
DNMA*****	M21	SUMIBORON-WSP
DNMA*****NF	M21	SUMIDIA-WSP
DNMA*****NS	M21	SUMIBORON-WSP
DNMA*****NU	M21	SUMIBORON-WSP
DNMA*****RH	M21, M45	SUMIDIA-WSP
DNMG*****LHM/RHM	C33	WSP
DNMG*****LUM/RUM	C32	WSP
DNMG*****NEF	C30	WSP
DNMG****NEG	C31	WSP
DNMG****NEM	C32	WSP
DNMG*****NEX	C31	WSP
DNMG*****NFA	C29	WSP
DNMG*****NFB	C29	WSP
DNMG*****NFE	C29	WSP
DNMG*****NFL	C29	WSP
DNMG*****NGE	C31	WSP
DNMG*****NGU	C30	WSP
DNMG*****NGZ	C33	WSP
DNMG*****NLU	C29	WSP
DNMG*****NME	C32	WSP
DNMG*****NMU	C32	WSP
DNMG*****NMX	C33	WSP
DNMG*****NSE	C30	WSP
DNMG*****NSU	C30	WSP
DNMG*****NSX	C30	WSP
DNMG*****NUG	C31	WSP
DNMG*****NUP	C32	WSP
DNMG*****NUX	C33	WSP
DNMG*****NUZ	C33	WSP
DNMM*****NHG	C34	WSP
DNMM*****NHP	C34	WSP
DNMM*****NMP	C34	WSP
DNMX*****L/R	C35	WSP
DNMX*****NSE-W	C35	WSP
DNS****	P5	Ersatzteile
DNS****B	P5	Ersatzteile
DNX**** RS	G14	Fräskopf
DNXF**** RS	G14	Fräskopf
DNXK**R	G14	Ersatzteile
DSBN R/L ****-***	D14	Halter
DSDN N ****-***	D14	Halter
DSLX*	D27	Ersatzteile
DSP*	D25	Ersatzteile
DTFN R/L ****-***	D15	Halter
DTGN R/L ****-***	D15	Halter
DTJN R/L ****-***	D15	Halter
DTR**C R/L ****-***	D11	Halter
DTR**Q R/L ****-***	D11	Halter
DVJN R/L ****-***	D16	Halter
DVQN R/L ****-***	D16	Halter
DVVN N ****-***	D16	Halter
DWLN R/L ****-***	D17	Halter

E-H

	E	
ECXA***X**LE NU*	M51	SUMIBORON-WSP
ECXA***X**LF NU*	M51	SUMIBORON-WSP
E**D*SEXCR/L**-**P	M51	Bohrstange
EHBX****	P3	Ersatzteile
EHHM****ZX	J31	Schaftfräser
EPMS****U***R**	J23	Schaftfräser
ER**	P6	Ersatzteile
E***SSHM N*****	F43	Halter

	F	
FBUP*-A*-*	P3	Ersatzteile
FMJ	P4	Ersatzteile
FMU****R-S	G85, M73	Fräskopf
FMUE	G85, M73	Ersatzteile
FMUJ	P4	Ersatzteile
FMUU	G85, M73	Ersatzteile

	G	
GCG N**** GA	F19, F21, F23, F25, F27, F29, F31	, WSP
	F35, F37, F39, F47, F49	<u></u>
GCM N**** GF	F19, F21, F23, F25, F27, F29, F31	, WSP
	F35, F37, F39, F47, F49	<u></u>
GCM N**** GF	F19, F21, F23, F25, F29, F37	WSP
GCM N**** GG	F19, F21, F23, F25, F27, F29, F31,	WSP
	F35, F37, F39, F47, F49	
GCM N**** GL	F19, F21, F23, F25, F27, F29, F31	, WSP
	F35, F37, F39, F47, F49	
GCM N**** MG	F19, F21, F23, F25, F27, F29, F31	, WSP
	F35, F37, F39, F47, F49	
GCM N**** ML	F19, F21, F23, F25, F27, F29, F31	, WSP
	F35, F37, F39, F47, F49	
GCM N**** RG	F19, F21, F23, F25, F27, F29, F31	, WSP
	F35, F37, F39, F47	
GCM N**** RN	F19, F21, F23, F25, F27, F29, F31,	WSP
	F33, F37, F39, F47, F49	
GCM R/L**** CF**	F19, F21, F23, F25, F27, F29, F31,	WSP
	F47	
GCM R/L**** CG**	F19, F21, F23, F25, F27, F29, F31,	WSP
	F47	
GNDCF R/L***-***	F48	Kassette
GNDCM R/L ***	F46	Kassette
GNDM R/L ****JX***	F18	Halter
GNDM R/L ****JX****	F18	Halter
GNDM R/L ****JX*****	F18	Halter
GNDM R/L ****JX***J	F20	Halter
GNDM R/L ****JX****J	F20	Halter
GNDM R/L ****JX*****J	F20	Halter
GNDM R/L ****K***	F24	Halter
GNDM R/L ****K****	F24	Halter
GNDM R/L ****K****	F24	Halter
GNDM R/L ****M***	F24	Halter
GNDM R/L ****M****	F24	Halter
GNDM R/L ****M*****	F24	Halter
GNDM R/L ****P***	F24	Halter
GNDM R/L****X***JE	F26, F30	Halter
GNDMS R/L****K***	F24	Halter
GNDMS R/L****M***	F24	Halter

GNDL R/L ****JX***	F18	Halter
GNDL R/L ****JX****	F18	Halter
GNDL R/L ****JX****	F18	Halter
GNDL R/L ****K***	F28	Halter
GNDL R/L ****K****	F28	Halter
GNDL R/L ****K****	F28	Halter
GNDL R/L ****M***	F28	Halter
GNDL R/L ****M****	F28	Halter
GNDL R/L ****M*****	F28	Halter
GNDL R/L ****P***	F28	Halter
GNDLS R/L ****K***	F28	Halter
GNDLS R/L ****M***	F28	Halter
GNDF R/L ****K***-***	F34	Halter
GNDF R/L ****M***-***	F34	Halter
GNDFS R/L ****M***-***	F36	Halter
GNDFS R/L ****P***-***	F36	Halter
GNDI R/L ****T***	F38	Halter
GNDIS R/L ****T****	F40	Halter
GNDN R/L ****K***-***	F32	Halter
GNDN R/L ****M***-***	F32	Halter
GNDS R/L ****K***	F22	Halter
GNDS R/L ****M***	F22	Halter
GSP*	M56	Ersatzteile
GSP**	D27, M54	Ersatzteile
GSH****SF	J28	Schaftfräser
GSRE****SF	J27	Schaftfräser
GSX*****C-***D	J7, J12, J15	Schaftfräser
GSX*****C-*D	J9, J10, J11, J13, J17, J18, J19	Schaftfräser
GSX*****S-*D	J8, J16	Schaftfräser
GSXB****	J34	Schaftfräser
GSXSLT*****C-***D	J14	Schaftfräser
GSXVL****-***D	J20	Schaftfräser
GSXVL****S-R**-***D	J21	Schaftfräser
GSXVL****-R**-***D	J21	Schaftfräser
GSXVL****S-***D	J20	Schaftfräser
GWB R/L ****-***	M54	Halter
GWBCM R/L **	M55	Kassette
GWC R/L ****-**	F50	Halter
GWCCM R/L **	F51	Kassette
GWCI R/L ***	F51	Halter
GWCS R/L ****-**	F50	Halter
GXM N**** S ML	F41	WSP
GXM N**** S GF	F41	WSP
GXM N***** S GF	F41	WSP

	Н	
HBB***	M52, M57	Halter
HBB****	M57	Halter
HBSM****	M50, M51	Bohrstange
HD***	P8	Ersatzteile
HE*****E	P5	Ersatzteile
HE*****P	P7	Ersatzteile
HE*****W	E13	Ersatzteile
HFJ	G79, G81, H85, H87, M63,	Ersatzteile
	M65, M67, M69	Ersatzteile
HFVT	G79, G81, H85, H87, M63,	Ersatzteile
	M65, M67, M69	Ersatzteile
HPL****	P7	Ersatzteile
HPS****	P7	Ersatzteile

Inde

Index

J-P

	J	
J-G1/8-G1/8-**	F21	Zubehörteile
J-G1/8-G1/8-**E	F21, F26, F30	Zubehörteile
J-G1/8-G1/8F-**E	F21, F26, F30	Zubehörteile
J-HOSE-G1/8-G1/8***-E	F21, F26, F30	Zubehörteile

K		
KGBS****	P4	Ersatzteile
KSS****	P4	Ersatzteile

	L	
1.01*		Frantstoil-
LCL*	P4	Ersatzteile
LCL**	P4	Ersatzteile
LCL*C-SD	P4	Ersatzteile
LCL*D-SD	P4	Ersatzteile
LCL*DB-SD	P4	Ersatzteile
LCL*S	P4	Ersatzteile
LCL*-SD	P4	Ersatzteile
LCL*T-SD	P4	Ersatzteile
LCS*	P4	Ersatzteile
LCS**	P4	Ersatzteile
LCS**BS-SD	P4	Ersatzteile
LCS*B-SD	P4	Ersatzteile
LCS*CA	P4	Ersatzteile
LCS*DB-SD	P4	Ersatzteile
LCS*TB-SD	P4	Ersatzteile
LCS*TE	P4	Ersatzteile
LH***	P8	Ersatzteile
LH***K	P8	Ersatzteile
LHHM****ZX	J31	Schaftfräser
LNEX*****PNER-G	G33, G34, G35, H18, H19	WSP
LNEX*****PNER-H	G33, G35, H18, H19	WSP
LNEX*****PNER-L	G33, G34, G35, H18, H19	WSP
LP**	P7	Ersatzteile
LSC**SD	P5	Ersatzteile
LSD**SD	P5	Ersatzteile
LSP*D	D34	Ersatzteile
LSP*	P7	Ersatzteile
LSP**	P7	Ersatzteile
LSP*SD	P7	
LSR**		Ersatzteile
LSK		Encadada:la
I CD***	P5	Ersatzteile
LSR***	P5	Ersatzteile
LSS**SD	P5 P5	Ersatzteile Ersatzteile
LSS**SD LST**SD	P5 P5 P5	Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD	P5 P5 P5 P5	Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-*	P5 P5 P5	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW***	P5 P5 P5 P5 P5 P5	Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT**	P5 P5 P5 P5 P5	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT***	P5 P5 P5 P5 P5 P5	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT*** LT**-** LT**-!P	P5 P5 P5 P5 P5 P6 P8 P8 P8	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT***	P5 P5 P5 P5 P5 P6 P8	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT*** LT**-** LT**-!P	P5 P5 P5 P5 P5 P6 P8 P8 P8	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT*** LT**-** LT**-!P	P5 P5 P5 P5 P5 P6 P8 P8 P8	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT*** LT**-** LT**-!P	P5 P5 P5 P5 P5 P6 P8 P8 P8	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT*** LT**-** LT**-!P	P5 P5 P5 P5 P5 P6 P8 P8 P8	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT*** LT**-** LT**-!P	P5 P5 P5 P5 P5 P6 P8 P8 P8	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT*** LT**-** LT**-!P	P5 P5 P5 P5 P5 P6 P8 P8 P8	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile
LSS**SD LST**SD LST***SD LSTE**-* LSW*** LT*** LT*** LT**-** LT**-!P	P5 P5 P5 P5 P5 P6 P8 P8 P8	Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile Ersatzteile

	M	
M*	H5	Ersatzteile
M**	H5	Ersatzteile
MA**M**L***C	H5	Halter
MA**M**L***S	H5	Halter
MDF****S2D	K26	Multi-Drill Bohrer
MDF***L2D	K27	Multi-Drill Bohrer
MDF****H3D	K29, K30	Multi-Drill Bohrer
MDF****H5D	K29, K30	Multi-Drill Bohrer
MDS****SDC*	K41	Multi-Drill Bohrer
MDSS****	K40	Multi-Drill Bohrer
MDUS****-**C	K40	Multi-Drill Bohrer
MDW****GS*	K22, K23	Multi-Drill Bohrer
MDW****NHGS	K36, K37	Multi-Drill Bohrer
MDW****PHT	K34, K35	Multi-Drill Bohrer
MDW***XHG-S**HAK	K34	Multi-Drill Bohrer
MDW***XHT-A**HAK	K35	Multi-Drill Bohrer
MIB*-*	P4	Ersatzteile
MLDH****L**	K39	Multi-Drill Bohrer
MLDH****P	K39	Multi-Drill Bohrer
MMW**	D23	Ersatzteile
MP***	P7	Ersatzteile
MSX****EM	H11	Schaftfräser mit WSP
MSX****ES	H11	Schaftfräser mit WSP
MSX****EW	H11	Schaftfräser mit WSP
MSX****M**Z*	H12	Schaftfräser mit WSP
MSX****RS	G67	Fräskopf
MTIX****E**	H69	Schaftfräser mit WSP
MTIX****E***	H69	Schaftfräser mit WSP
MTIX****RS**	G61	Fräskopf
MTJN R/L ****-**	D23	Halter
MTJN R/L V-**	D23	Halter
MTXN R/L ****-**	D23	Halter
MWLN R/L ****-***	D24	Halter
MWW**	D24	Ersatzteile

	N	
NPDB****	J43, M77	SUMIDIA Schaftfräser
NPDBS****-***	J43, M77	SUMIDIA Schaftfräser
NPDRS****R***-***	J42, M76	SUMIDIA Schaftfräser

	0	
ONEU****ANER L	G9, H6	WSP
ONEU****ANER G	G9, H6	WSP
ONMU****ANER L	G9, H6	WSP
ONMU****ANER G	G9, H6	WSP

Р	
G85, M73	Ersatzteile
D18	Halter
D31	Halter
D18	Halter
K67	Multi-Drill Bohrer
D32	Halter
D19	Halter
K67	Multi-Drill Bohrer
	D18 D31 D18 K67 D32 D19

P-S

	Р	
PRDC N****-***	D34	Halter
PRGC R/L ****-***	D34	Halter
PSBN R/L ****-***	D20	Halter
PSC**DCLN R/L****-12	D41	Polygonschafthalter
PSC**DDJN R/L****-15	D41	Polygonschafthalter
PSC**DDHN R/L****-15	D41	Polygonschafthalter
PSC**DSBN R/L****-12	D41	Polygonschafthalter
PSC**DTJN R/L****-16	D42	Polygonschafthalter
PSC**DWLN R/L****-0*	D42	Polygonschafthalter
PSC**GM** R/L****	F46, F48, M55	Modularer Polygon Halter
PSC**SCLC R/L****-09	D43	Polygonschafthalter
PSC**SDJC R/L****-11	D43	Polygonschafthalter
PSC**SDHC R/L****-11	D43	Polygonschafthalter
PSC**SSBC R/L****-12	D43	Polygonschafthalter
PSC**STJC R/L****-16	D44	Polygonschafthalter
PSC**SVJB R/L****-16	D44	Polygonschafthalter
PSC**SVVB R/L****-16	D44	Polygonschafthalter
PSC**SVHB R/L****-16	D44	Polygonschafthalter
PSC**SVJC R/L****-16	D45	Polygonschafthalter
PSC**SVVC R/L****-16	D45	Polygonschafthalter
PSC**SVHC R/L****-16	D45	Polygonschafthalter
PSDN N ****-***	D20	Halter
PSKN R/L ****-***	D21	Halter
PSSN R/L ****-***	D21	Halter
PTFN R/L ****-***	D22	Halter
PTGN R/L ****-***	D22	Halter
PTTN R/L ****-***	D22	Halter
PW*	F63	Ersatzteile
PWLN R/L ****-***	D24	Halter
PWSS*R	P6	Ersatzteile

	Q	
QPET*****PPFR-S	G16, H74, H75	WSP
QPMT*****PPEN	G16, H74, H75	WSP
QPMT*****PPEN-CP	G16	WSP
QPMT*****PPEN-H	G16, H74, H75	WSP

	В	
	R	
RCMT****M0 NRH	C74	WSP
RCMT****M0 NRX	C74	WSP
RCMX****M0 NRP	C74	WSP
RDET**T*M0EN-G	G21, H76, H77	WSP
RDET**T*M0EN-H	G21, H76, H77	WSP
RDET****M0EN-G	G21, H76, H77	WSP
RDET****M0EN-H	G21, H76, H77	WSP
RF-SET	G82, G85, M70, M73	Ersatzteile
RF****RS	G82, M70	Fräskopf
RFB	G82, M70	SUMIDIA-WSP
RFBW	G82, M70	SUMIDIA-WSP
RFC	G82, M70	Ersatzteile
RFD	G82, M70	Ersatzteile
RFF	G82, M70	Ersatzteile
RFJ	P4	Ersatzteile
RFR	G82, M70	Ersatzteile
RFS	G82, M70	Ersatzteile
RNGN*****	M22	SUMIBORON-WSP
RNGN*****B	M22	SUMIBORON-WSP

RSX****ES	G18, H76	Schaftfräser mit WSP
RSXF****ES	G18, H76	Schaftfräser mit WSP
RSX****M	G18, H77	Schaftfräser mit WSP
RSXF****M	G18, H77	Schaftfräser mit WSP
RSX****RS	G18, G20	Fräskopf
RSXF****RS	G18, G20	Fräskopf

	S	
S***-DTR**C-R/L-**	E11	Bohrstange
S***-MWLN R/L **	E13	Bohrstange
S***-PCLN R/L **	E8	Bohrstange
S***-PDUN R/L **	E9	Bohrstange
S***-PSKN R/L **	E10	Bohrstange
S***-PTFN R/L **	E12	Bohrstange
S***-SCLC R/L **	E14	Bohrstange
S***-SCLP R/L **	E15	Bohrstange
S***-SDQC R/L **	E17	Bohrstange
S***-SDUC R/L **	E16	Bohrstange
S***-SSKP R/L **	E18	Bohrstange
S***-STFC R/L **	E19	Bohrstange
S***-STUB R/L **-**	E20	Bohrstange
S***-STUP R/L **	E20	Bohrstange
S***-STUP R/L **-**	E20	Bohrstange
S***-SVQB R/L **	E22	Bohrstange
S***-SVUB R/L **	E22	Bohrstange
S***-SVZB R/L **	E23	Bohrstange
S***-SWUB R/L **	D11, E11	Bohrstange
SBN**-**	F56, F58	Halter
SBU**-**	F56, F58	Halter
SCAC R/L ****-***	D31	Halter
SCGT**T***LFX/RFX	C75	WSP
SCGT*****M NSC	C75	WSP
SCGW*****NU	M19	SUMIBORON-WSP
SCLC R/L ****-***	D31	Halter
SCMT*****NFB	C76	WSP
SCMT*****NFP	C76	WSP
SCMT*****NGU	C76	WSP
SCMT*****NLB	C76	WSP
SCMT*****NLU	C76	WSP
SCMT*****NMU	C76	WSP
SCMT*****NSK	C76	WSP
SCMT*****NSU	C76	WSP
SCMW*****	C76	WSP
SCN****	P5	Ersatzteile
SCND***	P5	Ersatzteile
SCP-*	D12, D13, D14, D15, D16, D17	
	D41, D42, E8, E9, E12, E13	.,
SCP*A	F51, M55	Ersatzteile
SCS****	P5	Ersatzteile
SCT R/L ****	F54	Halter
SCW***	P5	Ersatzteile
SDAC R/L ****-***	D33	Halter
SDBSM	M51	Ersatzteile
SDET****ZDFR	G82, M70	WSP
SDHC R/L ****-***	D32	Halter
SDJC R/L ****-***	D32	Halter
SDM****U*HAK	K17, K18, K19	Multi-Drill Bohrer
SDNC N ****-***	D33	Halter
SDP****U*HAK	K8, K9, K10, K10, K11	Multi-Drill Bohrer
SDW***	P5	Ersatzteile
3311	10	Libationo

Ing

Index

C	C
J	J

SEET****AGFR-L	G11, H7	WSP
SEET****AGSR-L	G11, H7	WSP
SEET****AGSR-G	G11, H7	WSP
SEMT****AGSR-L	G11, H7	WSP
SEMT****AGSR-G	G11, H7	WSP
SEMT****AGSR-H	G11, H7	WSP
SEMT****AGSR-FG	G11, H7	WSP
SFKN****AZFN	G13	WSP
SFKN****AZTN	G13	WSP
SFKR****AZTN	G13	WSP
SFW***		Ersatzteile
	P5	
SL-*	F56, F58, F59	Ersatzteile
SMDH***S/M/L/D*	K44, K48,	Multi-Drill Bohrer
SMDT****MFS	K49	WSP
SMDT****MTL	K51	WSP
SMDT****D MEL	K46	WSP
SMDT****D MTL	K45	WSP
SNB****DL	J35	Schaftfräser
SNEU****ANER-FG	G9, H6	WSP
SNEU****ANER-FL		WSP
	G9, H6	
SNEU****ANER-G	G9, H6	WSP
SNEU****ANER-L	G9, H6	WSP
SNEW****ADFR-NF		
	G66, M70	SUMIDIA-WSP
SNEW****ADFR-W-NF	G66, M70	SUMIDIA-WSP
SNEW****ADTR-NF	G67, M71	SUMIDIA-WSP
SNEW****ADTR-R-NF	G67, M71	SUMIDIA-WSP
SNEW****ADTR-U-NF	G67, M71	SUMIDIA-WSP
SNEW****ADT L/R	G69, M73	SUMIBORON-WSP
SNEW****ADT L/R-S	G69, M73	SUMIBORON-WSP
SNGA*****	C44	WSP
SNGA*****HS-NC2	M23	SUMIBORON-WSP
SNGA*****HS-NU2	M23	SUMIBORON-WSP
SNGA*****LT-NU2	M23	
		SUMIBORON-WSP
SNGA*****NC2	M23	SUMIBORON-WSP
SNGA*****NC2 SNGA*****NC4	M23 M23	SUMIBORON-WSP
SNGA*****NC2	M23	
SNGA*****NC2 SNGA*****NC4	M23 M23 M23	SUMIBORON-WSP SUMIBORON-WSP
SNGA*****NC2 SNGA*****NC4 SNGA*****NU2 SNGA******NU4	M23 M23 M23 M23	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA*****NC2 SNGA*****NC4 SNGA*****NU2 SNGA*****NU4 SNGG******LAX/RAX	M23 M23 M23 M23 C44	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP
SNGA*****NC2 SNGA*****NC4 SNGA*****NU2 SNGA******NU4	M23 M23 M23 M23	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA*****NC2 SNGA*****NC4 SNGA*****NU2 SNGA*****NU4 SNGG******LAX/RAX	M23 M23 M23 M23 C44	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP
SNGA*****NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******LUM/RUM	M23 M23 M23 M23 C44 C44	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******LUM/RUM SNGN******	M23 M23 M23 M23 C44 C44 C44	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP
SNGA*****NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******LUM/RUM	M23 M23 M23 M23 C44 C44	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG*******LAX/RAX SNGG******LST/RST SNGG*******LUM/RUM SNGN****** SNGN******	M23 M23 M23 M23 C44 C44 C44 C45 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA*******NU4 SNGG*******LAX/RAX SNGG*******LST/RST SNGG*******LUM/RUM SNGN****** SNGN****** SNGN*******	M23 M23 M23 M23 C44 C44 C44 C45 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG*******LUM/RUM SNGN****** SNGN****** SNGN****** SNGX****** SNMA******	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 C44	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA*******NU4 SNGG*******LAX/RAX SNGG*******LST/RST SNGG*******LUM/RUM SNGN****** SNGN****** SNGN*******	M23 M23 M23 M23 C44 C44 C44 C45 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG*******LUM/RUM SNGN****** SNGN****** SNGN****** SNGX****** SNMA******	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 C44	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN****** SNGN****** SNGN****** SNGA****** SNGA****** SNGA****** SNGA******	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN****** SNGN****** SNGX****** SNMA****** SNMA****** SNMA******NS SNMA******NU SNMA******NF	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN****** SNGN****** SNGN****** SNGA****** SNGA****** SNGA****** SNGA******	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN****** SNGN****** SNGX****** SNMA****** SNMA****** SNMA******NS SNMA******NU SNMA******NF	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN****** SNGN****** SNGN****** SNMA******* SNMA******* SNMA*******NS SNMA******NS SNMA******NF SNMA*******NF SNMA************************************	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP
SNGA*****NC2 SNGA*****NC4 SNGA*****NU2 SNGA*****NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN***** SNGN***** SNGA****** SNMA****** SNMA****** SNMA****** SNMA****** SNMA****** SNMA****** SNMA******* SNMA******* SNMA******* SNMA******* SNMA******** SNMA******* SNMA******* SNMA******* SNMA******** SNMA******** SNMA******** SNMA******** SNMA********* SNMA********* SNMA********* SNMA********* SNMA********** SNMA********** SNMA********** SNMA********** SNMA****************** SNMA************************************	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN****** SNGN****** SNGN****** SNMA******* SNMA******* SNMA*******NS SNMA******NS SNMA******NF SNMA*******NF SNMA************************************	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP
SNGA*****NC2 SNGA*****NC4 SNGA*****NU2 SNGA*****NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN***** SNGN***** SNGA****** SNMA****** SNMA****** SNMA****** SNMA****** SNMA****** SNMA****** SNMA******* SNMA******* SNMA******* SNMA******* SNMA******** SNMA******* SNMA******* SNMA******* SNMA******** SNMA******** SNMA******** SNMA******** SNMA********* SNMA********* SNMA********* SNMA********* SNMA********** SNMA********** SNMA********** SNMA********** SNMA****************** SNMA************************************	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN****** SNGN****** SNMA******* SNMA******* SNMA******** SNMG********* SNMG********* SNMG********** SNMG*********** SNMG**************** SNMG************************************	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN****** SNGN****** SNMA******* SNMA******* SNMG******** SNMG********* SNMG********* SNMG********* SNMG********** SNMG*********** SNMG************ SNMG************ SNMG***************** SNMG************************************	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGN****** SNGN****** SNMA******* SNMA******* SNMA******** SNMG********* SNMG********* SNMG********** SNMG*********** SNMG**************** SNMG************************************	M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP
SNGA******NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGA****** SNGN****** SNGA****** SNMA****** SNMG******* SNMG******** SNMG******** SNMG******** SNMG******** SNMG******** SNMG******** SNMG******** SNMG******** SNMG********* SNMG********* SNMG********** SNMG********** SNMG********** SNMG************ SNMG************ SNMG***************** SNMG************************************	M23 M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA******NC4 SNGA******NU4 SNGG******LAX/RAX SNGG******LUM/RUM SNGG******* SNGG******* SNGG****** SNGA****** SNGA****** SNGA****** SNMA***** SNMA***** SNMA***** SNMA***** SNMA***** SNMA***** SNMA***** SNMA***** SNMA***** SNMA***** SNMA****** SNMA***** SNMA***** SNMA***** SNMA***** SNMG****** SNMG****** SNMG****** SNMG****** SNMG****** SNMG****** SNMG****** SNMG****** SNMG****** SNMG****** SNMG****** SNMG****** SNMG****** SNMG******	M23 M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA*****NC4 SNGA*****NU2 SNGA*****NU4 SNGG******LAX/RAX SNGG******LUM/RUM SNGG******* SNGG****** SNGA****** SNGA****** SNGA****** SNGA****** SNMA***** SNMA***** SNMA***** SNMA***** SNMA***** SNMA***** SNMA*****NG SNMA*****NF SNMG******NF SNMG******NF SNMG******NF SNMG******NF SNMG******NF SNMG******NF SNMG******NF SNMG******NF SNMG******NFB SNMG******NFB SNMG******NFB	M23 M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA******NC4 SNGA******NU4 SNGG******LAX/RAX SNGG******LST/RST SNGG******* SNGG******* SNGN****** SNGA****** SNMA****** SNMA****** SNMA****** SNMA****** SNMA****** SNMG******* SNMG****** SNMG******* SNMG******* SNMG******* SNMG******* SNMG******** SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG*******	M23 M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA*****NC4 SNGA*****NU2 SNGA*****NU4 SNGG******LAX/RAX SNGG*****LUM/RUM SNGG******* SNGA****** SNGA****** SNGA****** SNGA****** SNGA****** SNGA****** SNMA****** SNMA****** SNMA******NF SNMA*****NF SNMG******NF	M23 M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA*****NC4 SNGA*****NU2 SNGA*****NU4 SNGG******LAX/RAX SNGG*****LAX/RAX SNGG******LUM/RUM SNGN****** SNGA****** SNGA****** SNGA****** SNMA****** SNMA****** SNMA****** SNMA******NF SNMA*****NF SNMG******NF SNMG******NF SNMG******NF SNMG*****NEG SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG******NEM SNMG*****NEM SNMG******NEM M SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM	M23 M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LUM/RUM SNGG******* SNGA****** SNGA****** SNGA****** SNGA****** SNMA****** SNMA****** SNMA****** SNMA******NF SNMA*****NF SNMG*****NEG SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG******NEM NMG******NEM SNMG******NEM SNMG******NEM SNMG*****NEM SNMG*****NEM SNMG******NEM NMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM	M23 M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M27 M24 M27 M28 M29 C41 C38 C39 C40 C39 C40 C39 C37 C37 C37 C37 C38 C38	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LUM/RUM SNGG******* SNGA****** SNGA****** SNGA****** SNGA****** SNMA****** SNMA****** SNMA****** SNMA****** SNMA******NF SNMG******NF SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG*****NEM SNMG******NEM NMG*****NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG******NEM SNMG*****NEM	M23 M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M24 M24	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LUM/RUM SNGG******* SNGG******* SNGA****** SNGA****** SNGA****** SNMA****** SNMG******* SNMG******* SNMG******* SNMG******* SNMG****** SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******** SNMG******* SNMG******* SNMG******* SNMG******** SNMG******** SNMG******* SNMG******* SNMG******* SNMG******** SNMG******** SNMG********* SNMG******** SNMG********* SNMG********* SNMG********** SNMG********** SNMG********** SNMG*********** SNMG********* SNMG************ SNMG*********** SNMG************* SNMG*********** SNMG************** SNMG***************** SNMG************************************	M23 M23 M23 M23 M23 C44 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M27 M24 M27 M28 M29 M29 M20 M30 M30 M30 M30 M30 M30 M30 M30 M30 M3	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LUM/RUM SNGG******* SNGG******* SNGG******* SNGA****** SNGA****** SNGA****** SNMA****** SNMA****** SNMA****** SNMA******NU SNMA*****NF SNMG******NF SNMG******NF SNMG******NF SNMG*****NF	M23 M23 M23 M23 M23 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M27 M24 M27 M28 M29 M29 M20 M30 M30 M30 M30 M30 M30 M30 M30 M30 M3	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SNGA*****NC2 SNGA******NC4 SNGA******NU2 SNGA******NU4 SNGG******LAX/RAX SNGG******LUM/RUM SNGG******* SNGG******* SNGA****** SNGA****** SNGA****** SNMA****** SNMG******* SNMG******* SNMG******* SNMG******* SNMG****** SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******* SNMG******** SNMG******* SNMG******* SNMG******* SNMG******** SNMG******** SNMG******* SNMG******* SNMG******* SNMG******** SNMG******** SNMG********* SNMG******** SNMG********* SNMG********* SNMG********** SNMG********** SNMG********** SNMG*********** SNMG********* SNMG************ SNMG*********** SNMG************* SNMG*********** SNMG************** SNMG***************** SNMG************************************	M23 M23 M23 M23 M23 C44 C44 C44 C44 C45 M24 M24 M24 M24 M24 M24 M24 M24 M27 M24 M27 M28 M29 M29 M20 M30 M30 M30 M30 M30 M30 M30 M30 M30 M3	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP

SNMG*****NMU	C40	WSP
SNMG*****NMX	C41	WSP
SNMG*****NSE	C37	WSP
SNMG*****NSJ	C38	WSP
SNMG*****NSU	C37	WSP
SNMG*****NSX	C38	WSP
SNMG*****NUG	C39	WSP
		WSP
SNMG*****NUP	C39	
SNMG*****NUX	C40	WSP
SNMG*****NUZ	C41	WSP
SNMN*****	C45	WSP
SNMM*****NHF	C43	WSP
SNMM*****NHG	C42	WSP
SNMM*****NHGS	C42	WSP
SNMM*****NHP	C42	WSP
SNMM*****NHU	C43	WSP
SNMM*****NHW	C43	WSP
SNMM*****NMH	C42	WSP
SNMM*****NMP	C42	WSP
SNMT****ZNEN-G	G15	WSP
SNMT****ZNEN-H	G15	WSP
SNMT****ZNEN-L	G15	WSP
SNMT****ZNEN-SH	G15	WSP
SNMU****ANER FG	G9, H6	WSP
SNMU****ANER FL	G9, H6	WSP
SNMU****ANER G	G9, H6	WSP
SNMU****ANER H	G9, H6	WSP
SNMU****ANER L	G9, H6	WSP
SNS****	P5	Ersatzteile
SOET*****PDFR-S	G26, G29, G71, H15, H19,	WSP
	H79, H80	
SOFT*****D7FR_C	C26 C28 C70 H15 H18	///CD
SOET*****PZER-G	G26, G28, G70, H15, H18,	WSP
SOET*****PZER-G	H79, H80	WSP
SOET*****PZER-G SOET*****PZFR-S		WSP
	H79, H80	
SOET******PZFR-S	H79, H80 G26, G28, G70, H15, H18, H79, H80	WSP
	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19,	
SOET******PZFR-S	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80	WSP
SOET******PZFR-S	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19,	WSP
SOET******PZFR-S SOMT*****PDER-L	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19,	WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80	WSP WSP
SOET******PZFR-S SOMT*****PDER-L	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19,	WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80	WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19,	WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80	WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H SOMT******PZER-L	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80	WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18,	WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H SOMT******PZER-L	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80	WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H SOMT******PZER-L	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18,	WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H SOMT******PZER-L	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18,	WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H SOMT******PZER-L SOMT******PZER-L	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80	WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SPGN******	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79	WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-G SOMT******PZER-H SPGN******* SPGT*******SPGT*******	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78	WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SPGN******	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79	WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-G SOMT******PZER-H SPGN******* SPGT*******SPGT*******	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78	WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SPGN****** SPGT******LSD/RSD SPGW******* SPGW************************************	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-B SOMT******PZER-H SPGN****** SPGW****** SPGW****** SPGW******* SPGW******* SPGW******* SPGW********** SPGW************************************	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C78 C78	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-B SOMT******PZER-H SPGN****** SPGT******LSD/RSD SPGW******T SPMH******NUS SPMN*******	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C78 C77	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-B SOMT******PZER-H SPGN****** SPGW****** SPGW****** SPGW******* SPGW******* SPGW******* SPGW********** SPGW************************************	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C78 C78	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-B SOMT******PZER-H SPGN****** SPGT******LSD/RSD SPGW******T SPMH******NUS SPMN*******	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C78 C77	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PDER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SPGN****** SPGT******LSD/RSD SPGW****** SPGW******T SPMH******NUS SPMN****** SPMR******NFK SPMR******NFK	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C79 C78 C78 C77 C79 C79	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-H SPGN****** SPGT******LSD/RSD SPGW****** SPGW******* SPGW******* SPMH******NUS SPMN****** SPMR******NFK SPMR******NFK SPMR******NFK SPMR******NFK SPMR******NFK SPMR******NUJ	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C79 C79 C79 C79 C79 C79	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SPGN****** SPGN****** SPGW******* SPGW******* SPGW******* SPGW******* SPMR******NUS SPMR****** SPMR******NFK SPMR******NFK SPMR******NFS SPMR******NFS SPMR******NUJ SPMT*******	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C78 C78 C78 C79 C79 C79 C79 C79 C79 C79 C39, H71	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-H SPGN****** SPGT******LSD/RSD SPGW****** SPGW******* SPGW******* SPMH******NUS SPMN****** SPMR******NFK SPMR******NFK SPMR******NFK SPMR******NFK SPMR******NFK SPMR******NUJ	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C79 C79 C79 C79 C79 C79	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-G SOMT******PZER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SPGN****** SPGN****** SPGW******* SPGW******* SPGW******* SPGW****** SPMN****** SPMR******NFK SPMR******NFK SPMR******NFS SPMR******NFS SPMR******NFS SPMR*******NUJ SPMT*******	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C78 C78 C78 C79 C79 C79 C79 C79 C79 C79 C39, H71	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SOMT******PZER-H SPGN****** SPGN****** SPGW****** SPGW****** SPGW****** SPGW****** SPGW****** SPMR******NUS SPMR******NFK SPMR******NFK SPMR******NFK SPMR******NFK SPMR*********** SPMT*********** SPMT*********** SPMT********* SPMT********** SPMT********** SPMT********** SPMT*********** SPMT************* SPMT************************************	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C78 C78 C78 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SOMT******PZER-H SPGN****** SPGN****** SPGT*******SPGW****** SPGW******* SPGW****** SPMR******NUS SPMR******NFK SPMR******NFK SPMR******NFF SPMR******NFF SPMR************************************	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C78 C78 C79 C79 C79 C79 C79 C79 C79 C79 C79 C77 C77	WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SOMT******PZER-H SPGN****** SPGN****** SPGN****** SPGW****** SPGW****** SPGW****** SPMR******NUS SPMR******NFK SPMR******NFF SPMR******NUJ SPMT****** SPMT********* SPMT********** SPMT*********** SPMT*********** SPMT*********** SPMT************* SPMT*************** SPMT************************************	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C76 C78 C78 C78 C78 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79	WSP WSP WSP WSP WSP WSP WSP WSP WSP WSP
SOET******PZFR-S SOMT******PDER-L SOMT******PDER-H SOMT******PZER-L SOMT******PZER-L SOMT******PZER-H SOMT******PZER-H SPGN****** SPGN****** SPGT*******SPGW****** SPGW******* SPGW****** SPMR******NUS SPMR******NFK SPMR******NFK SPMR******NFF SPMR******NFF SPMR************************************	H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H19, H79, H80 G26, G29, G71, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 G26, G28, G70, H15, H18, H79, H80 C26, G28, G70, H15, H18, H79, H80 C79 C78 C78 C78 C78 C79 C79 C79 C79 C79 C79 C79 C79 C79 C77 C77	WSP WSP WSP WSP WSP WSP WSP WSP

S-T

SPMT*****NUS	C77	WSP
SPP*	P7	Ersatzteile
SPP***	P7	Ersatzteile
SRDC N ****-***	D35	Halter
SRF**R-ST	G83, M71	Fräskopf
SRF**RS	G83, M71	Fräskopf
SRFJ	P4	Ersatzteile
SRND**	P5	Ersatzteile
SRNS***SD	D35	Ersatzteile
SRSC R/L ****-***	D35	Halter
SSBC R/L ****-***	D36	Halter
SSEH****-R**	J37	Schaftfräser
SSEH****W-R**	J26	Schaftfräser
SSEH****WS-R**	J26	Schaftfräser
SSEHVL****-R**	J37	Schaftfräser
SSEHVL****W-R**	J25	Schaftfräser
SSEHVL****WS-R**	J25	Schaftfräser
SSHC R/L******	F43	WSP
SSHG R/L******	F43, F44	WSP
SSHR R/L****	F43, F44	WSP
SSM****	J38, J39	Schaftfräser
SSND***	P5	Ersatzteile
SSTE R******	F63	Halter
SSTI R******	F63	Halter
SSUP****ZX	J33	Schaftfräser
SSUP****ZX-R**	J33	Schaftfräser
SSW***	P6	Ersatzteile
STAC R/L ****-***	D37	Halter
STFH**-*	F56	Halter
STFS R/L ****-*	F56	Halter
STGC R/L ****-***	D37	Halter
STPD***	P6	Ersatzteile
STW***	P6	Ersatzteile
SUF*S R/L	G12	Ersatzteile
SVJB R/L ****-***	D38	Halter
SVLC R/L ****-***	D39	Halter
SVP**	D38, E21, E22	Ersatzteile
SVPB R/L ****-***	D38	Halter
SVPC R/L ****-***	D39	Halter
SVVB N ****-***	D38	Halter
SVW***	P5	Ersatzteile
SWW	P6	Ersatzteile

	T	
TBGN*****	C88	WSP
TBGN*****B	M25	SUMIBORON-WSP
TBGN*****NF	M25	SUMIDIA-WSP
TBGR*****LW	C88	WSP
TBGT*****LAY/RAY	C80	WSP
TBGT*****LFW/RFW	C80	WSP
TBGT*****LFX/RFX	C80	WSP
TBGT*****LFY/RFY	C80	WSP
TBGT*****LW/RW	C80	WSP
TBGW*****	C80	WSP
TBGW*****NF	M25	SUMIDIA-WSP
TCGT*****LFX/RFX	C81	WSP
TCGT*****LFY/RFY	C81	WSP
TCGT*****M NSC	C81	WSP
TCGT*****M NSI	C81	WSP
TCGT*****NAG	C81	WSP

TCGW*****NC	M26	SUMIBORON-WSP
TCGW*****NC-3	M26	SUMIBORON-WSP
TCGW*****NU	M26	SUMIBORON-WSP
TCMT*****NF	M26	SUMIDIA-WSP
TCMT*****NFB	C82	WSP
TCMT*****NFP	C82	WSP
TCMT*****NLB	C82	WSP
TCMT*****NLU	C82	WSP
TCMT*****NSK	C82	WSP
TCMT*****NSU	C82	WSP
TCMW*****	C82	WSP
TCS**T*	P6	Ersatzteile
TEGN*****	C89	WSP
TGA R/L ****BF	F51	WSP
TGA R/L ****(E)	F52	WSP
TGA R/L ****R TGA R/L *T**	F53	WSP WSP
TF**	F53 M42	
		Ersatzteile
TH***	P8	Ersatzteile
TNGA*****	C54	WSP SUMIBORON-WSP
TNGA*****ES-NC6 TNGA******HS-NC3	M27 M27	SUMIBORON-WSP
TNGA HS-NC3	M27	
TNGA HS-NC6 TNGA******HS-NU3		SUMIBORON-WSP
TNGA HS-NUS	M29 M29	SUMIBORON-WSP SUMIBORON-WSP
TNGA HI-NU3	M27	SUMIBORON-WSP
TNGA LE-NC3 TNGA*****LE-NU3		SUMIBORON-WSP
TNGA LE-NU3 TNGA******LS-NC3	M29	SUMIBORON-WSP
TNGA LS-NC3 TNGA******LS-NU3	M27 M29	SUMIBORON-WSP
TNGA LS-NOS TNGA******LT-NC3	M27	SUMIBORON-WSP
TNGA LI-NC3	M29	SUMIBORON-WSP
INGA LI-NUS	MZS	SUMIDUITUIT-MSF
TNC 4*****NC2	MO7	CLIMIDODON WCD
TNGA*****NC3	M27	SUMIBORON-WSP
TNGA*****NC6	M27	SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3	M27 M29	SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA******T NU3	M27 M29 M29	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA******T NU3 TNGA******US-NU3	M27 M29 M29 M29	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA******NU3 TNGA******T NU3 TNGA******US-NU3 TNGG*******	M27 M29 M29 M29 C54	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP
TNGA*****NC6 TNGA******NU3 TNGA******T NU3 TNGA******US-NU3 TNGG******LAX/RAX TNGG******LFT/RFT	M27 M29 M29 M29 C54 C53	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA******T NU3 TNGA******US-NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY	M27 M29 M29 M29 C54 C53	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGA******LAX/RAX TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFX/RFY TNGG******LFX/RFX	M27 M29 M29 M29 C54 C53 C53	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA******T NU3 TNGA******US-NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY	M27 M29 M29 M29 C54 C53	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGA******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LFX/RFX TNGG******LFX/RFX TNGG******LST/RST	M27 M29 M29 M29 C54 C53 C53 C53	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGGA*****LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LFX/RFX TNGG******TFX/RFX TNGG******TFX/RFX TNGG******LST/RST TNGG******LUM/RUM	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGGA*****LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LFX/RFX TNGG******LFX/RFX TNGG******LST/RST TNGG******LUM/RUM TNGG******N-FV NC6	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP WSP WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LFX/RFX TNGG******LST/RST TNGG******LUM/RUM TNGG******N-FV NC6 TNGG******N-LV NC6	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA******US-NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFT/RFY TNGG*****LEX/RFX TNGG*****LST/RST TNGG******LUM/RUM TNGG******N-FV NC6 TNGG*****N-LV NC6 TNGG*****NGH	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 C54	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA******US-NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFT/RFY TNGG******LFX/RFX TNGG******LST/RST TNGG******N-EV NC6 TNGG*****N-LV NC6 TNGG*****NGH TNGG*****NSU	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 C54 C53 C54 C55	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA******US-NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFT/RFY TNGG*****LFX/RFX TNGG*****LFX/RFX TNGG*****LUM/RUM TNGG*****N-FV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NC6 TNGG*****NGH TNGG*****NSU TNGG*****N-SV NC6	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 C54 M28 C54 C53 M28	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA******T NU3 TNGA******US-NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LFX/RFX TNGG******LST/RST TNGG******LUM/RUM TNGG******N-FV NC6 TNGG*****N-FV NC6 TNGG*****NGH TNGG*****NSU TNGG*****N-SV NC6 TNGM*****N-LV NU3	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 C54 C53 M28 M28 M28 M29	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA******T NU3 TNGA******T NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LST/RST TNGG******LUM/RUM TNGG*****N-FV NC6 TNGG*****NGH TNGG*****NSU TNGG*****N-SV NC6 TNGG*****N-SV NC6 TNGM******N-LV NU3 TNGN******	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 C54 C53 M28 M28 M29 M29	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA******T NU3 TNGA******T NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFX/RFX TNGG******LEX/RFX TNGG******LST/RST TNGG******LUM/RUM TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NU3 TNGM****** TNMA******	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 M28 M28 M28 M29 M29 M29 C52	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA******T NU3 TNGA******T NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFX/RFX TNGG******LFX/RFX TNGG******LST/RST TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NU3 TNGG******N-LV NU3 TNGM****** TNMA****** TNMA****** TNMA******	M27 M29 M29 M29 C54 C53 C53 C53 C54 M28 M28 M28 M28 C54 C53 M28 M29 M29 C52 M30 M30 M30	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA******T NU3 TNGA******T NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFX/RFX TNGG******LEX/RFX TNGG******LST/RST TNGG******N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NU3 TNGG******N-LV NU3 TNGM****** TNMA****** TNMA******	M27 M29 M29 M29 C54 C53 C53 C53 C54 M28 M28 M28 M28 C54 C53 M28 M29 M29 M29 C52 M30 M30	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGA******T NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFX/RFX TNGG******LST/RST TNGG******LUM/RUM TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV NU3	M27 M29 M29 M29 C54 C53 C53 C53 C54 M28 M28 M28 M28 M28 C54 C53 M28 M29 M29 M29 C52 M30 M30 M30 C50 C48	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGA******T NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFX/RFX TNGG******LFX/RFX TNGG******LW/RUM TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-BH TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV U3 TNGG******N-LV NU3 TNGG******N-LV NU3 TNGG******N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV NU3 TNGG******N-LV NU3 TNGG******N-LV NU3 TNGG******N-LV NU3 TNGG*****N-LV NU3 TN	M27 M29 M29 M29 C54 C53 C53 C53 C54 M28 M28 M28 M28 M28 C54 C53 M28 M29 M29 C52 M30 M30 M30 C50 C48	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGA******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LST/RST TNGG******LUM/RUM TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV U3 TNGG******N-LV U3 TNGG******N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV U3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV U3 TNGG******N-LV NU3 TNGG*****N-LV M27 M29 M29 M29 C54 C53 C53 C53 C54 M28 M28 M28 M28 M28 M29 M29 M29 C52 M30 M30 M30 C50 C48 C46 C48	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP SUMIBORON-WSP WSP WSP WSP	
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGGA*****LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LST/RST TNGG******LUM/RUM TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGM*****N-LV NU3 TNGM****** TNMA****** TNMA****** TNMA****** TNMA****** TNMA****** TNMG*****NLHM/RHM TNMG*****NLUM/RUM TNMG*****NLEF TNMG*****NEG TNMG*****NEG TNMG*****NEM	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 M28 M28 M29 M29 M29 C52 M30 M30 M30 C50 C48 C48 C48	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP SUMIBORON-WSP WSP WSP WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGA******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LST/RST TNGG******LUM/RUM TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV U3 TNGG******N-LV U3 TNGG******N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV NU3 TNGG******N-LV NU3 TNGG******N-LV NU3 TNGG**	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 M28 M28 M29 M29 M29 C52 M30 M30 M30 M30 C50 C48 C48 C49 C48	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP SUMIBORON-WSP WSP WSP WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGA******T NU3 TNGG******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LST/RST TNGG******LUM/RUM TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-SV NC6 TNGG*****N-SV NC6 TNGM*****N-LV NU3 TNGA****** TNMA****** TNMA****** TNMA****** TNMA****** TNMA****** TNMG*****NBU TNMG******NBU TNGN****** TNMA****** TNMA****** TNMA****** TNMA****** TNMA****** TNMG******NBU TNMG*******NBU TNMG******NBU	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 M28 M29 M29 C52 M30 M30 M30 M30 C50 C48 C48 C46 C48 C48 C46	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP SUMIBORON-WSP WSP WSP WSP WSP WSP
TNGA*****NC6 TNGA*****NU3 TNGA*****T NU3 TNGA******LAX/RAX TNGG******LFT/RFT TNGG******LFY/RFY TNGG******LST/RST TNGG******LUM/RUM TNGG*****N-FV NC6 TNGG*****N-FV NC6 TNGG*****N-LV NC6 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV U3 TNGG******N-LV U3 TNGG******N-LV NU3 TNGG*****N-LV NU3 TNGG******N-LV NU3 TNGG******N-LV NU3 TNGG******N-LV NU3 TNGG**	M27 M29 M29 M29 C54 C53 C53 C53 C53 C54 M28 M28 M28 M28 M29 M29 M29 C52 M30 M30 M30 M30 C50 C48 C48 C49 C48	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP SUMIBORON-WSP WSP WSP WSP WSP

T - U

TNMG*****NFL	C46	WSP
TNMG*****NGE	C47	WSP
TNMG*****NGU	C47	WSP
TNMG*****NGZ	C50	WSP
TNMG*****NLU	CAG	WSP
	C46	
TNMG*****NME	C49	WSP
TNMG*****NMU	C49	WSP
TNMG*****NMX	C49	WSP
TNMG*****NSE	C47	WSP
TNMG*****NSU	C46	WSP
TNMG*****NSX	C47	WSP
TNMG*****NUG	C48	WSP
TNMG*****NUP	C48	WSP
TNMG*****NUX	C49	WSP
TNMG*****NUZ	C50	WSP
TNMM*****NHG		WCD
	C51	WSP
TNMM*****NHP	C51	WSP
TNMM*****NMP	C51	WSP
TNMM*****	C51	WSP
TNMX*****NF	M30	SUMIDIA-WSP
TNS****	P6	Ersatzteile
TNS****B	P6	Ersatzteile
TPGN*****	C88	WSP
TPGN*****	M31	SUMIBORON-WSP
TPGN*****HS	M31	SUMIBORON-WSP
TPGN*****LT	M31	SUMIBORON-WSP
TPGN*****NF	M31	SUMIDIA-WSP
TPGN*****T NF	M31	SUMIBORON-WSP
TPGN*****NU	M31	SUMIBORON-WSP
TPGR*****LW/RW	C88	WSP
TPGT*****LAY/RAY	C84	WSP
TPGT*****LFW/RFW	C83	WSP
TPGT*****LFX/RFX	C83	WSP
TPGT*****LFY/RFY	C84	WSP
TPGT*****LSD/RSD	C85	WSP
TPGT*****LW/RW	C85	WSP
TPGT*****M NFC	C83	WSP
TPGT*****N-FV NC3	M32	SUMIBORON-WSP
TPGT*****N-FV NU3	M33	SUMIBORON-WSP
TPGW*****	C84	WSP
TPGW*****	M32	SUMIBORON-WSP
TPGW*****HS-NC3	M32	SUMIBORON-WSP
TPGW*****HS-NU	M34	SUMIBORON-WSP
TPGW*****LE-NC3	M32	SUMIBORON-WSP
TPGW*****LE-NU3	M34	SUMIBORON-WSP
TPGW*****LF-NU	M33	SUMIBORON-WSP
TPGW*****LF-NU3	M34	SUMIBORON-WSP
		JOINIDOLION-MOL
TPGW******LS-NC3	M32	SUMIBORON-WSP
TPGW*****LS-NC3	M32	SUMIBORON-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3	M32 M32	SUMIBORON-WSP SUMIBORON-WSP
TPGW*****LS-NC3	M32	SUMIBORON-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3	M32 M32	SUMIBORON-WSP SUMIBORON-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****LT-NU TPGW*****NC	M32 M32 M33 M32	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****LT-NU TPGW*****NC TPGW*****NC3	M32 M32 M33 M32 M32	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****LT-NU TPGW*****NC	M32 M32 M33 M32	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NC3 TPGW*****NF	M32 M32 M33 M32 M32 M34	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC TPGW*****NC3 TPGW*****NF TPGW*****NU	M32 M32 M33 M32 M32 M34 M33	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIBORON-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NC3 TPGW*****NF	M32 M32 M33 M32 M32 M34	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NF TPGW*****NF TPGW*****NU TPGW*****NU	M32 M32 M33 M32 M32 M34 M33	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NF TPGW*****NU TPGW*****NU TPGW******NU3 TPGW******L/R-SDW	M32 M32 M33 M32 M32 M34 M33 M34 C85	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NF TPGW*****NF TPGW*****NU TPGW*****NU	M32 M32 M33 M32 M32 M34 M33	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NF TPGW*****NU TPGW*****NU TPGW*****NU3 TPGW*****NU3 TPGX*****L/R-SDW TPMH******NSF	M32 M32 M33 M32 M32 M34 M33 M34 C85	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NF TPGW*****NU TPGW*****NU TPGW******NU TPGW******NU3 TPGX*****L/R-SDW TPMH******NSF TPMN******	M32 M32 M33 M32 M32 M34 M33 M34 C85 C87	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NF TPGW*****NU TPGW*****NU TPGW*****NU3 TPGW*****NU3 TPGX*****L/R-SDW TPMH******NSF	M32 M32 M33 M32 M32 M34 M33 M34 C85	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NF TPGW*****NU TPGW*****NU TPGW******NU TPGW******NU3 TPGX*****L/R-SDW TPMH******NSF TPMN******	M32 M32 M33 M32 M32 M34 M33 M34 C85 C87	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC TPGW*****NF TPGW*****NF TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPMH******NSF TPMN****** TPMR******NSF	M32 M32 M33 M32 M32 M34 M34 C85 C87 C89	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP
TPGW******LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC3 TPGW*****NF TPGW*****NU TPGW******NU TPGW******NU TPGW******NU3 TPGX******L/R-SDW TPMH*******SF TPMN******* TPMR********	M32 M32 M33 M32 M32 M34 M33 M34 C85 C87	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC TPGW*****NF TPGW*****NF TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPMH******NSF TPMN****** TPMR******NSF	M32 M32 M33 M32 M32 M34 M34 C85 C87 C89	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP
TPGW*****LS-NC3 TPGW*****LT-NC3 TPGW*****NC TPGW*****NC TPGW*****NF TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPGW*****NU TPMR*****NSF TPMR*****NSF TPMR*****NFK TPMR*****NSF TPMR*****NSF	M32 M32 M33 M32 M32 M34 M33 M34 C85 C87 C89 C89	SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP SUMIBORON-WSP SUMIBORON-WSP WSP WSP WSP WSP WSP WSP

TPMT*****NFB	C86	WSP
TPMT*****NFK	C86	WSP
TPMT*****N-GD NF	M35	SUMIDIA-WSP
TPMT*****NGU	C87	WSP
TPMT*****N-LD NF	M35	SUMIDIA-WSP
TPMT*****NLB	C86	WSP
TPMT*****NLU	C86	WSP
TPMT*****NMU	C87	WSP
TPMT*****NSF	C87	WSP
TPMT*****NSU	C87	WSP
TPMW*****RF	M35	SUMIDIA-WSP
TPMW*****RH	M35, M45	SUMIDIA-WSP
TRB**IP	P7	Ersatzteile
TRCP*	D11, E11	Ersatzteile
TRD**	P8	Ersatzteile
TRDR**IP	P8	Ersatzteile
TRM*****-FL	C52, D11, E11	WSP
TRM*****-GU	C52, D11, E11	WSP
TRM*****-LU	C52, D11, E11	WSP
TRM*****-SU	C52, D11, E11	WSP
TRW****	P6	Ersatzteile
TRX**	P8	Ersatzteile
TRX**IP	P8	Ersatzteile
TRX**IP**	D35	Ersatzteile
TRXW**IP	P7	Ersatzteile
TSX****E	G30, H20, H22, H23	Schaftfräser mit WSP
TSXF****E	G30, H20, H22, H23	Schaftfräser mit WSP
TSXM****E	G30, H20, H23,	Schaftfräser mit WSP
TSX****RS	G30, G34, G35, H20	Fräskopf
TSXF****RS	G30, G34, G37, H20	Fräskopf
TSXM****RS	G30, G36, H20	Fräskopf
TSXR****E	G30, H20, H24, H25	Schaftfräser mit WSP
TSXR****RS	G30, G38, G39, H20	Fräskopf
TSW***	P8	Ersatzteile
TT**	P8	Ersatzteile
TTR**IP	P8	Ersatzteile
TTX**	P8	Ersatzteile

		U
UF*K R/L	G12	Ersatzteile
UF*S R/L	G12	Ersatzteile
UFKW R/L	G12	Ersatzteile
UFO**** R/L-S	G12	Fräskopf
UFOF**** R/L-S	G13	Fräskopf
UFTW R/L	G12	Ersatzteile
UW****R	G13	WSP
l		

V-W

	V	
VBGT*****LAY/RAY	C91	WSP
VBGT*****LFX/RFX	C91	WSP
VBGT*****LFY/RFY	C91	WSP
VBGT*****LFYS/RFYS	C91	WSP
VBGT*****M NSI	C91	WSP
VBGW*****HS-NC2	M37	SUMIBORON-WSP
VBGW*****HS-NU	M36	SUMIBORON-WSP
VBGW*****LE-NC2	M37	SUMIBORON-WSP
VBGW*****LE-NU2	M37	SUMIBORON-WSP
VBGW*****LS-NC2	M37	SUMIBORON-WSP
VBGW*****LT-NC2	M37	SUMIBORON-WSP
VBGW*****LT-NU	M36	SUMIBORON-WSP
VBGW*****NC	M36	SUMIBORON-WSP
VBGW****NC2	M37	SUMIBORON-WSP
VBGW*****NU	M36	SUMIBORON-WSP
VBGW*****NU2	M37	SUMIBORON-WSP
VBMT*****NFB	C90	WSP
VBMT*****NFP	C90	WSP
VBMT*****NGU	C90	WSP
VBMT*****NLB	C90	WSP
VBMT*****NLU	C90	WSP
VBMT*****NMU	C90	WSP
VBMT*****NSK	C90	WSP
VBMT*****NSU	C90	WSP
VBMW*****	C90	WSP
VCGT*****LFX/RFX	C92	WSP
VCGT*****LFY/RFY	C92	WSP
VCGT*****M NFC	C92	WSP
VCGT*****M NSI	C92	WSP
VCGT WING	C92	WSP
VCGW******HS NC2	M38	SUMIBORON-WSP
VCGW*****LS NC2	M38	SUMIBORON-WSP
VCGW*****LT NU	M38	SUMIBORON-WSP
VCGW*****NC2	M38	SUMIBORON-WSP
VCGW*****NU	M38	SUMIBORON-WSP
VCMT******	M39	SUMIDIA-WSP
VCMT*****NF	M39	SUMIDIA-WSP
VCMT*****NFB	C93	WSP
VCMT*****NGU	C93	
	000	WSP
\/(`M *****NILL) NI=	M30	WSP SUMIDIA-WSP
VCMT*****NLD NF	M39	SUMIDIA-WSP
VCMT*****NGD NF	M39	SUMIDIA-WSP SUMIDIA-WSP
VCMT*****NGD NF VCMT*****NLB	M39 C93	SUMIDIA-WSP SUMIDIA-WSP WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU	M39 C93 C93	SUMIDIA-WSP SUMIDIA-WSP WSP WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSK	M39 C93 C93 C93	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSK VCMT*****NSU	M39 C93 C93 C93 C93	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP
VCMT*****NGD NF VCMT******NLB VCMT******NLU VCMT*****NSK VCMT*****NSU VCMW******	M39 C93 C93 C93 C93 M39	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP SUMIBORON-WSP
VCMT*****NGD NF VCMT******NLB VCMT******NLU VCMT******NSK VCMT******NSU VCMW******* VCMW******	M39 C93 C93 C93 C93 M39 M39	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP
VCMT*****NGD NF VCMT******NLB VCMT******NLU VCMT******NSK VCMT******NSU VCMW****** VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39, M45	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP
VCMT*****NGD NF VCMT******NLB VCMT******NLU VCMT******NSK VCMT******NSV VCMW******* VCMW************NF VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M39, M45 P6	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP Ersatzteile
VCMT*****NGD NF VCMT******NLB VCMT******NLU VCMT******NSK VCMT******NSU VCMW****** VCMW*******NF VCMW***********RH VCS***** VNGA*******ES-NC4	M39 C93 C93 C93 C93 M39 M39 M39 M39 M45 P6 M41	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP Ersatzteile SUMIBORON-WSP
VCMT*****NGD NF VCMT******NLB VCMT******NSK VCMT******NSU VCMW****** VCMW********** VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M45 P6 M41 M41	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP Ersatzteile SUMIBORON-WSP SUMIBORON-WSP
VCMT******NGD NF VCMT******NLB VCMT*****NSK VCMT*****NSU VCMW****** VCMW********* VCMW*********** VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M45 P6 M41 M41 M40	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSK VCMT*****NSU VCMW****** VCMW*********** VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M45 P6 M41 M41 M40 M41	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP Ersatzteile SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSK VCMT*****NSU VCMW****** VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M39, M45 P6 M41 M41 M40 M41 M41	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP SUMIDIA-WSP Ersatzteile SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSK VCMT*****NSU VCMW****** VCMW************ VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M39, M45 P6 M41 M41 M41 M40 M41 M41 M41	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP Ersatzteile SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSU VCMW****** VCMW************ VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M39, M45 P6 M41 M41 M40 M41 M41 M41 M41 M41	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP SUMIDIA-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSU VCMW****** VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M39, M45 P6 M41 M41 M41 M40 M41 M41 M41 M40 M41	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIDIA-WSP Ersatzteile SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSK VCMT*****NSU VCMW****** VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M39, M45 P6 M41 M41 M40 M41 M41 M40 M41 M41 M40 M41 M41 M40 M41	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP SUMIDIA-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSK VCMT*****NSU VCMW****** VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M39, M45 P6 M41 M41 M40 M41 M41 M40 M41 M40 M41 M40 M41 M40 M41 M40 M41 M41 M40	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP
VCMT*****NGD NF VCMT*****NLB VCMT*****NLU VCMT*****NSK VCMT*****NSU VCMW****** VCMW************************************	M39 C93 C93 C93 C93 M39 M39 M39 M39, M45 P6 M41 M41 M40 M41 M41 M40 M41 M41 M40 M41 M41 M40 M41	SUMIDIA-WSP SUMIDIA-WSP WSP WSP WSP SUMIBORON-WSP SUMIDIA-WSP SUMIDIA-WSP SUMIDIA-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP SUMIBORON-WSP

VNGG*****NEF	C57	WSP
VNGG*****NFV NC4	M41	SUMIBORON-WSP
VNGG*****NLV NC4	M41	SUMIBORON-WSP
VNGG*****NSU	C57	WSP
VNGM*****NLV NU2	M42	SUMIBORON-WSP
VNMA*****	C55	WSP
VNMA*****	M42	SUMIBORON-WSP
VNMA*****NU	M42	SUMIBORON-WSP
VNMA*****NS	M42	SUMIBORON-WSP
VNMA*****NF	M42	SUMIDIA-WSP
VNMA*****RH	M42, M45	SUMIDIA-WSP
VNMG*****NEF	C55	WSP
VNMG*****NEG	C56	WSP
VNMG*****NEX	C56	WSP
VNMG*****NFA	C55	WSP
VNMG*****NFB	C55	WSP
VNMG*****NFE	C55	WSP
VNMG*****NFL	C55	WSP
VNMG*****NGE	C56	WSP
VNMG*****NGU	C56	WSP
VNMG*****NGZ	C57	WSP
VNMG*****NLU	C55	WSP
VNMG*****NSE	C56	WSP
VNMG*****NSU	C56	WSP
VNMG*****NSX	C56	WSP
VNMG*****NUG	C56	WSP
VNMG*****NUP	C57	WSP
VNMG*****NUX	C57	WSP
VNMG*****NUZ	C57	WSP
VNMX*****	M42	SUMIDIA-WSP
VNMX*****NF	M42	SUMIDIA-WSP
VNS****	P6	Ersatzteile
VP**	P7	Ersatzteile
VP**B	P7	Ersatzteile

	W	
WAS*****.	K66	Exzenter-Buchse
WAX****E**	H62, H63	Schaftfräser mit WSP
WAX****EL**	H62, H63	Schaftfräser mit WSP
WAX****RS	G72, G73	Fräskopf
WB*-**	P4	Ersatzteile
WB*-**T	P4	Ersatzteile
WB*F-**T	P4	Ersatzteile
WB*-**TL	P4	Ersatzteile
WB*F-**TL	P4	Ersatzteile
WB*R-**T	P4	Ersatzteile
WBGT*****LFW/RFW	C94	WSP
WBGT*****LFX/RFX	C94	WSP
WBGT*****LFY/RFY	C94	WSP
WBGT*****LW/RW	C94	WSP
WBMF***L	H73	Schaftfräser mit WSP
WBMF***M	H73	Schaftfräser mit WSP
WBMF***MM**N	H73	Schaftfräser mit WSP
WBMF****S	H73	Schaftfräser mit WSP
WBMR****LL	H71	Schaftfräser mit WSP
WBMR****LLW	H71	Schaftfräser mit WSP
WBMR****M	H71	Schaftfräser mit WSP
WBMR****MW	H71	Schaftfräser mit WSP
WBMR****S	H71	Schaftfräser mit WSP
WCFH**-*	F58, F59	Halter

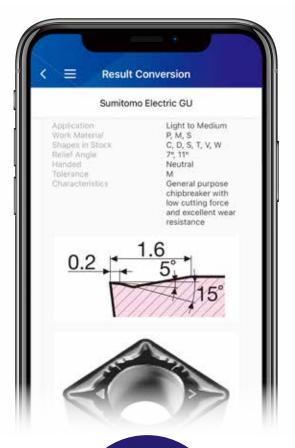
W - **W**

WCFN/R/L*	F57, F60	WSP
WCFN/R/L*A	F57, F60	WSP
WCFN/R/L*B	F57, F60	WSP
WCFN/R/L*T	F57, F60	WSP
WCFN*GF	F57, F60	WSP
WCFN*GG	F57, F60	WSP
WCF R/L*CF		WSP
	F57,	
WCFS R/L **-*	F59	Halter
WDMT****ZDTR	G67, H11, H12	WSP
WDMT****ZDTR-H	G67, H11, H12	WSP
WDX***D2S**	K56	Multi-Drill Bohrer
\\\D***D2C**	K58	Multi-Drill Bohrer
WDX***D3S**		
WDX***D4S**	K60	Multi-Drill Bohrer
WDX***D5S**	K62	Multi-Drill Bohrer
WDXT*****-G	K57, K59, K61, K63, K67	WSP
WDXT*****-H	K57, K59, K61, K63, K67	WSP
WDXT*****-L	K57, K59, K61, K63, K67	WSP
WDXT*****-M	K57, K59, K61, K63	WSP
WEX***E	H56, H57, H58	Schaftfräser mit WSP
WEX****E**	H58	Schaftfräser mit WSP
WEX****EL	H56, H57, H58	Schaftfräser mit WSP
	H56. H57	
WEX****EL**	H56, H57	Schaftfräser mit WSP
WEX****EL**Z*	H57	Schaftfräser mit WSP
WEX***EW	H57, H58	Schaftfräser mit WSP
WEX***F	G58	Fräskopf
WEX****M**Z*	H57, H58,	Schaftfräser mit WSP
WEZ****E**	G40, H26, H30, H36,	Schaftfräser mit WSP
WEZ****E***	G40, H26, H30, H36,	Schaftfräser mit WSP
WEZ****EL**	G40, H26, H34, H40,	Schaftfräser mit WSP
WEZ****ES****	G40, H26, H32, H38,	Schaftfräser mit WSP
WEZ****M***Z*	G40, H26, H46, H48	Schaftfräser mit WSP
WEZ*****R**	G40, G44, G46, H26	Fräskopf
WEZ*****RS**		
WEZ****RS**	G40, G44, G46, H26	Fräskopf
WEZ*****RS** WEZR*****E***Z**	G40, G44, G46, H26 G40, H26, H42, H44	Fräskopf Schaftfräser mit WSP
WEZ****RS**	G40, G44, G46, H26	Fräskopf
WEZ*****RS** WEZR*****E****Z** WEZR******M****Z*	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP
WEZR*****E**** WEZR*****E****Z** WEZR*****M****Z* WEZR******RS****Z**	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*****E****Z** WEZR******M****Z*	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP
WEZR*****E**** WEZR*****E****Z** WEZR*****M****Z* WEZR******RS****Z**	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR****E***Z** WEZR*****M****Z* WEZR*****RS****Z** WFX*****E WFX*****R	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ******RS** WEZR*****E***Z** WEZR*****M****Z* WEZR*****RS****Z** WFX*****E WFX******R WFX*****E	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP
WEZ*****RS** WEZR****E***Z** WEZR*****M****Z* WEZR*****RS****Z** WFX*****E WFX*****R	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ******RS** WEZR*****E****Z** WEZR*****M****Z* WEZR*****RS****Z** WFX*****E WFX********* WFX***********************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP
WEZ******RS** WEZR*****E****Z** WEZR*****M****Z* WEZR*****RS****Z** WFX*****E WFX********* WFX******E WFX******E WFXF******E WFXM******E	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H19	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP
WEZ******RS** WEZR*********Z** WEZR******RS****Z** WFX******E WFX******** WFX******E WFX******E WFX******E WFX******E WFX********E WFXM*******E WFXM*******E	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26, H18	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP
WEZ******RS** WEZR*****E****Z** WEZR*****M****Z* WEZR*****RS****Z** WFX*****E WFX********* WFX******E WFX******E WFXF******E WFXM******E	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H19	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP
WEZ******RS** WEZR******M****Z** WEZR******M****Z** WEZR******RS****Z** WFX*****E WFX******E WFX******E WFXF*****E WFXM*****E WFXM*****E WFXM******E WFX*****M WFX*****M**Z*	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP
WEZ******RS** WEZR*****M****Z** WEZR*****RS****Z** WEXR*****E WFX*****E WFX*****E WFX*****E WFXF*****E WFXM*****E WFXM*****E WFXM*****E WFXM******E WFX************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26, H19 G26, H18 G26, H18 G26 H18, H58 G26 G26, G28, G29	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*****E***Z** WEZR*****M****Z* WEZR*****B*****Z** WFX*****E WFX******E WFX*****E WFX*****E WFX*****E WFX******B WFX*****M WFX*****M**Z* WFX*****RS WFXC*****E	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP
WEZ******RS** WEZR*****M****Z** WEZR*****RS****Z** WEXR*****E WFX*****E WFX*****E WFX*****E WFXF*****E WFXM*****E WFXM*****E WFXM*****E WFXM******E WFX************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26, H19 G26, H18 G26, H18 G26 H18, H58 G26 G26, G28, G29	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR****E***Z** WEZR****M***Z* WEZR*****M***Z* WEZR*****E WFX*****E WFX*****E WFX*****E WFX*****E WFX*****E WFX****** WFX******* WFX*********** WFX**********	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G26, G28, G29 G26, H78, H79 G26, H80	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP
WEZ*****RS** WEZR****E***Z** WEZR*****M***Z* WEZR*****B****Z** WFX*****E WFX*****E WFX*****E WFX*****E WFXM*****E WFX******B WFX************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26 H18, H58 G26 H18, H58 G26 H18, H58 G26, G28, G29 G26, H78, H79 G26, H80 G26	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR****E***Z** WEZR****M***Z* WEZR*****M***Z* WEZR*****E WFX*****E WFX*****E WFX*****E WFX*****E WFX*****E WFX******B WFX*****M WFX*****M**Z* WFX*****RS WFXC*****E WFXC*****E	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G26, G28, G29 G26, H78, H79 G26, H80	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP
WEZ*****RS** WEZR****E***Z** WEZR*****M****Z* WEZR*****M****Z* WEZR******E WFX******E WFX******E WFX******E WFXM******E WFXM******E WFX*******W WFX************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 H18, H58 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf
WEZ*****RS** WEZR****E***Z** WEZR*****M***Z* WEZR*****M***Z* WEZR******E WFX*****E WFX*****E WFX*****E WFX*****E WFXM*****E WFX******* WFX******** WFX********** WFX**********	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26, H19 G26, H80 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G28, G29 G26, H74	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP
WEZr****RS** WEZR****E***Z** WEZR****M***Z* WEZR*****M***Z* WEZR*****RS****Z** WFX*****E WFX*****E WFX*****E WFX*****E WFXR*****E WFXR******E WFXC******E WFXC******* WFXC******* WFXC********* WFXC********** WFXC************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26, H80 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G28, G29 G26, H14 H15	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP
WEZ*****RS** WEZR****E***Z** WEZR*****M***Z* WEZR*****M***Z* WEZR******E WFX*****E WFX*****E WFX*****E WFX*****E WFXM*****E WFX******* WFX******** WFX********** WFX**********	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26, H19 G26, H80 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G28, G29 G26, H74	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP
WEZ*****RS** WEZR*****E***Z** WEZR*****M****Z* WEZR*****RS****Z** WFX*****E WFX*****E WFX*****E WFXF*****E WFXF*****E WFX******B WFX******B WFX******B WFX******B WFXC*****B WFXC******B	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, H44 H15 G26, G70, G71	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*****E***Z** WEZR*****M****Z* WEZR*****RS****Z** WFX*****E WFX*****E WFX*****E WFXF*****E WFXF*****E WFXF*****B WFXF*****B WFX*****M WFX*****M**Z* WFXC*****B WFXC*****B WFXC*****B WFXC*****B WFXC*****B WFXC******B WFXC******R WFXF******R WFXF******R WFXH************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H18 G26, H18 G26 H18, H58 G26 G28, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, H44 H15 G26, G70, G71 G70	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf
WEZ*****RS** WEZR*****E***Z** WEZR*****M****Z* WEZR*****RS****Z** WFX*****E WFX*****E WFX*****E WFXF*****E WFXF*****E WFX******B WFX******B WFX******B WFX******B WFXC*****B WFXC******B	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, H44 H15 G26, G70, G71	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*****E****Z** WEZR*****M****Z** WEZR******RS****Z** WFX*****E WFX*****E WFX*****E WFX*****E WFX*****E WFX******E WFX******B WFX******M WFX******M WFX*******R WFXC******B WFXC******B WFXC************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, H14 H15 G26, G70, G71 G70 G26	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf
WEZ*****RS** WEZR*****B****Z** WEZR*****M****Z** WEZR*****M****Z** WEXR*****RS****Z** WFX*****E WFX*****E WFX*****E WFX*****E WFX******B WFX******M WFX******M**Z* WFX******R WFXC*****M WFXC******B WFXC******R WFXF*****R WFXF*****R WFXF*****R WFXF*****R WFXH************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 H18, H58 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G14 H15 G26, G70, G71 G70 G26 G26, G28, G28	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf
WEZ*****RS** WEZR*****B****Z** WEZR*****M****Z** WEZR******RS****Z** WFX*****E WFX*****E WFX*****E WFX*****E WFX*****E WFX******B WFX******M WFX******M WFX******RS WFXC*****B WFXC******B WFXC******B WFXC************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, H14 H15 G26, G70, G71 G70 G26	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf
WEZ*****RS** WEZR*****B****Z** WEZR*****M****Z** WEZR*****M****Z** WEXR*****RS****Z** WFX*****E WFX*****E WFX*****E WFX*****E WFX******B WFX******M WFX******M**Z* WFX******R WFXC*****M WFXC******B WFXC******R WFXF*****R WFXF*****R WFXF*****R WFXF*****R WFXH************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 H18, H58 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G14 H15 G26, G70, G71 G70 G26 G26, G28, G28	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf
WEZ******RS** WEZR*********** WEZR*********** WEZR********** WEZR******** WEZR******* WEX****** WFX******* WFX******* WFX******* WFX******* WFX****** WFX****** WFX****** WFX****** WFX******* WFX******* WFX******* WFX******* WFX******* WFX******* WFX******* WFX******* WFX******* WFXH******* WFXH******* WFXH******** WFXH******** WFXH******** WFXH********* WFXH******** WFXH******** WFXH********* WFXH********* WFXH********* WFXH********** WFXH********* WFXH********* WFXH********* WFXH********* WFXH********* WFXH********* WFXH********** WFXH********* WFXH********* WFXH********* WFXH********** WFXH********* WFXH********** WFXH********* WFXH********* WFXH********* WFXH********* WFXH********** WFXH********** WFXH********** WFXH********* WFXH********** WFXH********** WFXH*********** WFXH********** WFXH********** WFXH********** WFXH*********** WFXH********** WFXH********** WFXH********** WFXH********** WFXH*********** WFXH********** WFXH********** WFXH************ WFXH*********** WFXH*********** WFXH************** WFXH*********** WFXH**************** WFXH************ WFXH***************** WFXH************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G70, G71 G70 G26 G26 G26, G28 P6 P6	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*****P****Z** WEZR*****M****Z** WEZR*****RS****Z** WFX******E WFX******E WFX*****E WFX******E WFX******E WFX******** WFX********* WFX***********	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G70, G71 G70 G26 G26, G28 P6 P6 P6	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ******RS** WEZR*********** WEZR*********** WEZR********** WEZR******** WEZR******* WEX****** WFX******* WFX******* WFX******* WFX******* WFX****** WFX****** WFX****** WFX****** WFX******* WFX******* WFX******* WFX******* WFX******* WFX******* WFX******* WFX******* WFX******* WFXH******* WFXH******* WFXH******** WFXH******** WFXH******** WFXH********* WFXH******** WFXH******** WFXH********* WFXH********* WFXH********* WFXH********** WFXH********* WFXH********* WFXH********* WFXH********* WFXH********* WFXH********* WFXH********** WFXH********* WFXH********* WFXH********* WFXH********** WFXH********* WFXH********** WFXH********* WFXH********* WFXH********* WFXH********* WFXH********** WFXH********** WFXH********** WFXH********* WFXH********** WFXH********** WFXH*********** WFXH********** WFXH********** WFXH********** WFXH*********** WFXH********** WFXH********** WFXH********** WFXH********** WFXH*********** WFXH********** WFXH********** WFXH************ WFXH*********** WFXH*********** WFXH************** WFXH*********** WFXH**************** WFXH************ WFXH***************** WFXH************************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G70, G71 G70 G26 G26 G26, G28 P6 P6	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*****P****Z** WEZR*****M****Z** WEZR*****RS****Z** WFX******E WFX******E WFX*****E WFX******E WFX******E WFX******** WFX******** WFX********* WFX********* WFX**********	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26, H19 G26, H18 G26, H18 G26, H18 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G70, G71 G70 G26 G26, G28 P6 P6 P6 H7 G10	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*****P****Z** WEZR*****M****Z** WEZR*****RS****Z** WFX*****E WFX*****E WFX*****E WFX*****E WFX******E WFX******B WFX******** WFX************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26, H19 G26, H18 G26, H18 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G28, G29 G26, G28, G29 G26, G6, G28, G29 G26, H74 H15 G26, G70, G71 G70 G26 G26, G28 P6 P6 H7 G10 G10	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*********** WEZR*********** WEZR********* WEZR******** WEZR******** WEZR******* WEXR****** WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******** WEXR******* WEXR******** WEXR********* WEXR********* WEXR********** WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR******** WEXR******** WEXR******** WEXR******** WEXR******** WEXR******* WEXR******* WEXR******** WEXR******** WEXR******** WEXR******* WEXR******** WEXR******** WEXR******** WEXR********* WEXR********	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26, H19 G26, H18 G26, H18 G26, H18 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G70, G71 G70 G26 G26, G28 P6 P6 P6 H7 G10	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*****P****Z** WEZR*****M****Z** WEZR*****RS****Z** WFX*****E WFX*****E WFX*****E WFX*****E WFX******E WFX******B WFX******** WFX************************	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26, H19 G26, H18 G26, H18 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G28, G29 G26, G28, G29 G26, G6, G28, G29 G26, H74 H15 G26, G70, G71 G70 G26 G26, G28 P6 P6 H7 G10 G10	Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf
WEZ*****RS** WEZR*********** WEZR*********** WEZR********* WEZR******** WEZR******** WEZR******* WEXR****** WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR****** WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******* WEXR******** WEXR******* WEXR******** WEXR********* WEXR********* WEXR********** WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR********* WEXR******** WEXR******** WEXR******** WEXR******** WEXR******** WEXR******* WEXR******* WEXR******** WEXR******** WEXR******** WEXR******* WEXR******** WEXR******** WEXR******** WEXR********* WEXR********	G40, G44, G46, H26 G40, H26, H42, H44 G40, H26, H50, H52 G40, G54, G56, H26 G26, H18, H19 G26 H18 G26, H19 G26, H18 G26 H18, H58 G26 G26, G28, G29 G26, H78, H79 G26, H80 G26 G26, G28, G29 G26, G28, G29 G26, G70, G71 G70 G26 G26 G26, G28 P6 H7 G10 G10 G10	Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Schaftfräser mit WSP Fräskopf

I		0.0.00
WNGA*****LS-NC6	M43	SUMIBORON-WSP
WNGA*****LT-NC3	M43	SUMIBORON-WSP
WNGA****NC6	M43	SUMIBORON-WSP
WNGA*****NC-WG6	M43	SUMIBORON-WSP
WNGA*****NC-WH6	M43	SUMIBORON-WSP
WNGG*****NSU	C60	WSP
WNMA****	C62	WSP
WNMA****NU	M43	SUMIBORON-WSP
WNMG*****NEF	C59	WSP
WNMG*****NEG	C60	WSP
WNMG****NEM	C60	WSP
WNMG*****NEX	C60	WSP
WNMG*****NFA	C58	WSP
WNMG*****NFB	C58	WSP
WNMG*****NFE	C58	WSP
WNMG*****NFL	C58	WSP
WNMG*****NGE	C60	WSP
WNMG*****NGU	C59	WSP
WNMG*****NGU-W	C59	WSP
WNMG*****NGZ	C61	WSP
WNMG*****NLU	C58	WSP
WNMG*****NLU-W	C58	WSP
WNMG*****NME	C61	WSP
WNMG*****NMU	C61	WSP
WNMG*****NMX	C61	WSP
WNMG*****NSE	C59	WSP
WNMG*****NSE-W	C59	WSP
WNMG*****NSU	C59	WSP
WNMG*****NSX	C59	WSP
WNMG*****NUG	C60	WSP
WNMG*****NUP	C60	WSP
\\/\I\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C61	WSP
WNMG*****NUX	C01	
WNMG*****NUZ	C61	WSP
WNMG*****NUZ	C61	WSP
WNMG*****NUZ WNMM*****NHG WNMM*****NMP	C61 C62 C62	WSP WSP
WNMG*****NUZ WNMM*****NHG	C61 C62 C62 G66, H8, H9	WSP WSP WSP
WNMG******NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H	C61 C62 C62 G66, H8, H9 G66, H8, H9	WSP WSP WSP WSP WSP
WNMG*****NUZ WNMM*****NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS****	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6	WSP WSP WSP WSP Ersatzteile
WNMG******NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6	WSP WSP WSP WSP WSP
WNMG*****NUZ WNMM*****NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS****	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95	WSP WSP WSP WSP Ersatzteile Ersatzteile WSP
WNMG*****NUZ WNMM******NHG WNMM*****YNMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS***** WNS*****B WPMT******NLB	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile
WNMG*****NUZ WNMM*****NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS***** WNS*****B WPMT*****NLB WRCX*****EL	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS***** WNS*****B WPMT*****NLB WRCX*****EL WRCX*****EM	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP
WNMG******NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS***** WNS****** WPMT******NLB WRCX******EL WRCX*****EM WRCX******ES	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H74	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP
WNMG******NUZ WNMM******NHG WNMMV****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT*****NLB WRCX*****EL WRCX*****EM WRCX*****ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H74 H75	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf
WNMG*****NUZ WNMM*****NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS****B WPMT*****NLB WRCX*****EL WRCX*****EL WRCX*****EN WRCX*****EN WRCX*****EN WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf
WNMG*****NUZ WNMM*****NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS****B WPMT*****NLB WRCX*****EL WRCX*****EM WRCX*****ES WRCX******ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf
WNMG*****NUZ WNMM*****NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS****B WPMT*****NLB WRCX*****EL WRCX*****EL WRCX*****ES WRCX******ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP
WNMG*****NUZ WNMM*****NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS****B WPMT*****NLB WRCX*****EL WRCX*****EM WRCX*****ES WRCX******ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 H65, H66	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****EN WRCX******ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Schaftfräser mit WSP
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****EN WRCX******ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Schaftfräser mit WSP
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****EN WRCX******ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Schaftfräser mit WSP
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****EN WRCX******ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Schaftfräser mit WSP
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****EN WRCX******ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf Fräskopf
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****EN WRCX******ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Schaftfräser mit WSP
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf
WNMG*****NUZ WNMM******NHG WNMM*****NMP WNMU****ZNER-G WNMU****ZNER-H WNS**** WNS*****B WPMT******NLB WRCX*****EL WRCX*****EL WRCX*****ES WRCX************************************	C61 C62 C62 G66, H8, H9 G66, H8, H9 P6 P6 C95 H74 H74 H75 G17 G17 G17 H65, H66 G59	WSP WSP WSP WSP WSP Ersatzteile Ersatzteile WSP Schaftfräser mit WSP Schaftfräser mit WSP Schaftfräser mit WSP Fräskopf Fräskopf Schaftfräser mit WSP Fräskopf Fräskopf Fräskopf Fräskopf

X - Z

X	
D27	Halter
G13	WSP
G11, H7	WSP
G13	WSP
G9, H6	WSP
G25, G27, H14, H15	WSP
G25, H17	
G25, G27, H14, H15	WSP
G25, G27, H14, H15	WSP
G31, H17	WSP
G30, H14	WSP
G61, H69	WSP
F20	Ersatzteile
F26, F30	Ersatzteile
D27	Halter
	D27 G13 G11, H7 G13 G9, H6 G25, G27, H14, H15 G25, G27, H14, H15 G25, G27, H14, H15 G31, H17 G30, H14 G61, H69 F20 F26, F30


	Υ	
YE*	P6	Ersatzteile
YI*	P6	Ersatzteile

		Z
ZNEX*****LE-NC	M44	SUMIBORON-WSP
ZNEX*****LT-NC	M44	SUMIBORON-WSP
ZNEX*****NC	M44	SUMIBORON-WSP
ZNEX*****NU	M44	SUMIBORON-WSP
ZNMT******	H71	WSP
ZNMT******-C	H71	WSP
ZNMT******-N	H71	WSP
ZNMT******-S	H71	WSP
ZPGU******	H73	WSP

Sumitomo Electric Cutting Tools Official Apps

Just enter figures

Just select conditions

for iOS/Android

Cutting calculation app

Grade and chipbreaker comparison app

SICHERHEITSHINWEISE

Produkte	Gefahren	Maßnahmen
	Die Werkzeuge haben scharfe Schneiden. Bei direkter Berührung besteht Verletzungsgefahr.	Tragen Sie immer Schutzausrüstung, wie zum Beispiel Handschuhe, wenn Sie das Werkzeug aus der Verpackung nehmen oder montieren.
	Unsachgemäßer Gebrauch oder falsche Einsatzbedingungen können das Werkzeug beschädigen oder zerstören und Verletzungen verursachen.	Benutzen Sie Sicherheitsvorrichtungen, Handschuhe und Schutz- brille. Arbeiten Sie nur im Bereich der empfohlenen Schnittbedingungen. Siehe hierzu die Angaben im Katalog oder in anderen Broschüren.
	Stoßbelastung und ein schneller Anstieg der Schnittkräfte durch übermäßige Abnutzung kann zu Beschädigung und das Herausschleudern des Werkzeugs führen, was in weiterer Folge zu Verletzungen führen kann.	Benutzen Sie Sicherheitsvorrichtungen, Handschuhe und Schutz- brille. Tauschen Sie Werkzeuge rechtzeitig aus, bevor starker Verschleiß entsteht.
Allgemeine Vor- sichtsmaßnahmen für	Beim Schneidvorgang herausgeschleuderte heiße Späne stellen eine Verletzungs- und Brandgefahr dar.	Benutzen Sie Sicherheitsvorrichtungen, Handschuhe und Schutzbrille. Späneentsorgung nur bei ausgeschalteter Maschine. Benutzen Sie Sicherheitsvorrichtungen, Schutzbrille und Handschuhe. Verwenden Sie vorgeschriebene Hilfsmittel.
Schneidwerkzeuge	Die Werkzeuge und die Werkstücke können während der Zerspanung sehr heiß werden. Es besteht Verbrennungsgefahr, wenn diese unmittelbar nach der Bearbeitung direkt mit bloßen Händen berührt werden.	Benutzen Sie Sicherheitsvorrichtungen und Handschuhe.
	Es besteht Brandgefahr durch Funkenflug, welcher bei der Bearbeitung entstehen kann oder durch Wärme von Bruchstücken und Spänen.	Vermeiden Sie die Bearbeitung an brandgefährdeten Orten. Beachten Sie immer die Brandschutzmaßnahmen bei der Verwendung von wasserunlöslichen Kühlölen.
	Beim Einsatz von schlecht ausgewuchteten Werkzeugen und Werkzeughaltern können bei hohen Drehzahlen Vibrationen entstehen, wodurch Werkzeugschäden und Verletzungen verursacht werden können.	Benutzen Sie Sicherheitsvorrichtungen, Handschuhe und Schutz- brille. Führen Sie immer einen Testbetrieb durch und stellen Sie sicher, dass keine Vibrationen und laute Geräusche auftreten.
	Es besteht Verletzungsgefahr, wenn Sie die nicht entgrateten Stellen des Werkstücks mit bloßen Händen berühren.	Nicht mit bloßen Händen berühren. Tragen Sie Schutzhandschuhe.
	Wenn Schneidplatten oder Ersatzteile nicht ordnungsgemäß ge- klemmt werden, können sie sich beim Drehen lockern oder lösen und Verletzungen verursachen.	Alle Werkzeuge, Ersatzteile und Vorrichtungen sind vor dem Einbau zu reinigen. Verwenden Sie nur die für die Montage vorgesehenen Werkzeuge. Vergewissern Sie sich über einen festen Sitz der Schneidplatten und Ersatzteile.
Allgemeine Vor- sichtsmaßnahmen für Schneidplatten	Wenn Teile übermäßig und unsachgemäß angezogen werden, könnte der Schneideinsatz oder ein Ersatzteil brechen und sich lösen, was Verletzungen nach sich ziehen kann.	Verwenden Sie keine Hilfsmittel wie z.B. ein Rohr zur Erhöhung der Hebelkraft.
	Die Verwendung des Werkzeugs mit überhöhter Drehzahl ist äußerst gefährlich, da die Ersatzteile oder Schneideinsätze durch die Zentrifugalkraft abfliegen könnten. Achten Sie beim Umgang besonders auf die Sicherheitrichtlinien.	Arbeiten Sie nur im Bereich der empfohlenen Schnittbedingungen. Siehe hierzu die Angaben im Katalog oder anderen Broschüren.
	Fräswerkzeuge haben sehr scharfe Schneidkanten. Das Berühren kann zu Verletzungen führen.	Benutzen Sie Sicherheitsvorrichtungen und Handschuhe.
Fräser und andere rotierende Werkzeuge	Durch Unwucht oder exzentrische Rotation können Werkzeuge rattern oder vibrieren. Bei Bruch können Teile abfliegen, wodurch Verletzungsgefahr besteht.	Halten Sie die empfohlenen Schnittbedingungen ein. Die Spindellagerung sollte regelmäßig überprüft und korrigiert wer- den, um einen übermäßigen Verschleiß oder eine Beschädigung zu vermeiden.
	Beim Durchbohren eines Werkstücks kann eine Scheibe beim Austritt des Werkzeugs entstehen. Diese Scheibe ist scharf und somit sehr gefährlich.	Benutzen Sie Sicherheitsvorrichtungen, Handschuhe und Schutz- brille. Treffen Sie weitere Maßnahmen, wie z.B. das Anbringen einer Futterabdeckung.
Bohrer	Sehr kleine Bohrer haben eine sehr scharfe Spitze. Es besteht die Gefahr, sich bei Berührung daran zu stechen. Bei einem Bruch während der Bearbeitung könnte die Spitze umherfliegen.	Bei der Handhabung ist eine besondere Vorsicht geboten. Tragen Sie immer Schutzhandschuhe und Schutzbrille, etc.
Gelötete Werkzeuge	Beschädigte Lötung führt zu Werkzeugbruch, wodurch Verletzungsgefahr besteht.	Stellen Sie vor der Benutzung sicher, dass die Lötung einwandfrei ist. Vermeiden Sie übermäßige Hitze durch angepasste Einsatzdaten.
Andere	Nachlöten ist gefährlich, da der Einsatz anschließend während der Verwendung brechen könnte.	Verwenden Sie keinen Einsatz, der wiederholt gelötet wurde, da sich hierdurch die Festigkeit herabsetzt.
	Das Verwenden eines Produkts für einen anderen Zweck, als der angegebene, kann zur Beschädigung von Maschine und Werkzeug führen und ist sehr gefährlich.	Beachten Sie unbedingt die bestimmungsgemäße Verwendung.

Hinweis,

diese Broschüre beschreibt die grundlegenden Sicherheitshinweise.
Weitere Informationen finden Sie in der Bedienungsanleitung, dem Katalog und anderen relevanten Dokumenten für jedes Werkzeug. Im Zweifelsfall wenden Sie sich bitte an die Firma Sumitomo Electric Hartmetall GmbH. Wir haften nicht für Schäden, die durch unsachgemäßen Einsatz der Werkzeuge entstehen.

Tool Engineering Services

Um unseren Kunden einen noch hochwertigeren Support anbieten zu können, hat Sumitomo Electric Industries das Tool Engineering Service System geschaffen.

Als Basis für diesen neuartigen Support haben wir weltweit mehrere Tool Engineering Center gegründet.

Diese Tool Engineering Center bieten die unterschiedlichsten Dienstleistungen an, um unsere Kunden in den unterschiedlichsten Branchen zu betreuen. Zu diesen Dienstleistungen zählen Schulungen (im jeweiligen Center), Zerspanungsversuche, Technische Beratung,

Diagnose und Optimierung von Fertigungslinien (vor Ort beim Kunden) und Hilfe bei der Werkzeugauswahl.

Standorte der Tool Engineering Center

Japan

- ► Itami Tool Engineering Center (I-TEC)
- ► Yokohama Tool Engineering Center (Y-TEC)
- ► Hokkaido Igetalloy Tool Engineering Center (H-TEC)
- ► Tokai Tool Engineering Center (T-TEC)
- ► Kyushu Tool Engineering Center (K-TEC)

Weltweit

- ▶ Deutschland / European Design & Engineering Center (E-DEC)
- ► Thailand / Thailand Tool Engineering Center (Ti-TEC)
- ► Shanghai / Shanghai Tool Engineering Center (S-TEC)
- ►U.S.A. / Americas Tool Engineering Center (A-TEC)
- ► Indonesien / Indonesia Tool Engineering Center (In-TEC)
- ► India Tool Engineering Center

Schulung

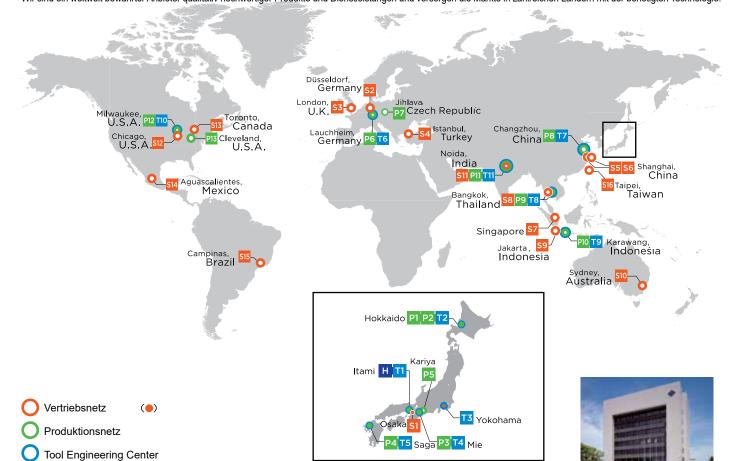
Um allen Beteiligten die Mitwirkung zu erleichtern, bieten die Center Schulungskurse an, die auf die unterschiedlichsten Schulungsziele und -teilnehmer ausgerichtet sind.

*Wenden Sie sich an das für Sie zuständige Vertriebsbüro, um nähere Informationen zu den Schulungsplänen zu erhalten.

2 Technologie zur Leistungsbewertung

Um bei der Verarbeitung vor Ort Verbesserungen erzielen zu können, müssen sich die Hersteller auf mehr verlassen können als lediglich persönliche Erfahrung oder Instinkt. Mit den modernen Messinstrumenten von heute lassen sich Bearbeitungsphänomene aufdecken und Probleme beseitigen.

Zerspanungsversuche und Technische Beratung


In den Tool Engineering Centern können Zerspanungsversuche an den Werkstücken der Kunden vorgenommen werden und gemeinsam mit den Kunden können detaillierte technische Lösungsvorschläge erarbeitet werden. Das Angebot der Center umfasst auch Lösungen für verschiedene Bearbeitungsprobleme, allgemeine Diagnosen von Fertigungslinien sowie Hilfe bei der Werkzeugbestückung von neuen Fertigungslinien. *Wenden Sie sich an das für Sie zuständige Vertriebsbüro, um nähere Informationen zu erhalten.

SUMITOMO ELECTRIC

ZERSPANUNGSWERKZEUGE

WELTWEITE STANDORTE

Wir sind ein weltweit bewährter Anbieter qualitativ hochwertiger Produkte und Dienstleistungen und versorgen die Märkte in zahlreichen Ländern mit der benötigten Technologie.

Produktionsnetz

Hokkaido Sumiden Precision Co., Ltd.

P2 Hokkaido Precision Tool Co., Ltd.

P3 Tokai Sumiden
Precision Tool Co., Ltd.

P4 Kyushu Sumiden Seimitsu Ltd.

Asdex Corporation

P6 Sumitomo Electric
Hartmetallfabrik GmbH

P7 Sumitomo Electric Hartmetallfabrik GmbH, organizačni složka.

Sumitomo Electric Industries Ltd. Hardmetal Div. Sumitomo Electric

Hardmetal Corp.

Sumitomo Electric Hardmetal Manufacturing (Changzhou) Co., Ltd

Sumitomo Electric Hardmetal Manufacturing (Thailand), Ltd

PT. Sumiden Hardmetal Manufacturing Indonesia

Motherson Techno Tools
I td.

P12 Sumitomo Electric Carbide Manufacturing, Inc. (WI)

Sumitomo Electric Carbide Manufacturing, Inc. (OH)

HARDMETAL GROUP

ZERSPANUNGSWERKZEUGE **EUROPA**

Hartmetall GmbH

- Itami Tool Engineering Center (I-Tec)
- Hokkaido Tool Engineering Center (H-Tec) Yokohama Tool Engineering Center (Y-Tec)
- Tokai Tool Engineering Center (T-Tec)
- Kyushu Tool Engineering Center (K-Tec)
- European Design & Engineering Center (E-DEC) Shanghai Tool Engineering Center (S-Tec)
- Thai Tool Engineering Center (Ti-Tec)
- Indonesia Tool Engineering Center (In-Tec)
- Americas Tool Engineering Center (A-Tec)
- India Tool Engineering Center

(• •)

Produktionsnetz

Tool Engineering Center

/ertnebsnetz

Sumitomo Electric Tool

Sumitomo Electric Hardmetal Ltd.

SumiSemetal Ticaret ve Sanayi Limited Şirketi

Trading (Shanghai) Co., Ltd.

Superior Engineering Tool S6 Supenor Engineering 100. Trading (Shanghai) Co., Ltd.

Sumitomo Electric Hardmetal Asia Pacific Pte Ltd.

Sumitomo Electric Hardmetal (Thailand) Ltd.

PT. Sumitomo Electric Hardmetal Indonesia

S10 Pty Ltd. SEI Carbide Australia

Motherson Techno Tools Ltd.

Sumitomo Electric Carbide, Sumicarbide Canada Inc.

Sumitomo Electric Hardmetali de Mexico, S.A. de C.V.

Sumitomo Electric Hardmetal do Brasil Ltda.

Taiwan Hong-Yu Precision Tool Co., Ltd.

CARBIDE - CBN - DIAMOND

SUMITOMO ELECTRIC Hartmetall GmbH Konrad-Zuse-Str. 9, 47877 Willich

Tel. +49 2154 4992-0, FAX +49 2154 4992-161 Info@SumitomoTool.com www.SumitomoTool.com

