
NIKKEN

CNC-RUNDTISCHE

NIKKEN KOSAKUSHO WORKS, LTD. OSAKA, JAPAN.

5-1, 1-chome, Minamishinden, Daito-shi, Osaka-fu, Japan. Telephone: 072-869-5820 Telefax: 072-869-6220

DEUTSCHLAND NIKKEN DEUTSCHLAND GmbH

Eisenstraße 9b, 65428 Rüsselsheim Tel.+0049 (0) 6142/55060-0 Fax.+0049 (0) 6142/55060-60

NIKKEN KOSAKUSHO UK LTD.
Precision House, Barbot Hall Industrial Estate,
Rotherham, South Yorkshire, S61 4RL
Tel. (01709) 366306 Fax. (01709) 376683

SCHWEIZ

NIKKEN SWITZERLAND AG

Sumpfstrasse 32 CH-6300 Zug Tel.+0041 (0) 41 748 5000 Fax.+0041 (0) 41 748 5001

SKANDINAVIEN SCHWEDEN

NIKKEN SCANDINAVIA ABSäterigatan 27 41764 Göteborg
Tel. (031) 519855 Fax. (031) 519955

FRANKREICH

PROCOMO FRANCE S.A. 6, avenue du 1er Mai-Z.A.E.Les Glaises 91127 Palaiseau Cedex Tel. 01.69.19.17.35 Fax. 01.69.30.64.68

ITALIEN

VEGA INTERNATIONAL TOOLS S.P.A Via Asti N · 9 10026-Santena (TORINO) Tel. (011) 9456330/40/50∼70 Fax. (011) 9456380

SPANIEN

CUTTING TOOL S.L
POL.UGALDETXO-PARCELA 28-B, NAVE 6 20180 OIARTZUM (GIPUZKOA) APARTADO 1421-20080 SAN SEBASTIAN.
Tel. (943) 494144 Fax. (943) 494409

TÜRKEI

NIKKEN KESICI TAKIMLAR SAN. VE ULUSLARARASI TIC. A. S E5 Uzeri Kucukyali Yanyol Irmak Sok . Kucukyali Sanayi Sitesi A Blok No:5 Maltepe 34852 Istanbul Tel.+0090 (0) 216-518-1010 Fax.+0090 (0) 216-366-1414

1468 Armour Boulevard, Mundelein, ILLINOIS 60060 Tel. (847) 367-4800 Fax. (847) 367-4815

KOREA

KOREA NIKKEN LTD. 16-2 MAN SUK-DONG, DONG-KU, INCHON Tel. (032) 763-4461 Fax. (032) 763-4464

V.R.CHINA

SHANGHAI ZHONG YAN TRADING CO., LTD. R.C/128 ZHONG XI BUILDING, NO.121~123 JIANG SHU ROAD, SHANGHAI Tel. (021) 6210-2506 Fax. (021) 6210-2083

http://www.nikken-world.com e-mail: export@nikken-kosakusho.co.jp

http://www.nikken.de e-mail: info@nikken.de

D.AC 5

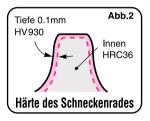
• Änderungen der technischen Daten vorbehalten.

NIKKEN CNC-RUNDTISCHE

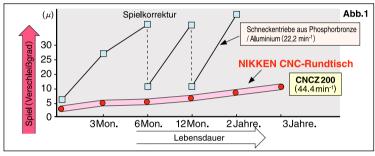
CNC-Rundtische für vollautomatisches Arbeiten

NIKKEN HARTMETALL-SCHNECKENSYSTEM

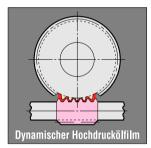
Verschleißfestigkeit, hohe Steifigkeit und hohe Drehgeschwindigkeit


Hartmetallschnecke

Eingesetzt wird eine Hartmetallschnecke, die hoher Drehgeschwindigkeit standhält (siehe Foto rechts). [Material: Hartmetall mit Härtegrad V:hohe Verschleißfestigkeit und von zäher Qualität] Bei sehr großer Beanspruchung wird auch über einen langen Zeitraum eine hohe Genauigkeit erreicht. Verglichen mit der herkömmlichen Kombination eines Schneckentriebes (Schneckenrad aus Phosphorbronze oder Aluminiumbronze und Schnecke aus Stahl) ergibt sich ein stark verminderter Verschleiß, was zu einer um viele Jahre längeren Lebensdauer des Rundtisches und dadurch zu einer wesentlich geringeren Kostenbelastung führt.


Um eine bessere Stoßfestigkeit zu erzielen, werden eine spezialgehärtete Schnecke und ein sehr kleines Zahnmodul des Schneckentriebs verwendet.

Besteht aus extra für NIKKEN angefertigtem Spezialstahl. Es ist spezialgehärtet und darüber hinaus an den Zähnen plasmanitriert. Das Problem der Gleitreibung konnte dadurch gelöst werden. Die Härtedaten der Zahnoberfläche und des Kernmaterials entnehmen Sie bitte der nebenstehenden Abbilduna.



Wirkung des dynamischen Hochdruckölfilms der Hochgeschwindigkeits-CNC-Rundtische der Serie Z.

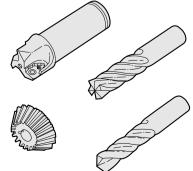
NIKKENs Erfahrung bei der Herstellung von Verzahnungen sowie die Untersuchungen zum Druckwinkel bei Schneckentrieben führen zu einer höheren Drehgeschwindigkeit der Tische (44,4 min-1). Die Drehgeschwindigkeit der Schnecke erzeugt Druck, wodurch Öl in die Zahnzwischenräume gepresst und der direkte Kontakt von Metall zu Metall verhindert wird. Dies führt zu geringerem Verschleiß und damit zu höherer Belastbarkeit und Betriebsdauer.

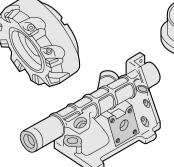
Das Problem des ungenügenden Bremsmoments bei Schwenkachsen ist gelöst (5000Nm).

JAPAN (PAT. 2142343) • U.S.A. (PAT. 5385424, 5507587) • EU (PAT. EP 0553355B1)

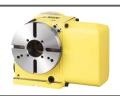
Die seit 40 Jahren bewährte Spannkraft des NIKKEN Kraftspann-Fräsfutters kommt bei der Schwenkachsenbremse im 5-Achsen-Rundschalt- und Schwenktisch der Serie 5AX zur Anwendung.

- Keine Vibration unabhängig vom Schwenkwinkel.
- Hervorragend geeignet für das Bearbeiten mehrerer Werkstückflächen,
- z. B. bei schweren Bohrarbeiten oder beim Stirnfräsen.




Turbinenschaufel

Gefertigt auf Hochgeschwindigkeits CNC-Rundtisch der Z-Serie fü Hochgeschwindigkeitsfräsarbeit



INHALTSVERZEICHNIS

CNC105, 180, 202

Kompakte CNC-Rundtische S. 5~6 Kompakte Hochgeschwindigkeits-CNC-Rundtische der **Z-Serie** Kompakte CNC-Rundtische mit & 21-Steuerung S. 57

CNC260,302,321,401,501,601,801,1200,B450

CNC100-2W,3W,4W,CNC180-2W,CNC202-2W,CNC260-2W

Mehrspindel-CNC-Rundtische S. 15~16

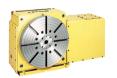
CNC180B,202B,260B,302B,321B,401B

CNC-Rundtische mit rückseitiger Motoranordnung \cdots S. 11 \sim 12 Hochgeschwindigkeits-CNC-Rundtische, Motoranordnung rückseitig, **Z-Serie**

CNC200T,260T,321T,401T,501T,601T

CNC-Rundtische mit Motoranordnung oben \cdots S. 13 \sim 14 Hochgeschwindigkeits-CNC-Rundtische, Motoranordnung oben, **Z-Serie**

5AX-130,-200II,-230,-350,-400,-550


5AX-2MT,-4MT

Mehrspindel-Rundschalt-und Schwenktische S. 25~26

NST250,300,500

Manuelle Schwenk-Rundtische S. 17~18

NSVZ180,300 NSVZ400,500 Teilgenauigkeit: ±2"

Hochpräzise Rundschalttische mit Hirth-Verzahnung S. 27~28

NSVZ : kleinstes Inkrement = 1°

NSVX : kleinstes Inkrement = 1°, 0.001°

Einbau-CNC-Rundtische

Diese CNC-Rundtische sind speziell für den Einbau in Maschinen konstruiert.

CNC202L mit Planscheibe ohne T-Nuten

CNC-Rundtische für kleine B/Z' und Bohrzentren CNC180,CNC202,5AX-130 S. 31~32

Wir zeigen Anwendungsbeispiele für CNC-Rundtische auf Bearbeitungs- und Bohrzentren mit BT30/NC5-46 - Spindel.

Telefon Nikken Deutschland GmbH: 06142-55060-0

Sonder-Spezifizierungen, Zubehör und Technische Informationen **NIKKEN**

Für NIKKEN CNC-Rundtische steht ein reichhaltiges Zubehörprogramm zur Verfügung. Bei zusätzlichen oder Sonderausführungen bitte uns die genauen Spezifizierungen bekannt geben. Bezüglich des Rundtischvertriebs in der EU bitte "**mit CE-Zeichen**" vermerken. Alle Rundtische sind entsprechend den EU-Richtlinien mit CE-Zeichen lieferbar.

Optionales Zubehör

•	
AWC-System · · · · · · · · · · · · · · · · · · ·	S.33~3
■Zubehör für Tische der ≪ -Serie ······	S.38
■Dreibackenfutter, Kraftspannfutter ······	S.39
Reitstöcke ·····	S.40
Druckluftverstärker, Hydraulikdruckverstärker ······ auf Druckluftbasis	S.44
Hydraulikaggregate ······	S.38
■Befestigungsmaterial und Nutensteine ·······	S.18

Sonderausführungen

Schaltzeitberechungen usw.

Servomotorenliste	S.37
Genauigkeitsstandard/Toleranzen Meßmethoden ······	S.41
Hochpräzisionsmodelle	S.42
Drehdurchführungen Drehverbindung für pneumatische/hydraulische Aufspannungen/Futter	S.43
Einbau-Palettenspannsystem Zur Verwendung bei automatischem Palettenwechsel	S.43
Wasserdichtheit, Spezifikationen	S.44
Verschiedene Anwendungen Empfehlungen mit vielen Beispielen	S.45~46
Prüfungen und Technische Informationen Bewertungstests, Vorschriften, Belastbarkeitsberechnungen,	S.47~48

NIKKEN achtet außer der Qualität auch auf die Sicherheit. Bitte auf Hinweise

NIKKEN Steuerungen

■ X 21-Steuerung ·······	S.49~50
■Technische Informationen zur Հ 21-Steuerung ······ Auslaufen von Wartung an bestimmten NIKKEN Steuerungen	S.51~56
■CNC-Rundtische mit X 21-Steuerung ·············	S.57~59
Auswahl eines CNC-Rundtisches	S.60

Weltweites NIKKEN Netzwerk

Werk und Verwaltung	S.61~63
Internationale Vertriebs- und Serviceniederlassungen·····	S.64
■NIKKEN EUROPA ZENTRUM ······	S.65
■NIKKEN DEUTSCHLAND GmbH ······	S.66

KOMPAKTER CNC-RUNDTISCH

CNC105 A21 mit Zubehör

- Große Anwendungsbandbreite sowohl auf kleinen Ständerbohrmaschinen wie auch auf Bearbeitungszentren.
- Geeignet für Teilungsarbeiten / Wendelnutfräsen kleinerer Werkstücke.
- Große Auswahl verschiedener Werkstückspannmittel lieferbar: von der 5C-Spannzangenvorrichtung bis zu pneumatisch / hydraulischen Spannfuttern 🗃 S.38
- Erklärung der Bestellnummern (Beispiel)

CNC 2021

Rundtische mit & 21-Steuerung, © S.57

Technische Daten

(): CNC-RUNDTISCHE der Hochgeschwindigkeits-Z-Serie

Einheit /	/ Bestellnummer	CNC105 CNCZ105	CNC180 CNCZ180	CNC202 CNCZ202
Durchmesser T	isch / Planscheibe ϕ mm	ch / Planscheibe		200
Durchmesser	Spindelbohrung ϕ mm	<i>ϕ</i> 60H7 × <i>ϕ</i> 30	<i>φ</i> 60H7 × <i>φ</i> 40	<i>ϕ</i> 60H7 × <i>ϕ</i> 40
Spitzenhöhe	mm	105	135	135
T-Nutenbreite	mm	ϕ 10H7 Stiftbohrung	12 ^{+0.018}	12 +0.018
Klemmsystem	1	Pneumatik	Pneumatik	Pneumatik
Klemmmomer	nt N∙m	205	303	303
Trägheitsmoment ar	n der Motorwelle (GD ² /4) kg·m ² ×10 ³	0.06	0.08	0.09
Servomotor	min ⁻¹	α 1/5000i • 2000	α2/5000i • 2000	α4/4000i • 2000
Kleinstes Inkre	ement	0.001°	0.001°	0.001°
Drehgeschwir	ndigkeit min-1	22.2 (44.4)	22.2 (44.4)	22.2 (44.4)
Untersetzungs	sverhältnis	1/90 (1/45)	1/90 (1/45)	1/90 (1/45)
Teilgenauigke	it sec sec	±30	±20	±20
Nettogewicht	kg	30	43	49
Zulässiges Werkstückgewicht,	Senkrecht	30	100	100
max.	Waagerecht kg	60	200	200
	N	8800	10780	10780
Zulässige Axiallast, max.	F×L N·m	65	415	637
	F×L N·m	220	980	980
Trägheitsmoment, max.	Senkrecht	0.04	0.40	1.0 (0.5)
Antriebsmoment	N·m	36 (27)	72 (54)	144 (115)

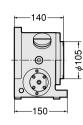
5

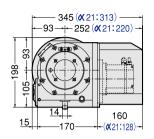
[★]Ausführung L (linksseitig angebrachter Motor) ist für alle Tische lieferbar. ★Alle Tische sind auch als Hochpräzisionsmodelle lieferbar, ±3" oder ±5", 戶實下\$.43.

[★]Motor α4/4000i kann für CNC180 eingesetzt werden. ★Für alle Tische sind Drehdurchführungen lieferbar. [☐ S.43.

[★] Antriebsmoment bedeutet das Drehmoment bei max. Drehgeschwindigkeit nach der Beschleunigungsphase.

Das Drehmoment ist nahezu konstant und unabhängig von der Belastung, sofern keine Unwucht auftritt.

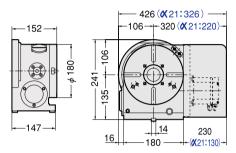

CNC105, 180, 202



Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor bzw. mit NIKKEN α21-Steuerung (α21:). CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

CNC105, CNCZ105

Kraftvolle Bremse Bremsmoment: 205Nm

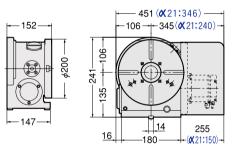

Abbildung: mit X21-Steuerung.

Mit Sperrluftfunktion ausgestattet.

CNC180, CNCZ180

Abbildung: mit X21-Steuerung.

Kraftvolle Bremse Bremsmoment: 303Nm

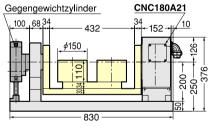


Mit Sperrluftfunktion ausgestattet.

CNC202, CNCZ202

Abbildung: mit & 21-Steuerung.

Kraftvolle Bremse Bremsmoment: 303Nm



Mit Sperrluftfunktion ausgestattet.

Gegengewichtzylinder Ein Gegengewichtzylinder sorgt für Gewichtsausgleich bei ungleicher Beladung.

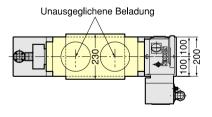
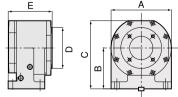



Foto und Skizze zeigen ein Beispiel einer unausgeglichenen Tischbeladung.

Gegenlager TAT mit geringen Abmessungen

Pneumatikanschlüsse 2 x Rc 1/8" sind vorhanden. Magnetventil und Klemmen/Lösen- Bestätigungsschalter sind nicht im Lieferumfang enthalten.

Bestellnr.	Α	В	С	D	E	Brems- system	Brems- moment	Gewicht
TAT105	155	105	175	105	113	Pneum.	275	16
TAT170	155	135	220	170	138	Pneum.	275	25

[★] Erforderlicher Luftdruck 0,5 MPa.

(Nm) (kg)

★ TAT105 u. TAT170 haben einen doppelt verstärkenden Klemmmechanismus. ★ Für beide Modelle ist eine Drehdurchführung lieferbar. ☞ S.43

- ★Toleranzen ☞ S.39. ★Befestigungsmaterial und Nutensteine ☞ S.18. ★Dreibackenfutter, Reitstock und anderes Zubehör ☞ S.39, 40.
- ★Zubehör zu **《**-Serie Rundtischen passen zu allen Modellen **⑤ S.38**.

CNC-RUNDTISCH

- Kann abhängig von der Anwendung waagerecht oder senkrecht eingesetzt werden.
 - Erklärung der Bestellnummer (Beispiel)

CNC 260 L F A - M

Kein Buchstabe:ohne Motor M:mit Motor

Kein Buchstabe:Gleichstrom-Servomotor A:Wechselstrom-Servomotor

- Motorhersteller F S.37 ### A21-mit MIKEN & 21-Steuerung
 F:FANUC M: MELDAS Y:YASNAC OSP:OSP
 T:TOSNUC N:NEC S:SANYO Z:SIEMENS
 I:INDRAMAT H:HEIDENHAIN X:ISOFLEX
 SEM:SEM B:BOSCH
- Kein Buchstabe:Rechtsseitig angebrachter Motor L:Linksseitig angebrachter Motor
- Durchmesser der Planscheibe 260, 300, 320, 400

CNC:Standard CNCZ:Hochgeschwindigkeits-Z-Serie

Technische Daten

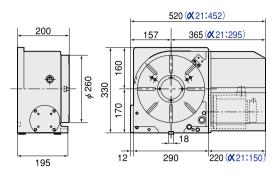
(): CNC-RUNDTISCHE der Hochgeschwindigkeits-Z-Serie

Rundtische mit **≪**21-Steuerung, S.57, 58.

Einheit	/ Bestellnummer	CNC260 CNCZ260	CNC302 CNCZ302	CNC321 CNCZ321	CNC401 CNCZ401
Durchmesser	Planscheibe φmm	260	300	320	400
Durchmesser	Spindelbohrung ϕ mm	<i>∲</i> 80H7	<i>∲</i> 80H7	<i>ϕ</i> 105H7	<i>ϕ</i> 105H7
Spitzenhöhe	mm	170	170	230	230
T-Nutenbreite	mm	12 ^{+0.018}	12 +0.018	12 +0.018	14 +0.018
Klemmsystem		Pneumatik/Hydraulik	Pneumatik/Hydraulik	Hydraulik	Hydraulik
Klemmmomer	nt N•m	343/1568	343/1568	1760	1760
Trägheitsmoment ar	n der Motorwelle (GD ² /4) kg·m ² ×10 ³	0.33	0.34	2.8	2.8
Servomotor	min ⁻¹	α4/4000i•2000	α4/4000i•2000	α12/3000i•2000	α12/3000i•2000
Kleinstes Inkre	ement	0.001°	0.001°	0.001°	0.001°
Drehgeschwin	ndigkeit min-1	16.6 (33.3)	16.6 (33.3)	22.2 (44.4)	22.2 (44.4)
Untersetzungs	sverhältnis	1/120 (1/60)	1/120 (1/60)	1/90 (1/45)	1/90 (1/45)
Teilgenauigke	it sec	20	20	15	15
Nettogewicht	kg	120	125	200	225
Zulässiges Werkstückgewicht,	Senkrecht kg	175	175	250	250
max.	Waagerecht kg	350	350	500	500
	N	25480	25480	31360	31360
Zulässige Axiallast, max.	F×L N·m	984	984	1166	1166
	FXL N·m	3332	3332	3920	3920
Trägheitsmoment, max.	Senkrecht	3.2 (1.6)	3.2 (1.6)	6.4 (3.2)	6.4 (3.2)
Antriebsmoment	N·m	192 (153)	192 (153)	432 (345)	432 (345)

- ★Ausführung L (linksseitig angebrachter Motor) ist für alle Modelle lieferbar. ★Das AWC-System (Werkstückwechsler) ist für alle Tische lieferbar, ☞S.33~36.
- ★ Drehdurchführung (音 S.43. ★ Alle Tische sind auch als Hochpräzisionsmodelle lieferbar, ±3″ oder ±5″, (音 S.42. ★ CNC321 und 401 sind als Ausführungen für höchste Beanspruchung lieferbar. Verglichen mit der Standard-Ausführung ist bei kontinuierlichem Fräsen die fünffache Leistung möglich. E S.44.
- ★Der &8/3000i-Motor kann auf CNC200, CNC250 und CNC300 eingesetzt werden. ★Der &22/3000i-Motor kann auf CNC321 und 401 eingesetzt werden.
- ★Das hydraulische Klemmsystem benötigt einen Öldruck von 3.5 MPa. ★Für Maschinen ohne eigene Hydraulikversorgung ist eine Pneumatik-
- Hydraulikeinheit für das hydraulische Klemmsystem lieferbar, FS.44.

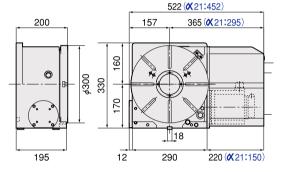
CNC260, 302, 321, 401


CNC260, CNCZ260

Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor bzw. mit NIKKEN

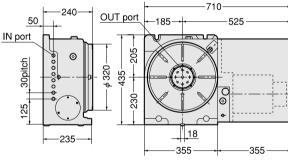
21-Steuerung (

21:). CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

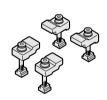


★ Bei Rundtischen mit Pneumatikbremse gehört Sperrluftausstattung des Motorgehäuses zum Standard.

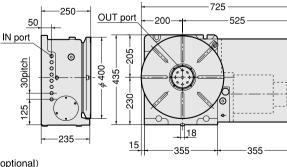
CNC302, CNCZ302

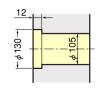


★ Bei Rundtischen mit Pneumatikbremse gehört Sperrluftausstattung des Motorgehäuses zum Standard.


CNC321, CNCZ321

★Die Einbau-Drehdurchführung kann in CNC321 und CNC401 eingebaut werden, ☞ S.43.





CNC401, CNCZ401

★Die Einbau-Drehdurchführung kann in CNC321 und CNC401 eingebaut werden, SS S.43.

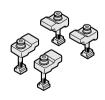
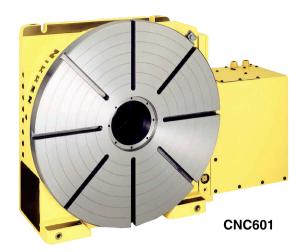
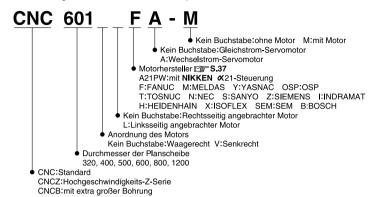



Abbildung mit Drehdurchführung (optional)

- ★Höchste Drehgeschwindigkeit © S.44.
- ★Präzision und Toleranzen ⑤ S.41. ★Befestigungsmaterial und Nutensteine ⑥ S.18.
- ★Dreibackenfutter, Reitstock und weitere optional lieferbare Zubehörteile © S.39, 40.
- ★CNC-Tische zum Einbau in CNC-Sondermaschinen F S.48.


CNC-RUNDTISCHE

- Für Teilungsarbeiten und Wendelnutfräsen an großen Werkstücken einzusetzen.
- ■Große Durchgangsbohrung und kraftvolles Klemmsystem.

• Erklärung der Bestellnummer (Beispiel)

CNCB450 mit extra großer Bohrung Ø205mm ist als Option verfügbar.

Technische Daten

(): CNC-RUNDTISCHE der Hochgeschwindigkeits-Z-Serie

Rundtische mit ≪21-Steuerung, © S.58.

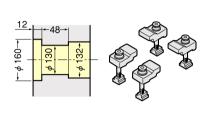
Einheit	/ Bestellnumm	ner	CNC501 CNCZ501	CNC601 CNCZ601	CNC801	CNC1200	CNCB450
Durchmesser Planscheibe ϕ mm			500	600	800	1200	450
Durchmesser	Spindelbohrung	ϕ mm	φ130H7	φ130H7	φ130H7	<i>∲</i> 300 H7	φ205H7
Spitzenhöhe		mm	310	310	Nur waagere	chte Version	280
T-Nutenbreite		mm	14 +0.018	14 +0.018	20 +0.021	22 +0.021	18 ^{+0.021}
Klemmsystem	ı		Hydraulik	Hydraulik	Hydraulik	Hydraulik	Hydraulik
Klemmmomer	nt	N•m	4655	4655	4655	9800	3870
Trägheitsmoment an	der Motorwelle (GD ² /4) k	g·m ² ×10 ³	6.8	4.9	7.8	10.8	2.8
Servomotor		min-1	α12/3000i•2000	α12/3000i • 2000	α12/3000i•2000	α22/3000i•2000	α12/3000i•3000
Kleinstes Inkre	ement		0.001°	0.001°	0.001°	0.001°	0.001°
Drehgeschwin	digkeit	min-1	16.6 (33.3)	11.1 (22.2)	11.1	5.5	25
Untersetzungs	sverhältnis		1/120 (1/60)	1/180 (1/90)	1/180	1/360	1/120
Teilgenauigke	Teilgenauigkeit sec			15	15 15		15
Nettogewicht		kg	440	470	690	1300	280
Zulässiges Werkstückgewicht,	Senkrecht kg Waagerecht kg		400	400			350
max.			800	800	640	5000	700
	N F×L N·m		39200	39200	39200	360640	37632
Zulässige Axiallast, max.			4655	4655	4655	15288	4410
	F L	F×L N·m		5880	5880	76440	5644
Trägheitsmoment, max.	Trägheitsmoment, Senkrecht		19.4 (9.7)	37 (18.5)	23	539	17
Antriebsmoment		N∙m	576 (460)	864 (690)	864	3168	576

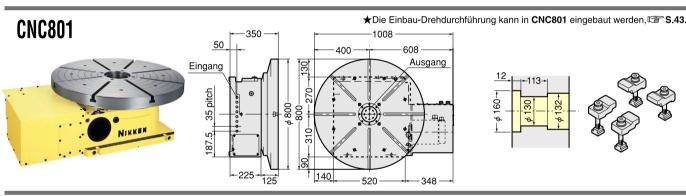
- ★Ausführung L (linksseitig angebrachter Motor) ist für CNC501 und CNC601 lieferbar. ★Drehdurchführung ☞ S.43.

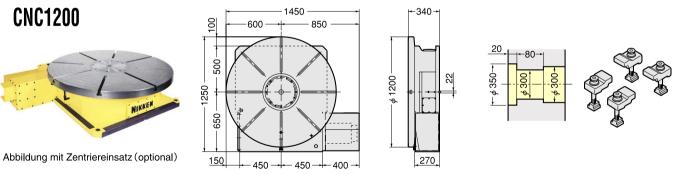
- ★Das AWC-System (Werkstückwechsler) ist für alle Tische lieferbar, 下 \$.33~36. ★Alle Tische sind auch als Hochpräzisionsmodelle lieferbar mit ±3″ oder ±5″, 下 \$.42.
- ★Motor α22/3000 kann auf CNC501, CNC601 und CNC801 montiert werden.
- ★Der CNC501 ist auch mit einem Untersetzungsverhältnis von 1/180 lieferbar.
 ★Das hydraulische Klemmsystem benötigt einen Öldruck von 3.5 MPa.
 ★Für Maschinen ohne eigene Hydraulik ist eine Pneumatik-/Hydraulikeinheit für das
- hydraulische Klemmsystem lieferbar, F S.44.
- ★Alle Tische sind als Ausführungen für höchste Beanspruchung lieferbar.

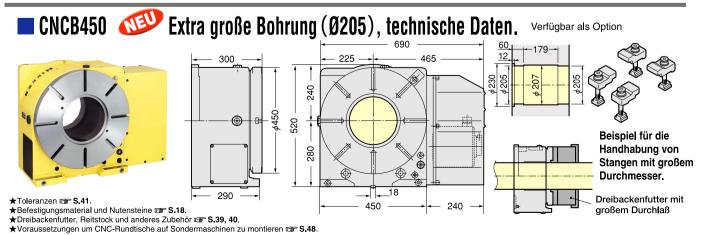
 h Verglichen mit der Standard-Ausführung sind hierbei fünfmal höhere Schneidleistungen möglich, F 3.44.

CNC501, 601, 801, 1200, B450

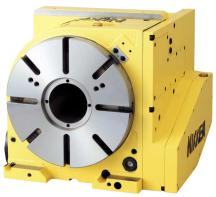



Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor. CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.


CNC501, CNCZ501 ★Die Einbau-Drehdurchführung kann in CNC501 und CNC601 eingebaut werden, © S.43. 290 868 50 608 Eingang 35 pitch 310 87 20


520

CNC601, CNCZ601 ★Die Einbau-Drehdurchführung kann in CNC501 und CNC601 eingebaut werden, FS.43. 290 <u>5</u>0 300 Eingang 35 pitch _||_20



CNC-RUNDTISCHE MIT RÜCKSEITIG ANGEORDNETEM MOTOR NIKKEN

CNC260B

Geeignet für Maschinen mit wenig Platz in der Y-Achse, wie Portalmaschinen oder Bearbeitungszentren mit eng gehaltener Verkleidung.

• Erklärung der Bestellnummer (Beispiel)

CNC 260 B F A - M

Kein Buchstabe: ohne Motor, M:mit Motor
Kein Buchstabe: Gleichstrom-Servomotor A:Wechselstrom-Servomotor

 Anordnung des Motors B:Rückseite

Durchmesser der Planscheibe 180, 200, 250, 300, 320, 400

CNC:Standard CNCZ: Hochgeschwindigkeits-Z-Serie

Technische Daten

(): CNC-RUNDTISCHE der Hochgeschwindigkeits-Z-Serie

Einheit / Bestellnummer		CNC180B CNCZ180B	CNC202B CNCZ202B	CNC260B CNCZ260B	CNC302B CNCZ302B	CNC321B CNCZ321B	CNC401B CNCZ401B
Durchmesser	Planscheibe ϕ mm	180	200	260	300	320	400
Durchmesser	Spindelbohrung ϕ mm	<i>ϕ</i> 60H7× <i>ϕ</i> 40	<i>φ</i> 60H7× <i>φ</i> 40	<i>∲</i> 80H7	φ80H7	φ105H7	φ105H7
Spitzenhöhe	mm	180	180	170	170	230	230
T-Nutenbreite	mm	12 +0.018	12 ^{+0.018}	12 +0.018	12 +0.018	12 + 0.018	14 +0.018
Klemmsystem	ı	Pneumatik	Pneumatik	Pneumatik/Hydraulik	Pneumatik/Hydraulik	Hydraulik	Hydraulik
Klemmmomer	nt N•m	303	303	343/1568	343/1568	1760	1760
Trägheitsmoment an	der Motorwelle (GD ² /4) kg·m ² ×10 ³	0.4	0.4	1.7	1.8	7.0	7.0
Servomotor	min-	α2/5000i•2000	α4/4000i•2000	α4/4000i•2000	α4/4000i•2000	α12/3000i•2000	α12/3000i•2000
Kleinstes Inkre	ement	0.001°	0.001°	0.001°	0.001°	0.001°	0.001°
Drehgeschwin	digkeit min-	22.2 (44.4)	22.2 (44.4)	16.6 (33.3)	16.6 (33.3)	22.2 (44.4)	22.2 (44.4)
Untersetzungs	sverhältnis	1/90 (1/45)	1/90 (1/45)	1/120 (1/60)	1/120 (1/60)	1/90 (1/45)	1/90 (1/45)
Teilgenauigke	it sec	± 20	±20	20	20	15	15
Nettogewicht	kg	56	60	140	145	260	280
Zulässiges Werkstückgewicht,	Senkrecht kg	100	100	175	175	250	250
max.	Waagerecht kg	_					
	L. N	10780	10780	25480	25480	31360	31360
Zulässige Axiallast, max.	F×L N·m		415	984	984	1166	1166
	FXL N·m	980	980	3332	3332	3920	3920
Trägheitsmoment, max.	Trägheitsmoment, Senkrecht		0.4	3.2 (1.6)	3.2 (1.6)	6.4 (3.2)	6.4 (3.2)
Antriebsmoment	N·m	72 (54)	72 (54)	192 (153)	192 (153)	432 (345)	432 (345)

[★]Motor &4/4000i kann auf CNC180B und CNC202B eingesetzt werden.

[★]Motor

★Motor

★Motor

★8/3000i kann auf

CNC250B und

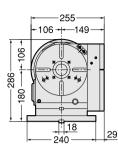
CNC300B eingesetzt werden.

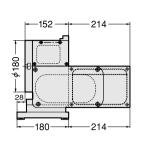
★Hochpräzisionsmodelle und hydraulische Drehdurchführung

S.42, 43.

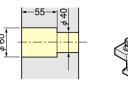
[★]Das hydraulische Klemmsystem benötigt einen Öldruck von 3,5 MPa.

[★]Für Maschinen ohne eigene Hydraulik ist eine Pneumatik-/Hydraulikeinheit für das hydraulische Klemmsystem lieferbar, 愛 S.44.

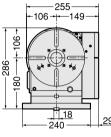

CNC180B, 202B, 260B, 302B, 321B, 401B

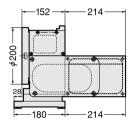


CNC180B, CNCZ180B

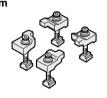

Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor. CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

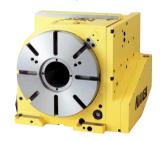
Kraftvolle Bremse Bremskraft:303Nm

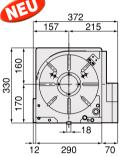


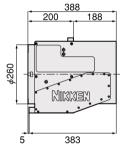

Mit Sperrluftfunktion ausgestattet.

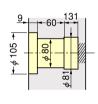
Kraftvolle Bremse


CNC202B, CNCZ202B


Bremskraft:303Nm

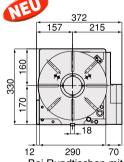


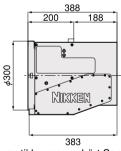

CNC200B wurde zu CNC202B.


Mit Sperrluftfunktion ausgestattet.

CNC260B, CNCZ260B

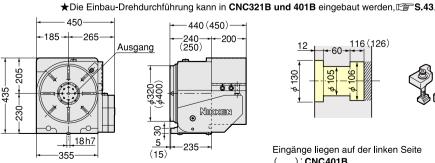


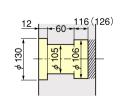




Bei Rundtischen mit Pneumatikbremse gehört Sperrluftausstattung des Motorgehäuses zum Standard.

CNC302B, CNCZ302B





Bei Rundtischen mit Pneumatikbremse gehört Sperrluftausstattung des Motorgehäuses zum Standard.

CNC321B, CNCZ321B CNC401B, CNCZ401B

Eingänge liegen auf der linken Seite): CNC401B

- Abbildung mit Zentriereinsatz (optional).
- ★Präzision und Toleranzen @ S.41.

- ★Dreibackenfutter, Reitstock und weitere optional lieferbare Zubehörteile 🖅 S.39, 40. ★Das Zubehör der α-Serie passt zu allen Tischmodellen, 😭 S.38.

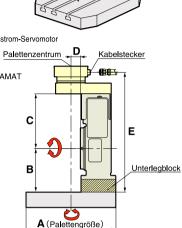
CNC-RUNDTISCHE MIT OBEN ANGEORDNETEM MOTOR

Schwenkbox

■Um auf horizontalen Bearbeitungszentren und Sondermaschinen Kollisionen zu vermeiden, ist der Motor auf der Oberseite des Rundtisches angebracht (Abb.1).

Abb.2 zeigt eine Anwendung auf der Palette eines horizontalen Bearbeitungszentrums. Bei Anfragen zu

• Erklärung der Bestellnummern (Beispiel)


dieser Anwendung bitte A, B, C, D, E <u>CNC 501 T F A - M</u> definieren.

> M:mit Motor Kein Buchstabe:Gleichstrom-Servomotor A:Wechselstrom-Servomotor H:HEIDENHAIN X:ISOFLEX SEM:SEM B:BOSCH

Kein Buchstabe:ohne Motor

Anordnung des Motors T:Oberseite
Durchmesser der Planscheibe
200, 260, 320, 400, 500, 600

CNC:Standard CNCZ:Hochgeschwindigkeits-Z-Serie

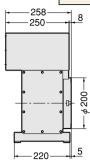
Tachnischa Datan

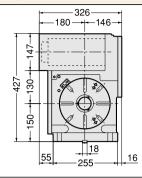
(): CNC-RUNDTISCHE der Hochgeschwindigkeits-Z-Serie

l echnische Daten		(): CNC-RUND	TISCHE der Hochg	A (Palettengröße)				
Einheit / Bestellnummer			CNC200T CNCZ200T	CNC260T CNCZ260T	CNC321T	CNC401T	CNC501T	CNC601T
Durchmesser Planscheibe ϕ mm		200	260	320	400	500	600	
Durchmesser	Spindelbohrung	<i>∲</i> mm	φ50H7	φ80H7	φ105H7	φ105H7	φ130H ₇	φ130H7
Spitzenhöhe		mm	150	170	240	240	310	310
T-Nutenbreite		mm	12 +0.018	12 +0.018	12 +0.018	14 +0.018	14 + 0.018	14 +0.018
Klemmsystem			Pneumatik	Pneumatik/Hydraulik	Hydraulik	Hydraulik	Hydraulik	Hydraulik
Klemmmomer	nt	N∙m	196	392/1176	1760	1760	4655	4655
Trägheitsmoment ar	der Motorwelle (GD ² /4) k	g•m ² ×10 ³	1.0	1.5	2.0	2.0	9.0	8.8
Servomotor		min-1	α4/4000i•2000	α4/4000i•2000	α12/3000i•2000	α12/3000i•2000	α12/3000i•2000	α12/3000i•2000
Kleinstes Inkre	ement		0.001°	0.001°	0.001°	0.001°	0.001°	0.001°
Drehgeschwin	digkeit	min-1	22.2 (44.4)	16.6 (33.3)	16.6 (33.3)	16.6 (33.3)	16.6 (33.3)	11.1 (22.2)
Untersetzungs	sverhältnis		1/90 (1/45)	1/120 (1/60)	1/120 (1/60)	1/120 (1/60)	1/120 (1/60)	1/180 (1/90)
Teilgenauigke	it	sec	20	20	15	15	15	15
Nettogewicht		kg	95	125	200	245	495	525
Zulässiges Werkstückgewicht,	Senkrecht		100	175	250	250	400	400
max.	Waagerecht	w kg						
	F	N	10780	19600	31360	31360	39200	39200
Zulässige Axiallast, max.	L TE	F×L N∙m	637	858	1166	1166	4655	4655
	F L	F×L N∙m	980	2744	3920	3920	5880	5880
Trägheitsmoment, max.	Senkrecht	² /4) kg•m²	1.0 (0.5)	1.9 (1.2)	8.0 (4.0)	8.0 (4.0)	19 (9.7)	37 (19)
Antriebsmoment		N∙m	144 (115)	192 (153)	576 (460)	576 (460)	576 (460)	864 (690)

- ★Motor X8/3000i kann auf CNC200T und CNC260T eingesetzt werden.
- ★Motor &22/3000i kann auf CNC321T, CNC401T, CNC501T und CNC601T eingesetzt werden.
- ★Das AWC-System (Werkstückwechsler) ist für alle Tische lieferbar, 🖅 S.33~36. ★Die Drehdurchführung ist für alle Tische lieferbar, 🖅 S.43.
- ★Alle Tische sind auch als Hochpräzisionsmodelle mit ±3" oder ±5" lieferbar. © S.42.
- ★Das hydraulische Klemmsystem benötigt einen Öldruck von 3.5 MPa.
- ★Der CNC501T ist auch mit einem Untersetzungsverhältnis von 1/180 lieferbar. ★Für Maschinen ohne eigene Hydraulik ist eine Pneumatik-/ Hydraulikeinheit
- für das hydraulische Klemmsystem lieferbar. 🖙 S.44.

CNC200T, 260T, 321T, 401T, 501T, 601T




Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor. CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

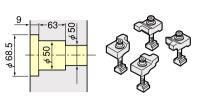
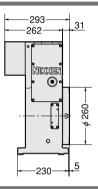

CNC200T, CNCZ200T

Abbildung mit Zentriereinsatz (optional).



Mit Sperrluftfunktion ausgestattet.

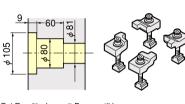
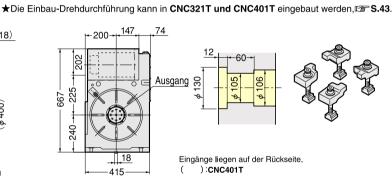

CNC260T, CNCZ260T

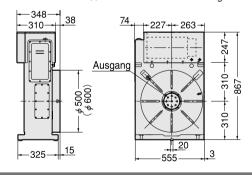
Abbildung mit Zentriereinsatz (optional).

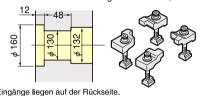
Bei Rundtischen mit Pneumatikbremse gehört Sperrluftausstattung des Motorgehäuses zum Standard


Der CNC260T ist die neue Version des CNC250T.

CNC321T, 401T

Abbildung mit Zentriereinsatz (optional).


-328 -(338) 8 (18) 320

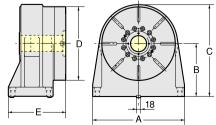


★Die Einbau-Drehdurchführung kann in CNC501T und CNC601T eingebaut werden, © S.43.

CNC501T, 601T

Eingänge liegen auf der Rückseite):CNC601T

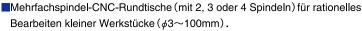
- ★Präzision und Toleranzen 🖅 S.41.
- ★Befestigungsmaterial und Nutensteine ☞ S.18. ★Dreibackenfutter, Reitstock und weitere optional lieferbare
- Zubehörteile E S.39. 40.
- ★CNC-Tische zum Einbau in CNC-Sondermaschinen FS.48.


Gegenlager TAT

Ausführung ohne T-Nuten ist Standard. Als Option sind T-Nuten verfügbar.

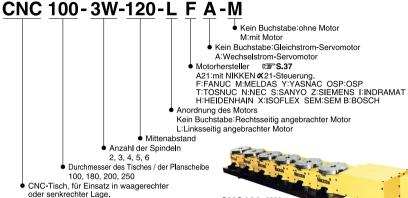
TAT250

TAT400

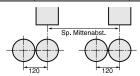

Hydraulikanschlüsse sind 2 x Rc 3/8" und Pneumatikanschlüsse sind 2 x Rc 1/4". Magnetventil und Bestätigungsschalter für "Klemmen" "Klemmen lösen" sind nicht im Lieferumfang enthalten.

Bestellnr.	Α	В	С	D	Е	Klemm- system	Klemm- moment	Gewicht
TAT200	250	150	250	200	145	pneum./hydr.	112 784	43
TAT250	250	170	295	250	145	pneum./hydr.	112 784	50
TAT320	400	230	390	320	250	Hydraulik	1470	120
TAT400	400	230	430	400	250	Hydraulik	1470	140
TAT500	480	310	560	500	250	Hydraulik	1470	200

- ★Erforderlicher Luftdruck 0,5 MPa.
- ★Erforderlicher Hydraulikdruck 3,5 MPa. ★Für alle Modelle ist eine Drehdurchführung lieferbar, 🍞 S.43.


MEHRFACHSPINDEL-CNC-RUNDTISCHE

- ■Unterschiedliche Abstände zwischen den Spindeln sind möglich.
- ■CNC-Rundtische mit 5 oder 6 Spindeln sind ebenfalls lieferbar.
- Erklärung der Bestellnummern (Beispiel)



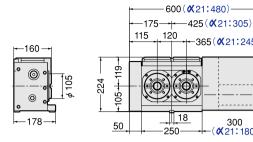
CNC100-6W

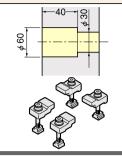
Technische Daten

Einheit /	/ Bestellnummer	CNC100-2W,-3W,-4W			CNC180-2W	CNC202-2W	CNC250-2W
Durchmesser	Planscheibe ϕ mm	105			180	200	250
Durchmesser	Spindelbohrung ϕ mm		ϕ 60H7 $\times \phi$ 30)	φ60H7 × φ40	ϕ 60H7 $ imes$ ϕ 40	φ60H7×φ52
Anzahl der Sp	indeln (Abstand) mm		2,3,4 (120)		2 (250)	2 (250)	2 (320)
Spitzenhöhe	mm		105		175	175	220
T-Nutenbreite	mm		16 ^{+0.018}		12 +0.018	12 +0.018	12 +0.018
Klemmsystem			Pneumatik		Pneumatik	Pneumatik	Pneumatik
Klemmmomer	nt N•m		147		303	303	343
Trägheitsmoment an	der Motorwelle (GD ² /4) kg·m ² ×10 ³	0.13	0.16	0.2	0.12	0.13	0.6
Servomotor	min-1	α2/500	0i • 2000	α4/4000i • 2000	α4/4000i•2000	α8/3000i•2000	α8/3000i • 2000
Kleinstes Inkre	ement		0.001°		0.001°	0.001°	0.001°
Drehgeschwin	digkeit min-1		11.1		22.2	22.2	16.6
Untersetzungs	sverhältnis	1/180			1/90	1/90	1/120
Teilgenauigke	it sec sec	<u>±</u>	30	±45	±20	±20	20
Nettogewicht	kg	70	90	120	135	140	250
Zulässiges Werkstückgewicht,	Senkrecht	15			100	100	100
max.	Waagerecht kg		30		200	200	200
	N		3920		10780	10780	19600
Zulässige Axiallast, max.	F×L N·m		49		415	415	686
	FXL N·m		98		980	980	2744
Trägheitsmoment, max.	Senkrecht (GD²/4) kg·m²	0.019 (0.07Waagerecht)			0.5	0.5	1.3
Antriebsmoment	N⋅m		72		72	144	192

[★]Ausführung L (linksseitig angebrachter Motor) ist für alle Tische lieferbar.
★Minimum Mittenabstand zwischen den Spindeln bei CNC100:120mm, bei CNC180:250mm, bei CNC202:250mm, bei CNC260:320mm.

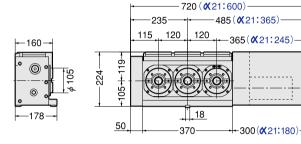
Wenden Sie sich an uns, falls Sie einen abweichenden Mittenabstand benötigen. ★Ein 4-Spindeltisch zum Einsatz auf einem Bearbeitungszentrum mit 2 Spindeln ist lieferbar. ★Max. Anzahl von Spindeln bei CNC100:6, bei CNC180:4, bei CNC202:3, bei CNC260:2.

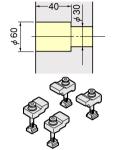

[★]Für alle Modelle ist eine Drehdurchführung lieferbar. F S. 43


CNC100-2W, 3W, 4W, CNC180-2W, CNC202-2W, CNC260-2W **NIKKEN**

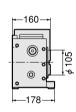
Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor bzw. mit NIKKEN 621-Steuerung (621:). CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

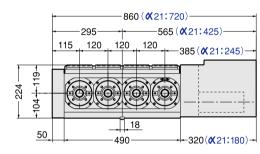
CNC100-2W

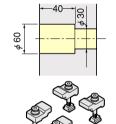




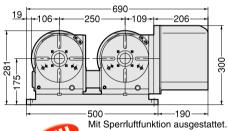
CNC100-3W

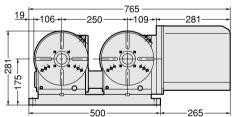




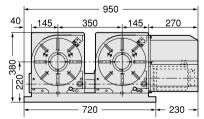


CNC100-4W

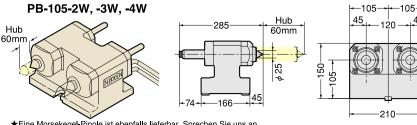




CNC180-2W


CNC202-2W

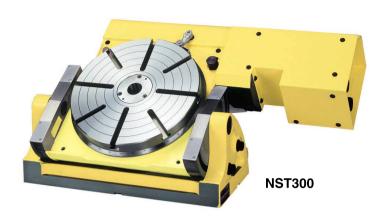
Mit Sperrluftfunktion ausgestattet. Toleranzen bei Mehrspindeltischen


Nr.	Мав	Messmethode	Toleranz
1	Spindelabstand		Innerhalb ±0.02mm vom Nennabstand
2	Spitzenhöhe der Spindel		Innerhalb ±0.02mm

CNC260-2W

Bei Rundtischen mit Pneumatikbremse gehört Sperrluftausstattung des Motorgehäuses zum Standard.

Pneumatischer Reitstock für Mehrfachspindeltische



- ★Befestigungsmaterial und Nutensteine 🖅 S.18
- ★Dreibackenfutter, Reitstock und weitere optional lieferbare Zubehörteile © S.39, 40.
- ★Zubehör der & Serie kann auf CNC100-2W, 3W, 4W, CNC180-2W und CNC202-2W eingesetzt werden., FS.38.

[★]Eine Morsekegel-Pinole ist ebenfalls lieferbar. Sprechen Sie uns an. ★Der Hub von 60mm kann geändert werden. Sprechen Sie uns an.

MANUELL SCHWENKBARE RUNDTISCHE

- Der Tisch kann manuell von 0° bis 90° geschwenkt werden.
- ■Das Schalten des Tisches erfolgt CNC-gesteuert und kann bei allen Bearbeitungsarten eingesetzt werden.
 - Erklärung der Bestellnummern (Beispiel)

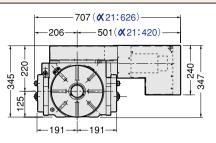
NST 300 L F A - M Kein Buchstabe:ohne Motor M:mit Motor • Kein Buchstabe:Gleichstrom-Servomotor A:Wechselstrom-Servomotor A:Wechselstrom-Servomotor Motorhersteller (□ S.37 A21:mit NIKKEN & 21-Steuerung F:FANUC M:MELDAS Y:YASNAC OSP:OSP T:TOSNUC N:NEC S:SANYO Z:SIEMENS I:INDRAMAT H:HEIDENHAIN X:ISOFLEX SEM:SEM B:BOSCH Anordnung des Motors Kein Buchstabe:Rechtseetitg angebrachter Motor L:Linksseitig angebrachter Motor (nur NST 300) Planscheibendurchmesser 250, 300, 500

- 250, 300, 500 NST:Manuell schwenkbarer Rundtisch

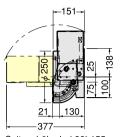
Technische Daten

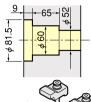
Einheit / Bestellnummer		NST250	NST300	NST500
Durchmesser	Planscheibe ϕ mm	250	300	500
Durchmesser	Spindelbohrung ϕ mm	φ60H7 × φ52	φ60H7×φ60	ϕ 75H7 $ imes$ ϕ 61.5
Spitzenhöhe	mm	155	208	288
T-Nutenbreite	mm	12 ^{+0.018}	12 +0.018	14 ^{+0.018}
Klemmsystem		Pneumatik	Pneumatik	Pneumatik
Klemmmomer	nt N•m	147	196	196
Trägheitsmoment ar	der Motorwelle (GD ² /4) kg·m ² ×10 ³	0.39	0.59	0.69
Servomotor	min ⁻¹	α2/5000i∙2000	α4/4000i • 2000	α8/3000i•2000
Kleinstes Inkre	ement	0.001°	0.001°	0.001°
Drehgeschwin	digkeit min-1	16.6	11.1	5.5
Untersetzungs	sverhältnis	1/120	1/180	1/360
Teilungsgenau	uigkeit sec	20	20	20
Nettogewicht	kg	75	130	320
Zulässiges Werkstückgewicht,	Senkrecht kg	50	100	200
max.	Waagerecht kg	100	300	500
	N	9800	14700	24500
Zulässige Axiallast, max.	FXL N·m	412	686	1166
	FXL N·m	706	1176	2450
Trägheitsmoment, max.	Senkrecht ∫ (GD²/4) kg⋅m²	1.35	3.37	14.70
Antriebsmoment	N⋅m	144	288	1152

NST250, 300, 500



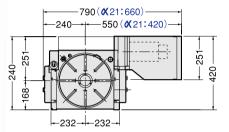
Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor bzw. mit NIKKEN &21-Steuerung (&21:). CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

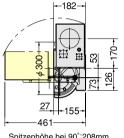

NST250

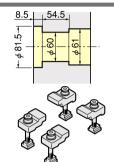

Abbildung mit Zentriereinsatz (optional).

Tischhöhe in waagerechter Position:151mm

Spitzenhöhe bei 90°:155mm




NST300


Abbildung mit Zentriereinsatz (optional).

Tischhöhe in waagerechter Position:182mm

Spitzenhöhe bei 90°:208mm

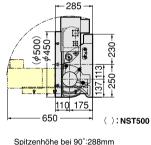
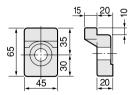

NST500

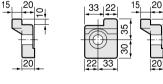
Abbildung mit Zentriereinsatz (optional).

744

Tischhöhe in waagerechter Position:285mm

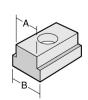


- ★Präzision und Toleranzen@ S.41.
- ★Dreibackenfutter, Reitstock und weitere optional lieferbare Zubehörteile F S.39, 40.


BEFESTIGUNGSMATERIAL und NUTENSTEINE

Nutenstein

Befestigungsmaterial

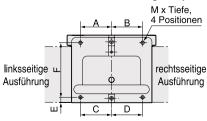


Ε

Abstand T-Nuten

Das Befestigungsmaterial ist für T-Nutenabstände von 100 oder 125 mm des B/Z-Maschinentisches konstruiert. Bei anderen Abständen bitte uns verständigen.

Nutensteine



★ 2 Stück/Set

Achtung, sofern gestufte Nutensteine benötigt werden, ändert sich das Befestigungsmaterial.

ВА	14	18	20
10	W-14I		
12	W-14H	W-18E	
14		W-18A	
16	W-14A	W-18B	W-20A
18	W-14B		W-20B
20	W-14C	W-18C	
22		W-18D	W-20C
24			W-20D
7/16″	W-14F		
11/16″	W-14G		

Anbringen von Gewindebohrungen an der Unterseite der Tischgrundplatte

●Bitte oben definierte Maße für den Fall der Direktmontage mit Verschraubung an der Tischgrundplatte uns mitteilen.

	Bestellnr.	Α	В	С	D	Е	F	M x Tiefe, 4 Positionen
	CNC105, 105L	55	55	55	55	10	125	M10×12L, 4 Pos.
9	CNC180, 202 CNC180L, 202L	70	70	70	70	12	123	M 8×10L, 4 Pos.
,	CNC260, 302	105	120	105	120	12.5	167.5	M12×16L, 4 Pos.
	CNC260L, 302L	120	105	120	105	12.5	167.5	M12×16L, 4 Pos.
	CNC321, 401	145	135	165	135	15	200	M12×20L, 4 Pos.
	CNC321L, 401L	135	145	135	165	15	200	M12×20L, 4 Pos.
	CNC501, 501L	240	240	240	240	20	235	M16×30L, 4 Pos.

KOMPAKTE SCHWENK-RUNDTISCHE

5AX-130FA

- ■Dreh- und Schwenkachsen sind CNC-gesteuert.
- ■Bei den Modellen 5AX-130 und 5AX-200 II drehen sich Kabel und Schläuche der Drehachse während des Schwenkens nicht mit.
- Reichhaltiges Zubehör F S.38.
- Erklärung der Bestellnummern (Beispiel)

5AX - 130 F A - M

◆ Kein Buchstabe:ohne Motor M:mit Motor ♦ Kein Buchstabe:Gleichstrom-Servomotor A:Wechselstrom-Servomotor Motorhersteller☞ \$.35 WA21:mit NIKKEN **X**21Steuerung für beide Achsen
DA21:mit NIKKEN **X**21Steuerung für Schwenkachse
F:FANUC M:MELDAS Y:YASNAC OSP:OSP T:TOSNUC N:NEC S:SANYO
Z:SIEMENS I:INDRAMAT H:HEIDENHAIN X:ISOFLEX SEM:SEM B:BOSCH

Durchmesser der Planscheibe 130, 200, 220

Anordnung des Motors der Schwenkachse Keine Angabe:waagerecht

A:Rückseite-Schwenkachse B:Rückseite-Drehachse T:Oben angebrachter Motor 5AX-Schwenk-Rundtisch

Rundtische mit & 21-Steuerung, © S.59.

Technische Daten

Einheit / Bestellnummer		5AX-130		5AX-200 II ^{**}		
Durchmesser Planscheibe ϕ mm		φ105 (mit φ130 Zusatztisch)		200 (220)		
Durchmesser Spindelbohrung ϕ mm		φ60H7 × φ30		ϕ 60H7 $ imes$ ϕ 50		
Spitzenhöhe (90°)	mm	15	50	180	
Tischhöhe in wa	agerechter Pos	sition (0°) mm	20	35	260 (265)	
T-Nutenbreite		mm	φ10H ₇ St	iftbohrung	12	+0.018 0
Achse			Dreh-A.	Schwenk-A (0°~105°)	Dreh-A.	Schwenk-A (0°~105°)
Klemmsystem	1		Pneumatik	Pneumatik	Hydraulik	Hydraulik
Klemmmomer	nt	N∙m	205	303	588	490
Trägheitsmoment ar	n der Motorwelle	(GD ² /4) kg∙m ² ×10 ³	0.09	0.12	0.11	0.16
Servomotor		min-1	α2/5000i •2000	α2/5000i•2000	α4/4000i•2000	α4/4000i•2000
Kleinstes Inkr	ement		0.001°	0.001°	0.001°	0.001°
Drehgeschwir	ndigkeit	min-1	22.2	11.1	22.2	11.1
Untersetzungs	sverhältnis		1/90	1/180	1/90	1/180
Teilgenauigke	it	sec	±30	60	± 20	60
Nettogewicht		kg	99.5		210	
Zulässiges Werkstückgewicht	0 - 30°	w kg	50		80	
max.	30 - 90°	+ € kg	2	25		50
	Schwenkwink = 0°	kel + N	58	380	98	800
Zulässige	Schwenkwink = 0°	(el F	L=65mm	F= 2940N	L= 100mm	F=4900N
max.	= 90 		F ₁ = 3460N F ₂ = 1590N	L ₁ =0mm F ₁ =5880N L ₂ =100mm F ₂ =2940N		
	Schwenkwink = 90°	F FXL N·m	98		3	82
Trägheitsmoment max.	+ [(GD²/4) kg·m²	0.	.12	(0.5
Antriebsmoment	-	N·m	72		1	44

[★]Das AWC-System (Werkstückwechsler) ist für alle Tische lieferbar, 1 33~36.

[★]Drehdurchführung ☞ \$.43.

★Alle Tische sind auch als Hochpräzisionsmodelle lieferbar, Drehachse ±5″, Schwenkachse ±10″, ☞ \$.42.

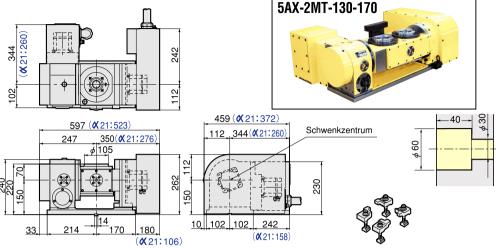
[★]Motor Ø2/5000i kann auf der Drehachse des **5AX-200**II verwendet werden.

Die Abmessungen werden dadurch kompakter. ★Die Anordnung des Schwenkachsen-Motors kann wahlweise geändert werden,

z.B. 5AX-B130 und 5AX-B200Ⅱ (Motor auf der Rückseite).

★※ Bitte bei Bestellung den 5AX200Ⅱ als 5AX2002 definieren.

5AX-130, 5AX-200

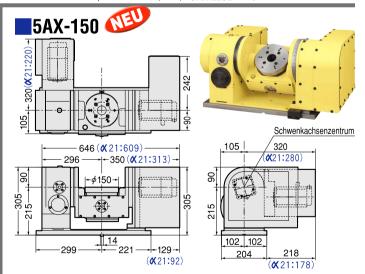


Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor bzw. mit NIKKEN &21-Steuerung (&21:). CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

5AX-130

Abbildung mit *ϕ*130 mm Planscheibe

Die Spitzenhöhe bei Ständererhöhung ist gegenüber dem Standardtisch um 65mm höher, EFS.43


5AX-B200 Ⅲ Kompaktausführung 5AX-200II (**x**21:115) 783 (**X** 21: 698) 557 (**X**21:447) -430(**X**21:345) -167-|-390(**X**21:280) ϕ 200(220) 80 260 (265) -180-8 30 258 -175-(**X**21:90) (**X**21:148) Die Spitzenhöhe bei Ständererhöhung ist gegenüber dem Standardtisch um 65mm höher, FS.43):5AX-220II

- ★Präzision und Toleranzen © S.41
- ★Befestigungsmaterial und Nutensteine ⑤ S.18.

 ★Dreibackenfutter, Reitstock und weitere optional lieferbare Zubehörteile ⑥ S.39, 40.

■Kollisionsbereiche in geschwenkter Position

Winkel	5AX-130	5AX-200I
0° \$ 45°	φ135 <u>ν</u>	φ210 <u>5</u>
0° \$ 90°	\$300 \$\frac{\phi}{25}\$\$\frac{\phi}{25}\$\$\frac{\phi}{25}\$\$\$\frac{\phi}{25}\$\$\$\$\frac{\phi}{25}\$	\$350 \$280 \$280 \$210 \$24 \$210
0° \$ 105°	\$235 \$\frac{\psi_235}{\psi_135}\$\$	#250 #5° #5° #5° #5° #5° #5° #5° #5° #5° #5°

Methode zur Berechnung der Axiallast für Bohrarbeiten $T=9.8\times(0.711\times HB\times f^{0.8}\times D^{0.8}+0.0022\times HB\times D^2)$

- T: Axiallast(N)
 - f: Vorschub pro Umdrehung (mm/U)
- HB : Brinellhärte des Werkstücks
- D: Bohrerdurchmesser (mm)
- Beispiel für Bohren in Aluminium
- (HB:100, D: \(\phi 9.5 \text{mm}, F: 0.2 \text{mm/U} \),

Berechnung:

$9.8 \times (0.711 \times 100 \times 0.2^{0.8} \times 9.5^{0.8} + 0.0022 \times 100 \times 9.5^{2})$

Dies ist die Axiallast bei Benutzung eines neuen Bohrers Bei einem abgenutzten Bohrer erhöht sich die Axiallast. (140~160%)

SCHWENK-RUNDTISCHE

Kraftvolles Klemmsystem

- CNC-Schwenk-Rundtisch mit kraftvollem Klemmsystem. In Japan, USA, EU patentiert
- Erklärung der Bestellnummern (Beispiel)

5AX- 230 L F A - M

- Kein Buchstabe: ohne Motor M:mit Motor

- Position des Motors der Drehachse Kein Buchstabe:Rechtsseitig angebrachter Motor L:Linksseitig angebrachter Motor
- Durchmesser der Planscheibe 230, 350
 Lage des Motors der Schwenkachse keine Angabe: horizontal
 T: Motor oben
- 5AX-:CNC-Rundschalt-und Schwenktisch

Technische Daten

Einheit / Bestellnummer		5AX-230		5AX-350		
Durchmesser Planscheibe φmm			230		350	
Durchmesser	Durchmesser Spindelbohrung		φ 60H ₇	× \phi 40	φ80H7	
Spitzenhöhe (Spitzenhöhe (90°) mm		24	40	300	
Tischhöhe in wa	agerechter Positi	ion (0°) mm	28	35	3	00
T-Nutenbreite		mm	12 ⁻	+0.018 0	12	+0.018
Achse			Dreh-A.	Schwenk-A. (0°~105°)	Dreh-A.	Schwenk-A. (+30°∼−120°)
Klemmsystem			Hydraulik	Hydraulik	Hydraulik	Hydraulik
Klemmmomer	nt	N∙m	490	3430	2000	2000
Trägheitsmoment ar	n der Motorwelle (G	D ² /4) kg·m ² ×10 ³	0.3	0.5	0.8	1.35
Servomotor		min-1	α4/4000i•2000	α8/3000i•2000	α8/3000i	α12/3000i
Kleinstes Inkre	ement		0.001°	0.001°	0.001°	0.001°
Drehgeschwir	ndigkeit	min-1	11.1	5.5	22.2	22.2
Untersetzungs	sverhältnis		1/180	1/360	1/90	1/90
Teilgenauigke	it	sec	20	60	20	60
Nettogewicht		kg	220		420 (ohne Grundplatte 355)	
Zulässiges Werkstückgewicht			100		200	
max.	30 - 90°	+	10	00	2	00
	Schwenkwinke = 0°		11	760	19	600
Zulässige	Schwenkwinke = 0°	F +	L=115mm	F=5880N	L=175mm	F = 4900 N
Axiallast max.	Schwenkwinke = 90°	F1 F2	L ₁ = 0mm L ₂ = 100mm			F ₁ = 17160 N F ₂ = 8580 N
	Schwenkwinke = 90°	F F×L N·m	451		8	58
Trägheitsmoment max.	+	(GD²/4) kg·m²	0.66		3	3.2
Antriebsmoment		N·m	29	88	2	88

[★]Die Ausführung L (linksseitig angebrachter Motor) ist für das Modell 5AX-230 lieferbar. ★Das AWC-System (Werkstückwechsler) ist für alle Tische lieferbar, ☞ S.33~36.

[★]Drehdurchführung [② S.43.

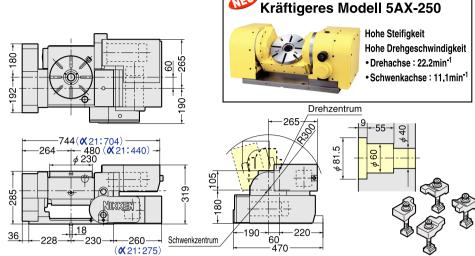
★Alle Tische sind auch als Hochpräzisionsmodelle lieferbar, Drehachse ±5″, Schwenkachse ±10″, [③ S.42.

[★]Motor Ø8/4000i kann auf der Drehachse des **5AX-230** verwendet werden.

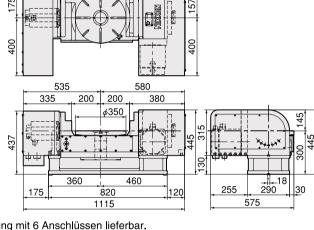
[★]Der benötigte Öldruck beträgt 3.5MPa.

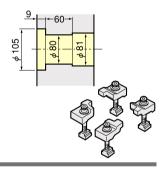
[★]Der Schwenkbereich (0° bis 105°) des Tisches kann wahlweise vergrößert werden.

5AX-230, 5AX-350


Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor. CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

5AX-230


Abbildung mit Zentriereinsatz (optional).


Die Spitzenhöhe bei Ständererhöhung ist gegenüber dem Standardtisch um 75mm höher, 📭 S.41

5AX-350

Optional ist eine Einbaudrehdurchführung mit 6 Anschlüssen lieferbar.

- ★Präzision und Toleranzen @ S.41.
- ★Befestigungsmaterial und Nutensteine © S.18.
- ★Dreibackenfutter, Reitstock und weitere optional lieferbare Zubehörteile 🖙 S.39, 40.
- ★Schwenkbox für die Befestigung von Kabeln und Schläuchen ist ebenfalls lieferbar. Sprechen Sie uns an, ເ≘ \$.36.

■Kollisionsbereiche in geschwenkter Position

Winkel	5AX-230	5AX-350
0° \(\) 45°	<u>φ350</u> με	\$455 \$400 \$400 \$1
0° \$ 90°	\$\frac{\phi}{\phi} \frac{\phi}{\phi} \frac{\phi}	#540 #455 #400
0° \$ 105°	\$370 \$260 \$260 \$250 \$250 \$250 \$250 \$250 \$250 \$250 \$25	\$\frac{\partial 455}{\phi 400}\$

Eingebaute 4./5. Achse-Rundtische sind mehr und mehr als Ausstattung von Bearbeitungszentren gefragt, besonders bei Sonderanforderungen.

Ausstattung eines B/Z mit 4./5. Achse-Rundtisch zur Formenbearbeitung.

Ausstattung eines Sonderschleif-Zentrums mit 4./5. Achse-Rundtisch.

Ausstattung eines B/Z mit 4./5. Achse-Rundtisch in großer Ausführung zur Formenbearbeitung. (Die Grundplatte wird vom Maschinenhersteller gestellt.)

22

SCHWENK-RUNDTISCHE

5AX-550

CNC-Schwenk-Rundtisch mit kraftvollem Doppel-Bremssystem.

• Erklärung der Bestellnummern (Beispiel)

5AX - 550 F A - M

Kein Buchstabe:ohne Motor M:mit Motor
Kein Buchstabe:Gleichstrom-Servomotor A:Wechselstrom-Servomotor

Nein buchstabe-Gelenstrom-Servomotor A. Wechselstrom-Servom Motorhersteller 126 S.37
WA21PW:mit NIKKEN &21-Steuerung für beide Achsen DA21PW:mit NIKKEN &21-Steuerung für Schwenkachse F:FANUC M:MELDAS Y:YASNAC OSP:OSP T:TOSNUC N:NEC S:SANYO Z:SIEMENS I:INDRAMAT H:HEIDENHAIN X:ISOFLEX SEM:SEM B:BOSCH

Durchmesser der Planscheibe 400, 550

5AX-: CNC-Schwenk-Rundtisch

Technische Daten

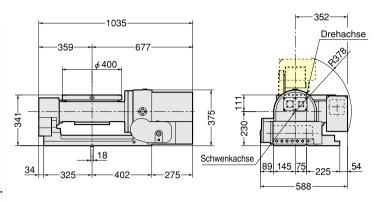
Einheit / Bestellnummer		5AX-400		5AX-550		
Durchmesser	Durchmesser Tisch ϕ mm		400		550	
Durchmesser	Spindelbohrung	∮mm	<i>φ</i> 80H7		φ130H7	
Spitzenhöhe (90°)	mm	3	05	380	
Tischhöhe in wa	agerechter Position (0°)	mm	3-	41	5	18
T-Nutenbreite		mm	14	+0.018 0	14	+0.018 0
Achse			Dreh-A.	Schwenk-A. (0°~105°)	Dreh-A.	Schwenk-A. (-105°~+105°)
Klemmsystem	1		Hydraulik	Hydraulik	Hydraulik	Hydraulik
Klemmmome	nt	N∙m	1136	4018	3430	6272
Trägheitsmoment a	n der Motorwelle (GD ² /4) kg·m	² X10 ³	0.7	0.4	5.5	5.2
Servomotor	ĺ	min-1	α8/3000i•2000	α8/3000i•2000	α12/3000i•2000	α12/3000i•2000
Kleinstes Inkr	ement		0.001°	0.001°	0.001°	0.001°
Drehgeschwir	ndigkeit	min-1	11.1	5.5	11.1	5.5
Untersetzung	sverhältnis		1/180	1/360	1/180	1/360
Teilungsgena	uigkeit	sec	20	60	20	60
Nettogewicht		kg	420		950	
Zulässiges Werkstückgewicht	0 - 90°	w J kg	300		5	00
max.	30 - 90°] _{kg}	1:	50	3	00
	Schwenkwinkel = 0°	N	24	500	31	360
Zulässige	Schwenkwinkel = 0° F L		L=200mm	F=6860N	L=275mm	F=9800N
Axiallast max.	Schwenkwinkel F1 F2 = 90°		L ₁ =0mm L ₂ =100mm	L ₁ =0mm F ₁ =9800N L ₂ =100mm F ₂ =4900N		F ₁ =19600N F ₂ =14120N
	Schwenkwinkel L	F×L N·m	588		29	548
Trägheitsmoment max.	+ (GD ² /4)	kg•m²	3	.8	2	23
Antriebsmoment		N∙m	5	76	8	64

[★]Das AWC-System (Werkstückwechsler) ist für alle Tische lieferbar, 『 \$.33~36. ★Drehdurchführung ist für alle Tische lieferbar, 『 \$.43. ★Alle Tische sind auch als Hochpräzisionsmodelle lieferbar mit Drehachse:±3″ oder

 $[\]pm 5$ ", Schwenkachse: ± 10 ", EF S. 42.

[★]Der benötigte Öldruck beträgt 3.5 MPa.

5AX-400, 5AX-550



Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit Motor von FANUC. CAD-Daten im DXF-Format für alle Einzelabmessungen können Sie von uns erhalten.

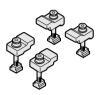
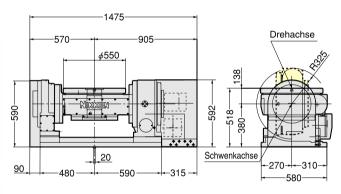

5AX-400

Abbildung mit Zentriereinsatz (optional).



5AX-550

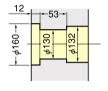
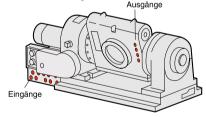


Abbildung mit Zentriereinsatz (optional).

- ★Präzision und Toleranzen @ S.41.

- ★ Befestigungsmaterial und Nutensteine 1 S.18.

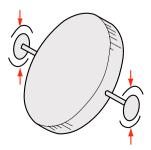

 ★ Dreibackenfutter (manuell), Reitstock und weitere, optional lieferbare Zubehörteile 1 S.39, 40.

 ★ Schwenkbox für die Befestigung von Kabeln und Schläuchen ist für das Modell 5AX-400 lieferbar.

Kollisionsbereiche bei geschwenkter Position

Winkel	5AX-400	5AX-550
0° \(\) 45°	φ430 → Q,	\$550 - Q
0° \$ 90°	\$430 04 \$430 04 \$1	\$640 \$650 \$640 \$750 \$640
0° \$ 105°	ø430 027	15° √550 → S.

■Zusätzliche Hydraulikanschlüsse



5AX-400:3 Hydraulikanschlüsse sind Serienausstattung 5AX-550:4 Hydraulikanschlüsse und können für die Drehdurchführung auf der Drehachse genutzt werden. 2 S.43

Kraftvolles Doppel-Bremssystem

5AX-400 und 5AX-550 sind an beiden Enden der Schwenkachse mit einem kraftvollen Bremssystem ausgestattet und laufen auch bei hoher Arbeitsbelastung vibrationsfrei.

24

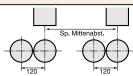
MEHRSPINDEL-SCHWENK-RUNDTISCHE

5AX-4MT-120, Abbildung mit Spannmitteln (optional).

- Schwenk-Rundtische mit mehreren Spindeln
- ■Vielseitiges Zubehör zur Befestigung von Werkstücken
- Erklärung der Bestellnummern (Beispiel)

5AX-2MT-105-120 FA-M

Abstand der Spindeln (Zentrum)


Durchmesser der Planscheibe 105, 120 Anzahl der Spindeln:2, 3, 4 5AX-: Schwenk-Rundtisch

Technische Daten

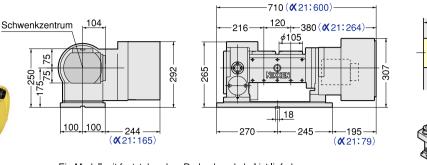
	conc Baton	- 570	A . Goriweriik Hariatigori			
Einheit / Bestellnummer		5AX-2MT-105		5AX-4MT-120		
Durchmesser Tisch/Planscheibe φmm		105		105		
Durchmesser	Spindelbohrung ϕ mm	φ60H	·× φ30	<i>ϕ</i> 60 × <i>ϕ</i> 30		
Anzahl der Spir	ndeln (Mittenabstand) mm	1	20	120		
Spitzenhöhe ((90°) mm	1	75	2	:35	
Tischhöhe in wa	aagerechter Position (0°) mm	2	50	3	00	
T-Nutenbreite	e mm	16`	+0.018 0	16	+0.018 0	
Achse		Dreh-A.	Schwenk-A. (0°~105°)	Dreh-A.	Schwenk-A. (-110°~+110°.	
Klemmsysten	n Pneumatik 0.5MPa Hydraulik 3.5MPa	Pneumatik	Pneumatik	Hydraulik	Hydraulik	
Klemmmome	nt N•m	147	147	147	343	
Trägheitsmoment a	n der Motorwelle (GD ² /4) kg·m ² ×10 ³	0.13	0.13	0.2	0.48	
Servomotor	min-1	α2/5000i•2000	α2/5000i•2000	α8/3000i•2000	α4/4000i•2000	
Kleinstes Inkr	ement	0.001°	0.001°	0.001°	0.001°	
Drehgeschwir	ndigkeit min-1	22.2	11.1	11.1	16.6	
Untersetzung	sverhältnis	1/90	1/180	1/180	1/120	
Teilungsgena	uigkeit sec	±30	60	±45	±30	
Nettogewicht kg		115		2	30	
Zulässiges Werkstückgewicht	0 - 30°	1	5	:	25	
max.	30 - 90° + + + kg	1	0		15	
	Schwenkwinkel F Schwenkwinkel N N	39	920	39	920	
Zulässige	Schwenkwinkel = 0° F + +	L=60mm	F1=784N	L=60mm	F=2858N	
Axiallast max.	Sohwonkwinkol Et E2 I O E OFONI			L ₁ =0mm F ₁ =1380N L ₂ =100mm F ₂ =1040N		
	Schwenkwinkel L———F F×L N·m	4	19		49	
Trägheitsmoment max.	+ (GD ² /4) kg·m ²	0.0	014	0.	021	
Antriebsmoment	m·Z	3	36	1	44	

[★]Min. Mittenabstand zwischen den Spindeln bei Modell105:120mm, bei M170:200mm, bei M200:250mm.

[★]Der Schwenkbereich (0° bis 105° oder ±110°) des Tisches kann wahlweise vergrößert werden. Sprechen Sie uns bitte an.

Wenden Sie sich an uns, falls Sie einen abweichenden Mittenabstand benötigen. ★Ein 4-Spindeltisch zum Einsatz auf einem Bearbeitungszentrum mit 2 Spindeln ist lieferbar.

[★]Max. Anzahl von Spindeln bei Modell105:4, bei M170:3, bei M200:3. ★Das hydraulische Klemmsystem benötigt einen Öldruck von 3.5MPa.



5AX-2MT, 5AX-4MT

5AX-2MT-105

Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor bzw. mit NIKKEN≪21-Steuerung (≪21:). CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

Ein Modell mit feststehendem Drehachsenkabel ist lieferbar. Die Spitzenhöhe bei Ständererhöhung ist gegenüber dem St

Die Spitzenhöhe bei Ständererhöhung ist gegenüber dem Standardtisch um 35mm höher Max. Anzahl von Hydraulikeingängen in der Drehdurchführung beim Standardtisch:4, beim Tisch mit Ständererhöhung:6 Eingänge.

5AX-4MT-120

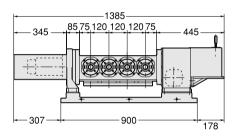


Abbildung mit 4" hydraulischem Kraftspannfutter (optional).

Maximal können 6 Hydraulikeingänge in der Drehdurchführung beim Standardmodell genutzt werden.

Mehrspindel-Schwenk- / Rundtische

Sonderausführungen

Bei Anfragen zu Mehrspindel-Schwenk-/Rundtischen nennen Sie uns bitte Planscheibendurchmesser, Werkstückspannung (z.B. Kraftspannfutter), den Spindelabstand sowie die Modellbezeichnung Ihrer Werkzeugmschine und deren Steuerung.

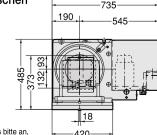
5AX-2MT-500-520

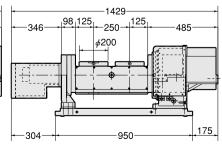
5AX-2MT-170

5AX-2MT-200-360

5AX-2MT-201-250FA

5AX-2MT-200-355.6


5AX-2MT-130-170



5AX-2MT-500-520

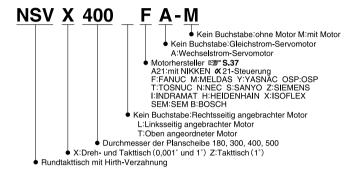
Präzision und Toleranzen bei Mehrfachspindel-Rundtischen

Nr.	Messweg	Messmethode	Toleranzen
1	Mittenabstand zwischen Spindeln		Innerhalb von ±0.02mm des Nennabstandes
2	Spitzenhöhe der Spindeln		Innerhalb von ±0.02mm

- ★Bei Fragen zur Installation dieser Tische auf Ihrem Bearbeitungszentrum sprechen Sie uns bitte an.
- ★Befestigungsmaterial und Nutensteiner 15.18.

 ★Dreibackenfutter, Reitstock und weitere optional lieferbare Zubehörteile 15.39, 40.
- ★Dreibackenindler, Heitslock und weinere opional neierbare zuberiorteileu 3.39, 40. Bei Fragen zu Spannsystem für ihre Werkstücke sprechen Sie uns an. ★Komponenten der & -Serie können für die Tische 5AX-2MT-105, 5AX-4MT-105 verwendet werden 雪 3.38.

RUNDTAKTTISCHE MIT HIRTH-VERZAHNUNG



Taktgenauigkeit: ±2"

- Hohe Steifigkeit
- ■Wiederholgenauigkeit:±2"
- Die Planscheibe hebt beim Schaltvorgang nicht ab. (eingebaute Hirth-Kupplung aus 3 Teilen) In Japan patentiert

• Erklärung der Bestellnummern (Beispiel)

Technische Daten

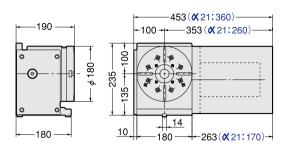
Einhei	it / Bestellnummer		NSVZ180	NSVZ300	NSVX400	NSVX500	NSVX400T	
Durchmesser Planscheibe φmm			180	300	400	500	400	
Durchmesser Spindelbohrung ϕ mm		φ60H7 × φ30	φ60H7 × φ52	52 φ80H7 φ80H7		<i>φ</i> 80H ₇		
Spitzenhöhe		mm	135	170	240	310	240	
T-Nutenbreite)	mm	12 + 0.018	12 + 0.018	14 + 0.018	14 ^{+0.018}	14 ^{+0.018}	
Klemmsysten	า 3	3.5MPa	Hydraulik	Hydraulik	Hydraulik	Hydraulik	Hydraulik	
Klemmmome	nt	N∙m	910	2155	5880	5880	5880	
Trägheitsmoment a	n der Motorwelle (GD ² /4) kg	•m ² X10 ³	0.11	0.16	2.9	3.9	2.9	
Servomotor		min-1	α2/5000i•2000	α2/5000i•2000	α12/3000i•2000	α12/3000i•2000	α12/3000i•2000	
Kleinstes Inkr	ement		1°	1°	1°/0.001°	1°/0.001°	1°/0.001°	
Drehgeschwi	ndigkeit	min-1	11.1	11.1	22.2	16.6	16.6	
Untersetzungsverhältnis			1/180	1/180	1/90	1/120	1/120	
Teilungsgenauigkeit sec			±3	±2	±2	±2	±2	
Nettogewicht kg			60	150	270	290	300	
Zulässige Werkstückgewicht	Senkrecht	Senkrecht kg		150	250	250	250	
max.	Waagerecht kg		100	300	500	500		
	4	N	23520	39200	58800	58800	58800	
Zulässige Axiallast max.	F×L N·m		911	2156	5880	5880	5880	
	F L	F×L N·m	569	1421	3920	3920	3920	
Trägheitsmoment max.	Senkrecht	′4) kg•m²	0.14	1.0	6.4	6.4	11.5	
Antriebsmoment					432	576	576	

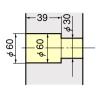
[★]Die Tische der NSVZ-Serie können jeweils ganze Gradzahlen takten. ★Die Tische der NVSX-Serie bestehen aus Dreh- und Takttischen, deren hochpräzise und hochbelastbare Hirth-Verzahnung mit 1°-Inkrementen taktet aber im weiteren Modus Inkremente von 0.001° angefahren sowie Profilfräsungen ausgeführt werden können. ★Der benötigte Öldruck beträgt 3.5 MPa.

 $[\]bigstar$ Beachten Sie, dass das Ausrichten des Werkstücks bzw. der Spannvorrichtung nach dem

Takten nicht nach dem Drehen vorgenommen wird.

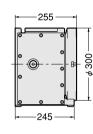


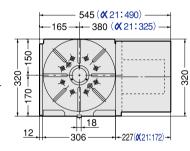

NSVZ180, 300 NSVX400, 500



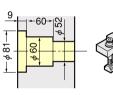
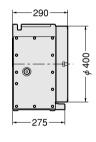
Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor bzw. mit NIKKEN &21-Steuerung (&21:). CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

NSVZ180





NSVZ300

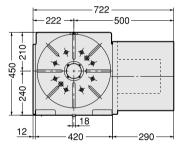
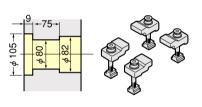
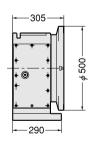
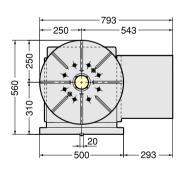
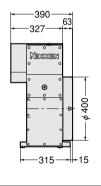
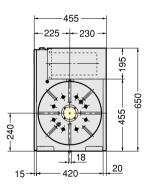


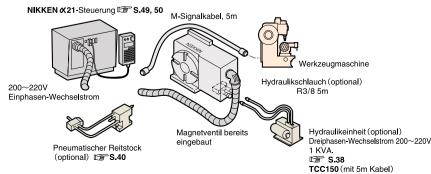
Abbildung mit Zentriereinsatz (optional).

NSVX400

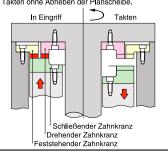





Abbildung mit Zentriereinsatz (optional).


NSVX500

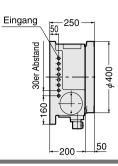


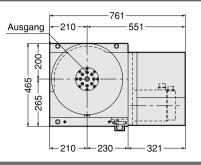
NSVX400T

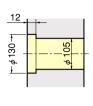


- ★Befestigungsmaterial und Nutensteine 🖅 S.18 ★Dreibackenfutter, Reitstock und weitere optional lieferbare Zubehörteile 🖅 S.39, 40

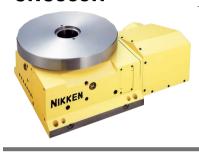
Kein Abheben (3-teilige Hirth-Kupplung) Drei Teile der Hirth-Präzisionskupplung mit 360°-Teilung ermöglichen ein weiches und schnelles Takten ohne Abheben der Planscheibe.

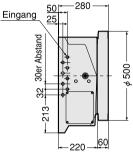

EINBAU-CNC-RUNDTISCHE

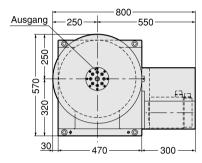




Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor bzw. mit NIKKEN &21-Steuerung (&21:). CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.


CNC400H





CNC503H

- Drehdurchführung mit 8 Ein-/Ausgängen ist Standard.
- ●Einfache Wartung durch zweckmäßiges Design.
- Wirtschaftlicher Kaufpreis durch standardisierte Bauteile.

Technische Daten

(): CNC-Rundtisch der Hochgeschwindigkeits-Z-Serie

T COIIII.	Scrie Dateri ()	:CNC-Rundtisch der Hochgeschwindigkeits-∠-Se					
Einheit	/ Bestellnummer	CNC400H CNCZ400H	CNC503H CNCZ503H				
Durchmesser	Planscheibe ϕ mm	φ400	φ500				
Durchmesser	Spindelbohrung ϕ mm	φ105 H ₇	<i>φ</i> 105 H ₇				
Klemmsystem	3.5MPa	Hydraulik	Hydraulik				
Klemmmomer	nt N•m	1470	1890				
Trägheitsmoment ar	der Motorwelle (GD ² /4) kg·m ² X10 ³	2.8	8				
Servomotor	min-1	α12/3000i•2000	α12/3000i•2000				
Kleinstes Inkre	ement	0.001°	0.001°				
Drehgeschwin	digkeit min-1	22.2 (44.4)	16.6 (33.3)				
Untersetzungs	sverhältnis	1/90 (1/45)	1/120 (1/60)				
Teilungsgenau	uigkeit sec	20	20				
Nettogewicht	kg	240	330				
Zulässige Werkstückgewicht max.	Waagerecht kg	800	1000				
	N N	31360	37632				
Zulässige Axiallast max.	F×L N·m	1166	1554				
	FXL N·m	3920	5644				
Trägheitsmoment max.	(GD ² /4) kg·m ²	16.6 (8.3)	32.5 (16.3)				
Antriebsmoment	N·m	432 (345)	576 (460)				

- ★Motor &22/3000i kann bei CNC401H und CNC503H verwendet werden.
- ★Voraussetzungen für den Einbau von CNC-Tischen in NC-Sondermaschinen 🖅 S.48.

Spezifikationen für Sondermaschinen

Produktionslinie von NC-Sonder-Bearbeitungszentren

24-stündiger Dauerbetrieb stellt harte Anforderungen.

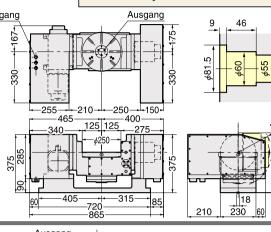
Je nach Art der Maschine müssen die Spezifikationen angepasst werden.

- 1. Sonderanfertigung der Planscheibe
 - ·Bohrlöcher, Gewindebohrungen oder Stiftbohrungen
 - ·Mit oder ohne T-Nut
 - ·Zusätzliche Bearbeitung der Zentrierbohrung
- 2. Für Ölstandanzeige, Ölzufuhr- und -ableitung kann die Anordnung frei gewählt werden.
- 3. Art der Montage auf der Maschine
 - ·U-Nut
 - ·Zusätzliche Gewindelöcher auf der Rückseite
 - ·Verschiebung der Führungsnutposition
- 4. Änderung der Motorabdeckung
- 5. Drehdurchführung FS.43
- 6. Eingebautes Palettenspannsystem 🗃 S.43
- 7. Sonderlackierung S.43
- ·Bestellungen bitte mit Farbmuster oder nach dem Munsell-Farbcode.

Bei 5-Achsen Rundtischen...

- 8. Schwenkbereich in Grad.
- ·Art der Montage ** S.46 und Verfahrwege der NC-Maschine.
- 9. Positionsverhältnis zwischen Drehzentrum und Schwenkzentrum.
- 10. Sockel**© S.30**
- ·Wollen Sie Ihre Maschine auf eine Trägerplatte setzen, kann dieser Sockel auch von uns geliefert werden. Sprechen Sie uns an.

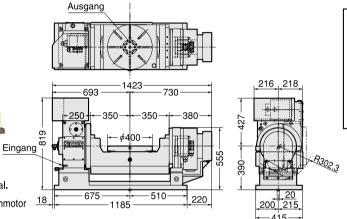
EINBAU-CNC-RUNDTISCHE

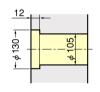


Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit FANUC-Motor. CAD-Daten im DXF-Format für alle Abmessungen können Sie von uns abrufen.

5AX-250

Optional ist eine Einbaudrehdurchführung mit 3 Anschlüssen lieferbar.


mitgelieferten Sockel.



Die 8-Gänge-Drehdurchführung ist optional.

•Die Motoranordnung für den Schwenkachsenmotor kann rechts oder links sein.

Einheit / Bestellnummer	5AX	-250	5AX-T400			
Durchmesser Planscheibe ϕ mm	2	50	400			
Durchmesser Spindelbohrung	<i>∲</i> 60H	7× ¢ 60	φ105H ₇			
Spitzenhöhe (90°) mm	20	60	3:	90		
Tischhöhe in waagerechter Position (0°) mm	20	60	3:	90		
T-Nutenbreite mm	12 ⁺ ₀	0.018	14 +0.018			
Achse	Dreh-A.	Schwenk-A.	Dreh-A.	Schwenk-A.		
Klemmsystem 3.5MPa	Hydraulik	Hydraulik	Hydraulik	Hydraulik		
Klemmmoment N·m	588	490	1760	1760		
Trägheitsmoment an der Motorwelle (GD ² /4) kg·m ² X10 ³	0.11	0.16	2.8	2.44		
Servomotor min ⁻¹	α4/4000i •2000	α4/4000i •2000	α12/3000i •2000	α22/3000i •2000		
Kleinstes Inkrement	0.001°	0.001°	0.001°	0.001°		
Drehgeschwindigkeit min-1	22.2	11.1	22.2	16.6		
Untersetzungsverhältnis	1/90	1/180	1/90	1/120		
Teilungsgenauigkeit sec	20	60	15	60		
Nettogewicht kg		0kg tte: 250kg)	750kg (Ohne Platte:505kg)			

★ Die	Ser	vom	oto	r-D	ater	١k	ezi	ehe	en	sich	auf	die	F	٩N	U	2	Χi	-Se	rie.
																		_	

 $[\]bigstar$ Alle Tische sind auch als Hochpräzisionsmodelle lieferbar, Drehachse ± 5 ″, Schwenkachse ± 10 ″, 🖅 S.42.

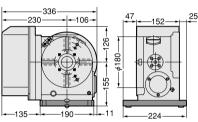
Einheit / B	estellnummer	5AX-250	5AX-T400			
Zulässiges Werkstückgewicht,	0 - 30° kg	80	300			
max.	30 - 90° kg	50	250			
	Schwenkwinkel=0°	9800	31360			
Zulässige	Schwenkwinkel=0°	L=125mm F=3920N	L=200mm F=6860N			
Axiallast, max.	Schwenkwinkel=90°	L=100mm F=3820N	L=100mm F=11660N			
	Schwenkwinkel=90°	382	1166			
Trägheitsmoment, max.	+ GD ² /4) kg·m ²	0.6	5.1			
Antriebsmoment	N·m	108	432			

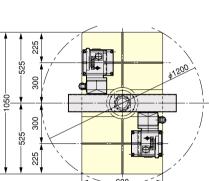
CNC-Rundtische für kleine B/Z und Bohrzentren

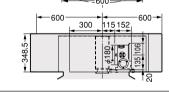
Derzeitige Entwicklungen innerhalb der Produktionstechnologie der Automobilindustrie haben bemerkenswerte Fortschritte gemacht. Werkstücke, die bisher auf mittelgroßen bis großen B/Z mit BT40/50 Spindeln liefen, werden jetzt auf kleinen B/Z oder Bohrzentren mit BT30/NC5-46 Spindel gefertigt. Hier stellen wir typische CNC-Rundtische für diese kleineren Zentren vor.

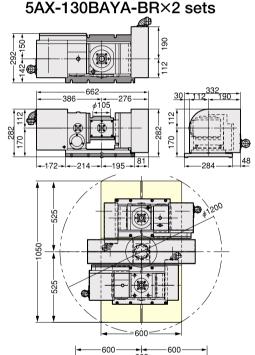
CNC-Rundtisch für BROTHER Bohrzentren

Es kommen zwei Sorten Servomotoren zum Einsatz, SANYO (SAII) oder YASNAC (YA-BR). Bei Anfragen bitte Motor und Maschinenmodell definieren. NIKKEN kann den Rundtisch komplett mit Motor, Achsverstärker und Verbindungskabeln liefern.




Direktverbindungskabel mit Harting-Stecker.


Für TC-32B-QT


Einheit mit externem Magnetventil (auf dem Gehäuse der Steuerung zu montieren)

Für TC-32B-QT CNCZ180LYA-BR×2 sets

BOLSAIII, 202LSAIII 30SAIII BOLSAIII, 202LSAIII 30SAIII, 2001IBASAIII OLSA-BR, CNC202LSA-BR
BOLSAIII, 202LSAIII 30SAIII, 2001IBASAIII
30SAIII, 2001IBASAIII
OLSA-BR, CNC202LSA-BR
OLSA-BR
OSA-BR, 5AX-200∐BASA-BR
)5LSAII
BOLSAII, 202LSAII
O5LSAII
BOLSAIII, 202LSAIII
BOLYA-BR, 202LYA-BR
OLYA-BR
30YA-BR
BOLYA-BR, 202LYA-BR
OLYA-BR
30YA-BR, 200∏BAYA-BR
30YA-BR, 2001 BAYA-BR Bolya-Br, 202lya-Br

★Tische der HighSpeed-Serie sind ebenfalls lieferbar ★Maschinenmodelle mit * markiert haben einen Palettenwechsler, wodurch 2 Pundtische netwondig worden

CNC-Rundtische eingesetzt in ausgeklügelter Automobilteile-Produktion

- · Der Rundtisch wird grundsätzlich in vertikaler Aufstellung eingesetzt.
- Die maschinelle Bearbeitung deckt weitgehend leichte Zerspanung in Aluminium ab. Weist die Aufspannung oder das Werkstück große Abmessungen auf, ist darauf zu achten, daß das Trägheitsmoment der Aufspannung unter dem max. Trägheitsmoment des Rundtisches liegt.
- ·Ist eine unausgeglichene Tischlast zu groß, wird nicht nur die Teilgenauigkeit sondern auch die Lebensdauer des Rundtisches beeinträchtigt. Bitte darauf achten, daß die Werte daraus unterhalb der folgenden Größen liegen:

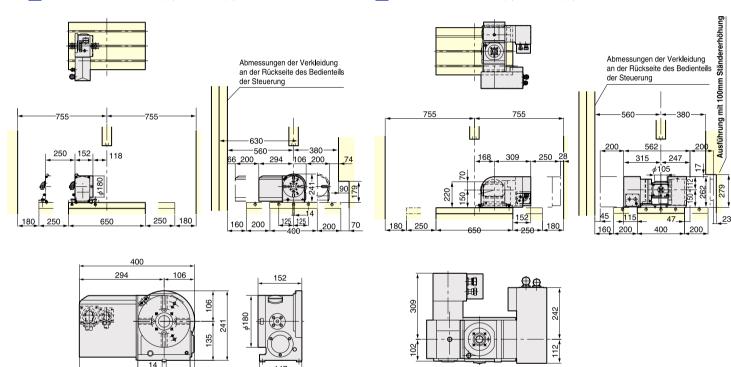
CNC105 : 10Nm CNC180, 202 : 20Nm CNC260, 302 : 30Nm

- ·Wenn die unausgeglichene Tischlast zu groß ist:
 - -Tische der HighSpeed-Z-Serie sind nicht geeignet.
 - -Ein Gegengewichtzylinder oder ein Gegengewicht ist zu installieren. S.6
 - -Nennen Sie uns Details des Werkstücks, der Aufspannung, Taktzeiten usw.. Darauf basierend können wir Ihnen eine Lastberechnung und die Auswahl eines passenden Rundtisches vornehmen.
- ·Wird ein hoher Kühlmitteldurchsatz gefahren, können wir optional Sperrluft (0,03MPa Luftdruck) an das Gehäuse des Rundtisches legen.
- Rundtische ohne T-Nuten in der Planscheibe sind ebenfalls lieferbar.

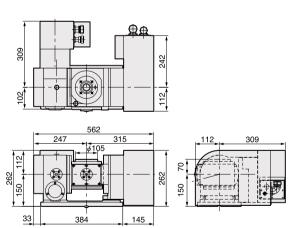
CNC202L ohne T-Nuten in der Planscheibe

CNC-Rundtische für kleine B/Z und Bohrzentren

Werkstückbeispiele von Automobilteilen

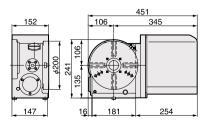


CNC-Rundtische für FANUC B/Zn

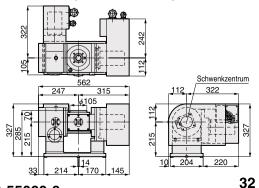

CNC180LFA/CNC202LFA als 4.-Achse-Rundtisch und 5AX-130FA als 4und 5.-Achse-Rundtisch sind typische Modelle für FANUC B/Zn.

CNC180LFA für &-T14i/ &-T21i

■5AX-130FA für **X-**T14i/ **X**-T21i


X-T14i/ X-T21i eingesetzt werden. Durch Ausstattung mit Interface für direkte Winkelprogrammierung oder in Verbindung mit einem Roboter kann die Anwendung noch erweitert werden.

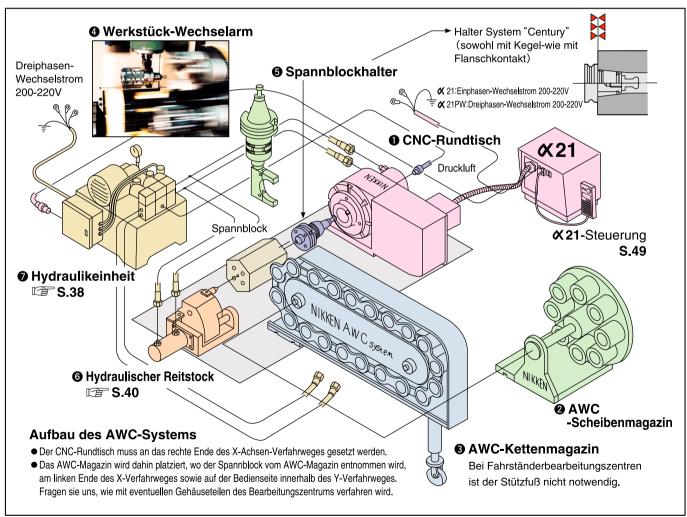
CNC180LFA für KIRA M/C


294

CNC202FA für TOYOSK M/C

Wir haben Erfahrungen mit weiteren Anwendungen von Rundtischen auf Maschinen anderer Hersteller. Fragen Sie gerne nach Details.

5AX-130HYA für MIYANO (MECHTRON)



AUTOMATISCHER WERKSTÜCKWECHSLER: AWC-SYSTEM (1) NIKKEN

- Sehr betriebssicherer und raumsparender Werkstückwechsler auf vertikalen Bearbeitungszentren unter Nutzung der X-Yund Z-Achsen-Verfahrwege sowie der Spindelausrichtung. In Japan patentiert
- Kann einen teuren Roboter oder Palettenwechsler ersetzen. Einfach an den Maschinentisch ansetzen und mit nur einem M-Signal automatisch steuern.
- Extrem flexibel, funktioniert mit vielerlei Werkstückarten. Die Aufspannvorrichtung (Spannblock) wird fest mit dem so genannten "Century" -Halter-System (sowohl mit Kegel- wie mit Flanschkontakt) in der Zentrierbohrung des CNC-Rundtisches gehalten. Der Spannblock kann eine Vielzahl an verschiedenen Spannvorrichtungen aufnehmen, je nach Art des zu bearbeitenden Werkstücks. So kann eine Serie von Werkstücken gehalten werden. Spannblöcke mit Identifikation sind lieferbar (optional) und eine automatische Ansteuerung im Magazin ist möglich.
- Als Magazine für das AWC können Scheiben-, Ketten-, Horizontal- oder Stangenmagazine verwendet werden. Fragen Sie nach ausführlichen Informationen.

Folgende Mindestverfahrwege sind bei einem AWC System der Länge 200mm erforderlich:

X:550mm (Bei längerem Weg kann ein längerer Spannblock benutzt werden.)

Y:400mm (Auch bei kürzerem Weg kann das AWC-System eingesetzt werden,

indem die Position der Schnittstelle des CNC-Rundtisches geändert wird.)

Z:450mm (Der Mindestabstand von der Tischoberfläche zum Spindelkopf beträgt 600 mm.)

AUTOMATISCHER WERKSTÜCKWECHSLER: AWC-SYSTEM (2) NIKKEN

Das AWC-System kann zusammen mit allen NIKKEN CNC-Rundtischen eingesetzt werden.

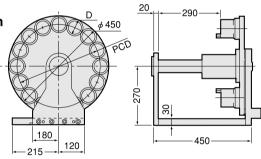
Die gebräuchlichsten Kombinationen von einem CNC-Rundtisch mit einem hydraulischen Reitstock sind nachfolgend dargestellt;

0	CNC-Rundtisch	CNC260 A21-AWC	5AX-230 WA21-AWC
6	Hydraulischer Reitstock	H-170S	H-230S

Unabhängig vom Typ des CNC-Rundtisches, kann aus nachfolgenden Komponenten eine passende gewählt werden.

Nr.	Komponenten	Bestellnummer und Anzahl der Magazinplätze	Max. ϕ (D) ×max. Länge (L)	Gewicht				
2	AMC Cabaihanna na in	AWC-F40-8,12,16	ϕ 63 $ imes$ 250	36, 38, 40kg				
	AWC-Scheibenmagazin	AWC-F45-6,8,10	ϕ 85 $ imes$ 280	38, 40, 43kg				
6	AWC-Kettenmagazin	AWC-C45-20	ϕ 85 \times 300 145kg					
	Manuschii ale Manaha al anna	BT40-RN40, RN45	Richtet sich nach Modell des Bearbeitungszentrums					
4	Werkstück-Wechselarm	BT50-RN40, RN45	Richtet sich nach Modell des Bearbeitungszentrums					
	Ou a such la al de alta su	RN40-63×25	Passender Spannblock wird von					
9	Spannblockhalter	RN45-85×32	uns vorgeschlagen (optional)					
0	Hydraulikeinheit	TCC-150AWC	Techni. Daten abhängig vom v	n verwendeten System 🗃 S.38				

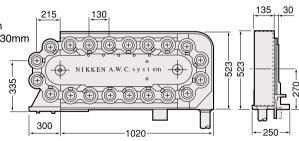
★Spannblockhalter:ISO-Kegel (7/24) oder NC5-Kegel (1/10-Kurzkegel mit Doppelkontaktsystem) sind ebenfalls lieferbar.


Einzelheiten zum NC5 Kegel finden Sie im Katalog NC WERKZEUGSYSTEM.

AWC-Scheibenmagazin

PCD AWC-F40: 385

AWC-F45: 340



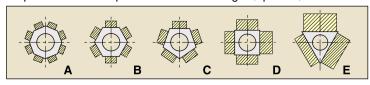
AWC-Kettenmagazin

AWC-C45-20

Mittenabstand zwischen den Magazinplätzen: 130mm

RN-Halter 12°-Kegel Stirnkontakt

Standard-Anzugsbolzen:PS-3 Bei Haltern mit Identifikation ist ein Anzugsbolzen mit Id. lieferbar (optional)


Spannblockhalter

Die Produktivität der Maschine hängt stark davon ab, ob der Spannblockhalter für die Bearbeitung geeignet ist oder nicht. Auf diesem Gebiet haben wir bereits vielfältige Erfahrungen gesammelt und uns das Know-how erarbeitet. Sprechen Sie uns darauf an.

Halter vom Typ Weldon

Bestellnummer	D ₁	d	K	Е	Н	R	L	M	G	PCD	A -0.010	В	Gewicht
RN40-63×25	63	25H6	10h7	40	5	30	15	M10	M8	48	16	18	1.5kg
RN45-85×32	85	32H ₆	12h7	45	5	35	20	M12	M10	65	18	20	2.5kg

Repräsentative Beispiele für Werkstückträger (optional)

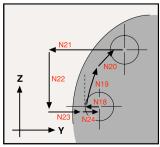
PRODUKTIVITÄTSSTEIGERUNG MIT AWC-SYSTEM NIKKEN

Wenn das AWC-Scheibenmagazin eine Stunde lang während der Mittagspause sowie eine weitere Stunde nach Ende der offiziellen Arbeitszeit genutzt wird, können dadurch drei Monate Produktionszeit gewonnen werden-nicht nur theoretisch, sondern ganz real.

Wie Sie nachfolgend sehen können, erzielen Sie mit dem AWC-System ein besseres Kosten-Leistungs-Verhältnis pro Bediener, wobei sich dies durch eine höhere Anzahl an AWC-Systemen weiter verbessern lässt.

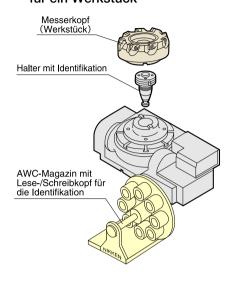
Arbeitsweise Merkmal	Ein Bearbeitungszentrum mit einem Bediener	Zwei Bearbeitungszentren mit einem Bediener	Drei Bearbeitungszentren mit einem Bediener und AWC-System
Auslastung pro Bearbeitungszentrum	100%	80~90%	100%
Auslastung des Bearbeitungszentrums während der Mittagspause (60 Min.)	5% (Stopp nach Fertigstellung des Werkstücks)	5%	80~100% (Läuft weiter, bis alle Rohlinge im Magazin abgearbeitet sind)
Laufzeit nach offiziellem Arbeitsschluss	0 Min .	0 Min.	50~400min. (Stromzufuhr wird automatisch abgeschaltet)
Kosten-Leistungs-Verhältnis des Bedieners	100%	160~180%	250~270%

PROGRAMMIERUNG EINES AWC SYSTEMS

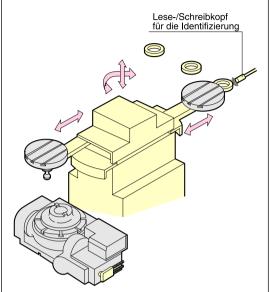

Das AWC-System ist ein sehr funktionssicherer und raumsparender Werkstückwechsler auf vertikalen Bearbeitungszentren unter Nutzung der X-Y- und Z-Achsen-Verfahrwege sowie der Spindelausrichtung. Das folgende Unterprogramm wird aufgerufen, wenn nach dem Bearbeitungsvorgang der Wechselarm in die Spindel gewechselt wird. X0. Y0. Z0. ist die Position in der der AWC-Wechselarm den Spannblock-Halter auf dem CNC-Rundtisch aufgreift.

```
ō
    1000
N0
         MXX; (Gebläse EIN)
N1
         MXX; (CNC-Rundtisch 360°-Drehung)
         MXX; (Gebläse AUS)
N2
N3
         S100; (Spindel wechselt in niedrigen Gang)
         G00 G90 X0. M19; (Spindelausrichtung CNC-Rundtisch X-Position)
N4
                    Z0.; (CNC-Rundtisch Z-Position)
N5
                    Y ; (Y Heranfahren)
N<sub>6</sub>
         G01 Y0. F500; (CNC-Rundtisch Y-Position)
N7
N8
         MXX; (Werkstückhalterklemmung lösen)
         MXX; (Gebläse EIN)
N9
               X—10.; (Werkstückhalter herausziehen)
P2000; (Verweilzeit für Reinigung)
N10
         G01
N11
         G04
N12
         G00
                     (Werkstückhalter vollständig herausziehen)
N13
                     (AWC-Magazin Z-Position)
N14
                     (AWC-Magazin Y-Position)
N15
N16
                      (X Heranfahren)
N17
         G01
                      (AWC-Magazin X Position - Werkstückhalter einsetzen)
N18
                                 (AWC-Magazin schalten)
N19
N20
N21
         G00
                     (Y Freigabe)
N22
                     (AWC-Magazin X-Position)
N23
                     (Y Heranfahren)
         G01
                      (AWC-Magazin Y-Position - Werkstückhalter greifen)
N24
N25
                      (Werkstückhalter herausziehen)
         G00
N26
                     (CNC-Rundtisch Y-Position)
N27
                     (CNC-Rundtisch Z-Position)
N<sub>28</sub>
                Z0.
N29
N30
               X-10. F1000; (X Heranfahren)
         G01
N31
               P2000; (Verweilzeit für Reinigung)
N32
                X-3. F500; (X letztes Heranfahren))
N33
         MXX; (Gebläse AUS)
N34
         MXX; (Werkstückhalter klemmen. Werkstückhalter wird 3mm in axiale Richtung gezogen)
M35
         G00
               Y0. Z0.;
N36
         G28
N37
         G28
               X0.;
N38
         M99;
```


Takten des AWC-Magazins

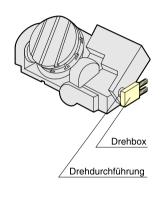

[★]Dieses Programm gilt unter der Bedingung, dass der AWC-Wechselarm sich zwischen dem CNC-Rundtisch und dem AWC-Magazin kollisionsfrei bewegen kann

ANWENDUNGSBEISPIELE FÜR DAS AWC-SYSTEM



Im Folgenden sehen Sie Zeichnungen verschiedener AWC-Systeme und der jeweiligen Werkstückbeispiele. Wenden Sie sich an uns, wenn Sie Ihre Produktionsprozesse straffen, die Präzision in der Fertigung erhöhen und Ihr Werk flexibler machen wollen.

Das AWC-Scheibenmagazin und ein Messerkopf als Beispiel für ein Werkstück



Ein AWC-Horizontalmagazin mit Werkstückidentifizierungsfunktion

■Drehdurchführung und Drehbox

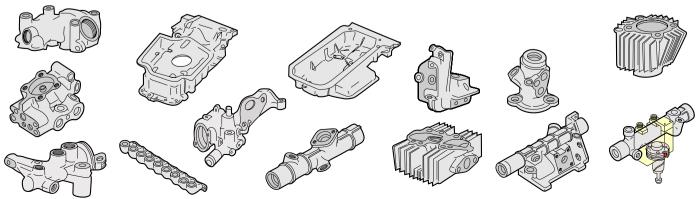
Kabel und Schläuche bleiben trotz der Schwenkbewegung still stehen. Geeignet für **5AX-230**, **5AX-400**.

Die Vorteile des 5AX-Rundtisches bei automatischen Produktionsabläufen

Das herkömmliche System

Für jeden Bearbeitungsprozess muss eine passende Aufspannvorrichtung vorbereitet werden. Die Zykluszeit für die Bearbeitung richtet sich nach der steigenden Anzahl der Bearbeitungsschritte.

- Es ist schwierig, bei jedem Zyklus die exakt gleichen Bezugspunkte zu erreichen, was leicht auch Auswirkungen auf die Endqualität haben kann.
- Bei Ausfall einer Maschine wird die Produktionslinie vollständig gestoppt.
- Kosten und Lieferzeit einer Aufspannvorrichtung für ein neues Werkstückdesign verursachen Probleme.


Das System mit einem 5AX-Rundtisch

Bearbeitung richtet sich nach der Anzahl eingesetzter Maschinen.

- Da die Oberflächenbearbeitung mit nur einmaliger Einrichtung durchgeführt wird, verbessert sich die erzielte Qualität des Produkts.
- Selbst bei Ausfall einer Maschine kann durch längere Betriebszeit einer anderen Maschine die gleiche Produktionsmenge erreicht werden.
- Durch eine Änderung des Bearbeitungsprogramms kann einfach und schnell auf die Produktion eines neuen Produktdesigns umgestellt werden.
- Produktion in beliebiger Reihenfolge ist möglich durch einen Werkstückhalter mit ID-Chip (dies ist ideal für die Produktion im Automobilbereich, da es hier sehr viele Teilepaare in Links- und Rechtsausführung gibt).

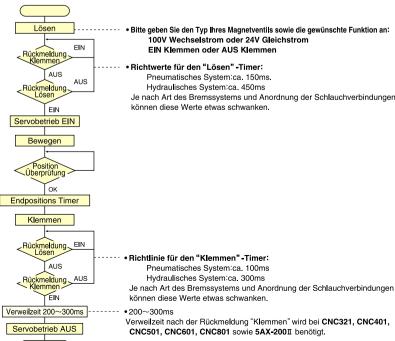
Werkstückbeispiele

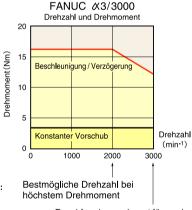
LISTE DER SERVOMOTOREN

Hersteller und Modell

Volllastd	Irehmoment	1 Nm	2 Nm	3 Nm	6 Nm	12 Nm	22 Nm
Dre	hzahl	2000min ⁻¹	2000min ⁻¹	2000min ⁻¹	2000min ⁻¹	1500min⁻¹	1500min ⁻¹
Hers	steller	Modell 1	Modell 2	Modell 3	Modell 6	Modell 12	Modell 22
		α1/3000	α2/2000	α3/3000	α6/2000	α 12/2000	α22/2000
FA	NUC		α2/3000		α6/3000	α 12/3000	α22/3000
		α1/5000i	α2/5000i	α4/4000i	α8/3000i	α12/3000i	α22/3000i
		HA23NC-TS	HA33NC-TS	HA40NC-S	HA80NC-S	HA100NC-S	HA200NC-S
MEI	LDAS			HC52T	HC102T	HC202S	HC352S
				HC53T	HC103T	HC203S	HC353S
				SGMG-05ASACS	SGMG-09ASACS	SGMG-20ASAAS	SGMG-30ASAAS
YAS	SNAC	SGMP-04A316S	SGMP-08A316S	SGMG-05ASABS	SGMG-09ASABS		
		SGMPH-04AAA6S	SGMPH-08AAA6S	SGMGH-05ACA5S	SGMGH-09ACA5S	SGMGH-20ACA2S	SGMGH-30ACA2S
OSP			BL-MC24J-30S	BL-MC25J-20T	BL-MC50J-20T	BL-MC100J-20S	BL-MC200J-20S
USP			BL-ME24J-50SN		BL-ME40J-40TN	BL-ME100J-30SN	BL-ME200J-20SN
TOSNAC				MFA055MBJNC1	MFA100MBJNC1	MFA180MBJNB	MFA350MBJNB
100	SIVAC	MDM032R4L	MDM062R4L	MDM052R4L	MDM152R4L		
SA	NYO			20BM040	20BM060	20BM120	
	SANYO*1		P50B08050DXS00	P50B08075HXS00	P50B08100HXS00		
Brother	SANYO*2		Q2AA08050DXP00	Q2AA08075HXP00	Q2AA08100HXP00		
	YASNAC	SGMPH-04A4A6S	SGMPH-08A4A6S		SGMPH-15A4A6S		
		1FT-6031-4AK71	1FT-6034-4AK71	1FT-6044-1AK71	1FT-6064-1AK71	1FT-6082-1AF71	1FT-6086-1AF71
SIE	MENS			1FK-6042	1FK-6063	1FK-6083	
				1FK-7042	1FK-7063	1FK-7083	
	RAMAT	MAC63A	MAC63C	MAC71B	MAC71C	MAC93B	MAC93C
HEIDENHAIN			QSY96A	QSY116C	QSY116E	QSY155B	QSY155D
ISOFLEX				444,2,20	444,3,20	445,2,20	
SEM			HJ96C6-44	HJ116C6-64	HJ116E6-130	HJ155A8-130	HJT155D8-180
	SCH	SE-B2.010	SE-B2.020	SE-B3.055	SE-B3.075	SE-B4.130	SE-B4.210
	NTEK	GM3340	GM4020	GM4040,GM4050	GM5065		
KOLLN	MORGEN	6SM37L	6SM47L	6SM57L	6SM57M	6SM77K	

- ★*1 Die Bestellnummer des Rundtisches endet mit "SAIII"
- ★*2 Die Bestellnummer des Rundtisches endet mit "SA-BR"
- ★Durch die unterschiedlichen technischen Daten der Motoren (Vollastdrehmoment, max. Drehmoment und Trägheitsmoment) unterscheiden sich je nach Motor auch die technischen Daten der CNC-Rundtische leicht voneinander.
- ★Die Motoren der FANUC &C-Serie verfügen über nicht genügend Drehmoment und können daher nicht für die Angaben bei den CNC-Rundtischen herangezogen werden.

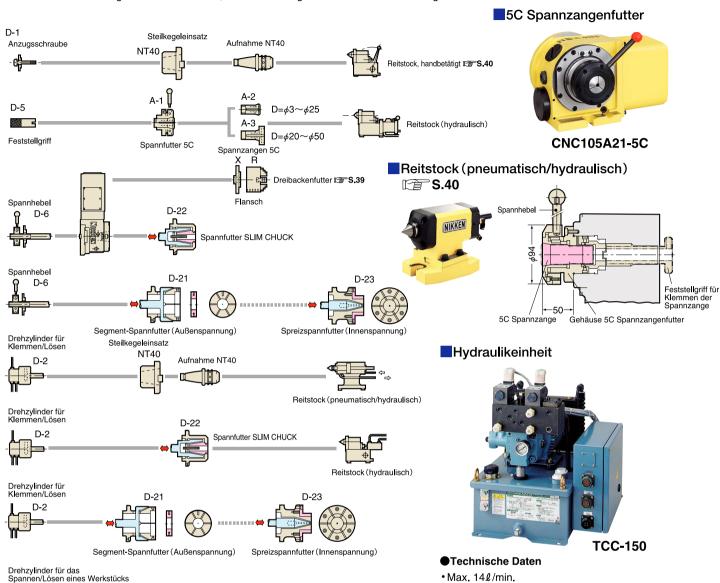

★Die Motoren der FANUC αi-Serie können mit wesentlich höherer Drehzahl als empfohlen gefahren werden. α1i, α4i:3000min⁻¹ X12i:2000min⁻¹


- ★Das Standard-Untersetzungsverhältnis wird für den neuen OSP-Motor (BL-MC-Serie) angewendet.
- ★ Das standard-or-hiersetzingsverhalms which is der hieden foot-hiersetzingsgewender.
 ★ Andere Servomotoren k\u00f6nnen ebenfalls verwendet werden. Bitte informieren Sie uns \u00fcber Außenmaße und technische Daten Ihres Servomotors.
 ★ Die max. Drehzahl eines Servomotors (CNC-Rundtisches) wird auf Basis der Beschleunigungseigenschaften des Motors und

Die Drehgeschwindigkeit eines Motors liegt normalerweise bei 1500 oder 2000min⁻¹. Abhängig von der Anwendung kann mit Erhöhung der Motorgeschwindigkeit die Drehgeschwindigkeit des CNC-Rundtisches erhöht werden.

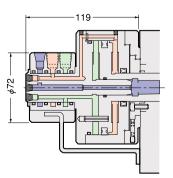
Ablaufdiagramm für die Steuerung einer zusätzlichen Achse

Der Servobetrieb steht grundsätzlich auf AUS, solange die mechanische Bremse betätigt ist. Da unser CNC-Rundtisch ein Hartmetall-Schneckensystem benutzt, kann man jedoch den Servobetrieb auf EIN lassen und die mechanische Bremse auf "Lösen" stellen, um die Schaltzeiten zu verkürzen.

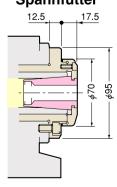


Beschleunigung dauert länger bei vermindertem Drehmoment

ZUBEHÖR FÜR DIE CNC-RUNDTISCHE DER 🛎-SERIE



Drehzylinder für Klemmen/ Lösen des Werkstücks


Kraftspannfutter (hydraulisch) F S.39

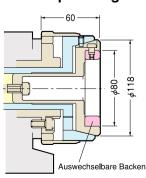
D-2

Zugkraft: 3130kN bei 0.5MPa Luftdruck (Hydraulischer Zylinder ist ebenfalls lieferbar)

SLIM CHUCK Spannfutter

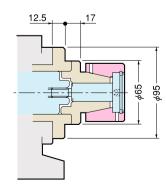
SK Spannzangen SK10: ϕ 0.75 \sim ϕ 10mm SK16: ϕ 2.75 \sim ϕ 16mm SK25: ϕ 16 \sim ϕ 25.4mm

Spannfutter für Außenspannung


Max. 3.5MPa

• 200~220V Dreiphasen-Wechselstrom,

· Magnetventile und Druckschalter gemäß Ihrer Anwendung.


Leistungsaufnahme:1kVA.

• Maße:400×405×479mm

Spannbereich: *ϕ*25~*ϕ*80mm

Spreizspannfutter

Spannbereiche:

 ϕ 10 \sim ϕ 12mm ϕ 30 \sim ϕ 40mm ϕ 13 \sim ϕ 16mm ϕ 40 \sim ϕ 50mm ϕ 17 \sim ϕ 20mm ϕ 50 \sim ϕ 60mm ϕ 20 \sim ϕ 30mm

Telefon Nikken Deutschland GmbH: 06142-55060-0

DREIBACKENFUTTER, KRAFTSPANNFUTTER

Dreibackenfutter Flansch Befestigungsbohrungen für Frontmontage

- Dreibackenfutter mit Flansch, die mit einem Stern (*) markiert sind, sind NIKKEN -Futter für die Frontmontage (Abb.1).
- Ein NIKKEN-Dreibackenfutter wird benötigt für die Flansche X-4B, X-6E und X-9F.

Dreibackenfutter und Flansche

Futter Rundtisch	4″	5″	6″	7″	9″	10″	12″
CNC105	X-4B						
CNC180		X-5C*	X-6B*				
CNC202		X-5C*	X-6B*	X-7A*			
CNC260, 302			X-6F	X-7D	X-9H,X-9C*1		
CNC321, 401				X-7K	X-9G	X-10D	X-12F,12G*2
CNC501, 601					X-9D	X-10	X-12B
NST250		X-5B	X-6A	X-7B			
NST300			X-6A	X-7B	X-9A	X-10B	
NST500				X-7G	X-9B	X-10C	X-12
5AX-130							
5AX-200 II, 250	X-4B	X-5C*	X-6B*	X-7A*			
5AX-230			X-6B*	X-7A*	X - 9F		
5AX-350				X-7D	X-9C	X-10 A	X-12D
NSVZ180			X-6E				
NSVZ300			X-6A	X-7B	X-9A	X-10B	
NSVX400				X-7D	X-9C	X-10A	X-12C

Mit einem *-markierter Flansch ist für den Einsatz bei 400er Rundtischen vorgesehen.

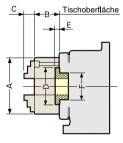


Abb.1

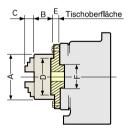
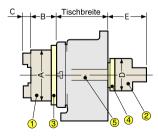



Abb. 2

Schnittstelle bei Dreibackenfuttern und Flanschen, Abmessungen

Futtergröße	Bestellnr. Flansch	Α	В	С	D	E	F	Abb, Nr.
4″	X-4B	110	60	19	80	13	60	2
5″	X-5B	130	61	23	100	16	60	2
3	X-5C*	130	01	23	100	4	60	1
	X-6*					4	50	1
6″	X-6A	165	68	40	130	16	60	2
0	X-6B*	165	00	40	130	4	60	1
	X-6E					15	60	2
	X-7A*					4	60	1
	X-7B				155	16	60	2
7″	X-7C*	100	77 43 155	40		4	50	1
' [X-7D	192		155	16	80	2	
	X-7G					18	75	2
	X-7K					16	105	2
9″	X-9A, 9B -9C, 9G	000	0.5	F0	100	18	60,75 80,105	2
9	X-9D, 9F	233	85	52	190	20	130,60	2
	X-9E					25	60	2
10″	X-10, 10A -10C, 10D	273	87	55	230	20	130,80 75,105	2
	X-10B					25	60	2
12″	X-12, 12B -12C, 12G	310	92	57	260	20	75,130 80,105	2
	X-12D, 12F					25	80,105	2

★Das Maß von der Tischoberfläche bis zur Spannbacke beträgt; ***:B+C; Andere:E+B+C

- 1 Kraftspannfutter
- 2 Drehzylinder
- 3 Flansch
- 4 Zylinderadapter
- 5 Verbindungsstange

Sollen Kraftspannfutter oder Drehzylinder auf 5AX-Tischen eingesetzt werden, ist für den Tisch eine Ständererhöhung erforderlich.

Kraftspannfutter und Drehzylinder

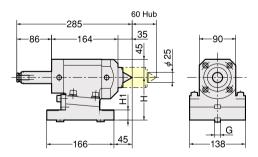
Größe	Spannfutter Bestellnr.	Drehzylinder Bestelinr.	A	В	С	D	E	min.Tisch- ϕ	
4″	HOIMA-4	HH4C-80	110	70	27	115	215	<i>ϕ</i> 100	
4	HOIWA-4	HO5CH-100	110	/0	21	130	220	φιου	
5″	HOIMA-5	HH4C-80	135	70	27	115	215	4.1EO	
5	HOIMA-3	HO5CH-150	135	70 27		186	235	<i>φ</i> 150	
6″	HOIMA-6	HH4C-100	165	94	43	135	240	4170	
0	HOINIA-0	HO5CH-175	100	94	43	210	240	φ 170	
8″	HOIMA-8	HH4C-125	210	110	43	160	250	φ250	
8	HOIMA-0	HO5CH-250	210	110	43	290	295	<i>φ2</i> 50	
10″	HOIMA-10	HH4C-125	054	100	40	160	250	4 200	
10	HOIMA-10	HO5CH-300	254	120	43	340	310	<i>∲</i> 300	
12″	HOIMA-12	HH4C-140	204	140	F0	180	260	4 200	
12	HOIMA-12	HO5CH-300	304	140	53	340	310	φ320	

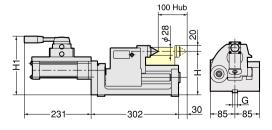
- ★Die Liste zeigt Spannfutter und Drehzylinder (oben: hydraulisch, unten:pneumatisch) von HOWA.
 Produkte anderer Hersteller können ebenfalls montiert werden. Nennen Sie uns bitte deren Bestellnummern.

 ★Der Drehzylinder für die 5-AX-Rundtische wird von NIKKEN hergestellt.

 ★Pneumatische/Hydraulische Drehzylinder von NIKKEN sind ebenfalls lieferbar.

REITSTOCK (MANUELL, PNEUMATISCH, HYDRAULISCH) NIKKEN




Reitstock, hydraulisch

Gegenlager TAT TS.14

15 Hub

Reitstöcke und Gegenlager

		Manuell	Pneum./Hydr.	Hydr.	Gegenlager
Reitstock Rundtisch Spitzenhöhe					mit Bremse
		Hub:15mm	Hub:60mm	Hub:100mm	(hydr.)
CNC105	105	P-105S	PBA-105		TAT105
CNC180, 202	135	P-125S	PBA-135		TAT170
CNC180B, 202B	180	P-170S	PBA-180	H-170S	
NST250	155	P-150S		H-150S	
CNC260, 302	170	P-170S	PBA-170	H-170S	TAT250
CNC321, 401	230	P-230S		H-230S	TAT320,400
CNC501, 601	310	P-310S			TAT500,600
NST300	208	P-210S		H-210S	
NST500	288	P-280S			
5AX-130	150	P-150S	PBA-150	H-150S	
5AX-200 II, 250	180	P-170S	PBA-180	H-170S	
5AX-230	240	P-230S		H-230S	
5AX-350	300	P-310S			
CNC100-2, 3, 4W	105		PBA-105-2,3,4W		
NSVZ180	135	P-125S	PBA-135		
NSVZ300	170	P-170S	PBA-170	H-170S	TAT250
NSVX400	240	P-230S		H-230S	TAT400

Abmessungen der Reitstöcke (handbetätigt)

Bestellnummer	Spitzenhöhe H	A	В	С	D	E	F	G	Gewicht (Kg)
P-105S	102~110	27	150	76	74	120	195	14	10
P-125S	125~135	27	150	76	74	120	210	14	11.5
P-150S	145~160	25	195	98	102	145	210	18	22
P-170S	160~180	25	195	98	102	145	210	18	22.5
P-210S	200~220	25	195	98	102	145	250	18	26.5
P-230S	220~240	25	195	98	102	145	250	18	27
P-280S	280~300	15	235	103	124	145	330	20	41
P-310S	300~310	15	235	103	124	145	330	20	41.5

- ★Links bedienbare Reitstöcke sind in allen Größen lieferbar. ★Für alle Reitstöcke ab dem Modell **P-150S** sind 5 austauschbare Spitzen im Lieferumfang enthalten.

Kompakte Reitstöcke für pneumatischen oder hydraulischen Betrieb

Bestellnummer	Spitzenhöhe	ш.	G	Druckki	aft (N)	Gewicht (Kg)
Desteillullillei	H	H ₁	5	Pneum. 0.5MPa	Hydr. 2MPa	Gewicht (Kg)
PBA -105	105	25	14	1176	4733	15
PBA -135	135	55	14	1176	4733	20
PBA -150	150	70	18	1176	4733	22
PBA -170	170	90	18	1176	4733	24.5
PBA -175	175	95	18	1176	4733	25
PBA -180	180	100	18	1176	4733	25.5

- ★Drehspitze ist eingebaut. ★Eine Morsekegel-Pinole ist ebenfalls lieferbar. Bitte Details anfordern.

■Reitstöcke (hydraulisch)

Bestellnummer	Spitzenhöhe		_	Druckkraft (N)	Gewicht (Kg)
Destelliuminer	Н	H1	G	Hydr. 3.5MPa	Gewicht (Kg)
H-150S	145~160	191	18	5370	28
H-170S	160~180	211	18	5370	35
H-210S	200~220	251	18	5370	41
H-230S	220~240	271	18	5370	45

- ★Drehgelagerte Spannspitze ist eingebaut.
- Gegenlager TAT TS-14.
- Wegen näherer Informationen zur Auswahl des zu einem Reitstock passenden CNC-Rundtisches wenden Sie sich bitte an uns.
- Bei Reitstöcken, die pneumatisch/hydraulisch betrieben werden, bitte die Hydraulikeinheit, Verbindungskabel sowie Schläuche getrennt bestellen. (Option)

PRÄZISION UND TOLERANZEN

■CNC-Rundtische

No.	Messpunkte	Messart	CNC105	CNC ¹⁸⁰ ₂₀₂	CNC302	CNC321	CNC401	CNC501	CNC601	CNC801	CNC1200
1	Parallelität von Planscheibenoberfläche und Tischrückseite (konkav)		0.015 mm	0.015 mm	0.02mm	0.02mm	0.02mm	0.02mm	0.02mm	0.02 mm	0.04 mm
2	Rundlauf der Planscheibe in vertikaler Position		0.01 mm	0.01 mm	0.015mm	0.015mm	0.015mm	0.02mm	0.02mm	0.02 mm	0.03 mm
3	Rundlauf der Zentrierbohrung		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm
4	Winkelgenauigkeit der Tischoberfläche in senkrechter Position. Eine Minusabweichung im oberen Teil ist unzulässig.		0.020 mm	0.02 mm	0.02 mm	0.02 mm	0.02 mm	0.03 mm	0.03 mm		
5	Parallelität von Führungsnut und Kontrolldorn		At 150mm 0.020 mm	At 150mm 0.02 mm	0.02 mm	0.02 mm	0.02 mm	0.02mm	0.02mm	0.02 mm	0.02 mm
6	Parallelität von Tischauflagefläche und Tischachse		At 150mm 0.020 mm	At 150mm 0.02 mm	0.02 mm	0.02 mm	0.02mm	0.03mm	0.03 mm		
7	Teilungsgenauigkeit.		±30″	±20"	20″	15″	15″	15″	15″	15″	15″
8	Wiederholgenauigkeit		4"	4"	4"	4"	4"	4"	4"	4"	4"

[★]CNC801 und CNC1200:In waagerechter Position. ★Bei Hochpräzisionsmodellen steigt der Genauigkeitsgrad um eine Stufe gegenüber den o. g. Werten.

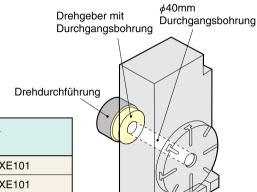
5AX-230 auf 3-D-Meßmaschine

■NST, 5AX-Schwenk-Rundtische

No.	Messpunkte	Messart	NST250	NST300	NST500	5AX-130 150	5AX-200Ⅱ	5AX-230	5AX-250 350	5AX-400	5AX-550
1	Parallelität von Planscheibenoberfläche und Tischrückseite, Schwenkwinkel 0° (konkav)		0.02 mm	0.02mm	0.02 mm	0.015 mm	0.015 mm	0.02mm	0.02mm	0.03 mm	0.02 mm
2	Rundlauf der Planscheibe in vertikaler Position, Schwenkwinkel 0°		0.02mm	0.02mm	0.02mm	0.01 mm	0.01 mm	0.02mm	0.02mm	0.02 mm	0.02 mm
3	Rundlauf der Zentrierbohrung, Schwenkwinkel 0°		0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm	0.01 mm
4	Rundlauf des Drehzentrums der Drehachse, Schwenkwinkel 90°		0.02 mm	0.02 mm	0.02 mm	0.02 mm	0.02 mm	0.02mm	0.02mm	0.02mm	0.03mm
5	Parallelität von Planscheibe und Führungsnut, Schwenkwinkel 90°		0.02mm	0.02mm	0.02 mm	0.015mm	0.015 mm	0.02mm	0.02mm	0.02 mm	0.03mm
6	Winkelgenauigkeit der Kontrolldornachse, Schwenkwinkel 90°		At 150mm 0.03mm	0.03 mm	0.03 mm	At 100mm 0.02mm	0.02 mm	At 150mm 0.03mm	0.03 mm	At 200mm 0.03mm	0.03 mm
7	Teilungsgenauigkeit der Drehachse		Kumu l ativ 20"	20″	20″	±30"	±20"	Kumu l ativ 20"	20″	20″	20″
8	Wiederholgenauigkeit der Drehachse		4"	4"	4"	4"	4"	4"	4"	4"	4"
9	Teilungsgenauigkeit der Schwenkachse	Kumulativ	60″	60″	60″	60″	60″	60″	60″	60″	60″
10	Wiederholgenauigkeit der Schwenkachse					±6"	±6"	±6"	±6"	±6"	±6"


★Bei Hochpräzisionsmodellen steigt der Genauigkeitsgrad um eine Stufe gegenüber den o. g. Werten.

CNC-RUNDTISCHE, SONDERAUSFÜHRUNGEN (1) NIKKEN



Hochpräzisionsmodelle (Geschlossener Regelkreis)

Konfiguration

Bei den Hochpräzisionsmodellen kann die Teilungsgenauigkeit in 3 Stufen gewählt werden: ±3", ±5" sowie ±10" (ISO 230- Präzisonsmessmethoden). Ein hochauflösender Drehgeber wird an der Rückseite des Rundtisches angebracht, zur Erfassen von Positionsdaten - innerhalb eines geschlossenen Regelkreises (Direkte Messung am Rundtisch). Falls eine Teilungsgenauigkeit von 1° oder eine sehr hohe Steifigkeit gefordert wird, wählen Sie bitte Tische der Serien NSVZ und NSVX mit Hirth-Verzahnung. FS.27

Rundtische mit RON706 oder RON806 haben eine Durchgangsbohrung von *ϕ*40mm, so dass die Drehdurchführung installiert werden kann.

Drehgeber und Frequenzgeneratoren für CNC-Rundtische

Teilungsgenauigkeit Rundtisch	±3″	±5″
CNC105, 180, 202		RON255, EXE101
CNC200, 260	RON806, EXE102	RON255, EXE101
CNC321, 401, 501, 601	RON806, EXE102	RON706, EXE101

- ★Auch andere Drehgebertypen können verwendet werden, z. B. RON285-IBV101, RON786-IBV101, RON886-IBV102.
- ★Der Frequenzgenerator und die Kabel sind nicht in der Hochpräzisionsausstattung enthalten. Bitte separat bestellen.
- ★Beim Einsatz von FANUC wird das FANUC-Serielle Interface (RCN223, 723) empfohlen. In diesem Fall ist der Frequenzgenerator nicht erforderlich.

Drehgeber und Frequenzgenerator für 5AX Schwenk-Rundtische

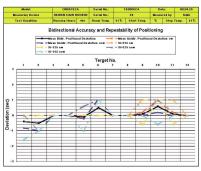
Teilungsgenauigkeit Rundtisch		±5″	±10″
5AX-130,-200∏,-220∏,	Drehen	RON255, EXE101	
230, 250	Schwenken		RON255, EXE101
5AX-350, 400	Drehen	RON255, EXE101	
	Schwenken		RON255, EXE101
5AX-550	Drehen	RON706, EXE101	
	Schwenken		RON706, EXE101

ROD700

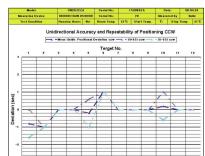
Für die Schwenkachse an 5AX-130, 5AX-200 II und 5AX-550 ist eine Teilungsgenauigkeit von ±5' lieferbar. Fordern Sie Details an.

ISO 230-2 1997 (JIS B 6192-1999)

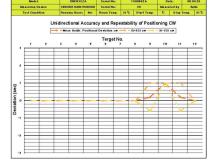
Präzisionsmeßverfahren


Drehachse: an 12 Punkten×30.2°

Schwenkachse: an 8 Punkten×15.2°


Bei 5 mal gleichmäßig wiederholten Drehungen im Uhrzeigersinn und gegen den Uhrzeigersinn, müssen die Messungen an den o. g. Punkten durchgeführt werden.

Bidirektionale Positioniergenauigkeit, bidirektionale Wiederholgenauigkeit, unidirektionale Positioniergenauigkeit und unidirektionale

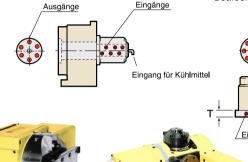

Wiederholgenauigkeit werden berechnet. Ein Test-Datenblatt in englischer Sprache ist erhältlich.

Bidirektionale Positioniergenauigkeit und bidirektionale Wiederholgenauigkeit

Telefon Nikken Deutschland GmbH: 06142-55060-0

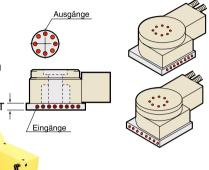
Unidirektionale Positioniergenauigkeit und Wiederholgenauigkeit

CNC-RUNDTISCHE, SONDERAUSFÜHRUNGEN (2) NIKKEN

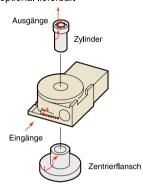


Drehdurchführung

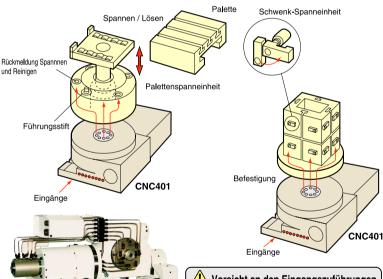
Eine Drehdurchführung wird eingesetzt, um Rückmeldungen von Spann-, Reinigungsvorgängen bzw. Kühlmittelzuständen abzufragen. Drei verschiedene Drehdurchführungen sind lieferbar. Beachten Sie, dass feinste Späne durch den Filter in den Kühlmittelgang gelangen könnten. Deshalb empfehlen wir, Kühlmittel separat zuzuführen (siehe auch Zylinder-Drehdurchführung).


1. Zylinder-Drehdurchführung

Nachrüstung an einem Standard-Rundtisch möglich


2. Flansch-Drehdurchführung

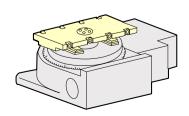
Die Position der Eingangzuführung kann von 0° bis 360° frei gewählt werden. Jede Position außerhalb des Kollisionsbereiches auf dem Bearbeitungszentrum kann gewählt werden.


3. Einbau-Drehdurchführung In Japan patentiert

Für die Rundtische CNC321, CNC401. CNC501, CNC601 und CNC801 sind jeweils acht Eingänge am Tischgehäuse angebracht. Zentrierflansch und Zylinder sind optional lieferbar.

Baatalla	Zylinder-Dd.	Flansch-Dd.		Einbau-Dd.
Bestellnummer	Zugänge max.	Zugänge max.	T mm	Zugänge max.
CNC 105	4+1*1	4	25	
180,202	6+1* ¹	4	25	
260,302	8+1* ¹	6	30	
321,401	40 . 4 *1			0 . 4*1
401H,503H	10+1* ¹			8+1* ¹
501,601	12+1* ¹			8+1* ¹
5AX-130,150	2(4)			
200Ⅱ	3(6)			
250				3*2
350				6* ³
400	9*4			
550	10* ⁵			
NSVZ 180	6+1* ¹	4	25	
300	8+1* ¹	6	30	
400,500	10+1* ¹	10+1* ¹	50	
TAT 105,170	4+1* ¹	2	25	
200,250	8+1* ¹	4	45	
320,400,500	10+1* ¹	6+1* ¹	35	

Anwendungsbeispiel


- ★():Max. Anzahl bei Tischen mit Ständererhöhung.
- ★*1:Zugänge +1 im Zentrum (für Kühlmittel) . ★*2:Bei Modell **5AX-250** sind 3 Reservezugänge vorgesehen. Weitere sind nicht möglich. ⁵AX-400 mit 9-Wege-Drehdurchführung
- ★*3:Bei Modell 5AX-350 sind 6 Reservezugänge vorgesehen. Weitere sind nicht möglich. ★*4:Bei Modell 5AX-400 sind 3 Reservezugänge Standard. Zusätzlich sind 6 weitere möglich.
- ★*5:Bei Modell **5AX-550** sind 4 Reservezugänge Standard. Zusätzlich sind 6 weitere möglich.

🚺 Vorsicht an den Eingangszuführungen

- Bei Belegung aller Eingänge mit Pneumatik, wenden Sie sich bitte an uns.
- Die Eingangszuführungen bitte nicht mit unterschiedli-chem Luftdruck belegen.
- Bitte sicherstellen, daß die Druckluftversorgung mit einer Filtereinheit ausgestattet ist, damit das Eindringen von Spänen und Wasser mit Rostbildung verhindert wird.

■Einbau-Palettenspannsystem

Für CNC-Rundtische und 5AX-Schwenk-Rundtische lieferbar. Gut geeignet für NC-Sondermaschinen und Horizontale Bearbeitungszentren als Einbau-B-Achse.

Hub-Palettenspannsystem

Sonderlackierung

Bestellungen bitte mit Farbmuster oder Munsell-Farbnummer.

Palettenspannsvstem mit Automatic-Kupplung

CNC-RUNDTISCHE, SONDERAUSFÜHRUNGEN (3) NIKKEN

Wassergeschützt

Alle mechanischen Teile eines Rundtisches sind perfekt abgedichtet. Zum Schutz elektrischer Teile wie Motor, Schalter und Kabel empfehlen wir eine direkte, fest montierte

Kabelherausführung am Rundtisch. (optional lieferbar).

Alle Rundtische mit NIKKEN &21-Steuerung sind serienmäßig mit fest montiertem, direkten Anschlusskabel ausgerüstet. Wahlweise ist für diese Rundtische auch eine HARTING-Steckverbindung lieferbar (Option).

Alle Rundtische mit NIKKEN &21PW-Steuerung sind serienmäßig mit spritzwassergeschützten Steckern ausgerüstet.

Für alle CNC-Rundtische werden Bauteile mit dem TÜV Rheinland - Zeichen oder gleichwertige Bauteile sowie elektrische Bauteile mit dem C-Zeichen verwendet, wodurch ein hoher Sicherheitsstandard sichergestellt wird.

△ : Zeichen für geprüfte Sicherheit durch den TÜV RHEINLAND.

(C): Sicherheitskennzeichnung, die seit 1995 für den Verkauf in Europa erforderlich ist.

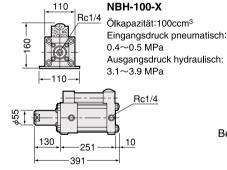
Metallmantelkabel (optional) Standardlänge:5m

HARTING-Steckverbindung C (Oben) nur bei horizontaler Lage

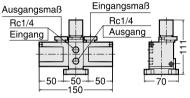
D (Rückseitig) B (Seitlich) A (Unten)

Lage und Richtung des Verbindungskabels

Serienmäßig ist die Lage der Kabel an den Positionen B oder D. Die Positionen A oder C sind auf Wunsch möglich.


■Druckluftverstärker (Max. Abgabe: 0.7Mpa)

Der Druck kann mit dem Druckluftverstärker verdoppelt werden. Dies ist geeignet für Tische mit dem doppelt verstärktem Bremssystem wie das Modell 5AX-130. FS.56.


Eingand

Pneumatik/Hydraulikeinheit

Für Maschinen ohne eigene Hydraulikversorgung ist der Einsatz einer Pneumatik/Hydraulikeinheit angebracht. Gilt für CNC321, 401, 501, 601 und 801 sowie für CNCZ321, 401, 501, 601 und 801. Nähere Informationen bitte anfordern.

VBA-1110-02

Beispiel einer Pneumatik/Hydraulikeinheit an der Rückseite eines CNC321

Diese Einheit ist bei Rundtischen mit YASNAC-Motor für BROTHER

T/C Standardlieferumfang. ☞ S.31

4 m 417.5

Bremse Drehgeber $\phi 360$ Direktantrieb

Max.150min-1

Die externe Magnetventileinheit

Das Magnetventil und der "Klemmen" / "Lösen" - Bestätigungssschalter sind normalerweise im Innern der Motorabdeckung montiert. Die externe Magnetventileinheit wird eingesetzt, um Magnetventil und Schalter auf einfache Art zu warten, ohne die Motorabdeckung abbauen zu müssen.

Rundtisch für extra schweren Einsatz

Bei Bearbeitung einer Wendelnut wie rechts abgebildet, ist die Bewegung der Drehachse sehr gering, im Verhältnis zur Bewegung in der X-Achse und damit die Servosteuerung sehr schwierig. Entsprechen die Schneid- und Oberflächenergebnisse bei einem Standard-CNC-Rundtisch nicht den Vorstellungen, ist der Einsatz eines Rundtisches für extra schweren Einsatz zu empfehlen. Die Schneidleistung ist fünfmal höher als beim Standardtisch.

Hochgeschwindigkeits-CNC-Rundtische mit Direktantrieb

Diese Tische werden per Direktantriebsmotor mit hohem Drehmoment angetrieben. Einsatz Für hoch genaue Profilarbeiten auf Bearbeitungszentren mit Linearantrieben. Fragen Sie nach Details.

CNC-RUNDTISCHE, SONDERAUSFÜHRUNGEN (4) NIKKEN

NIKKEN CNC-Rundtische werden weltweit in vielen unterschiedlichen Anwendungen eingesetzt. Anhand der Maße Ihrer Werkstücke und Aufspannungen zeigen wir Ihnen gerne eine für Sie am besten geeignete Lösung auf.

Kombination mit einem Palettenwechsler

2 CNC-Rundtische mit Verteilerbox sind auf einem kleinen Bohrzentrum mit Schwenk-Palettenwechsler montiert.

Kombination mehrerer **CNC-Rundtische**

Bearbeitung eines Turbinenlaufrades mit zwei CNC-Rundtischen, wovon einer für die Schwenkbewegung des HF-Motors und der zweite für die Drehbewegung des Werkstücks eingesetzt wird.

5AX-400FA-RJ8-800/150

5AX-500MA-RJ10-900/100

5AX-321FA

CNC180+TAT105+CNCZ503

Einsatz von CNC-Rundtischen mit Gegenlager

CNC170 und TAT105

CNC600V, Werkstückträger (3m) und TAT500

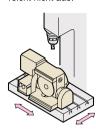
Drei hydraulische Spannfutter werden für's Werkstückspannen eingesetzt.

CNC170+Gegenlagersonderausführung

Bei einer Anwendung mit einem Gegentisch können auftretende Gewichtsverlagerungen störend werden. Hier empfehlen wir den Einsatz eines Gegengewichtzylinders, FS.6.

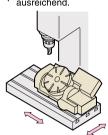
NSVZ300+TAT200

CNC-RUNDTISCHE, SONDERAUSFÜHRUNGEN (5) NIKKEN

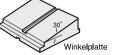


Anordnung von 5AX-Rundtischen auf Bearbeitungszentren

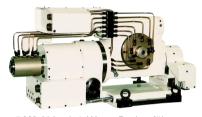
Es gibt vielerlei Möglichkeiten.



■ Der Weg der Y-Achse reicht nicht aus.


Automatischer Positionierstift

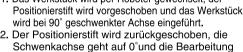
▼ Hier ist der Y-Weg ausreichend.


■ Der Schwenkwinkel reicht von 30-135°

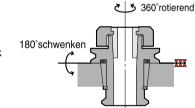
Beispiel für einen 5AX-300 auf einer 60°-Winkelplatte.

■Einsatz von 5AX-Schwenk-Rundtischen

5AX-400 mit 9-Wege-Drehzuführung



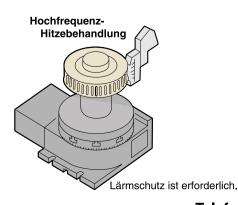
Schnitte an gekrümmten Flächen


5AX-Rundtisch auf Laser-Schweiß/Schneid-Maschine

beginnt. Die Schwenkbewegung wird nur für den automatischen Werkstückwechsel benutzt

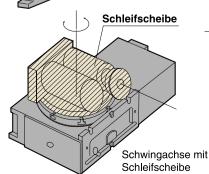
5AX-Mehrspindeltisch Werkstückspanner mit Durchbohrung

Andere Anwendungen


Simultane 3-Achsen-Steuerung von

X. Z und A anstelle von

Dreharbeiten



Das Werkstück (Fräser) wird per Roboter gewechselt und die Schneidkante wird automatisch erkannt.

Simultane 3-Achsen-Steuerung der X, Z und A-Achse.

Winkelbohrkopf

Extra-Rollenlager

Beispiele für Überladung

Extra-Bremse

Zähnefräsen an 6∼7 Modulen

Der Rundtisch wird für Takten und Positionieren eingesetzt.

Telefon Nikken Deutschland GmbH: 06142-55060-0

TESTMABNAHMEN AN CNC-RUNDTISCHEN

Zuverlässigkeits- und Qualitätsprüfung

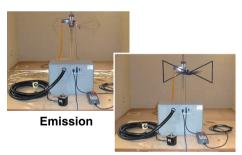
■Überlastungstest

Der Verschleiß des Schneckenrades ist nach äußerst harten Testbedingungen sehr gering.

Bremsmomenttest

Steifigkeitstest

Schneidstabilitätstest


Gemessen werden die Mikroschwingungen während der Bearbeitung oder die Oberflächenqualität.

■EMV-Test

Test der elektromagnetischen Verträglichkeit

Wasserdichtigkeitstest

(E) CE-Konformitätserklärung

Achtung

· Gehen Sie beim Auspacken von Gerätschaft vorsichtig vor, um Menschen und Sachen keinen Schaden zuzufügen

Störsicherheit

- Sclien Sie immer vorsichtig beim Anheben der Geräte, vor allem, wenn Sie dafür eine Hebeeinrichtung benutzen. Anheben und Tragen von Hand kann zu Rückenverletzungen führen. Setzen
 Sie in jedem Fall sichere Hebetechnik ein.
- Sie in jedem Fall sichere Hebetechnik ein.

 Stellen Sie den Rundtisch an einem gut belüfteten, vor direkter Sonneneinstrahlung und Korrosivstoffen geschützten Ort auf. Setzen Sie den Rundtisch nicht extrem hohen oder niedrigen Temperaturen aus (Normale Betriebstemperatur: 5°C ~ 40°C).

 Bei Betrieb in einer Umgebung mit niedrigen Temperaturen, sollte der Rundtisch nach dem Einschalten warmlaufen. Wahlweise verwenden Sie ein dünnflüssigeres Schmieröl.

 Betreiben Sie den Rundtisch nur mit der angegebenen elektrischen Spannung. Der Betrieb mit einer anderen Spannung kann zur Entzündung führen.

 Schalten Sie den Rundtisch immer aus, bevor Sie Arbeiten an der Elektrik durchführen. Nichtbeachtung kann zu schweren Verletzungen durch Stromschlag führen.

- Das Bearbeitungszentrum, in das der Rundtisch eingebaut wird, sollte über eine rundum verlau-fende Abdeckung bzw. einen Spritzschutz verfügen.

 Beachten Sie bei beim Einbau des Rundtisches in ein Bearbeitungszentrum die Lage und den
- Verlauf von Kabeln, Schläuchen und Hydraulikbehältern (falls vorhanden), um mögliche Kollisio-nen mit anderen Geräteteilen auszuschließen. Stellen Sie sicher, dass Kabel und Schläuche ausreichend lang sind, um alle Verfahrwege voll-
- ständig nutzen zu können.
- Stellen Sie sicher, dass für Rundtisch und Reitstock in der Position für automatischen Werk zeugwechsel keine Kollisionsgefahr besteht.
- Stellen Sie sicher, dass der Verlauf von Kabeln und Schläuchen entsprechend den Anweisungen der Bedienungsanleitung so verlegt wird, dass keine Störungen der Maschinenfunktionen auftre-ten kann. Ein Kontakt zwischen Kabeln oder Schläuchen mit Tisch bzw. der Spindel ist gefährlich. Überprüfen Sie laufend, ob der Tisch parallel und im rechten Winkel zu den Maschinenachsen aufgebaut ist und verwenden Sie die bei der Installation mitgelieferten Befestigungsmittel.

- Befolgen Sie bei der Installation und dem Verlegen von Kabeln und Schläuchen die entsprechenden Hin-
- *Seitiger iste der ein instalation und delni Verlegen von Raden in die chiadzien der Bedienungsanleitung, Falsche Anschlüsse können zu Brand oder zu schweren Unfällen führen.

 *Dieser Tisch ist auf Wasserdichtigkeit ausgelegt. Bei einem Eindringen von Kühlmittel in den Rundtisch muss der Betrieb sofort abgebrochen werden. Die Nichtbeachtung dieses Hinweises kann Brand oder elektrische Störungen zur Folge haben.

 *Stellen Sie sicher, dass Pneumatik- oder Hydraulikschläuche korrekt angeschlossen sind.

 *Säubern Sie den Lufffilter regelmäßig, um das Eindringen von Feuchtigkeit oder Schmutz über die Drueld-Utgenschussen zu verbieden.

- * Saubern Sie den Luttritter regelmalsig, um das Eindringen von Feuchtigkeit oder Schmutz über die Druckfultversorgung zu verhindern.

 * Stellen Sie sicher, dass auch in einem Energiespar-Hydraulikkreislauf durch die Pumpleitung ein konstanter Druck auf die gespannten Bremsen ausgeübt wird.

 * Setzen Sie den CNC-Rundtisch keinen Belastungen aus, die über die Grenzwerte hinausgehen, die in den Spezifikationen genannt sind. Eine Nichtbeachtung kann zu defekten Maschinenteilen oder irreparablen Schäden an der Maschine führen. Bitte klären Sie bereits vor einer Bestellung mögliche Grenzwertüberschreitungen mit uns.

 * Modifizieren Sie den Burdirich in keinen Ettl Jehen verber des Einvertingens von NIKKEN einzuheben.
- Modifizieren Sie den Rundtisch in keinem Fall, ohne vorher das Einverständnis von NIKKEN einzuholen Modifizieren Sie den Hundtisch in keinem Fall, ohne vorher das Einverstandnis von NIKKEN einzunolen.
 Berühren Sie keine sich bewegenden Maschinenteile. Die Nichtbeachtung dieses Hinweises kann zu schweren Verletzungen führen.
 Falls Sie einen CNC-Rundtisch mit NIKKEN Steuerung betreiben, schalten Sie bei Betriebsende immer zuerst die Steuerung und erst dann das Bearbeitungszentrum aus.
 Entfernen Sie nach Gebrauch alle Metallspäne vom Rundtisch. Ständiger Gebrauch ohne regelmäßige Reinigung kann zu Schäden der Mechanik führen.

- gelmalsige Heinigung kann zu Schaden der Mechanik tuhren.

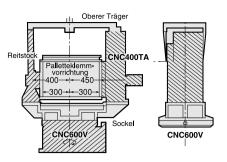
 *Wechseln Sie einmal pro Jahr das Schmieröl aus, um das Getriebe vor Verschleiß zu schützen.

 *Falls am Tisch eine Kollision aufgetreten ist, schalten Sie die Maschine sofort aus und wenden Sie sich wegen einer Überprüfung oder Reparatur an Ihren Vertriebspartner.

 *Perschen Sie die Nutzung des Rundtisches sofort ab, wenn Sie ungewöhnliche Geräusche hören, Lagerabnutzung feststellen oder Schäden an Werkzeug oder Werkstück auftreten, da es sonst zu irreparablen Schäden an der Maschine kommen kann. Wenden Sie sich wegen einer Reparatur an Ihren Vertriebspartner.

TECHNISCHE INFORMATION ZU CNC-RUNDTISCHEN

Voraussetzungen für den Einsatz von CNC-Rundtischen in CNC-Sondermaschinen

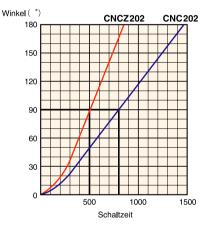

Bei Dauerbetrieb müssen außer der Teilungsgenauigkeit auch die nachfolgenden Voraussetzungen erfüllt sein. Zu nennen sind hier Beladungsberechnung, Schaltzeiten, Haltbarkeit usw..

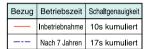
Außerdem spielt auch ein internationales Kundendienst- und Vertriebsnetzwerk eine wichtige Rolle.

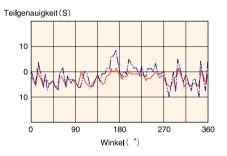
1. Beladungsberechnung

Falls die Betriebsbedingungen ungeeignet für den Einsatz eines bestimmten CNC-Rundtisches erscheinen, informieren Sie uns bitte über Werkstück, Aufspannvorrichtungen, benötigte Schaltzeiten usw. Wir werden die Tischbeladung für Ihre Anwendung berechnen und einen geeigneten CNC-Rundtisch vorschlagen. Wenn z. B. eine Aufspannvorrichtung und eine Werkstück wie rechts dargestellt ist auf einem Tisch eingesetzt werden sollen, analysieren wir die Punkte 1~6 und erstellen eine Berechnung wie sie rechts aufgeführt ist.

Nr.	Form	Anzahl	Ca. Gewicht (kg)	Ca. GD ² (GD ² /4) kgm ²
1	CNC-400T Exzentrizität:450mm	1	260	59
2	Reitstock Exzentrizität:120mm		80	14
3	3 Sockel		11	10
4	Obere Trägerteile		30	2
6 Palettenklemmvorrichtung		1	80	6
	Gesamt	461	91	


2. Vergleich der Schaltzeiten


Schaltzeit=Beschleunigungszeit+Eilgangzeit+Abbremszeit.


Größter Drehwinkel ist 180°. Es ist nicht nur die Eilgangzeit wichtig, sondern auch die Beschleunigungs- und Abbremscharakteristiken. Die Kurve rechts zeigt, dass das Modell CNCZ201 (Hochgeschwindigkeit) mit hervorragenden Beschleunigungs- und Bremswerten eine deutliche Zeitersparnis von 300 ms für eine 90°-Bewegung gegenüber dem konventionellen Modell CNC202 erreicht.

CNC202:500ms CNC202:800ms

Bezug	Eilgang	Beschleunigung/Abbremsen Zeitkonstante
_	44.4 min ⁻¹	150ms
_	22.2 min ⁻¹	100ms

Schneckensystem nach 7 Jahren Einsatz

Dauerhaftigkeit

Während des Dauerbetriebs über 24 Stunden ist Dauerhaftigkeit eine der wichtigsten Voraussetzungen.

Dank des Hartmetall-Schneckensystems genügen NIKKEN CNC-Rundtische härtesten Ansprüchen an die Verschleißfestigkeit, selbst unter härtesten Einsatzbedingungen mit schnellen Schaltzeiten. Die Kurve rechts außen zeigt das Teilgenauigkeitsergebnis einer Inspektion von Schneckenrad und Schnecke, nachdem diese 7 Jahre in einer CNC-Sondermaschine in der Automobilteileproduktion eingesetzt waren.

Weltweites Service-Netzwerk

Auch bei perfekten Produkten können unerwartete Unfälle nicht verhindert werden. Bei der Wahl eines NIKKEN-CNC-Rundtisches erhalten Sie nicht nur ein hochwertiges, komplett ausgereiftes Produkt, sondern auch Zugriff auf ein weltweites Service-Netzwerk. © 5. 64~66

SI-Standard und frühere Standards SI ist die Abkürzung für "Système International d'Unites" (Internationale Maßeinheiten).

Eigenschaften	SI-Einheit	frühere Einheit	Umrechnung
Klemmmoment	N∙m	kgf∙m	1kgf∙m=9.8N∙m
Trägheitsmoment an der Motorwelle*	(GD²/4) kg⋅m²×10 ⁻³	kg cm sec ²	1kg cm sec²=10.2×(GD²/4) kg·m²
Max. Drehgeschwindigkeit Motor	min ⁻¹	rom	1rpm=1min ⁻¹
Max. Drehgeschwindigkeit Tisch	111111	rpm	ripin= min
Zulässige Beladung	N	kgf	1kgf=9.8N
des Tisches	N∙m	kgf•m	1kgf∙m=9.8N∙m
Trägheitsmoment, max.*	(GD²/4) kg·m²	kg cm sec ²	1kg cm sec ² =10.2×(GD ² /4) kg·m ²
Antriebsmoment	N∙m	kgf•m	1kgf∙m=9.8N∙m
Pneum./Hydr. Druck	MPa	kgf/cm ²	1kgf∕cm²=0.098MPa

^{*} Die Einheit für Trägheit wird ausgedrückt in GD².

NIKKEN STEUERUNG, TECHNISCHE DATEN 1

- Kleinstes ansprechbares Inkrement: 0,001° oder 1 sec Mit der &21-Steuerung lassen sich alle NIKKEN CNC-Rundtische steuern.
- Nur ein M-Signal ist für den automatischen Ablauf verschiedener Operationen erforderlich. Aufgaben wie ungleiche Teilungen, gleiche Teilungen, Kurvenfräsen, Wendelnutfräsen usw. können auf einfache Weise durchgeführt werden.
- Serienmäßige RS232C-Schnittstelle. Das Laden und Speichern von Blockdaten bzw. Parametern ist über diese Schnittstelle möglich. Wenn darüber hinaus die Schnittstelle für direkte Winkelprogrammierung genutzt wird, kann die Programmierung und Handhabung vollständig über das Bearbeitungszentrum erfolgen. Japan: Patent angemeldet
- ■Verbesserung der Wasserdicht-Eigenschaften 🖙 S.58 EMV-Prüfung S.45

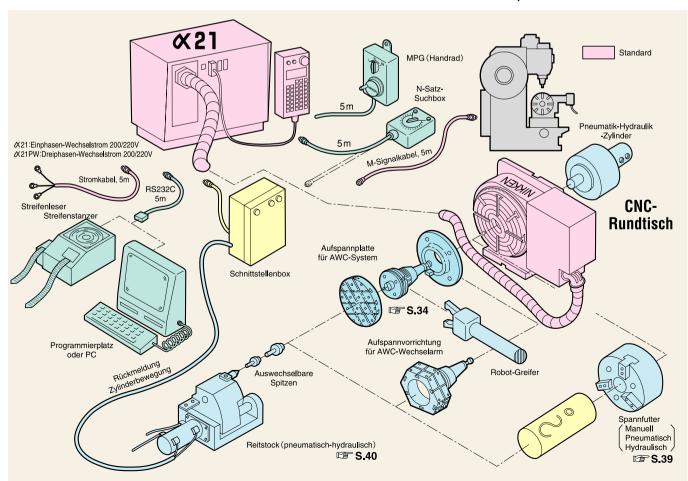
Alle CNC-Rundtische sind mit direkt verbundenem Anschlusskabel lieferbar. Die Anforderungen der EMV-Prüfung werden von allen Geräten eingehalten.

Modernste digitale Servosysteme. Die Abmessungen der Servomotoren wurden noch kompakter bei gleichzeitig höherer Drehmomentleistung. Die hervorragenden Beschleunigungs- und

Verzögerungseigenschaften, das höhere Drehmoment und optimal angepasste Servo-Parameter führen zu hoher Qualität und langer Lebensdauer.

Zahlreiche optionale Funktionen. Geschlossene Regelkreise, manueller Impulsgeber (Handrad), M-Funktionen (5xEIN /5xAUS), externe N-Satzsuche, externes Positionsdisplay, externer Ein-Aus-Schalter, Steigungsfehlerkompensation.

Bereits mehr als 20,000 Einheiten ausgeliefert. Beweis für überragende Zuverlässigkeit.


& 21-Steuerung

- · Standard (400W, 750W) 480mm×280mm×340mm, 25kg
- · Einphasen-Wechselstrom 200/220V

& 21PW-Steuerung

- · verstärkt (1300W, 1800W) 540mm×360mm×400mm, 28kg
- Dreiphasen-Wechselstrom 200/220V

NIKKEN STEUERUNG, TECHNISCHE DATEN 2

Grundsätzliche Daten zur Steuerung (NIKKEN 🛭 21-Steuerung) Betrieb, Programmierung und Schnittstellen zum Bearbeitungszentrum sind mit früheren NIKKEN Steuerungen (X, 8800AX) austauschbar.

Funktion	Technische Daten	Bemerkungen
Kleinstes Eingabe-Inkrement	0.001°oder 1"	Frei wählbar
Max. Eingabewinkel	±9999 Drehungen, ±999.999°& ±999°59'59"	Frei wählbar
Max. Gleichteilungsbereich	2∼9999 gleiche Teilungen	
Programmspeicherkapazität	1000 Sätze	N000~N999
Eingabe über	MDI-Tastatur, portabel	5-Jahre-Speicherpufferung
Programmiermethode	Inkremental/absolut (wahlweise)	G91/G90 Frei wählbar
Nullpunkt anfahren	Nullpunkte von Tisch und Werkstück	extern steuerbar
Manueller Vorschub	Eilgang, Schleichgang, schrittw. Vorschub, Dauervorschub	
Unidirektionales Positionieren	Anwendung verhindert mechanisches Spiel	G14
Not-Halt	Das gesamte System wird angehalten	extern steuerbar
Vorschubhalt	Tischrotation stoppt vorübergehend	extern steuerbar
Sprungfunktion	Sprung zu Unterprogramm usw.	
Wiederholfunktion	Durch Angabe von Start-Satznr. und End-Satznr. Wiederholung einer Sequenz	
Pufferfunktion	Lesen des nächsten Satzes und dessen Ausführung ohne Zwischenstopp	Nützlich für Wendelnutfräsen
Probelauf	Tisch dreht zum Test im Eilgang	
Tastensperre	Zur Sicherheit sind die Tasten gesperrt, wodurch eine versehentliche Eingabe unmöglich ist.	
Rüstfunktion	Verweilzeit, Bremse lösen/klemmen, Wendelnutfräsen usw.	G01~G92
G1-, G2-Funktion	Eingabe von 2 G-Befehlen in einem Satz	
Satzanzeige	Beim Programmieren wird der vorherige oder folgende Block angezeigt	
RS232CSchnittstelle	Das Laden und Speichern von Blockdaten bzw. Parametern über diese Schnittstelle Direkte Winkelprogrammierung sowie die gesamte Programmhandhabung kann direkt vom Bearbeitungszentrum aus erfolgen. Die automatische Ladefunktion der RS232C Schnittstelle ermöglicht sukzessives Laden von Satzdaten	Kundenmakro auf Bearbeitungszentrum erforderlich Kundenmakro auf
Softwarebegrenzungsfunktion	vom Bearbeitungszentrum aus, Die gesamte Programmhandhabung erfolgt ebenfalls nur von dort. ± Verfahrgrenzwerte können durch Setzen von Parametern eingestellt werden. Der Tisch fährt über diese Werte nicht hinaus	Bearbeitungszentrum erforderlich
Überfahr-Erkennung	Die Zone zur Erkennung des Überfahrens von Grenzwerten kann unabhängig von der Software durch installierte Grenzschalter eingerichtet werden. Der Tisch wird davor geschützt, den Sicherheitsbereich zu überfahren.	Serienmäßig bei 5AX-Schwenkachse
Automatische Ausgabe des Alarm-Codes	Wird eine Alarmsituation erkannt, geht die Steuerung automatisch in den Diagnosemodus und zeigt den Alarmcode an	Blinkt alle zwei Sekunden bei Wiederholung
Alarm Ausgabe	Alarmmodus der X21-Steuerung wird an das Bearbeitungszentrum gesendet	Optional
Selbstdiagnosefunktion	Steuerungsinterner Zustand wird angezeigt	
Modale G-Anweisung, Blinkfunktion	Alle im Programm verwendeten G-Befehle werden blinkend angezeigt	Alle 2 Sekunden
Steigungsfehlerkompensation	Drehachse:15°-Schritte, Schwenkachse:5°-Schritte	Optional
Übersteuern der Vorschubgeschwindigkeit	5~200%, 999% (Eilgang) ±5%	±5%
Eingabesignale Eine Art Hilfsfunktion (Automatischer Betrieb durch nur ein Startsignal)		Mit oder ohne Quittungssignal*1
Ausgabesignal	1 Blockende Signal, Werkstück-Nullpunktsignal, Alarm-Ausgabe-Signal*2	Siehe Zeittabelle
Servomotor	Wechselstrom-Servomotor mit seriellem Drehgeber	
Stromyersorgung	X21:Einphasen-Wechselstrom 200~220V, 50/60Hz	400W:0.7kVA, 750W:1.3kVA
Stromversorgung		1300W:1.4kVA, 1800W:1.8kVA

- * 1: Das M-Signal des Bearbeitungszentrums gilt nur für einen Satz ohne DEN (Distribution End).
- *2: Die Signale für Werkstück-Nullpunkt sowie Alarm-Ausgabe sind optional.

Optionen, Technische Daten

Geschlossener Regelkreis

Für hochpräzise Rundtischmodelle erforderlich.

Manueller Impulsgeber (X1,X10,X100) (Handrad)

Mit diesem Impulsgeber kann der Tisch manuell in Schritten von 0.001~0.1° gedreht oder geschwenkt werden.

6 Externer Ein-Aus-Schalter

Eine Schnittstelle für das Ein-Aus-Schalten der Stromversorgung über eine externe Schaltung ist lieferbar.

7 Steigungsfehlerkompensation

15°-Schritte×24 Punkte, Schwenkachse: 5°-Schritte×24 Punkte

3 Fünf M-Funktionen

Steuerung und Rückmeldung eines weiteren Stellgliedes (hydraulischer Reitstock, Kühlmittelsteuerung, Roboter etc.) kann von der & 21 aus erfolgen. Bei der &21-Steuerung für das automatische Werkstückwechselsystem (AWC) gehört diese Funktion zur Standardausstattung.

Ausgangssignal*2

Das Signal für Werkstück-Nullpunkt steht auf EIN, solange der CNC-Rundtisch auf Werkstück-Nullpunkt steht. Das Alarmausgabesignal wird auf EIN gesetzt, wenn sich die &21-Steuerung im Alarmmodus befindet. Diese Signale können für die Verriegelungsfunktion genutzt werden.

Externe Satzadressen -Suchfunktion

Die Steuerungskapazität von 1000 Programmsätzen kann eine Vielzahl von Programmen aufnehmen. Eine gewünschte Satznummer kann dann von extern gesucht werden.

5 Externe Positionsanzeige

Wenn die Schnittstelle für direkte Winkelprogrammierung genutzt wird, wird diese Anzeige in der Nähe des Bedienfeldes des Bearbeitungszentrums platziert.

9 HARTING-Stecker... Nur für & 21

Wahlweise kann am CNC-Rundtisch eine HARTING-Steckverbindung angebracht

BESCHREIBUNG BEDIENTASTATUR 1

1) Stromschalter

2 Not-Halt-Taste

34 Tasten für manuellen Rundtischvorschub, Tippbetrieb

▶ + Im Uhrzeigersinn, - ◀ Gegen den Uhrzeigersinn Wird die entsprechende Taste gedrückt gehalten, dreht sich der Rundtisch kontinuierlich mit langsamer Geschwindigkeit. Wird die Taste kurz gedrückt (Tipp), dreht der Tisch in Schritten von 0.001° (1°)

5 Taste für Rundtisch-Eilgang

Wird diese Taste zusammen mit 3 oder 4 gedrückt, dreht der Rundtisch im Eilgang. Wenn Tasten ① und ⑤ gleichzeitig gedrückt werden, dreht der Rundtisch wie folgt:

Untersetzungsverhältnis	Rundtischbewegung
1:720	0.5°
1:360	1.0°
1: 180	2.0°
1:120	3.0°

Untersetzungsverhältnis	Rundtischbewegung	
1:90	4.0°	
1:60	6.0°	
1:45	8.0°	

6 Umschaltung für Automatik/Manuell-Betrieb

Ist das Gerät mit dieser Taste auf manuellen Betrieb gestellt, so sind auch alle anderen Tasten aktiviert. Ist das Gerät dagegen auf automatischen Betrieb gestellt, sind alle Tasten außer 1,2,6,8,9,14,16 und 17 gesperrt.

① Umschaltung für Dateneingabe/Istwertanzeige

Auf dem Display (8) wird unter θ die programmierte bzw. aktuelle Position alternativ angezeigt.

® Starttaste

Diese Taste löst die programmgesteuerte Rundtischdrehung aus.

Diese Taste verlangsamt den Rundtisch und hält ihn an (Vorschub-Haltefunktion). Wird Taste ® erneut gedrückt, dreht sich der Rundtisch um den restlichen programmierten Winkel weiter.

1 Taste für kontinuierlichen Vorschub

Durch Drücken dieser Taste dreht der Rundtisch kontinuierlich. Bei Bestätigung von Taste 9 stoppt der Rundtisch. Vorschub und Drehrichtung sind über Satz N997 einzugeben. (S.53 8.)

11 Nullpunkt-Setztaste

Wird diese Taste bei einem beliebigen Winkel gedrückt, so erscheint der Wert 000.000° als Positionsanzeige, und der Winkel wird als Nullpunkt des Werkstücks festgelegt. Bei einem summierten Winkel von 360° entsteht ein Relaissignal, das als Endsignal zum Anhalten der Maschine dienen kann.

12 Taste für Nullpunkt-Anfahren

Durch Drücken dieser Taste kehrt der Rundtisch im Uhrzeigersinn, erst im Eilgang später im Schleichgang, zum absoluten Nullpunkt (Punkt 0 an der Gradeinteilung am Rundtisch) zurück.

Taste für Rückstellung des Werkstücknullpunktes Durch Drücken dieser Taste kehrt der Rundtisch im Uhrzeigersinn und im Eilgang zum Nullpunkt des Werkstücks, der mit Taste 11 gesetzt worden ist, zurück.

① Diagnosetaste

(6) Taste für Vorschubübersteuerung

POS-Betrieb: Zunahme der Vorschubgeschwindigkeit um 5 bis 200% in 5%-Schritten→Eilgang (999). PRM-Betrieb : Sequenzielle Anzeige der folgenden Parameter

POS-Betrieb: Abnahme des Vorschubs um 200 bis 5% in 5%-Schritten.

PRM-Betrieb : Sequenzielle Anzeige der gerade

Alarm-Anzeige zurückgesetzt, usw.

ausgeführten Parameter

+ OVR

① Zurücksetztaste Mit dieser Taste wird N 000 aufgerufen und die

RESET

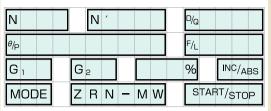
7 Zurücksetz-Taste

● READY · · · · · Leuchtet bei eingeschalteter Stromversorgung.

■ COM. ····· Leuchtet, wenn X21-Steuergerät und Bedien-

COM. ALARM ····· Leuchtet bei Zeitüberschreitung der

und Bedientastatur.


tastatur miteinander kommunizieren.

Kommunikation zwischen &21-Steuergerät

BESCHREIBUNG BEDIENTASTATUR 2

® Anzeige

N: Satznummer

N000~N999

N RS: Schnittstelle direkte Winkelprogrammierung wird angewählt.

N': Sprung und Zurück

J000~J999, RET

\theta: Drehwinkel des Tisches (dezimal, sexagesimal)

0~±999,999° (dezimal)

0~±999,59'59" (sexagesimal)

D: Gleichteilungen (Teilung durch 2 bis 9999)

F: Vorschubgeschwindigkeit

Bearbeitungsvorschub: 0.01~9.99min-1

Eilgang: 000

G: Rüstfunktion G01~G92

Zwei verschiedene G-Codes können in einen Satz eingegeben werden.

%: Übersteuern der Vorschubgeschwindigkeit (5% bis 200%, oder 999 für Eilgang)

P: Startadresse der Wiederholfunktion (G27)

Q: Endadresse der Wiederholfunktion (G27)

L: Wiederholfrequenz (G27)

INC/ABS: INC (Inkremental) ABS (Absolut)

MODE: EDT (Editiermodus)

MAN (Manueller Betrieb)

AUT (Automatischer Betrieb)

MPG (MPG-Betrieb, Handrad)

DGN (Diagnosemodus)

ZRN-MW:

M blinkt (Zurück zu M NULL)

M (Stopp bei M NULL)

W blinkt (Zurück zu W NULL)

W (Stopp bei W NULL)

START/STOP: START (Beginn) STOP (Stopp)

(9) Codiertasten

Ν

J

(3 Stellen)

RET

θ

P (3 Stellen)

θ (±6~7 Stellen)

(3 Stellen)

Zum Aufruf eines bestimmten Satzes, nach Drücken dieser Taste die Satznummer eingeben, so dass der Programmsatz angezeigt wird. Sie können auch von hier aus das Programm starten.

Diese Taste dient dazu, ein Unterprogramm N' aufzurufen oder zu N' zu springen, nachdem der N-Satz abgeschlossen ist.

Ist das Unterprogramm beendet, wie unter (18) bei N' im Display angezeigt R eingeben. Das Programm kehrt zum nächstfolgenden Satz zurück, wo der J'-Befehl im Hauptprogramm gegeben wurde.

 θ : Sie können Winkelwerte von 0° bis ±999.999° in Inkrementen von 0.001° oder 0° bis ±999.59'59" in Inkrementen von 1" eingeben.

Die Auswahl zwischen Dezimal- und Sexagesimalsystem kann durch Eingeben entsprechender Parameter getroffen werden. Falls der Befehl "Verweilzeit" (G04) gegeben wird, muss deren Zeitspanne eingegeben werden (0.001 bis ±999.999 sec).

P: Startadresse der Wiederholfunktion (G27) 000 bis 999.

Q (3 Stellen)

F, L (3 Stellen)

DIV: Automatische Gleichteilung 0 bis 9999 mal. Befehl Wendelnutfräsen (G07) 0 bis 999.

Q: Anzahl der Wiederholfunktionen (G27) 000 bis 999.

F: Bearbeitungsvorschub F001 (0,01min⁻¹) bis F999 (9.99min⁻¹) Eilgang F000 oder F0.

L: Wiederholfrequenz 0 bis 999.

Ohne G:Positionierung G04:Verweilzeit G06: Konstante Beschleunigung G07: Anzahl der Drehungen * G08:Puffer aktivieren

* G09:Puffer beenden * G10:Bremse lösen

*G11:Bremse klemmen G14: Unidirektionale Positionierung *G15:Genau-Halt

*G16:Genau-Halt löschen

G21:Gleichzeitiger Start G22:Start kontinuierlicher Lauf G23: Zurück zum Maschinen-Nullpunkt G24: Zurück zum Werkstück-Nullpunkt

G27:Wiederholfunktion G28:Zurück zum programmierten Maschinen-Nullpunkt

* G90: Absolutmaß * G91:Inkrementalmaß

G92:Koordinatensystem einstellen

M-Funktion (optional)

G60~G74: Ein Stellglied aktivieren

Eingeben von G-Codes:

Bei G1- und G2-Codes kann die führende 0 nicht unterdrückt werden. Wenn z. B. G1=7 und G2=8, ist die Eingabe wie folgt:

G0708* Bedeutung:

G1 G2

Wenn 9° eingegeben werden soll, drücken Sie die Tasten $\theta \rightarrow 9 \rightarrow \bullet$, woraufhin 9.000° oder 9°00'00"angezeigt wird.

DATA

Damit wird die Drehung gegen den Uhrzeigersinn eingestellt.

EINGABE. Durch Drücken dieser Taste wird die Programmierung jedes einzelnen Satzes abgeschlossen (wird nachfolgend als * angezeigt).

INPUT

Wenn θ , DIV oder F einzeln gelöscht oder geändert werden sollen, drücken Sie die jeweilige Taste und anschließend C. Wenn Sie 🖲 und 🖸 gleichzeitig drücken, ist ein Satz vollständig gelöscht.

Löschen aufeinander folgender Sätze

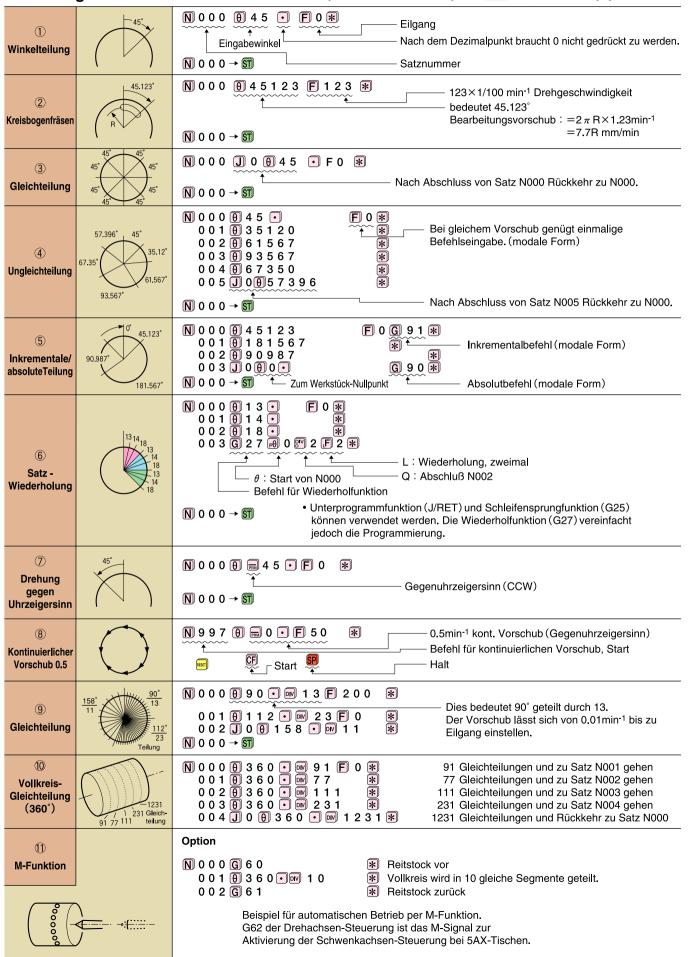
Um beispielsweise die Blöcke N000 bis N999 zu löschen, drücken Sie die Tasten N 0 - 999 im Editiermodus, und auf * tippen während Sie C gedrückt halten.

steht für optionale Funktion.

Die abweichende Bedienung der Schwenkachsensteuerung Bedienungsanleitung.

Die abweichende Bedienung der NSVZ-Index-Steuerung mit Hilfe der &21-Bedientastatur ersehen Sie aus der jeweiligen Bedienungsanleitung.

★Auf der Rückseite der Bedientastatur befindet sich eine Öffnung, an der sich die Bedientastatur an einem Haken o. ä. aufhängen lässt. Den Haken können Sie sich leicht selbst anfertigen.



PROGRAMMIERUNG UND AUSTESTEN VON PROGRAMMEN NIKKEN

Tastenfolgen:

Vor Beginn der Programmierung ist zu prüfen, ob der EDT-Modus eingestellt ist. Bevor Sie ein Programm starten, betätigen Sie im EDT-Modus die Tasten 💵 oder 🕦 ា und bestätigen Sie Ihre Eingabedaten. Starten Sie dann das Programm im MAN-Modus, um die Tischbewegung zu testen.

PROGRAMMIERBEISPIELE

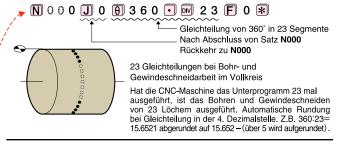
0 0 0 0 0; ··· Hauptprogramm M 9 8 P 0 1 0 0 L 2 3; ... Bohren, 23 mal M98 P0101 L 2 3 ; · · · Gewindeschneiden, 23 mal M 0 2; 0 0 1 0 0; ... Unterprogramm 1 G 0 1 Z -: ... Bohrarbeitszyklus M 2 1: M99; 0 0 1 0 1; ··· Unterprogramm 2 **G 0 1 Z** — ;····Gewindeschneidearbeitszyklus

② Kreisbogen fräsen

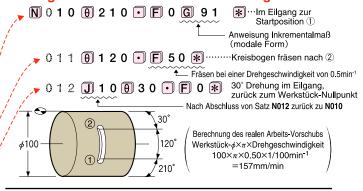
M 2 1 ·

M 9 9:

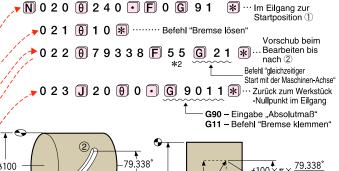
• Programm der CNC-Maschine 0 0 0 0 1;

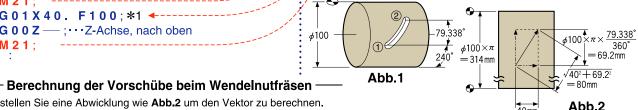

> M 2 1; G 0 1 Z --- ; ···· Z-Achse, nach unten M 2 1: G 0 0 Z - ; · · · Z-Achse, nach oben M 2 1:

③ Wendelnut fräsen

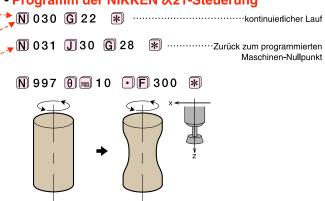

• Programm der CNC-Maschine

0 0003; M 2 1: G 0 1 Z - : · · · Z-Achse, nach unten M 2 1; M 2 1: G01X40, F100: *1 ←----G 0 0 Z --- ; ··· Z-Achse, nach oben


Programm der NIKKEN &21-Steuerung



Programm der NIKKEN &21-Steuerung


- 1. Erstellen Sie eine Abwicklung wie Abb.2 um den Vektor zu berechnen.
- 2. Bestimmen Sie den wirklichen Arbeitsvorschub von ① nach ② aufgrund der Werkstückbeschaffenheit (Beispiel 200mm/min)
- 3. Vorschub der Maschinen-X-Achse: Fx=200mm/min×40mm÷80mm=100mm/min F100 *1
- 4. Vorschub des Tisches, θ f=200/min×69.2mm÷80mm= 173mm/min Drehgeschwindigkeit des Tisches=173mm/min x 1min⁻¹÷ 314mm/min=0.55U/min F055 *2

4 Beispiel für kontinuierlichen Lauf bei einer Dreharbeit

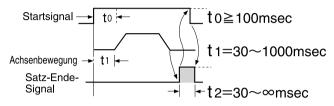
Programm der CNC-Maschine

0 0004; M 21; Starten des kontinuierlichen Laufes X & Z Konturfräsen M 21; Lauf anhalten M21; Zurück zum Maschinennullpunkt

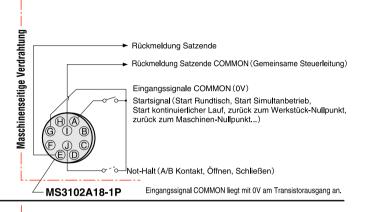
Programm der NIKKEN &21-Steuerung

Drehrichtung und Vorschub bei kontinuierlichem Lauf werden mit N997 festgelegt. Wird eine höhere Drehgeschwindigkeit benötigt als die Standardmodelle bieten, sprechen Sie mit uns.

TECHNISCHE INFORMATIONEN ZUR NIKKEN STEUERUNG 1 NIKKEN

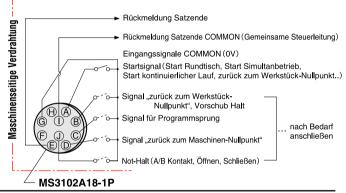

Anschluss der &21-Steuerung

Normalerweise wird die Steuerung einfach nur durch Verknüpfung per M-Signal (Startsignal) sowie dem Satz-Ende-Signal angesprochen. Das Signal für NOT-HALT muss bei 5AX-Tischen an den B-Kontakt gelegt werden. Bei anderen Tischen kann hier zwischen Kontakten A oder B gewählt werden.


Für die Verbindung zur Maschine wird die Steckdose MS3102A18-1P mitgeliefert. Diese Steckdose ist maschinenseitig anzubringen und zu verdrahten.

Zeitdiagramm Eingabe/Ausgabe

t1 und t2 können durch Parameter gesetzt werden.


Anschluss für automatischen Betrieb

Sobald das Programm in die &21-Steuerung geladen wurde, können alle Operationen wie Maschine EIN, Maschine zurück zum Nullpunkt, sowie Programmbereich, Start usw. von der Maschine aus gehandhabt werden. Drei M-Signale werden für den CNC-Rundtisch benötigt, 6 M-Signale für den 5AX Schwenk-Rundtisch. Beispiel:

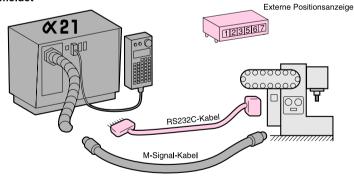
M21: Startsignal

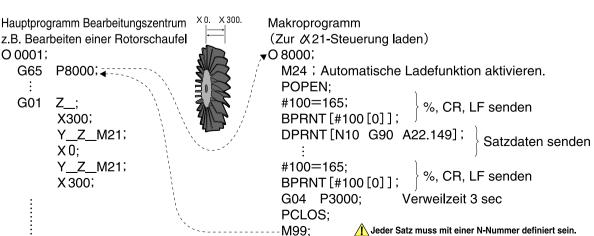
M22: Programmsprung (Auswahl) - Signal

M23: Rückkehr zum Maschinen-Nullpunkt und Zurücksetzen

RS232C Schnittstelle für Automatisches Laden... Die Bedientastatur wird hierbei nur für manuellen Betrieb und zu Wartungszwecken benutzt. Patent in Japan angemeldet

Das Programm wird über ein Kundenmakro vom Bearbeitungszentrum geladen und durch ein normales M-Signal gestartet. Die gesamte Programmverwaltung kann vom Bearbeitungszentrum aus erfolgen. Die notwendigen Funktionen auf Seiten des Bearbeitungszentrums sind :


Externe Ausgabefunktion des Kundenmakro


2 M-Funktionen

z.B.

M21: Startsignal

M24 : Startsignal der RS232C-automatischen-Ladefunktion (Start Šignal ohne Rückmeldung Satzende, Dauer des Ein-Šignals bis zu 100ms)

TECHNISCHE INFORMATIONEN ZUR NIKKEN STEUERUNG 2 NIKKEN

RS232C-Schnittstelle für direkte Winkelprogrammierung

Japan: Patent angemeldet

Diese Schnittstelle startet einen Programmsatz, nachdem dieser durch ein Kundenmakro vom Bearbeitungszentrum aus gesendet wurde. Es wird z.B. eine Gleichteilungsfunktion (hier: Teiler 7) gesendet. Die Programmierung dazu und die gesamte Programmverwaltung kann vom Bearbeitungszentrum aus gehandhabt werden. Das ist einfach und übersichtlich.

Voraussetzungen am Bearbeitungszentrum

Kundenmakro

Kundenmakro-Ausgabefunktion

1 M-Signal (Startsignal) M21

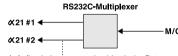
5AX-Tische mit 2 oder mehr als 2 &21-Steuerungen können an die RS232C-Schnittstelle für direkte Winkelprogrammierung angeschlossen werden. In diesem Fall wird der RS232C-Multiplexer benötigt und dazu pro X21-Steuerung jeweils ein M-Signal.

X21 Externe Positionsanzeige 11213151617

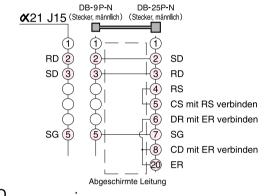
M-Signal-Kabe

und zu Wartungszwecken benutzt.

Die Eingabetastatur wird hier nur noch für manuellen Betrieb


RS232C-Schnittstelle

Das Kabel ist optional lieferbar. Baudrate: 4800, 9600 bps


Codierung: ISO

Daten-Bitlänge: 7 Bits Paritätsbit : Gleiche Parität Länge Stoppbit: 2 Bits

Nach Setzen der Parameter des Bearbeitungszentrums werden "LF CR" oder "CR LF" als EOB (Satzende) gesendet.

Auf allen Leitungen werden identische Daten zur jeweiligen X21-Steuerung gesendet.

• Aufrufen des Makroprogramms für direkte Winkelprogrammierung

ID-Nummer (darf nicht weggelassen werden) Bitte den Wert von PRM #1 auf der &21-Steuerung definieren.

Vorschubgeschwindigkeit 000,001~999

Winkelananweisung (darf nicht weggelassen werden. A:Drehachse, B:Schwenkachse)

90/91=Absolut/Inkremental

M21 (Start einer Winkelanweisung) wird nach Ausführung des Makroprogramms zur direkten Winkelprogrammierung in beliebiger Anzahl ausgegeben.

• Makroprogramm für direkte Winkelprogrammierung (Beispiel, nur für Steuerung der Drehachse)

O 8000;

POPEN:

#100=165;

BPRNT [#100[0]];

IF [#13 EQ #0] GOTO 5:

IF [# 8 EQ #0] GOTO 3:

IF [# 9 EQ #0] GOTO 2;

DPRNT [ID#7[10] G#13[20]A#1[43]E#8[40]F#9[30]]; N1

GOTO 10:

DPRNT [ID#7[10] G#13[20]A#1[43]E#8[40]]; N2

GOTO 10;

IF [#9 EQ #0] GOTO 4; N3

DPRNT [ID#7[10] G#13[20]A#1[43]F#9[30]];

DPRNT [ID#7[10] G#13[20]A#1[43]]; N4

GOTO 10:

N5 IF [#8 EQ #0] GOTO 7:

IF [#9 EQ #0] GOTO 6;

DPRNT [ID#7[10] A#1[43]E#8[40]F#9[30]];

GOTO 10:

DPRNT [ID#7[10] A#1[43]E#8[40]]; N₆

GOTO 10:

IF [#9 EQ #0] GOTO 8; N7

DPRNT [ID#7[10] A#1[43]F#9[30]];

GOTO 10:

DPRNT [ID#7[10] A#1[43]]; N8

BPRNT [#100[0]]; N10

> P200: G04

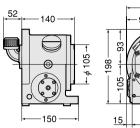
P CLOS;

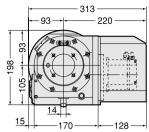
M 99;

Die Signale für Werkstück-Nullpunkt und Alarmausgabe können optional ausgegeben werden. Beachten Sie, dass diese Signale kontaktlos ausgegeben werden und die gemeinsame Ausgangsleitung 0V hat. Nähere Informationen hierzu rufen Sie bei uns ab.

Auslaufen von Wartungsarbeiten für bestimmte NIKKEN-Steuerungen

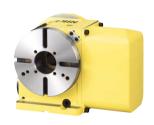
Wartungsarbeiten für NIKKEN-Steuerungen können wir solange aufrecht erhalten, wie elektrische/elektronische Ersatzteile verfügbar sind. Für folgende Steuerungstypen ist die Wartungsmöglichkeit jedoch im April 2005 ausgelaufen, da die Bereitstellung elektrischer/elektronischer Komponenten unmöglich wurde. Bitte prüfen Sie die Möglichkeit des Austauschs gegen eine &21-Steuerung: ND500, 8000DC, 8800DC, 9000DC an CNC-Rundtischen NSV-Steuerung (M-Signal Interface, B-Signal Interface)

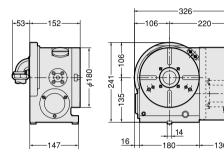

KOMPAKTE CNC-RUNDTISCHE MIT & 21-STEUERUNG



Alle Maße beziehen sich auf die Ausführung mit NIKKEN &21-Steuerung. CAD-Dateien im DXF-Format können Sie bei uns abrufen.

CNC105A21

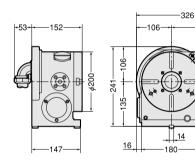

Kraftvolle Bremse Klemmmoment : 205Nm



Ausstattung mit Sperrluftfunktion

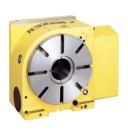
CNC180A21

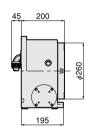
Kraftvolle Bremse Klemmmoment : 303Nm

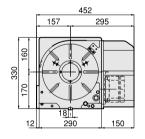


Ausstattung mit Sperrluftfunktion

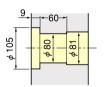
CNC202A21

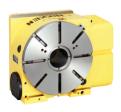

Kraftvolle Bremse Klemmmoment : 303Nm

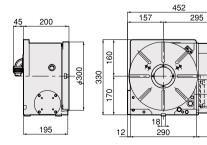


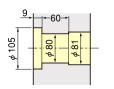


Ausstattung mit Sperrluftfunktion


CNC260A21


-220

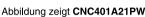


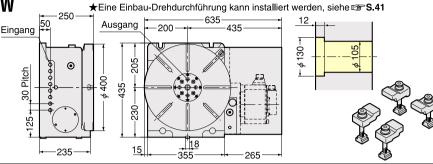

Bei Rundtischen mit pneumatischer Bremse ist das Motorgehäuse standardmäßig mit Sperrluft belegt.

CNC302A21

Für alle CNC-Rundtische ist die HighSpeed Z-Version lieferbar: z.B. CNCZ260A21.

Bei Rundtischen mit pneumatischer Bremse ist das Motorgehäuse standardmäßig mit Sperrluft belegt.


CNC-RUNDTISCHE MIT & 21-STEUERUNG



CNC321A21PW, CNC401A21PW

Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit NIKKEN &21-Steuerung. Maßdaten für abweichende Ausführungen sind ebenfalls erhältlich. Fragen Sie uns.

CNC501A21PW, CNC601A21PW

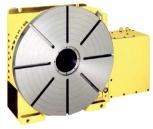
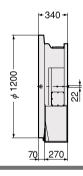


Abbildung zeigt CNC601A21PW



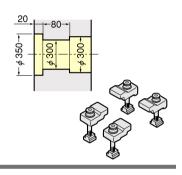
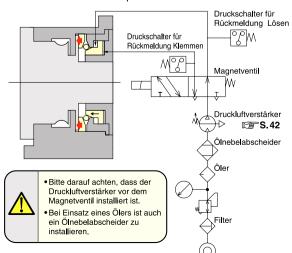
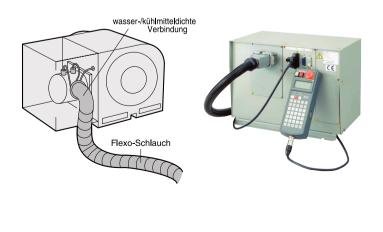

CNC801A21PW, CNC1200A21PW

Abbildung zeigt CNC1200A21PW



Kraftvolle Klemmung

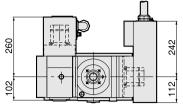


Die Tische CNC180, CNC202 und beide Achsen des 5AX-130, der TAT105 und der TAT170 verfügen über eine Klemmung mit verdoppelter Klemmkraft. Die kraftvolle Klemmung wird mit einem feinfühligen, als Keil wirkenden kegelförmigen Kolben und doppelt verstärkt arbeitenden Mechanismus erzielt. Zusätzlich wird für noch höheren Klemmkraftbedarf ein Druckluftverstärker empfohlen.

Noch zuverlässiger durch verbesserte Wasserschutz-Eigenschaften

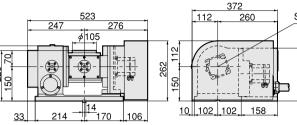
- · Alle CNC-Rundtische mit **X**21-Steuerung werden standardmäßig mit einem dem Tisch direkt zugeführten Kabel ausgestattet.
- · An der Kabelverbindung zur **≪**21-Steuerung wird in der aktuellen Ausführung ein HARTING-Stecker eingesetzt.
- ·Bei Rundtischen mit pneumatischer Klemmung ist standardmäßig Sperrluft an das Motorgehäuse gelegt.

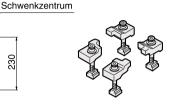
SCHWENK-RUNDTISCHE MIT & 21-STEUERUNG



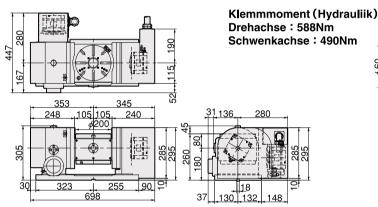
Die Außenabmessungen sind abhängig vom Typ des verwendeten Servomotors. Die hier angegebenen Maße beziehen sich auf die Ausführung mit NIKKEN &21-Steuerung. Maßdaten für abweichende Ausführungen sind ebenfalls erhältlich. Fragen Sie uns.

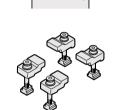
5AX-130WA21




Abbildung mit *ϕ*130mm-Planscheibe Feststehendes Drehachsen-Kabel

Klemmmoment (Pneumatik)
Drehachse: 205Nm
Schwenkachse: 303Nm



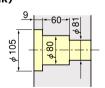


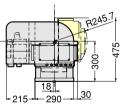
5AX-200 II A21

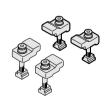
Feststehendes Drehachsen-Kabel



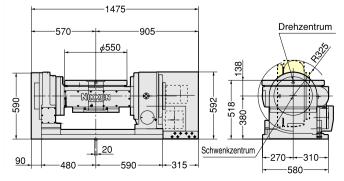
5AX-350WA21PW

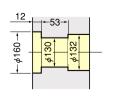



Feststehendes Drehachsen-Kabel


Eine 6-Wege-Einbau-Drehdurchführung ist optionales Zubehör

Klemmmoment (Hydrauliik) Drehachse: 2,000Nm Schwenkachse: 2000Nm




5AX-550WA21PW

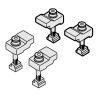
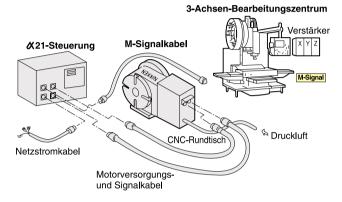


Abbildung mit Zentrierflansch (optional) Feststehendes Drehachsen-Kabel

Eine 4-Wege-Einbau-Drehdurchführung ist optionales Zubehör

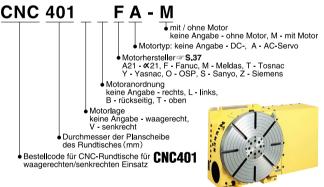
Auswahl eines CNC-Rundtisches

CNC-Rundtisch in Verbindung mit freier Achsenschnittstelle


Verfügt das Bearbeitungszentrum über eine freie Achsenschnittstelle für einen Rundtisch, bitte diese Tischserie einsetzen. Damit zur Achsenschnittstelle ein passender Servomotor gewählt wird, entnehmen Sie bitte Details der Tabelle S. 37.

- Der Verstärker für die 4. Achse muß innerhalb der Steuerung des B/Zs zu den Antrieben der X-, Y-, und Z -Achsen passen.
- Ebenso muss der Motor für den Rundtisch der gleichen Serie der übrigen Achsen entsprechen. Die Größe des Motors und des Verstärkers ist von der Größe des Rundtischmodells abhängig.
- 3. Der Motor kann durch den Kunden gestellt werden oder durch **NIKKEN** geliefert werden.
- 4. Die Motorgehäuseabmessungen und die technischen Daten richten sich jeweils nach dem Servo-Motortyp.
- Es kann notwendig werden, maschinenseitig die Achsenschnittstelle, Kabelsteckverbindungen, Hydraulikdruckversorgung zu installieren und das Setzen der Parameter des B/Zs vorzunehmen.

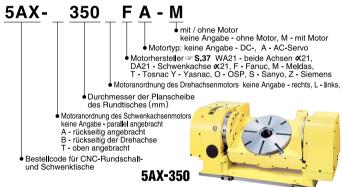
CNC-Rundtisch mit NIKKEN-Steuerung (M-Signal-Serie) Der CNC-Rundtisch mit NIKKEN ≪ 21-Steuerung kann über ein M-Signal (oder Kontakt-Signal) von einem Bearbeitungszentrum, einer NC-Fräsmaschine oder einer konventionellen Fräsmaschine aus betrieben werden und hoch präszises Takten, Teilen in gleichen Schritten (2-9999 Teilungen) oder spiralförmiges Fräsen ausführen. Bei vorhandenen Maschinen kann der Rundtisch auch nachgerüstet werden S 49.

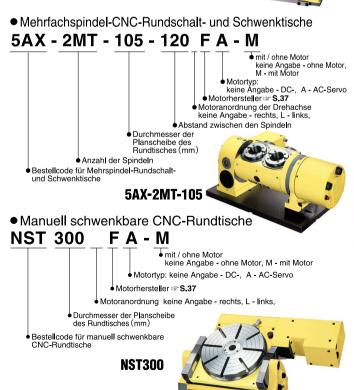

- 1. Ein guittierbares M-Signal ist maschinenseitig erforderlich.
- Der Rundtisch kann auf jeder Maschine installiert werden. Z.B. NC-Fräsmaschine oder konventionelle Werkzeugmaschine.
- 3. **NIKKEN** liefert den Rundtisch komplett mit Steuerung, Servomotor und Kabeln.

4-Achsen-Bearbeitungszentrum Verstärker CNC-Rundtisch Wotorversorgungsund Signalkabel (Option)

Erklärung der Bestellnummern


• Ein-Achsen-CNC-Rundtische




• Rundtakttische mit Hirth-Verzahnung

CNC100-2W

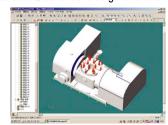
• 5AX Rundschalt- und Schwenktische

Fertigung und Verwaltung

Härten und Kältebehandlung
NIKKEN ist der einizige Wekzeughersteller, der seine
Produkte einer Kältebehandlung unterzieht. Dieser
Prozess, ein rascher Abkühlungsvorgang auf -90
Grad, wird nach dem Härten und Vergüten vollzogen,
um den restlichen Austenit in ein 100%iges
Martensitgefüge umzuwandeln, das auf lange Zeit
gesehen Alterungserscheinungen verhindert. Diese gesehen, Alterungserscheinungen verhindert. Diese Technologie wurde bisher für hochwertige Lager und für Parallelendmaße eingesetzt. Wenn NIKKEN solche oft wenig bekannten Verfahren aufgreift, sind sie ein Beweis mehr dafür, wie bei NIKKEN mit Leib und Seele Werkzeuge entwickelt und gefertigt werden.

Plasmanitrieren

Plasmanitrieren ist ein thermochemischer Prozess: Werkstücke werden auf die relativ geringe Temperatur von 450 Grad erhitzt und einer Vakuum -Stickstoff-Athmosphäre ausgesetzt. Ein glühendes Plasma bildet sich und durch Ionenbeschuss wird Stickstoff in die Randschichten des Materials eingelagert. Das verbessert sowohl die Verschleißwiderstandsfähigkeit wie auch das Reibungsverhalten (der Oberflächenreibungskoeffizient wird reduziert). Erfahrung und das Know-How des Plasmanitrierens haben sich in einer ganzen Reihe von NIKKEN-Produkten, wie z.B. Schneckenräder für CNC-Rundtische oder ultra wiederstandsfähige Reibahlen, als nützlich erwiesen.


Fertigungslinien Drehen und Fräsen

Design und Entwicklung

Wir nutzen weit fortgeschrittene Technologien wie z.B. 3D CAD und FEM-Analyse zur Verbesserung von Schnelle und Qualität bei Design und Entwicklungen.

Linie NC-Drehen

Hier arbeiten CNC-Drehmaschinen mannlos bei Einsatz u. a. unserer Produkte Oil Jetter und **Combat Z Bohrer**.

Linie Bohren und Fräsen

Im Einsatz sind kleinere Modelle unserer Rundtische, unser NC5-Werkzeug-System sowie MAJOR DREAM-Werkzeughalter:hoch entwickelte Produkte für eine effiziente Fertigung.

Multi-Flächenaufspannung kleinerer Werkstücke

Linie Horizontale Bearbeitungszentren

Hier werden mithilfe der NIKKEN -Doppelkontakt-Werkzeughaltersysteme NC5 und **3Lock** die Schnittleistung und Produktivität wirksam erhöht.

Bereich Endfertigung

Alle hoch genauen Endfertigungsarbeiten werden in einem speziellen Raum mit konstanter Temperatur rund um die Uhr von 20.5°C±0.5° ausgeführt. Die Maschinen dafür sind Sonderkonstruktionen für ultrahohe Präzision (u.a. Europäische Lehrenbohrwerke)

Bereiche Schleifen, Montage und Inspektion

Wälzfräsen eines Schneckenrades

Linie Schleifen von Hartmetall-Schneckenwellen usw.

Schleifen von Hirth-Kupplungen

Das (€) -Zeichen ist seit 1995 aufgrund von Sicherheitsbestimmungen auf Produkten für den Europäischen Markt erforderlich.

Linie CNC-Rundtischmontage

Von hier aus gehen unsere CNC-Rundtische, die eine Spitzenposition bei Präzision, Lebensdauer und Stabilität besetzen, in Märkte in aller Welt.

Wir unterhalten weltweit Vertriebsbüros in 11 Ländern. Jedes davon unterhält ein Lager mit Werkzeugen und CNC-Rundtischen, und unsere Service-Ingenieure kümmern sich um Wartung und Service unserer Produkte. In anderen Regionen (z.B. Ost- Süd-Asien, Ozeanien, Südamerika, Afrika usw.) verfügen wir über geschulte Vertriebspartner.

•Diese Punkte zeigen, wo die vier größten Werkzeugmaschinenmessen der Welt ausgerichtet werden. NIKKEN nimmt an zahlreichen Ausstellungen teil,

um alle Kunden weltweit zu beraten und zu unterstützen.

NIKKEN KOREA (Korea)

NIKKEN CHINA (China)

NIKKEN SCANDINAVIA (Schweden)

Tel.+0041 (0) 41-748-5000 Fax.+0041 (0) 41-748-5001

PROCOMO (Frankreich)

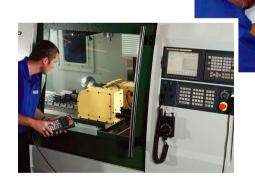
VEGA INTERNATIONAL (Italien) **NIKKEN DEUTSCHLAND** CHANDINAVIEN NIKKEN CCANDINAVIA AD

CA, CT, IL, NC, TX, WA	LYNDEX-NIKKEN, INC. 1468 Armour Boulevard, Mundelein, ILLINOIS 60060	SKANDINAVIEN Schweden	Säterigatan 27 41764 Göteborg Tel.+0046(0)31-519855 Fax.+0046(0)31-519955
★FRANKREICH	Tel.+001(0)847-367-4800 Fax.+001(0)847-367-4815 PROCOMO FRANCE S.A. 6, avenue du 1er Mai-Z.A.E.Les Glaises 91127 Palaiseau Cedex	★SPANIEN	CUTTING TOOL S.L POL.UGALDETXO-PARCELA 28-B, NAVE 6 20180 OIARTZUM (GIPUZKOA) APARTADO 1421-20080 SAN SEBASTIAN. Tel.+0034 943-494144 Fax.+0034 943-494409
★GB	Tel.+0033(0)1-69-19-17-35 Fax.+0033(0)1-69-30-64-68 NIKKEN KOSAKUSHO UK LTD. Precision House, Barbot Hall Industrial Estate, Rotherham, South Yorkshire, S61 4RL	TÜRKEI	NIKKEN KESICI TAKIMLAR SAN. VE ULUSLARARASI TIC. A. S E5 Uzeri Kucukyali Yanyol Irmak Sok . Kucukyali Sanayi Sitesi A Blok No:5 Maltepe 34852 Istanbul Tel.+0090(0)216-518-1010 Fax.+0090(0)216-366-1414
★ DEUTSCHLAND	Eisenstraße 9b, D-65428 Rüsselsheim	★KOREA	KOREA NIKKEN LTD. 16-2 MAN SUK-DONG, DONG-KU, INCHON Tel.+0082 (0) 32-763-4461 Fax.+0082 (0) 32-763-4464
★ITALIEN	Tel.+0049 (0) 6142-55060-0 Fax.+0049 (0) 6142-55060-60 VEGA INTERNATIONAL TOOLS S.P.A Via Asti N ⋅ 9 10026-Santena (TORINO) Tel.+0039 011-9456330/40/50~70 Fax.+0039 011-9456380	★V.R. CHINA	SHANGHAI ZHONG YAN TRADING CO., LTD. GROUND FLOOR, D BUILDING, No. 357 ZHAO HUA ROAD, SHANGHAI Tel.+0086 (0) 21-62102506 Fax.+0086 (0) 21-62102083
★SCHWEIZ	NIKKEN SWITZERLAND AG Sumpfstrasse 32 CH-6300 Zug		

NIKKEN EUROPA ZENTRUM mit Programmpaket »voller Einsatz« NIKKEN

Das NIKKEN EURO CENTRE in England wurde 1999 eröffnet. Von hier aus laufen Verkauf, Vertrieb und Service aller an Niederlassungen und Händler in 20 Ländern in ganz Europa gelieferte Produkte. Im NIKKEN Euro Centre sind wir schon ein wenig stolz auf die vier Grundprinzipien unserer Geschäftsausübung: Unbedingte Rechtschaffenheit, kompromisslose Qualität, unbeirrte Beratung und vor allem »voller Einsatz« für unsere Kunden.

Produktverfügbarkeit


Das NIKKEN Euro Centre umfaßt in seinem Lager von 13,000 m² ständig 50.000 unterschiedliche Artikel, die einen Bereich von 4.000 Produktgruppen abdecken, einschließlich der jüngsten Generation von Einzel- und Mehrachsen-CNC-Rundtischen. Damit bildet es das größte Lager an NIKKEN-Produkten in Europa.

Unser Bereich für Technischen Service und Schulung bietet unseren Kunden Zugriff auf

- einen auf Multimedia basierenden Schulungsraum, in dem unseren Kunden durch umfassende Schulung Wege zur vollen Produktionsentfaltung bei ihren Anwendungen vermittelt werden.
- eine Fülle von Fachwissen, das alle Bereiche des Einrichtens, Optimierens und des Umsetzens der vielseitigsten Anwendungen in Verbindung mit NIKKEN-Produkten abdeckt.

Unser Bearbeitungszentrum, ausgerüstet mit div. Testvorrichtungen, ermöglicht

- das Ausreizen und die Fortentwicklung des Einsatzes unseres Werkzeugsystems.
- die Vorführung von NIKKEN-Werkzeugen und CNC-Rundtischen, um deren Vorzüge in bestimmten Anwendungen unseren Kunden aufzuzeigen.

Unsere Service-Abteilung ist spezialisiert auf

- Reparatur und Wiederaufarbeitung von Rundtischen durch eigene NIKKEN-geschulte Servicetechniker.
- Einrichten von Werkzeugen und Tischen für die nahtlose Integrierung in jegliche Anwendungen.

NIKKEN DEUTSCHLAND GmbH

Im Juni 2003 von NIKKEN gegründet, haben wir mit unserem Stützpunkt in der Opel-Stadt Rüsselsheim eine große Herausforderung übernommen. Im Maschinenmarkt belegt Deutschland seit Jahren Spitzenpositionen. Im Export ist man führend. Um dieses riesige Marktpotential zu nutzen, bauen wir unsere deusche Niederlassung kontinuierlich aus. Seit vielen Jahren sind bereits NIKKEN-Produkte, Werkzeuge wie auch Rundtische, im hiesigen Markt erfolgreich eingesetzt. Unser Außendienst arbeitet inzwischen bundesweit und unterstützt den Anwender, den Handel und den Maschinenlieferanten mit Beratung, hilft mit Tests und ist da für die Auftragsabwicklung. Seit unserer Gründung haben wir an zehn großen Ausstellungen unserer Branche teilgenommen. Unser großzügig ausgestatteter Ausstellungsraum in Rüsselsheim steht ständig unseren Kunden und Besuchern zur Verfügung. Hier beraten und schulen wir am praktischen Beispiel. Hier kann man unsere Produkte direkt in die Hand nehmen, an Modellen den Aufbau lernen und durch Messvorrichtungen die Genauigkeit nachvollziehen. Wer viel über sein Werkzeug weiß, kann besser damit arbeiten und vermeidet Fehler.

Für schnelle, flexible Lieferungen typischer, gängiger Artikel unterhalten wir ein wachsendes Lager parallel zum Europa-Lager im Euro Centre in England. Unser Versand erfolgt per Paketdienst, DHL oder Spediteur. Selbst Blitzlieferungen per Kurier wickeln wir erfolgreich ab.

P.S.

Sind Sie in osteuropäischen Ländern ansässig oder tätig? Dann wenden Sie sich gerne an uns. Der Vertrieb und Service wird von uns aus koordiniert und mit Vertragspartnern in diesen Ländern abgewickelt.

Von Anfang an haben wir besonderes Augenmerk auf unser Serviceangebot gelegt.

Mit schnellem Rat am Telefon, mit zügigen Reparaturen eingesandter Werkzeuge und Rundtische bis hin zum dringenden Einsatz vor Ort bekommt der Kunde unsere volle Unterstützung. Schon bei den Vorbereitungen für die Einbindungen eines Rundtisches in die unterschiedlichsten Motorund Steuerungsausstattungen sind wir ständig gefordert. Ebenso passen wir Zubehörlösungen wie Futter, Spannelemente, Gegenlager und -spitzen, Prüfmittel und Sicherheitsvorrichtungen an unsere Rundtischapplikationen an. Da sich NIKKEN-Rundtische durch besonders lange Lebensdauer auszeichnen, werden von uns auch "betagte" Tische generalüberholt und wieder einsatzbereit gemacht.

NIKKEN KOSAKUSHO WORKS, LTD. OSAKA, JAPAN.

5-1, 1-chome, Minamishinden, Daito-shi, Osaka-fu, Japan. Telephone: 072-869-5820 Telefax: 072-869-6220

DEUTSCHLAND NIKKEN DEUTSCHLAND GmbH

Eisenstraße 9b, 65428 Rüsselsheim Tel.+0049 (0) 6142/55060-0 Fax.+0049 (0) 6142/55060-60

NIKKEN KOSAKUSHO UK LTD.
Precision House, Barbot Hall Industrial Estate,
Rotherham, South Yorkshire, S61 4RL
Tel. (01709) 366306 Fax. (01709) 376683

NIKKEN SWITZERLAND AG

SCHWEIZ Sumpfstrasse 32 CH-6300 Zug Tel.+0041 (0) 41 748 5000 Fax.+0041 (0) 41 748 5001

SKANDINAVIEN NIKKEN SCANDINAVIA AB Säterigatan 27 41764 Göteborg Tel. (031) 519855 Fax. (031) 519955

PROCOMO FRANCE S.A.
6, avenue du 1er Mai-Z.A.E.Les Glaises 91127
Palaiseau Cedex
Tel. 01.69.19.17.35 Fax. 01.69.30.64.68 FRANKREICH

VEGA INTERNATIONAL TOOLS S.P.A **ITALIEN** Via Asti N • 9 10026-Santena (TORINO) Tel. (011) 9456330/40/50~70 Fax. (011) 9456380

SPANIEN

OLIUGALDETXO-PARCELA 28-B, NAVE 6 20180 OIARTZUM (GIPUZKOA) APARTADO 1421-20080 SAN SEBASTIAN.
Tel. (943) 494144 Fax. (943) 494409

NIKKEN KESICI TAKIMLAR SAN. VE ULUSLARARASI TIC. A. S TÜRKEI

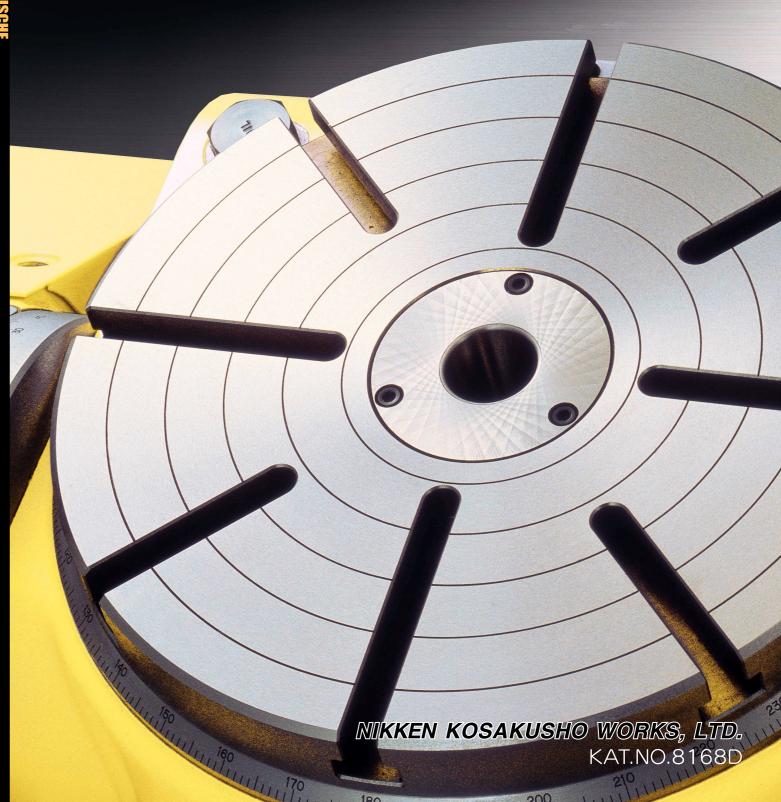
E5 Uzeri Kucukyali Yanyol Irmak Sok . Kucukyali Sanayi Sitesi A Blok No:5 Maltepe 34852 Istanbul Tel.+0090 (0) 216-518-1010 Fax.+0090 (0) 216-366-1414

1468 Armour Boulevard, Mundelein, ILLINOIS 60060 Tel. (847) 367-4800 Fax. (847) 367-4815

KOREA

KOREA NIKKEN LTD. 16-2 MAN SUK-DONG, DONG-KU, INCHON Tel. (032) 763-4461 Fax. (032) 763-4464

SHANGHAI ZHONG YAN TRADING CO., LTD. R.C/12B ZHONG XI BUILDING, NO.121~123 JIANG SHU ROAD, SHANGHAI Tel. (021) 6210-2506 Fax. (021) 6210-2083 V.R.CHINA


http://www.nikken.de

http://www.nikken-world.com e-mail: export@nikken-kosakusho.co.ip

D.AC 5

· Änderungen der technischen Daten vorbehalten.

CNC-RUNDTISCHE

